

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-05-09

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Serrão, C. & Rocha, D. (2016). Secure and trustworthy remote JavaScript execution. In Piet
Kommers, Pedro Isaías (Ed.), Proceedings of the IADIS International Conference e-Society.
Vilamoura: Iadis.

Further information on publisher's website:
http://esociety-conf.org/oldconferences/2016/

Publisher's copyright statement:
This is the peer reviewed version of the following article: Serrão, C. & Rocha, D. (2016). Secure and
trustworthy remote JavaScript execution. In Piet Kommers, Pedro Isaías (Ed.), Proceedings of the
IADIS International Conference e-Society. Vilamoura: Iadis.. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

http://esociety-conf.org/oldconferences/2016/

SECURE AND TRUSTWORTHY REMOTE JAVASCRIPT
EXECUTION

Carlos Serrão, Diogo Rocha
ISCTE – Instituto Universitário de Lisboa

Ed. ISCTE, Av. das Forças Armadas, 1649-026, Lisboa, Portugal
{carlos.serrao, diogo_antonio_rocha}@iscte.pt

ABSTRACT

Javascript is used more and more as a programming language to develop web applications in order to increase the user
experience and application interactivity. Although Javascript is a powerful technology that offers these characteristics, it is
also a potential web application attack vector that can be exploited to impact the end-user, since it can be maliciously
intercepted and modified. Today, web browsers act as worldwide open windows, executing, on a given user machine
(computer, smartphone, tablet or any other), remote code. Therefore, it is important to ensure the trust on the execution of
this remote code. This trust should be ensured at the JavaScript remote code producer, during transport and also locally
before being executed on the end-user web-browser. In this paper, the authors propose and present a mechanism that allows
the secure production and verification of web-applications JavaScript code. The paper also presents a set of tools that were
developed to offer JavaScript code protection and ensure its trust at the production stage, but also a proxy-based mechanism
that ensures end-users the un-modified nature and source validation of the remote JavaScript code prior to its execution by
the end-user browser.

KEYWORDS

web applications, JavaScript, security, trust, proxy

1. INTRODUCTION

For some time now there is a software production paradigm shift, where previously desktop-centric software
is migrated to a more distributed and ubiquitous web and mobile-based software (Grove, 2009). Software is
currently distributed over the Internet (mostly through the WWW) and accessed and executed on a Web
browser. This model consists in fetching code from a remote service (or multiple remote services) and execute
that code locally on the end-user web browser – the web application is a client-server software application in
which the client-part of the application runs on the web-browser (Segaran, 2007). These web applications, in
particular on what concerns the client-side, are mostly based on three different technologies: HTML, CSS and
JavaScript. In particular, JavaScript is one of the most important components of a web application, allowing
programmers to develop client-side complex logic and interactivity, improving the end-user experience
(Flanagan, 2006). Speed on client-side JavaScript execution is one of the most important characteristics of
modern web browsers. However, JavaScript is also used as a way for an attacker to compromise a web
application. Since JavaScript code is obtained from one or more remote sources and is afterwards executed
locally on the end-user browser, it is also possible for an attacker, or even a malicious programmer, to produce
or modify the Javascript code prior to its execution, putting in risk the web application itself and consequently
the end-user and its own data (Cova, Kruegel, & Vigna, 2010). A major JavaScript attack vector is the non-
authorized modification of the code – these modifications can occur at the distributor (server-side), during
transport (man-in-the-middle) or even at the destination (man-in-the-browser). Therefore, it is important to
ensure JavaScript code trust in all moments, in particular its integrity and origin. JavaScript code can be
intercepted, change by an attacker and later executed on the user web browser for malicious purposes, without
any warning (Nikiforakis et al., 2012). Moreover, JavaScript code being executed by the browser might not be
trustworthy. These attacks authors compromise popular web sites and redirect users to their own malicious

versions (phishing) deceiving users, forcing them to give away private information such as bank account
numbers, credit card numbers, personal access codes and much more. Therefore it is important to ensure the
security and integrity of the remotely obtained Javascript code in all phases of its existence and execution (since
its creation) to enable the appropriate trust mechanisms, protecting the final user (Patil, Dong, Li, Liang, &
Jiang, 2011).
The major contribution of this paper is the identification of some of the security challenges associated with the
remote Javascript execution and to present a proposal, based on public-key cryptography to create the
appropriate mechanisms for protecting web application JavaScript code and also build the necessary trust,
integrity and confidentiality mechanisms to ensure the security of the remote JavaScript code before its
execution by the browser web. This paper starts by introducing the context of web application and describe
their major problems in terms of security. On the following section the major attack vectors to the JavaScript
lifecycle are presented and described. The description of the methods that are going to be used to provide the
necessary confidentiality and trust characteristics to the JavaScript source-code will be detailed in the next
section. After this, the authors present the tools developed to implement the previously mentioned mechanisms
and describe its operation. Finally, some conclusions of this work are presented and some future worked
directions are pointed out.

2. JAVASCRIPT ATTACK VECTORS

A central component of a web application is JavaScript. JavaScript allows the development of complex logic
and advanced interaction mechanisms at the web application client-side. However, this architecture is prone to
error and vulnerabilities that can be explored by malicious attackers. Cross-Site Scripting (XSS) attacks and
its variants Stored XSS Attacks, Reflected XSS Attacks and DOM Based XSS Attacks consists on the injection
of JavaScript code in order to manipulate the logic of the web application, subverting it and allowing an attacker
to obtain possible advantages over the web application and the user that is using it (Stuttard & Pinto, 2011).
Cross-site Request Forgery (CSRF) is another class of attacks that affect web applications and JavaScript,
affecting the end-user forcing him to conduct non-intended operations on the applications it trusts (Barth,
Jackson, & Mitchell, 2008). There are multiple threats that affect web applications with particular impact on
JavaScript. Having into consideration the web applications and JavaScript lifecycle (Figure 1) it is possible to
consider a significative number of attack vectors.

Figure 1. The different attack vectors on the JavaScript lifecycle

This lifecycle covers the development of the web application (and also JavaScript), its storage and distribution,
and finally its execution on the client-side web browser. In this lifecycle it is possible to identify a set of attack
vectors (V1, V2, V3, and V4) that can be seen as opportunities for attackers to try to exploit the web application
and target end-users.
The programmer as an attacker (V1)
In this scenario, the web application developer can be seen as an attacker that produces malicious JavaScript
code. This malicious code can be embedded on the web application and executed on the end-user web browser
without its own knowledge. This malicious code can be used to obtain details from the end-user environment,
mislead the end-user to conduct different non-normal operations, or give more information than it is supposed
to. There is also a small variation from this threat that refers to the fact that the developer might be tricked by

a third attacking party to inject malicious JavaScript into legit code. This is, for instance, the case where a
developer wants to include some external library into its own code and, accidentally, includes malicious third
party code on its own source-code that, ultimately, will be executed at the end-user browser.
Application distributors modify the application (V2)
After being developed, the web application is deployed on a server or Content Distribution Network (CDN)
where it can be accessed by multiple users across the World, through a web browser over the Internet. This
specific attack vector considers the case where this distributor is also an attacker. The distributor, acting as a
malicious attacker (or any third party that was able to subvert the distribution infrastructure) can access the
web application source-code (including JavaScript sources) and modify it through the injection of rogue
JavaScript. Although improbable, this is also a scenario that needs also to be take into consideration in order
to offer an affective protection of the web application source code throughout all the lifecycle stages.
Attacking the communication channel (V3)
Whenever the client requests the web application, the source-code is downloaded from a server before it is
executed. While all this source-code is traveling from the server to the client there is the opportunity for an
attacker to listen to the communication channel, intercept the code, modify and redirect it to the end-user
browser, as if it was the original unmodified code (man-in-the-middle attacks) (Callegati, Cerroni, & Ramilli,
2009). There a large number of tools that can be used to sniff HTTP intercepting the traffic and retrieving
communication data. Even an HTTPS ciphered connection can be targeted by these man-in-the-middle attacks
– an attacker can setup a rogue proxy that can intercept HTTPS ciphered traffic, decipher it, modify and send
it back to the client. The client receives the modified source-code and executes it locally.
Client-side attacks (V4)
Finally, it is also possible to consider an attack vector related with the local execution of JavaScript code, in
which malicious software (planted on the web browser or any other compliant user device by an attacker) can
act over the legit JavaScript code and inject malicious instructions on it – also known as man-in-the-browser
(MITB) attacks (Dougan & Curran, 2012). These attacks use a similar approach to MITM attacks but the user
requests interception and modification is conducted by malware that runs between the browser and its security
mechanisms, tricking the end-user to believe that everything is absolutely normal.

3. BUILDING TRUST IN JAVASCRIPT

Although JavaScript security mechanisms are already in place, either built-in on the web browser or offered
by external plugins or extensions, none of such mechanisms offer end-to-end trust at the JavaScript source-
code level. These systems are limited to the defense of the JavaScript code through mechanisms life
obfuscation, vulnerabilities identification (JavaScript analyzers) or by blocking the access to non-desirable
domains (NoScript browser extension, for instance). However, there are no browser internal or external
mechanisms that limit the code execution according to different pre-established conditions nor mechanisms
that warrant the origin and integrity of the code since its creation until its execution on the web browser.
End-to-end trust as it is presented in this work refers to the possibility of strongly assuring that the JavaScript
being executed by the web browser was originally created by a given authenticated developer and that the code
has not been tampered by any external entities. In order to attain these objectives, the authors devised a set o
mechanisms implemented through two different tools: “ScriptProtector” and “ScriptProxy”. “ScriptProtector”
is the tool used by the developer to create the protection mechanisms that are used to protect and create trust
on the produced JavaScript source-code. “ScriptProxy” is the tool used by the end-user that verifies the
authenticated code and the code present in the page and validates the browser trust on it.

3.1 Creating and obtaining developer credentials

In order for these two tools to work a set of cryptographic mechanisms need to be setup. The process is based
in public-key cryptography and therefore certification authorities (CA) will be used to issue credentials to
software development companies and individual programmers. Depending on the trust level, these CA can be
public or privately explored by software development companies (SDCA). These CA must have a key-pair
𝐾𝑝𝑢𝑏𝐶𝐴 , 𝐾

𝑝𝑟𝑖𝑣
𝐶𝐴 and a self-signed certificate 𝐶𝑒𝑟𝑡𝐶𝐴𝐶𝐴 .

3.1.1 Credentials for individual developers
In this case the developer will get the credentials from a CA in order to be able to produce the code and digitally
signed it:

• A developer (SD1) has a key pair: 𝐾𝑝𝑢𝑏𝑆𝐷 , 𝐾
𝑝𝑟𝑖𝑣
𝑆𝐷

• The developer submits its public key together with other CA requested information: 𝐾𝑝𝑢𝑏𝑆𝐷 ;

• The CA verifies the information sent by the developer and using its own private key 𝐾𝑝𝑟𝑖𝑣𝐶𝐴 to issue

a digital certificate for the developer 𝐶𝑒𝑟𝑡 𝐶𝐴𝑆𝐷/
.

3.1.2 Creating company credentials
In this second situation is the development company that will be certified and afterwards can issue their own
credentials to their own developers. As an alternative all the developers on the company will use the same
digital certificate.

• In the first scenario we have a CA that issues a digital certificate for a specific company certification
authority (SDCA). After submitting its public key 𝐾 𝑝𝑢𝑏

𝑆𝐷𝐶𝐴 the CA issues a certificate for SDCA

𝐶𝑒𝑟𝑡 𝐶𝐴
𝑆𝐷𝐶𝐴 .

• In the second scenario there is only a single certificate that the software development company (SDC)
can use globally 𝐶𝑒𝑟𝑡 𝐶𝐴𝑆𝐷𝐶 .

3.2 Javascript code protection

The developer will need to protect and ensure trust on the produced JavaScript source code. In order to ensure
this, the developer will use cryptographic mechanisms that will implement these two requirements. A web
application is composed by several components, mostly HTML pages and Javascript scripts that may be
included inside or outside an HTML page (Figure 2). The protection mechanism will consider both inline
scripts and scripts which are referenced by the HTML page on the web application.

3.2.1 Integrity protecting and trust assurance
In this case, the Javascript scripts will be properly identified the inline scripts 𝑆𝑐𝑟𝑖𝑝𝑡/, 𝑆𝑐𝑟𝑖𝑝𝑡1, . . . 𝑆𝑐𝑟𝑖𝑝𝑡3
and also the remote scripts 𝑅𝑆𝑐𝑟𝑖𝑝𝑡/, 𝑅𝑆𝑐𝑟𝑖𝑝𝑡1, . . . 𝑅𝑆𝑐𝑟𝑖𝑝𝑡3 that will be protected, through digital signature,
either by the individual developers (1) or directly by the software development companies (2).

(1) 𝐷𝑆𝑖𝑔 𝑆𝐷3
𝑆𝑐𝑟𝑖𝑝𝑡6

→ 𝐾
𝑝𝑟𝑖𝑣
𝑆𝐷3

𝐻𝑎𝑠ℎ<=>/ 𝑆𝑐𝑟𝑖𝑝𝑡6 , 𝑛,𝑚 ∈ ℤ: 1 ⩽ 𝑛,𝑚 ⩽ ∞

(2) 𝐷𝑆𝑖𝑔 𝐶
𝑆𝑐𝑟𝑖𝑝𝑡6

→ 𝐾𝑝𝑟𝑖𝑣𝐶 𝐻𝑎𝑠ℎ<=>/ 𝑆𝑐𝑟𝑖𝑝𝑡6 , 𝑚 ∈ ℤ: 1 ⩽ 𝑛,𝑚 ⩽ ∞

Besides that, after all the scripts are properly signed, the full HTML document is also signed in its full extension
(1) (2).

(1) 𝐷𝑆𝑖𝑔 𝑆𝐷3
𝐻𝑇𝑀𝐿 → 𝐾

𝑝𝑟𝑖𝑣
𝑆𝐷3

𝐻𝑎𝑠ℎ<=>/ 𝐻𝑇𝑀𝐿 , 𝑛 ∈ ℤ: 1 ⩽ 𝑛,𝑚 ⩽ ∞

(2) 𝐷𝑆𝑖𝑔 𝐶
𝐻𝑇𝑀𝐿 → 𝐾𝑝𝑟𝑖𝑣𝐶 𝐻𝑎𝑠ℎ<=>/ 𝐻𝑇𝑀𝐿 , 𝑚 ∈ ℤ: 1 ⩽ 𝑛,𝑚 ⩽ ∞

Together with the web page properly protected in terms of integrity and trust the CA (or SDCA) certificate is
sent together with the web page to the client. This will allow the client to validate the digital signatures and
therefore the integrity and trust on the different scripts.

Figure 2. Structure of the HTML document with the elements to protect

3.2.2 Scripts confidentiality protection
In the specific case of the confidentiality protection, it is required to avoid the access of an attacker to the
Javascript source-code. Depending on the security policy it is possible to consider the following scenarios:

1. A single key is used to protect all the different scripts on the HTML web page, and it does not change

according to the end-user requesting it:
𝑛
∪

𝑖 = 1
𝑆L 𝑆𝑐𝑟𝑖𝑝𝑡3 .

2. Using multiple protection keys, each of the keys is used to protect a single script and do not change

according to the end-user requesting it:
𝑗
∪

𝑖, 𝑛 = 1
𝑆LN 𝑆𝑐𝑟𝑖𝑝𝑡3 .

3. A variant from the previous two presented scenarios is the one in which the keys are changed
according to the end-user. Therefore different𝑆Lare selected and applied for the script protection
whenever the HTML page is requested by the end-user.

As a result, from this process, the Javascript source-code will be ciphered with a key that would need to be sent
to the end-user – the proxy that will be responsible for the scripts validation prior to its execution by the Web
browser.

3.3 Javascript protection execution proxy

In the Javascript execution protection process, there is a proxy that runs on the client-side that receives the
content and immediately before passing it to the browser performs a set of validations to verify the remote
Javascript trust, integrity and authentication. In order for this proxy to work in a security perspective, the
following requirements are necessary:

1. When the proxy is executed for the first time, the proxy (P) creates a key-pair 𝐾𝑝𝑢𝑏𝑃 , 𝐾𝑝𝑟𝑖𝑣𝑃 ;
2. The proxy contains on an internal database a list of trustworthy certification authorities (and root

certificates) properly setup: 𝐶𝑒𝑟𝑡𝐶𝐴/𝐶𝐴/
. . . 𝐶𝑒𝑟𝑡𝐶𝐴3𝐶𝐴3

. These certificates are necessary to ensure trust

every time signed Javascript is sent to the user Web browser.

3.3.1 Javascript integrity protection and trust verification
This will be the most common usage that will be used for developers that will allow the Javascript integrity
and trust. In this situation, both local (𝐷𝑆𝑖𝑔<PQRSTU

<VW) and remote (𝐷𝑆𝑖𝑔X<PQRSTU
<VW) scripts are digitally signed and

would need to be validated by the proxy before being executed by the web browser or discarded. The
verification process is the following:

1. Extraction of the integrated digital certificate that is present on the web page HTML file: 𝐶𝑒𝑟𝑡 CA𝑆𝐷3
.

2. Validate the digital certificate comparing it with the existing proxy trustworthy certification
authorities database –additional validations may also be used, such as OCSP (Myers, Ankney,
Malpani, Galperin, & Adams, 1999).

3. Finally after the trust is established on the certificate emitting entity is also possible to trust the
certificate public-key: 𝐾𝑝𝑢𝑏𝑆𝐷 .

4. This public-key can be used to validate the HTML file digital signature: 𝑉𝐷𝑆𝑖𝑔 𝑆𝐷3
𝐻𝑇𝑀𝐿 →

𝐾𝑝𝑢𝑏𝑆𝐷3
𝐷𝑆𝑖𝑔 𝑆𝐷3

𝐻𝑇𝑀𝐿 , 𝑛 ∈ ℤ: 1 ⩽ 𝑛 ⩽ ∞ .

5. After validating the HTML digital signature its necessary to validate all the other scripts digital
signatures:

a. 𝑉𝐷𝑆𝑖𝑔 𝑆𝐷3
𝑆𝑐𝑟𝑖𝑝𝑡6

→ 𝐾𝑝𝑢𝑏𝑆𝐷3
𝐷𝑆𝑖𝑔 𝑆𝐷3

𝑆𝑐𝑟𝑖𝑝𝑡6
, 𝑛,𝑚 ∈ ℤ: 1 ⩽ 𝑛,𝑚 ⩽ ∞

b. 𝑉𝐷𝑆𝑖𝑔 𝑆𝐷3
𝑅𝑆𝑐𝑟𝑖𝑝𝑡6

→ 𝐾𝑝𝑢𝑏𝑆𝐷3
𝐷𝑆𝑖𝑔 𝑆𝐷3

𝑅𝑆𝑐𝑟𝑖𝑝𝑡6
, 𝑛,𝑚 ∈ ℤ: 1 ⩽ 𝑛,𝑚 ⩽ ∞

6. The deciphered scripts, provided by the digital signatures (local and remote) are validated with the
respective scripts presents in the page, to ensure that what was signed is the same of what is present
in the page.

7. If all the validations were successfully accomplished, the page can be delivered to the web browser
for rendering.

3.3.2 Javascript confidentiality protection
This is the additional process that ensures the confidentiality and intellectual property protection of the
Javascript source-code. After being assured the integrity and trust on the code on the previous step, the proxy

already has the digital certificate of the script producer (𝐶𝑒𝑟𝑡 CA𝑆𝐷3
) that contains the public-key of the producer

(𝐾pub𝑆𝐷3
). With this public-key the proxy will send a new request to the server to get the appropriate key(s) to

access the Javascript source-code. The client after validating the answer from the client will select the

appropriate secret-key (𝑆L) and sends this key to the server ciphered (𝐾pub𝑆𝐷3
(𝑆L)). The software development

company deciphers the key (𝐾
priv
𝑆𝐷3

𝐾pub𝑆𝐷3
𝑆L 	→ 𝑆L). This key is used to protect the different scripts sent

from the server to the end-user (
𝑛
∪

𝑖 = 1
𝑆L 𝑆𝑐𝑟𝑖𝑝𝑡/). The protected scripts are sent to the proxy that uses the

appropriate secret-key to decipher them before passing them to the web browser (
𝑛
∪

𝑖 = 1
𝑆L 𝑆𝑐𝑟𝑖𝑝𝑡/).

4. “SCRYPTPROTECTOR” AND “SCRYPTPROXY”

In order to implement and test the mechanisms proposed and described before two different tools were
implemented – “ScriptProtector” and “ScriptProxy”. While the “ScriptProtector” was the tool used by the
developers to create the trust, integrity and confidentiality required by the Javascript files in the web
application, the “ScriptProxy” is the tool used by the different end-users to verify the trust, integrity and
protection of those scripts.

4.1 ScriptProtector

The “ScriptProtector” was developed as a command line
tool that developers could use to protect and build trust
on the local and remote JavaScript source-code required
by the web application. This tool starts by parsing the
web application files looking for different local
JavaScript source-code but also for the different remote
JavaScript included by this web application resource
(Figure 3). After all the different scripts are identified by
the tool it is necessary to apply the necessary trust and
integrity protection measures and optionally, if the
developer requires so, apply also the confidentiality
protection. After all these processes are completed, the
final version of the protected web application resource
file is outputted to the filesystem. This process is
repeated for all the web application resources that need
to be protected.
An example of a simple resource to protect (on the left)
and the protected version (on the right):

The protected web application resource protected by “ScriptProtector” adds extra information (developer
certificate with his public key and the digital signature of each script) on the resource that will enable the
establishment of trust and integrity – in this case, confidentiality was not a requirement.

4.2 ScriptProxy

On the end-user side, it was developed a tool that is responsible for assuring the integrity, trust and
confidentiality on the JavaScript resources before passing them to the web browser. There were two different
choices for the development of such tool – the
first would be to develop a specific web-
browser extension (or plugin) that would
work inside the browser web, while the
second would be an independent web-proxy
software to which the browser was connected
to intercept the web browser requests and
server responses. Due to the more platform
independent characteristics of the web-proxy,
this was the choice selected.
The web-proxy after intercepting the request
from the web-browser, requests the
appropriate web application requests from
the web-server. After receiving the data,
parses it and identifies the protected scripts
on the received web-pages resources, and
processes them, according to the mechanisms defined previously to ensure the trust, integrity and
confidentiality of the Javascript present on the web application resources received. After all the validations are

Script
Parser

HTML
Parser

Script
Protection Encryptor

Key(s)

Remote
script(s)

Network
Comm

Web Application
Files

Remote
file(s)

Certificate(s)

Script
Output

Output protected
script file(s)

Figure 3. "ScriptProtector" tool architecture

Script
Parser

HTML
Parser

Script
Validation Decryptor

Key(s)

Network
Comm

Certificate(s)

Script
Output

to browser Web

Get protected
files(s)

Figure 4. The "ScriptProxy" architecture overview

performed and the scripts are unprotected, the original version of the web application is passed to the web-
browser where it can be rendered accordingly (Figure 4).

6. CONCLUSIONS

Web applications are becoming trend applications in our days. The distributed and open nature of the Internet
and, in particular, the World Wide Web has made possible the usage of such applications for personal or
corporative usage. Critical web applications (such as banking, health and others), that handle personal sensitive
data are also becoming more and more frequent and are targeted by attackers that aim specifically at the end-
users of such applications.
Exploiting the mechanics of the web application, messing up with their logic, to perform non-authorized actions
against their end-users is one of the preferred attack vectors. Most of the times, this is accomplished by
tampering the Javascript source-code of the web-application, that is executed locally on the victim’s web-
browser without any notice.
The system proposed and described in this article presents a set of mechanisms, implemented in two different
tools, that allow developers to address the establishment of trust, integrity, confidentiality and intellectual
property protection of their own source-code. With it, its possible to create an independent trust bound between
the web application producer and the end-user web-browser, to ensure that the source-code executed by the
web browser is not tampered with.
Although this is an important step towards making the web applications safer, it is still reduced due to the
limitations imposed by the current web-browsers. The level of integration and pre-processing of web content
is still limited in most modern web-browsers, thus forcing our tools implementation to be external to the
browser itself, having an impact on the end-user experience. In the future it would be desirable to implement
the same trust mechanisms either inside the web-browser itself or as a web-browser extension.

REFERENCES

Barth, A., Jackson, C., & Mitchell, J. C. (2008). Robust defenses for cross-site request forgery. In Proceedings of the
15th ACM conference on Computer and communications security (pp. 75–88).

Callegati, F., Cerroni, W., & Ramilli, M. (2009). Man-in-the-Middle Attack to the HTTPS Protocol. IEEE Security and
Privacy, 7(1), 78–81.

Cova, M., Kruegel, C., & Vigna, G. (2010). Detection and analysis of drive-by-download attacks and malicious
JavaScript code. In Proceedings of the 19th international conference on World wide web (pp. 281–290).

Dougan, T., & Curran, K. (2012). Man in the browser attacks. International Journal of Ambient Computing and
Intelligence (IJACI), 4(1), 29–39.

Flanagan, D. (2006). JavaScript: the definitive guide. “ O’Reilly Media, Inc.”
Grove, R. F. (2009). Web-Based Application Development. Jones & Bartlett Publishers. Retrieved from

http://www.amazon.com/Web-Based-Application-Development-Ralph-Grove/dp/0763759406
Myers, M., Ankney, R., Malpani, A., Galperin, S., & Adams, C. (1999). X. 509 Internet public key infrastructure online

certificate status protocol-OCSP.
Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel, C., … Vigna, G. (2012). You are

what you include: large-scale evaluation of remote javascript inclusions. In Proceedings of the 2012 ACM
conference on Computer and communications security (pp. 736–747).

Patil, K., Dong, X., Li, X., Liang, Z., & Jiang, X. (2011). Towards fine-grained access control in javascript contexts. In
Distributed Computing Systems (ICDCS), 2011 31st International Conference on (pp. 720–729).

Segaran, T. (2007). Programming Collective Intelligence: Building Smart Web 2.0 Applications. “O’Reilly Media, Inc.”
Retrieved from http://www.google.pt/books?hl=en&lr=&id=7b8N_YCqPH0C&pgis=1

Stuttard, D., & Pinto, M. (2011). The Web Application Hacker’s Handbook: Finding and Exploiting Security Flaws:
Discovering and Exploiting Security Flaws. John Wiley & Sons. Retrieved from http://www.amazon.co.uk/The-
Web-Application-Hackers-Handbook/dp/1118026470

