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ABSTRACT 
This paper presents a hybrid geometrical-physical, plastic 
deformation technique applicable for solids, in the context of a car 
simulation game. This technique doesn’t aim to be mechanically 
correct but to produce visual appealing and realistic-looking 
results.   

Categories and Subject Descriptors 
I.3.5 [COMPUTER GRAPHICS]: Computational Geometry and 
Object Modeling – Geometric algorithms, physically based 
modeling, splines 

General Terms 
Algorithms. 

Keywords 
Deformable Objects, Dynamics, Physically-based Simulation, 
Collision Detection and Response, FFD Geometric Deformation, 
Game development. 

1. INTRODUCTION 
D4MD (pronounced: d -fôrmd ) stands for the deformation 
system presented in this paper. This system aims to produce visual 
appealing plastic deformations in 3D game objects as the result of 
instantaneous collisions in the context of a larger in-house on-
going project aiming at developing a racing car game. It is our 
understanding, that due to its large contribution to the games 
graphical realism, physically-based geometry deformation is an 
essential characteristic of recent driving simulation games.  
The paper is organized in 8 sections. Section 2 presents an 
overview of current geometry deformation techniques applied in 
car simulation games. Section 3 summarizes the most common 
geometry deformation algorithms available in the literature and 
draws some conclusions about their applicability in our project. In 
section 4 we present some of the main goals of our system and 
detail the requirements to achieve them. Section 5 is dedicated to 
the design of the D4MD deformation technique. In section 6, we 
identify and describe the main components of our deformation 

system. Section 7 discusses the main advantages of our approach. 
Finally, section 8 presents some conclusions and suggestions for 
future work. 

2. DEFORMATION IN VIDEO GAMES 
The enormous demand for realism that we witness today from the 
game industry, pushes hardware evolution that enables the 
implementation of more complex and consequently more visually 
realistic algorithms. Nowadays, game users are becoming more 
and more demanding and characteristics that used to be minor 
details, such as realistic (dynamic elasto-plastic) volumetric 
bodies deformation upon collision, have become mandatory. 
One of the first game titles to include car geometry deformation 
was Destruction Derby™ (1995) [6]. Although the deformation 
system was rather simple and based on pre-computed 
deformations, the game caught many players' attention and was a 
big success. At about the same time, the first title of the very 
controversial series, Carmageddon™ [2] was released. The 
deformation system employed was more advanced than its peers 
and had some dynamic deformation. Other examples of posterior 
success titles, which included deformation, were Driver™ [7] and 
GTA3™ [8]. Many games followed perfecting the base 
deformation concept, by using better physically-based simulation 
algorithms and more geometric detail. 
With few exceptions, like the popular NFS™ series [13], almost 
all the car simulation games edited today, implement some 
deformation technique. Some of the more recent examples from 
2004 are Colin Mcrae Rally™ 5 [3], Xpand Rally™ [20], and the 
notable Toca Race Driver™ 2 [19], which has implemented a very 
realistic deformation system. As we can see, although we have 
many examples of games that have implement deformation, 
published information about the techniques employed is scarce, 
possibly due to high cost of R&D in this type of game technology. 
With the preview of the power offered by the next generation 
consoles like the PS3™ [16], we will certainly witness 
outstanding advances on this field, with the possibility of 
implementation of the most complex and realistic techniquesi.   

3. BACKGROUND IN DEFORMATION 
TECHNIQUES 
The range of deformation techniques presently used in games is 
quite vast, going from pre-computed deformations to really 
advanced and realistic physically-based algorithms. One of the 
most common and simple techniques used for this purpose is the 
pure visco-elastic mass-spring model, introduced by Demetri 
Terzopoulos in the field of 3D Computer Graphics, as early as 
1987. This technique, now a classic one, models deformable 
objects through a network of “structural” springs connected to 

 



masses, which try to simulate the stiffness properties of the 
materials. The conventional mass-spring models are generally 
used to simulate bi-dimensional objects due to the nature of the 
springs employed, which, in the simpler case, only support planar 
contractions and expansions (tensile deformations) along its axis. 
Modeling complex 3D objects generally requires, besides the 
“structural” springs, the addition of special interaction elements to 
enable the model to withstand torsion and bend forces. Because of 
this, it is generally necessary to have prior knowledge of the 
object's structure to build a stable network. Some models that try 
to overcome these limitations were recently presented. One such 
model, presented in Eurographics 2003 [10], describes an a 
particle system connected by interaction elements, that integrates 
the characteristics of the tensile and bending types of springs and 
simulates, rather accurately, the discrete tensile, bending and 
torsion mechanics of solids. However, the use of mass-spring 
models to simulate elasto-plastic deformation of complex 3D 
models generally requires continuous collision detection with a 
very small granularity level that is not feasible in most of the 
available physics SDKs, so this technique, although implemented, 
was later discarded by us. 
Another known classic technique, brought from Structural 
Mechanics, that has been emerging in the latest games, is the 
Finite Element Method [18]. Its main characteristic is the quality 
and realism of the results obtained, due to its solid mathematical 
and classical linear and non-linear elasticity physical basis. The 
main concept of this technique is to divide objects in small 
building blocks with well defined material characteristics, where 
the elasticity theory of the continuum is still valid and physics are 
more easily simulated. Until a few years ago the use of this 
technique was prohibitive in real time applications, but with 
simplified techniques such as the one presented in SIGGRAPH 
2002 [11], its use is becoming a viable option, although the 
memory and processing requirements can be overwhelming for 
most game and real-time applications. 
As the last main category of techniques that were analyzed, we 
have the geometrically-based ones (as opposed to the previous 
ones, which are physically-based) that are based on space 
deformation instead of direct geometry deformation. One of the 
main representatives of these techniques is the FFD (Free Form 
Deformation) [4], brought to the 3D computer Graphics world by 
Sabine Coquillart. Today, it is mainly used in modeling 
applications as a deformation tool. The first step in FFD is to wrap 
the geometry to be deformed in a control point lattice that 
parameterizes a space deformation function. The controls have a 
weighted influence on the various space regions, and the alteration 
of their position deforms the space, not the geometry directly. The 
geometry is deformed by mapping it to that normalized space. The 
fact that this technique is independent of the geometry can be a 
limitation, because it can become very hard to apply a certain 
deformation to an arbitrary geometry. To overcome this 
limitation, there are various techniques such as the EFFD 
(extended FFD) [5], or FFD with direct manipulation [9]. In the 
EFFD, before the manipulation of the controls, these are 
approximated to the geometry, making the process of deforming 
an object more intuitive. However, this technique is more suited to 
interactive object modeling. In direct manipulation the 
deformations can be directly applied to the geometry and the 
controls get reconfigured automatically to produce the desired 
deformations. 

4. GOALS AND REQUIREMENTS OF 
D4MD 
Our main objective is to develop a deformation algorithm that 
realistically simulates the plastic instantaneous deformation of 
metal-like objects, such as the bodywork of a car. The emphasis, 
as in most games, is not on the precise mechanical simulation of 
the deformations but in producing visual appealing and realistic-
looking results at a low performance cost. Given this requirement, 
our technique should address, to some extent, the physically-based 
simulation of deformable objects. Having in mind that availability 
of third parties rigid-body dynamics SDK for game development 
(although lacking deformation support), we concluded, that, in the 
context of our larger project of car game design, the main piece of 
external software we would be interacting with, would be the 
physics SDK. This element is responsible for the dynamic 
simulation of rigid bodies and collision detection. Although we 
have witnessed a considerable evolution in physics engines in 
recent years, both in speed and in features, the choice of a 
deformation technique to use in real time is still quite limited by 
the features and possibilities of the current engines.  Most of the 
existing SDKs still lack needed features, like continuous collision 
detection, robust mesh-to-mesh simulation and the possibility to 
change the geometry of the objects with a low performance hit. 
Since these limitations are common to most of the available 
SDKs, we had to choose a physics SDK mostly based on 
performance and robustness. After making some tests with two 
SDKs (ODE [15] and NOVODEX [14]), which are more 
accessible to the academic community, regarding licensing 
schemes, NOVODEX presented itself as the winning candidate, 
mainly because of its astonishing performance when it comes to 
primitive shape physical-based simulation. 

5. DESIGNING A DEFORMATION 
TECHNIQUE 
Bearing in mind some of the main restrictions imposed by the 
chosen physics simulation SDK, specially, the lack of support to 
deformable model simulation, it seamed to us that we had to 
design a hybrid geometrical-physical deformation technique, 
which should have two algorithmic steps: a first, physical-based 
rigid-body dynamics step and a second, geometrically-based 
deformation one. This last step should evaluate the geometrical 
deformation whenever two objects, being simulated by the rigid-
body dynamic physics simulation SDK, collide. A good candidate 
technique capable of addressing this requirement was the FFD. 
The geometry independence of the FFD enables it to keep 
applying deformation to a space ignoring the distribution of the 
geometry, allowing us to get good results even when 
approximating complex geometry by simple basic shapes such as 
boxes. After we had chosen the FFD technique, as the basis of the 
geometrical deformation step of our algorithm, we still had to 
choose the parameters that characterize it, such as the deformation 
function and the way displacements are applied to the control 
points. The deformation function chosen was a tri-variant cubic B-
Spline tensor product. We decided in favor of B-Splines over 
other options, such as Bezier curves, because of the well known 
B-Spline's local control properties and their inherent 
independence between polynomial order and number of controls. 
Another advantage of the B-Spline over piecewise Bezier curves,  
is the guarantee of automatic parametric C2 continuity between 
segments (in the Bezier case this continuity has to be explicitly 
maintained across segments). We use uniform cubic B-Splines 



(2) 

because they result in simplifications of the control weight 
equations (shown in equation 1), and consequently in a 
performance increase. With cubic B-Splines, each surface point is 
influence by 4 controls.  
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One of the most common problems faced when using B-Splines 
for FFD, is the fact that they don't interpolate their end points. 
There are various solutions for this, such as the use of phantom 
control points [1] or the use of terminal knots with higher 
multiplicity. Again our approach was to try and simplify our 
algorithm, so we have only defined the deformation volume where 
the B-Spline exists. This solution is more efficient since there is 
no need to interpolate the terminal controls and also allowed us to 
use uniform B-splines. Manipulation of control points in order to 
achieve the required deformations of the geometry, and in 
particular in the case where we have multiple simultaneous 
deformations, can be quite challenging. The technique we have 
selected to overcome this limitation was direct manipulation as 
described by Hughes and Kaufman in 1992 [9]. In our case this 
technique seemed to be the most adequate, since the deformation 
process is automatic and there is no user interaction. 

6. DEFORMATION SYSTEM 
In this section we present a detailed description of our 
deformation system’s components and algorithms. 

6.1 Components 
The central pieces of the deformation system are the “deformable 
object”, the “geometry deformer”, and the “deformation”. The 
“deformable object” includes the properties that condition a 
deformation, such as the minimum deformation accepted, the 
maximum instantaneous deformation and the deformation factor 
of the object's material. A “deformable object” can be constituted 
by various “geometry deformers” that correspond to 
parallelepiped deformation volumes associated with part (or all) 
of the object's geometry. The “geometry deformers” are 
parameterized by their position, dimensions and control point 
distribution. As we said before, the deformation function of these 
volumes is a tri-variant cubic B-Spline tensor product. A 
deformation corresponds to a group of points from the same 
deformable object each associated with a displacement. The 
direction of the displacement must be similar for points of the 
same collision. 

6.2 Deformation Algorithm 
The deformation process starts when two objects, in simulation by 
the rigid-body dynamic physics simulation SDK, collide. Current 
simulation techniques always allow some inter-penetration 
between colliding objects. Due to this fact, most of the time, the 
contact points returned by the Physics SDK are not on the surface 
of both objects. This way, the first step of the deformation 
algorithm is to find the surface collision points. To accomplish 
this we use the penetration depth value returned by the engine. 
Having the surface contact points we find the resulting collision 
impulse value in each of them. The impulse formula used is the 

one described by Baraff in SIGGRAPH 1992 [5]. The impulse is a 
good starting point to find the deformation value on an object, 
because it contemplates several of its mechanical properties such 
as velocity, mass and inertia tensor. As we are working with 
instantaneous deformations, we have defined a deformation factor 
of each object and have applied it to the impulse value, which is 
translated into the deformation value to be applied to the surface 
contact point, much like applying a force to a spring to obtain a 
displacement. In order to maintain the deformations applied to 
each object under control we check its value against the object‘s 
maximum and minimum admitted deformation values for that 
zone. Since the physics SDK doesn't give all contacts of a 
collision simultaneously (a well known restriction), we have to 
organize contact points into collisions that group similar contact 
points for a deformable object. A collision lasts for a determined 
configurable time after which it is dispatched to the objects that 
were involved. Upon receiving a collision, a deformable object 
passes this information to the “geometry deformer” responsible 
for the area affected. If it is required, both the contact points and 
the displacements values are linearly interpolated. This step 
insures that a collision that yields contacts that are too distant, 
such as the resulting from the vertexes of a face of a big box, 
results in a correct deformation of the body that suffers the 
collision. The next procedure is to perform the FFD of each of the 
deformation volumes. This is done by reconfiguring the position 
of the volume's control points, so that the correct deformations get 
translated in to the space. (Equation 2 shows the FFD 
transformation) The position of each of the points in matrix P is 
the result of a weighted sum of controls points in matrix C. 
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Using the direct manipulation technique [15], matrix P is filled by 
the contact points, and matrix C by the control points that affect 
them. B is calculated using the uniform cubic B-Splines equations 
defined in equation 1. Obtaining the pseudo-inverse of matrix B 
and multiplying it by the displacements on the contact points we 
obtain the displacements we should apply to each of the control 
points involved (shown in equation 3). Each control that gets 
displaced gets its modification flag marked.   
 

PpseudoBC ∇×=∇ −1  

As the last step in the algorithm, we need to bring the affected 
geometry up to date with the deformations imposed on the 
volume's space. Using cubic B-Splines, finding which of the 
geometry vertexes need to be transformed is straightforward since 
we know that an altered control point affects 4 segments and that 
a point is influenced by 4 control points. To get the deformed 
vertexes we follow the process presented in equation 2. After the 
deformation, the volume's limits are recomputed and the control 
points redistributed over them. After this processing steps, the 
object is ready to sustain other deformations. 

7. DISCUSSION 
In the paper, we have presented a hybrid geometrical-physical 
deformable model, able to support plastic collision detection and 
response between volumetric objects, which evolve in a 
physically-based world, such as a racing game environment. 
Implementing this technique have showed us that visual appealing 
results can be obtained in real-time and at a low performance cost, 
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as we can see in figure 2, where the deformation procedure 
completed under 0.016s and a total of 38 contacts resulted in 4984 
of the total of 9580 triangles being updated (in a Pentium IV PC 
with a GeForce 6600). Since the deformation is done with FFD 
manipulation it’s quite easy to control the complexity of the 
deformation structures, by changing the control point distribution, 
effectively managing the performance. The flexible way of 
associating deformable zones to objects also have enables us to 
build complex deformable shapes allowing us to use the physics 
SDKs primitive shapes efficiently. Most of these options wouldn’t 
be possible with some of the other techniques mentioned, such as 
mass-spring, where the deformation structures are directly implied 
by the geometry. FEM looks like the most promising technique in 
this area, having as its only barrier, to real time performance with 
high processing requirements. However, the recent launch of 
PhysX™ [17] the world's first Physics Processing Unit (PPU), 
promises fast and affordable finite element analysis in a near 
future. 

 
Figure  2. Deformed car after a violent impact  

 
Figure  3. Deformed car after a lateral impact  

8. CONCLUSIONS AND FUTURE WORK 
This paper presented part of the work of an ongoing project whose 
objective is to produce a car simulation game. The main 
characteristics of this larger project are realistic simulation of the 
mechanical aspects of the vehicles and realistic geometric 
deformation of objects. We have presented a hybrid geometrical-
physical deformable model, able to support plastic collision 
detection and response with deformation, between volumetric 
objects, which evolve in a physically-based world. In today’s 

games, a car model can have as much as 50.000 polygons, and 
guaranteeing that our algorithm scales well with the models 
complexity is also in our plans. We are also implementing a 
reasonably accurate vehicle simulation, featuring engine torque 
curves, drag resistance, transmission efficiency, gear ratios, wheel 
grip and slip, among others. This implementation will mostly 
follow the guidelines described by Marco Monster [12]. The work 
being done in the simulation of the mechanical characteristics of a 
car, coupled with our deformable geometry algorithm, will give us 
the definite test of the robustness of the algorithm in a car game 
environment. 
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