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Abstract: This paper proposes and evaluates the use of machine learning (ML) techniques for mitigat-
ing the effect of the random inter-core crosstalk (ICXT) on 256 Gb/s short-reach systems employing
weakly coupled multicore fiber (MCF) and Kramers–Kronig (KK) receivers. The performance im-
provement provided by the k-means clustering, k nearest neighbor (KNN) and feedforward neural
network (FNN) techniques are assessed and compared with the system performance obtained without
employing ML. The FNN proves to significantly improve the system performance by mitigating the
impact of the ICXT on the received signal. This is achieved by employing only 10 neurons in the
hidden layer and four input features for the training phase. It has been shown that k-means or KNN
techniques do not provide performance improvement compared to the system without using ML.
These conclusions are valid for direct detection MCF-based short-reach systems with the product
between the skew (relative time delay between cores) and the symbol rate much lower than one
(skew× symbol rate � 1). By employing the proposed FNN, the bit error rate (BER) always stood
below 10−1.8 on all the time fractions under analysis (compared with 100 out of 626 occurrences
above the BER threshold when ML was not used). For the BER threshold of 10−1.8 and compared
with the standard system operating without employing ML techniques, the system operating with
the proposed FNN shows a received optical power improvement of almost 3 dB.

Keywords: short-reach systems; multicore fiber; machine learning; Kramers–Kronig receiver

1. Introduction

Current optical fiber networks are reaching the so-called capacity crunch of 100 Tb/s
per single core fiber [1]. Over the last years, the traffic in data centers has been increasing
exponentially, demanding new cost-efficient solutions for short-reach optical communica-
tions [2]. Space division multiplexing (SDM) has been indicated as a powerful solution to
provide an ultimate capacity increase as it explores the only known physical dimension left
to be exploited in optical networks [3,4].

SDM can be based on MCFs, where N independent cores provide a capacity increase
of N-fold compared with standard single-mode fiber used in current networks. The simulta-
neous transmission in multiple cores of the MCF leads to ICXT, which is usually considered
as the main impairment of MCF systems [5]. The ICXT varies randomly along the fiber
length, time, and frequency, which may affect the system’s performance. High ICXT levels
have been observed over several minutes or even hours, which leads to service shutdown
or outage over large time periods [6]. For minimizing the impact of the ICXT on MCF-
based systems, the techniques proposed so far include adaptive modulation [7], MIMO
techniques [8], or optical code division multiple access spreading technique [9]. However,
these techniques only provide incremental improvements of the system performance.

Due to cost purposes, short-reach MCF-based networks should employ direct-detection
(DD) receivers. However, these receivers lead to nonlinear impairments that can severely
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limit the achievable capacity and reach. Thus, advanced DD receivers based on Kramers–
Kronig (KK) technique have been proposed for performance improvement and complexity
reduction compared with coherent detection counterpart [10]. With the KK technique,
linearization of the receiver is attained, and the signal phase information can be recovered.

Recently, machine learning has been employed in optical communications to recover
from nonlinear distortions, including non-Gaussian additive noise, non-white laser phase
noise, and fiber nonlinearities in both IM/DD and coherent systems [11,12]. Simplest
machine learning techniques include k-means and k nearest neighbor (KNN), which repre-
sent an unsupervised technique used for clustering and a supervised learning technique
used for classification, respectively [13]. Feedforward neural networks (FNNs) are one of
the simplest machine learning techniques where a set of perceptrons are organized into
layers to form a fully connected neural network (NN). FNNs are suitable for memoryless
systems and have been employed in optical fiber communications to perform equalizations,
as shown in [11]. Beside FNN, more advanced NN architectures have been studied in
optical communications, such as deep learning [12,14]. These more advanced NN are
used to predict different strategies for routing and spectrum assignments for elastic optical
networks [14]. They can also be used to mitigate the non-linearities, such as signal-to-signal
beat interference caused by the square-law detection [12]. In SDM systems, machine learn-
ing techniques were proposed to support the design of crosstalk-aware schemes used for
resources allocation [15] or to mitigate the impact of the crosstalk power between mode
groups in mode-multiplexed M-quadrature amplitude modulation (QAM) OFDM-IM-DD
systems [16]. NNs were also used to speed up coating loss estimation in heterogeneous
trench-assisted MCF design [17].

In this work, k-means clustering and KNN, as well as a low-complexity FNN, are
proposed to mitigate the effects of the random variation of the ICXT along time, induced
by weakly coupled MCF in short-reach systems employing KK receivers.

2. System Modelling

Figure 1 depicts the system model considered in this work. The system is composed of
the optical transmitter which transmits root-raised-cosine (RRC) pulses. Then, the signals
at the output of the transmitter are launched into two different cores of an MCF: (i) core n,
that is the interfered core, and (ii) core m, that is the interfering core which induces ICXT
in core n. Then, the optical receiver includes a PIN photodetector, an electrical amplifier
(which induces thermal noise), the RRC filter, the KK algorithm, and the ML block for ICXT
mitigation. Finally, the bit error ratio (BER) is estimated using Monte Carlo simulation.

2.1. Optical Transmitter

The optical transmitter is responsible for converting the information signal from the
electrical to the optical domain. First, a 16-QAM Nyquist signal with a roll-off factor of
5% and symbol rate of 64 Gbaud is generated using distinct random sequences for both
components (in-phase and quadrature) of the signal. The modulator is a dual parallel
Mach-Zehnder modulator (DPMZM) with the ability to modulate the I and Q components
of the electrical field. This is achieved by biasing the inner MZMs in the null bias point and
the outer MZM in the quadrature bias point.

Figure 2 shows the spectrum of the signal at the output of the transmitter. In Figure 2a,
an illustrative spectrum is presented. The optical tone is added to the signal to fulfill the
minimum phase condition for the KK receiver [10]. Figure 2b shows the power spectral
density (PSD) of the signal at the transmitter output obtained by simulation. The spacing
between the carrier and the signal is 5% of the signal bandwidth. This spacing was chosen
to maximize the spectral efficiency without adding distortion to the received signal.
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2.2. MCF Model

The MCF allows the transmission of multiples optical channels in different cores. In
this work, only two cores are considered: one serving as the interfering core, i.e., the core
that induces the ICXT, and the other acting as the interfered core, i.e., the core impaired
by the ICXT. The ICXT induced by the MCF is modeled by the dual polarization discrete
changes model (DCM) [18–20]. Each core operates as a linear single mode fiber (SMF),
i.e., it is modulated by the SMF propagation transfer function. The random polarization
rotation induced by the fiber birefringence is also included in the transmission model [19].

To validate the ICXT simulation model, the statistical properties of the in−phase (I)
and quadrature (Q) components of the ICXT obtained by simulation must agree with the
theoretical analysis.

Figure 3 shows the probability density function (PDF) of the in-phase and quadrature
components of the ICXT field in both polarizations (x and y) directions. The simulation
results of the ICXT are obtained with 1000 random phase shifts and for a ICXT level of
−15 dB. The ICXT level is the ratio between the mean ICXT power and signal power, at
the output of interfered core [6]. A Gaussian PDF obtained from the mean and variance of
the simulation results is also shown in Figure 3 as reference. The results of Figure 3 show
that the ICXT components are well described by a Gaussian PDF, as predicted theoretically
in [18], which validates the ICXT simulation model.
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2.3. Optical Receiver

The receiver includes a PIN photodetector, an electrical amplifier, the RRC filter, and
the symbol decision circuit.
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The KK algorithm is based on the Kramers−Kronig relation, and it enables to retrieve
the complex field at the PIN input from the photocurrent detected by the PIN if the
minimum phase condition is ensured [10,21].

Figure 4 depicts the structure of an ideal KK receiver. The main goal of this paper
is to propose a simple ML algorithm to mitigate the impact of the ICXT on the system
performance. For this reason, limitations due to the practical implementation of KK
receivers are not addressed. After reconstructing the complex QAM signal at the KK
receiver output, fiber dispersion is fully compensated using an analog filter.
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2.4. Machine Learning

In this work, three different ML techniques are implemented and assessed: a FNN,
k-means clustering, and KNN. These algorithms are chosen due to their low complexity
and memoryless configurations, which are indicated for short-reach networks.

2.4.1. K-Means Clustering

In this work, the k-means clustering algorithm is implemented and the performance
of the system is evaluated.

K-means clustering focuses on dividing the input into k clusters (attributed during
training process) according to dissimilarity metrics and it creates groups centered on the
mean of all the samples of each cluster (centroids). The algorithm uses Euclidean distance to
perform the symbol decision [13]. As features for the classification, the k-means algorithm
receives the in-phase and the quadrature components of the QAM signal transmitted in the
interfered core at the end of the KK receiver.

2.4.2. K Nearest Neighbor

KNN algorithm is based on the distance between the new data and the neighbors
counted by the k parameter. The neighbor symbols are attributed to the training process
where every input symbol has a correspondent output that matches with a class with the
same characteristics. On the active phase, a new input symbol is classified into the group
of data with the greatest number of nearest neighbor symbols according to the number of
neighbors defined by the k parameter [13]. The classification used in the algorithm is also
based on the Euclidean distance.

2.4.3. Feedforward Neural Network

In this work, a shallow feedforward neural network is employed to mitigate the impact
of the random ICXT on the system performance. This FNN is implemented to learn the
behavior of the ICXT and then transform the ICXT-impaired received signal into a new
output showing higher ICXT tolerance.

One of the main constraints of machine learning algorithms is the complexity. In this
work, we are addressing MCF-based short-reach systems with a product between the skew
and the symbol rate much lower than one (skew× symbol rate � 1) [6]. This means that
the ICXT induced in a given symbol of the interfered core only depends on the symbol
transmitted in the interfering core at the same time instant [6].

Figure 5 depicts the scheme of the FNN employed in this work. The FNN is fed
with four inputs (features): the in-phase and the quadrature components of the signal
transmitted in the interfered and interfering cores at the end of the KK receivers. The main
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target of the FNN is to predict the I and Q components of the transmitted signal at core
n without the effect of the transmission impairments. As the ICXT depends on the signal
injected into the interfering core m [6,22], we need to provide the signal detected at the
output of core m as a training feature.
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2.5. Simulation Conditions and Parameters

This subsection presents the simulation conditions used to evaluate the effectiveness of
the ML techniques to mitigate the impact of the random ICXT on the system performance.
This work is focused on short-reach connections, and thus, the length of the MCF does not
exceed 50 km.

For the simulation, a thermal noise with a noise equivalent power (NEP) of 10 pW/Hz1/2

is considered. To estimate the BER, Monte Carlo simulation using a bit stream with 214 bits is
performed. To evaluate each BER value, 100 errors are considered. All parameters used are
indicated in Tables 1–3.

Table 1. Signal parameters.

Parameters Value

Symbol rate (Gbaud) 64
Modulation 16-QAM

Roll-off factor 0.05
Input MCF power (dBm) 0

CSPR (dB) 13

Table 2. MCF parameters.

Parameters Value

Attenuation (dB/km) 0.22
Interfered core effective refractive index 1.4453
Interfering core effective refractive index 1.4455

Wavelength (nm) 1552
Skew × bitrate 0.001
ICXT level (dB) −13

Length (km) 35
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Table 3. FNN parameters.

Parameters Value

Number of inputs 4
Number of hidden layers 1

Number of neurons per hidden layer 10
Number of outputs 2
Training symbols 20,000

Symbols to estimate the BER 106

The FNN is trained using 20,000 symbols, as indicated in Table 3. These 20,000 symbols
correspond to a transmission time of 0.3 µs. The complexity and online requirements of the
algorithm depend on the time required by the training phase of the FNN and the update
rate. The rate at which the network must be trained depends on the variation of the ICXT
along time. In particular, the neural network should be trained in time intervals over which
the variation of the ICXT is almost negligible. Previous works have been shown that the
decorrelation time of the ICXT is of the order of a few minutes or higher [20]. This means
that, if we choose to train the network once per second, to guarantee that the ICXT is
constant during the active phase of the network, the training overhead is negligible. The
training phase will also require some processing time to optimize the weights and biases
of the FNN. Although this processing time is dependent on the real time implementation
employed, we expect that it will not affect the symbol rate of the system.

To use a KK receiver, we need to ensure the minimum phase condition. Thus, the
carrier-to-signal power ratio (CSPR) must be optimized according to a noise equivalent
power (NEP) of 10 pW/

√
Hz.

Figure 6 shows the BER as a function of the CSPR for four different fiber lengths.
Results are obtained considering the absence of ICXT and perfect dispersion compensation.
Figure 6 shows that the optimum CSPR is approximately 13 dB. This optimum operation
point results from a trade-off between signal-to-noise ratio and verification of the minimum
phase condition. For low CSPR levels, the condition is not satisfied. For high CSPR levels,
the SNR degrades.
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The FNN has one single hidden layer with 10 neurons. Further investigation showed
that the FNN has a similar performance with number of neurons higher than 2, although the
lower the number of neurons, the longer the training time. The algorithm used for training is
the scaled conjugate gradient and the activation function used is the tangent sigmoid.

3. Results and Discussion
3.1. Impact of the ICXT on the System Performance

The ICXT varies randomly over time. The time variations can be of the order of a
few minutes or even hours [20]. Therefore, the concept of time fraction and short-term
average inter-core crosstalk (STAXT) has been introduced to assess the performance of
MCF-based systems [20]. A time fraction is a small-time duration much shorter than
the ICXT decorrelation time, where the ICXT is considered constant [18]. STAXT is the
average power of the ICXT measured during a time period much shorter than the ICXT
decorrelation time. If the time interval between time fractions is much larger than the ICXT
decorrelation time, then the ICXT varies from time fraction to time fraction. This random
variation of the ICXT can cause high performance changes over time.

Figure 7 shows the impact of the ICXT on the system. In Figure 7a, the STAXT is
presented as a function of the time fractions. The results show the high variation of the ICXT
power at the output of the interfered core, such as reported in [5,18,20,22]. In Figure 7a,b,
the ICXT level is −15 dB. Figure 7b shows the calculation of the BER along 500 different
time fractions. The results show that the ICXT can cause high BER variations along time
which can remain for several minutes or even hours, leading to system outage.
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3.2. Performance of Short-Reach MCF-Based System Employing ML Techniques

In this subsection, the BER obtained with and without using ML techniques is evalu-
ated by simulation. The performance improvement enabled by shallow FNNs, k−means
or KNN techniques are identified and insight about the design of ML-assisted short-reach
MCF−based systems is provided.

Figure 8 shows the BER of the received signal before and after using ML algorithms,
considering a ICXT level of −13 dB. The results obtained show that k−means and KNN al-
gorithms do not provide performance improvement when compared with the performance
obtained without using ML. This occurs because the ICXT is random and the simplest
redesign of the decision boundaries does not allow to better identify the different clusters,
as inferred from the constellations shown in Figure 9a–c. In contrast, Figure 8 shows that
the FNN enables the mitigation of the ICXT-induced BER degradation. This is confirmed by
the comparison between the constellations obtained without ML and after employing the
FNN, shown in Figure 9a,d, respectively. For instance, if we consider a BER threshold of
10−1.8 to define the system outage [6], then the BER before applying ML techniques presents
100 occurrences (out of 626) above the threshold (the ones shown in Figure 8). By applying
the proposed FNN, the BER always stood below the threshold. We chose to represent only
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the BER occurrences above the threshold in Figure 8, as the goal is to evaluate the system
performance improvement provided by FNN in extreme degradation scenarios.
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In order to conclude the analysis of the performance improvement provided by the
FNN, we also evaluated the mean BER as a function of the received optical power (ROP).
Figure 10 shows the mean BER as a function of the ROP considering an ICXT level of
−15 dB. The BER is averaged over 500 time fractions to obtain stabilized mean BER
estimates. The results show that, for the BER = 10−1.8 (corresponding to the 20% FEC
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threshold), the FNN provides an additional ROP tolerance of almost 3 dB compared with
the case in which ML is not employed. It is also shown that the BER = 10−1.8 is attained for
ROP = −10 dBm. If we consider the typical power levels launched into the optical fiber
(between 0 and 10 dBm), this ROP level means a link budget between 10 and 20 dB. This
link budget enables us to use recently fabricated MCFs where fiber loss does not exceed
0.2 dB/km and fan/in fan/out insertion losses are typically bellow 1 dB [23,24]. For ROPs
below −14 dBm, the FNN does not provide performance improvement as the system is
limited by the thermal noise.
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Figure 10. Mean BER as a function of the received optical power using FNN (circles) and without the
use of ML (crosses).

4. Conclusions

In this paper, k-means, KNN, and FNN techniques are proposed and optimized to
improve the tolerance of 256 Gb/s DD short−reach systems to the ICXT induced by weakly
coupled MCF. It has been shown that memoryless FNNs provide significant improvement
of the system performance and may represent a simple and effective solution to mitigate
the impact of the ICXT induced in MCFs. This conclusion is valid for short-reach systems
with skew× symbol rate � 1, where the ICXT induced in the interfered core at a given
time instant only depends on the signal transmitted in the interfering core at the same time
instant. The k-means clustering and KNN techniques have shown to be useless to miti-
gate the ICXT. With the proposed FNN, the ICXT−impaired MCF system recovered from
100 occurrences (out of 626) with BER above the BER threshold, which is used to de-
clare system outage, to a full operation with no outage. We also confirmed that, for a
BER = 10−1.8 (20% FEC threshold), the FNN provides an additional ROP tolerance of almost
3 dB when compared with the system without the use of ML.
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