
D4MD – Deformation system for a vehicle simulation game
Tiago Rodrigues

ADETTI/ISCTE
 Edifício ISCTE

1600-082 Lisboa, Portugal
+351964383671

tiago_rodrigues@users.sf.net

Rui Pires
ADETTI/ISCTE
 Edifício ISCTE

1600-082 Lisboa, Portugal
+351964372164

rui_pires@users.sf.net

José Miguel Salles Dias
ADETTI/ISCTE
 Edifício ISCTE

1600-082 Lisboa, Portugal
+351217826480

miguel.dias@adetti.iscte.pt

ABSTRACT
This paper presents a hybrid geometrical-physical, plastic
deformation technique applicable for solids, in the context of a car
simulation game. This technique doesn’t aim to be mechanically
correct but to produce visual appealing and realistic-looking
results.

Categories and Subject Descriptors
I.3.5 [COMPUTER GRAPHICS]: Computational Geometry and
Object Modeling – Geometric algorithms, physically based
modeling, splines

General Terms
Algorithms.

Keywords
Deformable Objects, Dynamics, Physically-based Simulation,
Collision Detection and Response, FFD Geometric Deformation,
Game development.

1. INTRODUCTION
D4MD (pronounced: d -fôrmd) stands for the deformation
system presented in this paper. This system aims to produce visual
appealing plastic deformations in 3D game objects as the result of
instantaneous collisions in the context of a larger in-house on-
going project aiming at developing a racing car game. It is our
understanding, that due to its large contribution to the games
graphical realism, physically-based geometry deformation is an
essential characteristic of recent driving simulation games.
The paper is organized in 8 sections. Section 2 presents an
overview of current geometry deformation techniques applied in
car simulation games. Section 3 summarizes the most common
geometry deformation algorithms available in the literature and
draws some conclusions about their applicability in our project. In
section 4 we present some of the main goals of our system and
detail the requirements to achieve them. Section 5 is dedicated to
the design of the D4MD deformation technique. In section 6, we
identify and describe the main components of our deformation

system. Section 7 discusses the main advantages of our approach.
Finally, section 8 presents some conclusions and suggestions for
future work.

2. DEFORMATION IN VIDEO GAMES
The enormous demand for realism that we witness today from the
game industry, pushes hardware evolution that enables the
implementation of more complex and consequently more visually
realistic algorithms. Nowadays, game users are becoming more
and more demanding and characteristics that used to be minor
details, such as realistic (dynamic elasto-plastic) volumetric
bodies deformation upon collision, have become mandatory.
One of the first game titles to include car geometry deformation
was Destruction Derby™ (1995) [6]. Although the deformation
system was rather simple and based on pre-computed
deformations, the game caught many players' attention and was a
big success. At about the same time, the first title of the very
controversial series, Carmageddon™ [2] was released. The
deformation system employed was more advanced than its peers
and had some dynamic deformation. Other examples of posterior
success titles, which included deformation, were Driver™ [7] and
GTA3™ [8]. Many games followed perfecting the base
deformation concept, by using better physically-based simulation
algorithms and more geometric detail.
With few exceptions, like the popular NFS™ series [13], almost
all the car simulation games edited today, implement some
deformation technique. Some of the more recent examples from
2004 are Colin Mcrae Rally™ 5 [3], Xpand Rally™ [20], and the
notable Toca Race Driver™ 2 [19], which has implemented a very
realistic deformation system. As we can see, although we have
many examples of games that have implement deformation,
published information about the techniques employed is scarce,
possibly due to high cost of R&D in this type of game technology.
With the preview of the power offered by the next generation
consoles like the PS3™ [16], we will certainly witness
outstanding advances on this field, with the possibility of
implementation of the most complex and realistic techniquesi.

3. BACKGROUND IN DEFORMATION
TECHNIQUES
The range of deformation techniques presently used in games is
quite vast, going from pre-computed deformations to really
advanced and realistic physically-based algorithms. One of the
most common and simple techniques used for this purpose is the
pure visco-elastic mass-spring model, introduced by Demetri
Terzopoulos in the field of 3D Computer Graphics, as early as
1987. This technique, now a classic one, models deformable
objects through a network of “structural” springs connected to

masses, which try to simulate the stiffness properties of the
materials. The conventional mass-spring models are generally
used to simulate bi-dimensional objects due to the nature of the
springs employed, which, in the simpler case, only support planar
contractions and expansions (tensile deformations) along its axis.
Modeling complex 3D objects generally requires, besides the
“structural” springs, the addition of special interaction elements to
enable the model to withstand torsion and bend forces. Because of
this, it is generally necessary to have prior knowledge of the
object's structure to build a stable network. Some models that try
to overcome these limitations were recently presented. One such
model, presented in Eurographics 2003 [10], describes an a
particle system connected by interaction elements, that integrates
the characteristics of the tensile and bending types of springs and
simulates, rather accurately, the discrete tensile, bending and
torsion mechanics of solids. However, the use of mass-spring
models to simulate elasto-plastic deformation of complex 3D
models generally requires continuous collision detection with a
very small granularity level that is not feasible in most of the
available physics SDKs, so this technique, although implemented,
was later discarded by us.
Another known classic technique, brought from Structural
Mechanics, that has been emerging in the latest games, is the
Finite Element Method [18]. Its main characteristic is the quality
and realism of the results obtained, due to its solid mathematical
and classical linear and non-linear elasticity physical basis. The
main concept of this technique is to divide objects in small
building blocks with well defined material characteristics, where
the elasticity theory of the continuum is still valid and physics are
more easily simulated. Until a few years ago the use of this
technique was prohibitive in real time applications, but with
simplified techniques such as the one presented in SIGGRAPH
2002 [11], its use is becoming a viable option, although the
memory and processing requirements can be overwhelming for
most game and real-time applications.
As the last main category of techniques that were analyzed, we
have the geometrically-based ones (as opposed to the previous
ones, which are physically-based) that are based on space
deformation instead of direct geometry deformation. One of the
main representatives of these techniques is the FFD (Free Form
Deformation) [4], brought to the 3D computer Graphics world by
Sabine Coquillart. Today, it is mainly used in modeling
applications as a deformation tool. The first step in FFD is to wrap
the geometry to be deformed in a control point lattice that
parameterizes a space deformation function. The controls have a
weighted influence on the various space regions, and the alteration
of their position deforms the space, not the geometry directly. The
geometry is deformed by mapping it to that normalized space. The
fact that this technique is independent of the geometry can be a
limitation, because it can become very hard to apply a certain
deformation to an arbitrary geometry. To overcome this
limitation, there are various techniques such as the EFFD
(extended FFD) [5], or FFD with direct manipulation [9]. In the
EFFD, before the manipulation of the controls, these are
approximated to the geometry, making the process of deforming
an object more intuitive. However, this technique is more suited to
interactive object modeling. In direct manipulation the
deformations can be directly applied to the geometry and the
controls get reconfigured automatically to produce the desired
deformations.

4. GOALS AND REQUIREMENTS OF
D4MD
Our main objective is to develop a deformation algorithm that
realistically simulates the plastic instantaneous deformation of
metal-like objects, such as the bodywork of a car. The emphasis,
as in most games, is not on the precise mechanical simulation of
the deformations but in producing visual appealing and realistic-
looking results at a low performance cost. Given this requirement,
our technique should address, to some extent, the physically-based
simulation of deformable objects. Having in mind that availability
of third parties rigid-body dynamics SDK for game development
(although lacking deformation support), we concluded, that, in the
context of our larger project of car game design, the main piece of
external software we would be interacting with, would be the
physics SDK. This element is responsible for the dynamic
simulation of rigid bodies and collision detection. Although we
have witnessed a considerable evolution in physics engines in
recent years, both in speed and in features, the choice of a
deformation technique to use in real time is still quite limited by
the features and possibilities of the current engines. Most of the
existing SDKs still lack needed features, like continuous collision
detection, robust mesh-to-mesh simulation and the possibility to
change the geometry of the objects with a low performance hit.
Since these limitations are common to most of the available
SDKs, we had to choose a physics SDK mostly based on
performance and robustness. After making some tests with two
SDKs (ODE [15] and NOVODEX [14]), which are more
accessible to the academic community, regarding licensing
schemes, NOVODEX presented itself as the winning candidate,
mainly because of its astonishing performance when it comes to
primitive shape physical-based simulation.

5. DESIGNING A DEFORMATION
TECHNIQUE
Bearing in mind some of the main restrictions imposed by the
chosen physics simulation SDK, specially, the lack of support to
deformable model simulation, it seamed to us that we had to
design a hybrid geometrical-physical deformation technique,
which should have two algorithmic steps: a first, physical-based
rigid-body dynamics step and a second, geometrically-based
deformation one. This last step should evaluate the geometrical
deformation whenever two objects, being simulated by the rigid-
body dynamic physics simulation SDK, collide. A good candidate
technique capable of addressing this requirement was the FFD.
The geometry independence of the FFD enables it to keep
applying deformation to a space ignoring the distribution of the
geometry, allowing us to get good results even when
approximating complex geometry by simple basic shapes such as
boxes. After we had chosen the FFD technique, as the basis of the
geometrical deformation step of our algorithm, we still had to
choose the parameters that characterize it, such as the deformation
function and the way displacements are applied to the control
points. The deformation function chosen was a tri-variant cubic B-
Spline tensor product. We decided in favor of B-Splines over
other options, such as Bezier curves, because of the well known
B-Spline's local control properties and their inherent
independence between polynomial order and number of controls.
Another advantage of the B-Spline over piecewise Bezier curves,
is the guarantee of automatic parametric C2 continuity between
segments (in the Bezier case this continuity has to be explicitly
maintained across segments). We use uniform cubic B-Splines

(2)

because they result in simplifications of the control weight
equations (shown in equation 1), and consequently in a
performance increase. With cubic B-Splines, each surface point is
influence by 4 controls.

()
()
()

3
3

32
2

23
1

32
0

6
1

3331
6
1

463
6
1

331
6
1

tweight

tttweight

ttweight

tttweight

×=

×−×+×+×=

+×−××=

−×+×−×=

One of the most common problems faced when using B-Splines
for FFD, is the fact that they don't interpolate their end points.
There are various solutions for this, such as the use of phantom
control points [1] or the use of terminal knots with higher
multiplicity. Again our approach was to try and simplify our
algorithm, so we have only defined the deformation volume where
the B-Spline exists. This solution is more efficient since there is
no need to interpolate the terminal controls and also allowed us to
use uniform B-splines. Manipulation of control points in order to
achieve the required deformations of the geometry, and in
particular in the case where we have multiple simultaneous
deformations, can be quite challenging. The technique we have
selected to overcome this limitation was direct manipulation as
described by Hughes and Kaufman in 1992 [9]. In our case this
technique seemed to be the most adequate, since the deformation
process is automatic and there is no user interaction.

6. DEFORMATION SYSTEM
In this section we present a detailed description of our
deformation system’s components and algorithms.

6.1 Components
The central pieces of the deformation system are the “deformable
object”, the “geometry deformer”, and the “deformation”. The
“deformable object” includes the properties that condition a
deformation, such as the minimum deformation accepted, the
maximum instantaneous deformation and the deformation factor
of the object's material. A “deformable object” can be constituted
by various “geometry deformers” that correspond to
parallelepiped deformation volumes associated with part (or all)
of the object's geometry. The “geometry deformers” are
parameterized by their position, dimensions and control point
distribution. As we said before, the deformation function of these
volumes is a tri-variant cubic B-Spline tensor product. A
deformation corresponds to a group of points from the same
deformable object each associated with a displacement. The
direction of the displacement must be similar for points of the
same collision.

6.2 Deformation Algorithm
The deformation process starts when two objects, in simulation by
the rigid-body dynamic physics simulation SDK, collide. Current
simulation techniques always allow some inter-penetration
between colliding objects. Due to this fact, most of the time, the
contact points returned by the Physics SDK are not on the surface
of both objects. This way, the first step of the deformation
algorithm is to find the surface collision points. To accomplish
this we use the penetration depth value returned by the engine.
Having the surface contact points we find the resulting collision
impulse value in each of them. The impulse formula used is the

one described by Baraff in SIGGRAPH 1992 [5]. The impulse is a
good starting point to find the deformation value on an object,
because it contemplates several of its mechanical properties such
as velocity, mass and inertia tensor. As we are working with
instantaneous deformations, we have defined a deformation factor
of each object and have applied it to the impulse value, which is
translated into the deformation value to be applied to the surface
contact point, much like applying a force to a spring to obtain a
displacement. In order to maintain the deformations applied to
each object under control we check its value against the object‘s
maximum and minimum admitted deformation values for that
zone. Since the physics SDK doesn't give all contacts of a
collision simultaneously (a well known restriction), we have to
organize contact points into collisions that group similar contact
points for a deformable object. A collision lasts for a determined
configurable time after which it is dispatched to the objects that
were involved. Upon receiving a collision, a deformable object
passes this information to the “geometry deformer” responsible
for the area affected. If it is required, both the contact points and
the displacements values are linearly interpolated. This step
insures that a collision that yields contacts that are too distant,
such as the resulting from the vertexes of a face of a big box,
results in a correct deformation of the body that suffers the
collision. The next procedure is to perform the FFD of each of the
deformation volumes. This is done by reconfiguring the position
of the volume's control points, so that the correct deformations get
translated in to the space. (Equation 2 shows the FFD
transformation) The position of each of the points in matrix P is
the result of a weighted sum of controls points in matrix C.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⇔×=

−−−−

−

− 1

0

1110

1000

1

0

nnpp

n

p c

c

bb

bb

p

p
CBP M

K

MOM

L

M

Using the direct manipulation technique [15], matrix P is filled by
the contact points, and matrix C by the control points that affect
them. B is calculated using the uniform cubic B-Splines equations
defined in equation 1. Obtaining the pseudo-inverse of matrix B
and multiplying it by the displacements on the contact points we
obtain the displacements we should apply to each of the control
points involved (shown in equation 3). Each control that gets
displaced gets its modification flag marked.

PpseudoBC ∇×=∇ −1

As the last step in the algorithm, we need to bring the affected
geometry up to date with the deformations imposed on the
volume's space. Using cubic B-Splines, finding which of the
geometry vertexes need to be transformed is straightforward since
we know that an altered control point affects 4 segments and that
a point is influenced by 4 control points. To get the deformed
vertexes we follow the process presented in equation 2. After the
deformation, the volume's limits are recomputed and the control
points redistributed over them. After this processing steps, the
object is ready to sustain other deformations.

7. DISCUSSION
In the paper, we have presented a hybrid geometrical-physical
deformable model, able to support plastic collision detection and
response between volumetric objects, which evolve in a
physically-based world, such as a racing game environment.
Implementing this technique have showed us that visual appealing
results can be obtained in real-time and at a low performance cost,

(1)

(3)

as we can see in figure 2, where the deformation procedure
completed under 0.016s and a total of 38 contacts resulted in 4984
of the total of 9580 triangles being updated (in a Pentium IV PC
with a GeForce 6600). Since the deformation is done with FFD
manipulation it’s quite easy to control the complexity of the
deformation structures, by changing the control point distribution,
effectively managing the performance. The flexible way of
associating deformable zones to objects also have enables us to
build complex deformable shapes allowing us to use the physics
SDKs primitive shapes efficiently. Most of these options wouldn’t
be possible with some of the other techniques mentioned, such as
mass-spring, where the deformation structures are directly implied
by the geometry. FEM looks like the most promising technique in
this area, having as its only barrier, to real time performance with
high processing requirements. However, the recent launch of
PhysX™ [17] the world's first Physics Processing Unit (PPU),
promises fast and affordable finite element analysis in a near
future.

Figure 2. Deformed car after a violent impact

Figure 3. Deformed car after a lateral impact

8. CONCLUSIONS AND FUTURE WORK
This paper presented part of the work of an ongoing project whose
objective is to produce a car simulation game. The main
characteristics of this larger project are realistic simulation of the
mechanical aspects of the vehicles and realistic geometric
deformation of objects. We have presented a hybrid geometrical-
physical deformable model, able to support plastic collision
detection and response with deformation, between volumetric
objects, which evolve in a physically-based world. In today’s

games, a car model can have as much as 50.000 polygons, and
guaranteeing that our algorithm scales well with the models
complexity is also in our plans. We are also implementing a
reasonably accurate vehicle simulation, featuring engine torque
curves, drag resistance, transmission efficiency, gear ratios, wheel
grip and slip, among others. This implementation will mostly
follow the guidelines described by Marco Monster [12]. The work
being done in the simulation of the mechanical characteristics of a
car, coupled with our deformable geometry algorithm, will give us
the definite test of the robustness of the algorithm in a car game
environment.

9. REFERENCES
[1] Bartels, Richard H., Beatty, John C., Barsky, Brian A. An Introduction
to Splines for use in Computer Graphics and Geometric Modeling.
Morgan Kaufmann, 1987.
[2] Carmageddon, Stainless Software (1997), www.sci.co.uk

[3] Colin Mcrae Rally 2005, Codemasters (2004),
www.codemasters.co.uk/colinmcrae2005

[4] Coquillart, Sabine. “Extended Free-Form Deformation: A Sculpting
Tool for 3D Geometric Modeling”. Proceedings of ACM SIGGRAPH , In
Computer Graphics,1990.

[5] D. Baraff, Dynamic Simulation of Non-Penetrating Rigid Bodies, (Ph.
D thesis), Technical Report 92-1275, Computer Science Department,
Cornell University, 1992.

[6] Destruction Derby, Reflections Interactive (1995).

[7] Driver: You Are the Wheelman, Reflections Interactive (1999).

[8] GTA3, DMA Design (2001),
www.rockstargames.com/grandtheftauto3/

[9] Hughes, J., Kaufman, H. Direct manipulation of free-form
deformations, Cambridge Research Lab, DEC Corporation (1992).

[10] Il-Kwon Jeong, Inho Lee, “A New 3D Spring for Deformable Object
Animation”, Proceedings of Eurographics 2003.

[11] M. Müller, J. Dorsey, L. McMillan, R.Jagnow and B.Cutler. “Stable
real-time deformations”. Proceedings of ACM SIGGRAPH Symposium
on Computer Animation, pp 49-54, 2002.

[12] Marco Monster, Car Physics for Games (1993),
http://home.planet.nl/~monstrous

[13] Need For Speed series, EA Games (1994), www.eagames.com

[14] NovodeX, www.novodex.com

[15] ODE, ode.org

[16] Playstation, www.playstation.com

[17] PhysX, www.ageia.com

[18] Reddy, J.N., An introduction to the finite element method, McGraw-
Hill, New York, 1993.

[19] Toca Race Driver 2, Codemasters (2004),
www.codemasters.co.uk/tocaracedriver2/

[20] Xpand Rally, Techland (2004), www.xpandrally.com

i All brands or products referenced are service marks, trademarks, or registered trademarks of their respective holders and should be treated as such.

