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People-Centered Distributed Ledger Technology-IoT Architectures: A 
Systematic Literature Review 

ABSTRACT 

To understand how distributed ledger technology (DLT) enables people-centered IoT solutions we conducted 
a systematic literature review of tested implementations since 2017. We created a people-centered 
classification to analyze 39 implementations. We found that people-centered DLT-IoT architectures are in their 
infancy and detected no evidence of emerging patterns. We observed that Ethereum is the most used DLT. Fit-
for-purpose technologies like IOTA and concepts like Self-Sovereign Identity (SSI) were underrepresented. We 
noted an increased interest in privacy-preserving and edge-computing mechanisms, and identified three areas 
for future research. We hope this survey will assist others learning more about people-centered IoT solutions. 

Keywords: Internet of Things (IoT); Distributed Ledger Technology (DLT); People-centered; Data economy 

1 INTRODUCTION 

The continuous advancements and miniaturization of chip design along with ubiquitous connectivity has 
made it attractive for original equipment manufacturers (OEMs) to embed processors, sensors, and actuators 
into consumer products. This trend is expected to accelerate with 5G network expansion (Fortune Bus. Insights, 
2020), OEM’s embrace of digital twins (Tao et al., 2019) and as people seek more convenience in their lives 
(“SmartCities World,” 2017). Digital twins are smart-service enablers that offer OEMs a path towards Service 
Dominant (S-D) logic (Vargo and Lusch, 2008) and the servitization of their products (Meierhofer et al., 2020). 
While digital twins can improve OEM competitiveness (Tao and Zhang, 2017), people’s quality of life and human 
sustainability (Nižetić et al., 2020), they also introduce privacy, security and ethical issues. They pierce people’s 
private sphere by capturing large amounts of fine-granularity and high-frequency data. They sense, watch, 
listen, communicate, and learn in what Jens-Erik Mai coined as the datafication of personal information (Mai, 
2016) from which not even the technically savvy (Allana and Chawla, 2021) nor the children are immune (Allana 
and Chawla, 2021). These activities are supported by OEM-controlled cloud-based data silos. Besides being 
single points of failure and cybercriminal honeypots (Tobin and Reed, 2017), these data silos offer end-users 
no mechanisms to control who, when and how the data about them is used. As sole controllers of IoT data 
OEMs seize to themselves all IoT-enabled productivity gains and data monetization rewards. This organization-
centric approach to data led to the concept of surveillance capitalism (Zuboff, 2015). This situation has driven 
digital data-activists, researchers, and legislators to organize to counter it. For instance, the MyData Global1 
initiative (Langford et al., 2020) advocates “the human-centric control of personal data” through the definition of 
principles that guide the operation of personal data operators and personal data stores (PDS). They seek to 
turn individuals who currently trade their privacy for IoT solutions’ benefits, from digital life management passive 
targets to active actors. This people-centered approach has been elusive up until the emergence of distributed 
ledger technology. DLT’s strong cryptographic foundation, immutable and tamper-proof nature, and smart 
contract support, provides individuals with the missing mechanism for IoT data control (Tom Lyons, 2020). By 
controlling the data generated by the IoT devices they own, individuals can aspire to a more ethical distribution 
of the IoT rewards. This is of particular importance as IoT-based smart-contracts are expected to generate 
considerable savings by bringing entire ecosystems together with business-processes orders of magnitude 
more efficient than the ones used today (Christidis and Devetsikiotis, 2016). 

To assess the state-of-the-art of people-centered DLT-IoT architectures, we conduct a systematic literature 
review. The objective was to identify and document different approaches, patterns and architectures and assess 
solutions that offer individuals control of the IoT data about them. While there are several surveys focusing on 
the state-of-the-art of the integration of DLT and IoT (Zhu et al., 2019), our work is unique because it focused 
on the use of DLT to give individuals control and agency of IoT data about them. To improve the quality of our 

 
1 https://mydata.org 
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results, we focused our efforts on papers that test their proposed solutions. We aim to answer the following 
research questions (RQs): 

• RQ1: How does DLT enable a people-centered approach in IoT? 
• RQ2: What are the people-centered IoT solutions’ publication trends? 

We identified over five hundred articles from four central online publication databases (IEEE Xplore, 
SCOPUS, Web of Science, ACM Digital Library) which we systematically filtered down to thirty-nine (39) papers. 
We analyzed the latter in detail with the objective of answering our RQs and identifying research gaps. Results 
show that there is a rise in the number of people-centered DLT-IoT architectures since 2019. However, we 
identified gaps that if addressed will improve future solutions’ people centeredness. 

The remainder of the paper is organized as follows. In Section 2 we introduce the people-centered approach, 
distributed ledger technology, and IoT. Section 3 introduces the methodology used for paper selection and data 
collection processes. Section 4 presents the DLT-IoT people-centered taxonomy. In Section 5 we present our 
results and in Section 6 we discuss our findings and propose topics of future research. Section 7 presents our 
conclusions. 

2 BACKGOUND 

2.1 People-Centered Approach 

The people-centered concept is an evolving concept with roots in the psychotherapy work of Carl Ransom 
Rogers who coined the “person-centered” term in 1978. The term has since then been expanded to “people-
centered” and it is now an emerging paradigm. In the context of data economy ecosystems it is an approach 
that “adopts individuals’ and communities’ perspectives as equal participants in, and beneficiaries of, trusted 
data economy ecosystems” and it is based on the principle that people “have the education and support they 
need to make decisions” (Koskinen et al., 2019, p. 332). Unfortunately, individuals are not equals in todays’ 
digital world. Far from it. The reason why can be traced back to a technical solution devised back in the 60s to 
identify the users on the first multi-user operations system Figure 1. Of the many solutions that could have been 
devised the user-password was the one chosen (McMillan, 2012). In the 90s, in the absence of an identity layer, 
the Internet adopted again the user-password identity management strategy. What could have been just another 
innocuous technical decision led to today’s situation in which digital identity is based on a “patchwork of identity 
one-offs” (Cameron et al., 2005) where contracts of adhesion manage the feudal-like relationship between 
people and their service providers (Searls, 2012). These one-side contracts force people to provide all types of 
personal identifying information to access services which can be interrupted at any time if the provider so 
pleases. 

By 2005 people started to organize to fight this status quo. The Internet Identity Workshop2 (IIW) biannual 
events started and the Laws of Identity (Cameron et al., 2005) were published. Both sought to put people in 
control of their identities and private information. At around the same time, businesses like Google, Amazon, 
Facebook, Apple (in the west) Baidu, Alibaba, and Tencent (in the east) were mastering the data-economy by 
monetizing everyday social acts captured by their service platforms (Couldry and Mejias, 2019). In 2008 the 
concept of blockchain emerged through Bitcoin (Nakamoto, 2008) and soon after it entered the identity realm 
with decentralized identifiers (i.e. name-value pairs). NameCoin3 in 2010 started to offer a decentralized DNS 
service, and Blockstack4 a decentralized public key (DPKI) in 2013. In 2014 Cambridge Analytica started using 
information from 50M Facebook users to influence elections through micro-targeting (Berghel, 2018). In 2016 
the European Union (EU) published the General Data Protection Regulation (GDPR)5 and the Self-Sovereign 
Identity (SSI) concept emerges (Kim et al., 2018). With SSI people have the possibility of controlling their 
personal data and share it or even sell it if they so choose (Lyons et al., 2019a). In 2018 the MyData Global 

 
2 https://internetidentityworkshop.com/ 
3 https://www.namecoin.org 
4 https://www.blockstack.org 
5 https://eur-lex.europa.eu/eli/reg/2016/679/oj 
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was created with the objective of empowering individuals by “improving their right to self-determination 
regarding their personal data” and California released the California Consumer Privacy Act (CCPA) (Baik, 
2020). 

The efforts to develop a more humane data-economy though legislation and technology are beginning to 
challenge the data-economy status quo. Together they are converging towards people-centered data economy 
ecosystems (Koskinen et al., 2019). People-centered concepts are emerging at a critical juncture in which 
developments in artificial intelligence (AI), 5G (Mir et al., 2020) and the growth of IoT-enabled devices are 
expected intensify pressure on privacy. The International Data Corporation (IDC) projects the latter devices to 
reach 41.6 billion generating 79.4 zettabytes of data by 2025 (“IDC,” 2019). This sequence of events is portrayed 
in Figure 1. 

 

 

Figure 1: People-centered data control milestones. 

2.2 Distributed Ledger Technology (DLT) 

Distributed ledger technology enables a non-fully trusted network of peers to self-organize around a 
consensual version of a truth stored in a distributed, shared, immutable, and cryptographically6 secure way. 
The mechanism was first articulated by Satoshi Nakamoto to enable digital currency payments absent of a 
trusted third-party (Nakamoto, 2008) and implemented in 2009 when Bitcoin became operational 
(web.archive.org, 2010). The technology builds upon forty years of research in cryptography by thousands of 
researchers, and on twenty years of research into digital cash. Until blockchain, digital cash was infinitely 
copyable and there was no way to eliminate double spending without a central intermediary (Swan, 2015). 

Since blockchain nodes do not fully trust each other, a combination of computing concepts and cryptography 
is used to enable trust in the network. Blockchain technology is based on an append-only, distributed ledger of 
cryptographically linked blocks7 containing digitally signed transactions shared among participating nodes 
architecture. Adopting an append-only strategy ensures that blocks are not overridden, enabling full 
transactional history. Embracing a distributed architecture increases blockchain resiliency to attacks by bad 
actors, making it tamper resistant. Using cryptographically backed-linked hash pointers (i.e., keyless 
cryptography) makes blockchain tamper evident. Requiring nodes8 to sign each transaction using asymmetric 
cryptography makes blockchain secure and attestable. Finally, sharing information among participants makes 
blockchain transparent and auditable (Yaga et al., 2018). 

Three different phases have been identified since blockchain emerged: currency, contracts, and applications 
beyond finance like government, health, media, the arts, and justice (Swan, 2015). Whereas initially 
permissionless blockchains were prevalent, permissioned blockchains that limit the participation to specific 

 
6 “Cryptography is a branch of mathematics that is based on the transformation of data and can be used to provide several security 

services: confidentiality, identity authentication, data integrity authentication, source authentication, and support for non-
repudiation”(Barker, 2016)  

7 Except for the first block (i.e., the genesis block) 
8 Blockchain nodes can be person or non-person entities (e.g. organization, system) (Heather Vescent, 2018). 
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people or organizations and allow finer-grained controls gained traction specially among industry or sector 
consortia. The interoperability between these private and public blockchains as well as the integration with the 
off-chain world creates the blockchain multiverse (Lyons et al., 2019b) and enables the Internet of Value 
(Skinner, 2016). 

Blockchain can anchor any form of asset registry, inventory, and exchange, including every area of finance, 
economics, and money; physical assets; and intangible assets like votes, ideas, reputation, intention, health 
data, and information (Swan, 2015). Coined (digital) tokens, they represent a quantity of something that is in 
control of an entity which can reassign it to another entity (Lewis., 2015). They are value containers that enable 
the transmission of value over the internet (Pilkington, 2016). Given their divisibility and tradability tokens have 
grown in numbers and complexity driving the need to understand and classify them with formal taxonomies 
(Oliveira et al., 2018). 

Normal economy activity often requires more than just a protocol to exchange value (e.g., using 
cryptocurrency to pay for service) (Nick Szabo, 1997). First conceptualized by Nick Sbazo in 1994 as “a 
computerized transaction protocol that executes the terms of a contract such as payment terms, liens, 
confidentiality, and even enforcement” with the intent of minimizing “exceptions both malicious and accidental, 
and the need for trusted intermediaries” (Szabo, 1994), smart contracts utilize protocols and user interfaces to 
facilitate all steps of the contracting process introducing a way to formalize and secure digital relationships 
(Szabo, 1997). Even though Nakamoto envisioned the notion of programmable money and a full feature set to 
enable (Swan, 2015), it was Vitalik Buterin who in 2013 conceptualized (“Ethereum.org,” 2013) and launched 
Ethereum in 2015 (“Ethereum Foundation,” 2015). 

Smart contracts enable the development of decentralized applications (Dapps). Multiple smart contracts can 
be bundled to define how an organization should operate. These decentralized (autonomous) organizations can 
be considered open-sourced as their operations (and thus trust) relies on the security and auditability of its 
underlying smart-contract code, whose operations can be scrutinized by millions of eyes (Wright and De Filippi, 
2015). 

Tokens and smart contracts pave the path towards a decentralized economy. The latter is not defined by a 
geographic location, political structure, and legal system. It does not rely on trusted third parties nor in the 
existence of social capital for economic development. The economic agents can be human, autonomous 
organizations, or contracts, and transact goods and services priced in a crypto-currency, recording all 
transactions to blockchain (Babbitt and Dietz, 2014). Cryptoeconomics is a science that characterizes and 
designs protocols that govern the production, distribution and consumption of goods and services in a 
decentralized digital economy (Pilkington, 2016). 

2.3 IoT/Digital Twins/Service Dominant Logic 

The term Internet of Things (IoT) was coined by Kevin Ashton in 1999 (Ashton, 2009). Along with cloud 
computing and AI, IoT is at the core of Digital Twins. Digital Twins leverage IoT to collect information about the 
state and usage of physical devices with the intent of updating a software counterpart (i.e., the twin) that exists 
on the cloud, where AI is used to respond to everyday events (Batty, 2018). The concept of Digital Twin 
originated at NASA and was introduced in 2003 by Michael Grieves in his Product Lifecycle Management (PLM) 
executive course (Grieves, 2014). The concept of PLM had been introduced in 1985 by François Castaing to 
manage production from conceptualizing the product (ideation), definition (spec definition), realization 
(manufacturing), use by the end-user, and disposal (Stark, 2018). By the 2010s the aforementioned 
technologies lead to the emergence of several smart manufacturing strategies such as Germany’s “Industrie 
4.0”, the US’s “Industrial Internet” and the Chinese’s “Made in China 2025” (Tao and Zhang, 2017). Whereas 
the German initiative places more focus on the use of IoT-enabled devices in the manufacturing process, the 
US initiative led by Industrial Internet Consortium (IIC) does so on IoT applications (Sendler, 2018). Besides 
enabling smart production and precision management (Qi and Tao, 2018), Digital Twins also enable the 
servitization of manufacturing. The servitization concept is generally recognized as the process of creating value 
by adding services like customization, monitoring, predictive maintenance, performance optimization, or 
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consulting services to products (Meierhofer et al., 2020). Servitization is driven by OEM’s need to differentiate 
products and people’s shift towards business models that offer them access to a process or to an outcome 
instead of traditional product access models (Paiola and Gebauer, 2020). This increasing focus on services led 
Steven Vargo and Robert Lush to explore value creation in an era of increasing tokenization (liquification) and 
specialization (unbundling) of economic relations. Their research gave birth to Service Dominant (S-D) logic 
(Vargo and Lusch, 2008). 

It is in this rapidly evolving context, in which OEMs are creating a business-centric, cloud-based, and 
proprietary product-servitization layer that DLT-based concepts like SSI are promoting an owner-centric, 
decentralized, standards-based approach to IoT data management (Fedrecheski et al., 2020). 

3 METHOD 

This section describes the research method used namely the eligibility criteria, information sources and 
search, study selection and data collection. 

3.1 Research Questions 
Our study was based on two RQs. Each of the RQs was further extended with three sub-questions. 

• RQ1: How does DLT enable people-centered approach in IoT? 
o RQ 1.1. – Are there DLT-IoT people-centered emerging patterns? Answering this question 

allows us to understand whether researchers are starting to converge towards a type of 
architecture and/or implementation pattern. That could include a specific distributed ledger 
(e.g., IOTA), or towards a deployment strategy (e.g., permissioned/consortium) and 
whether the concepts of SSI or PDS are being used by researchers. 

o RQ 1.2 – Are people-centered DLT-IoT implementations domain-specific? Addressing this 
question could enables us to understand whether different IoT domains (e.g., Smart-
Transportation) influence implementations or whether they pose specific challenges that 
lead to implementation differences (e.g., edge computing, privacy preserving). 

o RQ 1.3 – Are there gaps in the solutions analyzed? The answer to this question could 
indicate technical implementations’ unexplored research directions, and/or 
implementation domains’ specific unaddressed challenges. 

• RQ2: What are the people-centered DTL-IoT strategies publishing trends? 
o RQ 2.1 – In which years were the papers published? Answering this question provides 

clues to assess at what time the topic started to get attention as well as how recent the 
research on this topic is. 

o RQ 2.2 – What are the knowledge domains (e.g., IoT, Networking, Cloud, and Software 
Engineering) and publication type (i.e., Journal, Conference)? Answering this question 
could allow us to understand better the interdisciplinarity of the topic as data privacy, 
security and ethics crosses several related research areas. Additionally, understanding 
the papers’ venue enables us to assess the papers’ maturity as journal tend to publish 
more mature studies than conferences. 

o R 2.3 – What is researchers’ country of affiliation? Answering this question allows us to 
understand whether legislation (e.g., GDPR, CCPA) or manufacturing strategies (e.g., 
China 2025 - China, Industrie 4.0 – Germany, Industrial Internet Consortium (IIC) - US) 
have an impact on the published papers. 

3.2 Search and Selection 

The following automated search engines were used.  
• IEEE Xplore; 
• ACM Digital Library (ACMDL); 
• Scopus; 
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• Web of Science (WOS). 
The first two engines are hosted by the two arguably most renowned scientific technological associations, 

the IEEE and the ACM, while the last two are the most reputable and worldwide adopted generic scientific 
databases. To improve search criteria readability, we divided it into three groups of terms: 

• Distributed ledger. 
• IoT. 
• People-centered. 

To eliminate researcher bias and ensure we identified all relevant papers, we started by running preliminary 
search queries to study “word associations” within the three groups. Instead of “smart-contract”, “internet of 
medical things” or “privacy preserving”, we searched by “contract”, “internet” and “privacy” as depicted in Table 
1. 

Table 1- Word Association Preliminary Search Criteria 

Topic Contains Any of These 
Distributed ledger blockchain OR ledger OR dlt OR contract OR tangle 
IoT iot OR internet OR things OR edge OR smart 
People-centered privacy OR security OR trust OR data OR gdpr OR sovereign  

Based on a manual analysis of the papers’ abstract and keywords, we were able to find unfamiliar terms and 
new word associations that were unknown to us. Examples include: “smart speaker”, “smart toilet”, “patient-
centric” and “usage consent”. This extra step allowed us to define a more deterministic list of terms for our study 
(Table 2). Additionally, allowed us to assess that prior to 2017 people centered papers were mostly theoretical. 

Table 2 - Search Criteria 

Topic Contains Any of These 
DLT blockchain OR "distributed ledger" OR DLT OR "smart contract" OR tangle OR BIoT OR BoT  
IoT IoT OR "Internet of Thing" OR "Internet of Medical Thing” OR "Internet of Vehicle" OR IoV OR edge 

OR "digital twin" OR cps OR "cyber-physical system" OR "industry 4.0" OR "industrie 4.0" OR IIoT OR 
"smart device" OR "smart object" OR "smart mobility" OR "smart car" OR "smart vehicle" OR "smart city" 
OR "smart cities" OR "smart health" OR "smart e-health" OR "smart grid" OR "smart meter" OR "smart 
home" OR "smart building" OR "smart insurance" OR "smartwatch" OR "smart toilet" OR "smart speaker" 
OR "smart living" 

People-
centered 

sovereign OR "data market" OR "data economy" OR "data ownership" OR "personal data" OR "data 
trust" OR "data rights" OR gdpr OR "data protection" OR ccpa OR "usage consent" OR "user centric" OR 
"patient-centric" 

Filters Publish date >=2017 

 
The paper selection followed the inclusion criteria from Table 3. 

Table 3 - Inclusion Criteria 

No Criteria Justification 
1 The solution must use distributed ledger and 

IoT centric. 
The solution makes use of blockchain and not just as 

one of many other solutions. 

2 The solution must address security, privacy, 
and the fair use of IoT data. 

The solution must improve individual protection and 
control of the data. 

3 The study’s solution must be evaluated. The paper must show more than just a theoretical 
solution. 

The papers were assessed in accordance with Figure 2. 
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Figure 2 – Study process workflow diagram 

4 CLASSIFICATION 
We define a people-centered IoT Ecosystem as a network of entities such as OEMs, service providers, 

regulators, law enforcement, and individuals that exchange data in an IoT domain by leveraging a system that 
supports a set of capabilities that offer the individual level of privacy and security as well as some level of control 
over how data is exchanged. We leverage this definition to create a DLT-focused people-centered IoT 
ecosystem classification as defined in Figure 3. 

 

 
Figure 3 – DLT-focused people-centered IoT ecosystem classification 

The IoT domain represents the sector of the ecosystem: Smart-City, Smart-Grid, Smart-Health, Smart-
Home, Smart-Mobility, Smart-Security, and Generic (i.e., not defined). The data-exchange pattern represents 
how the data is exchanged: 

o Individual Controlled – the individual controls the IoT device and data storage and voluntarily 
exchanges data. Within this pattern we identified the following sub-data exchange patterns: 

o Sensing-as-a-Service – the individual submits data with the purpose of receiving a 
reward. This is usually associated with the concept of sensing-as-a-service (Zichichi et 
al., 2020) or crowdsensing (Liu et al., 2019).  

o Data Processing Service – the individual shares data with a service provider that uses 
an algorithm to process the individual’s information and returns a response. The 
response may be a rate for auto insurance based on previous driving data (Dib et al., 
2020), or even a way to get the best route from the current location to the destination 
(Zhang and Fan, 2020). 

o Data Monitoring Service – the individual shares the data with a service provider with 
the objective of monitoring a continuous data stream for anomalies which can involve 
monitoring biometrics for cardiovascular dangerous situations, or to analyze the 
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individual’s location to assess whether the latter came in contact with an infected 
individual (Lv et al., 2020). 

o (Voluntarily) Ecosystem Data Sharing – the individual shares information within the 
ecosystem with the objective of assessing whether the individual can join a clinical trial 
(Angeletti et al., 2017), increasing transparency about the asset and the individual’s skills 
and knowledge about using the said asset (Saldamli et al., 2020), or to give access to 
an insurance company to assess responsibility on an accident (Md Abdur Rahman et al., 
2020), or to receive tasks based on the individual’s location (i.e., crowdsourcing) (Zhang 
et al., 2021), or to share transit and location-based services (Pu et al., 2020). To 
encourage participants to exchange trustworthy information, incentive-punishment 
mechanisms may exist (Pu et al., 2020) (Makhdoom et al., 2020). 

o Federated Learning – the individual shares the machine learning coefficients executed 
with the individual’s data (Mohamed Abdur Rahman et al., 2020). 

o 3rd Party Controlled – the service provider controls the IoT device and storage. The individuals 
may or not engage in the data exchange voluntarily but at a minimum the individual is aware that 
data exchange can occur.  

o Metering – measures utilities consumption (Dimitriou and Mohammed, 2020; Gur et al., 
2019; Wang et al., 2019). 

o Smart living – an entity monitors environmental, user-proximity and wearable sensor-
devices within a given space with the intent of optimizing living conditions, optimize 
resources and ensure the safety and well-being of those within the space (Barati et al., 
2020). 

o Surveillance – authorities-lead surveillance (e.g., license plate recognition (Ochoa et 
al., 2019)). 

To better understand the role of DLT on people-centered ecosystems we focused on the following 
capabilities: 

• Storage – three patterns were identified: 
o Full – IoT data is stored on a distributed ledger to share data among multiple parties. It is 

used to eliminate single-points of failure and single-points of trust (Wang et al., 2019), or 
to broadcast data among a set of nodes (Zichichi et al., 2020). 

o Hashing – IoT full-data is stored outside the ledger and solely the hash is stored on the 
ledger as a mechanism to ensure non-repudiation and trustworthiness, i.e., data 
provenance (e.g., (Dib et al., 2020; Kim and Lampkins, 2019)). 

o Hybrid – the full-data is stored in different locations including local, cloud and on-ledger 
based on an algorithm (Uddin et al., 2018). 

• Data Access control: the four following patterns were identified: 
o Ecosystem Smart Contract Access Control List (ACL) – the ecosystem has a smart 

contract that defines the access control list of nodes with access to specific data. The 
exchange of data is enabled for as long as the data access is not revoked. The data 
exchange can use multiple mechanisms like API-call and OAuth 2.0 (Makhdoom et al., 
2020),  

o Second layer Comm Protocol ACL – the ledger offers a way for a node to create an 
encrypted channel that other nodes can subscribe to (Lucking et al., 2020). 

o IoT-device smart contract ACL – each IoT device has its own smart contract. The 
requester requires access and if approved is added to the device’s smart contract ACL 
(Fan et al., 2020). 

o Datum smart contract – each datum available for trading has its own smart contract. The 
requester requires access and if all conditions are met the requester is added to the 
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streaming channel (Chuang et al., 2020), or the requester sends the data encryption key 
(Chuang et al., 2018). 

• Data Processing – in this context, any implementation that uses smart contracts is technically 
using DLT for some type of data processing. We tried to identify implementations that use smart 
contracts beyond data processing transparency like token management or access-control lists. 
Three patterns were identified: 

o Pricing – the data-marketplace uses smart contracts to assess the data value (Liu et al., 
2019) 

o Contact-tracing – smart-contracts are used to assess contamination events, i.e. whether 
an infected individual came in contact with a non-contaminated individual (Lv et al., 2020). 

o Data Exchange Criteria Matching – smart contracts are used to match the data provider 
and requester privacy policy requirements (Dib et al., 2020; Lopez and Farooq, 2019; 
Loukil et al., 2018; Nawaz et al., 2020; Rantos et al., 2019). 

• Payment – the ecosystem allows data trading via crypto or micro payments. Within payment 
scenarios we identified the following patterns: 

o Simple – represents a payment with a traditional crypto currency. 
o Fair trade – smart contracts enforce the fairness of the trade by ensuring the data provider 

is paid and the data requester obtains the data without the need for a trusted third party 
(Li et al., 2021). 

o Anonymous – the payment does not reveal any information about the payer or the amount 
of the transaction (Ou et al., 2019). 

o Micro-payments Channel – a side chain is created to support micro-payments between 
the data provider and the data requester. This system is put in place to resolve the 
performance problems usually associated with public ledgers like Bitcoin (Robert et al., 
2020) or Ethereum (Radhakrishnan et al., 2019). These types of solutions support a 
continuous exchange of data which occurs via a channel. One of those solutions is the 
Open Messaging Interface (O-MI) from The Open Group Standard for the Internet of 
Things (IoT) (Robert et al., 2020). 

• Reputation – the ledger keeps track of the reputation of the nodes which may reflect the node’s 
ability to provide accurate information to the ecosystem (Pu et al., 2020). Even though certain 
implementations do not make direct references to the concept of “reputation” they do process data 
in a way that amounts to node reputation (Saldamli et al., 2020). 

5 RESULTS AND FINDINGS 

This section presents the results and discusses the main findings by answering the raised RQs. 
Our research started by analyzing the types of distributed ledgers used in the studied implementations and 

how they were being deployed. 
Some of implementations used publicly available distributed ledgers while others are custom ledgers. As 

shown in Figure 4, by far the most used is Ethereum, followed by Hyperledger Fabric. Almost a quarter of the 
implementations used a custom ledger. We also identified different ledger deployment types as depicted on 
Figure 5. While 87% of the implementations used a single ledger, 13% use a multiple ledger approach. Of those 
two used a Hierarchical deployment in which more than one blockchain of the same type is used to distribute 
transaction load across its nodes. For instance, the metering implementation in (Wang et al., 2019) uses 
regional and wide area blockchains. This strategy is both a scalability mechanism and an additional privacy 
layer as the subledger gateways only transmit aggregated information to the root blockchain. The Automated 
Data Trading in (Chuang et al., 2020) uses sub-blockchains at the edge to improve request response time. Two 
implementations used a Hybrid deployment in which the implementation uses more than one ledger type each 
executing a different role. The data marketplace in (Lopez and Farooq, 2019) uses Hyperledger Iroha and 
Hyperledger Indy. The prior ledger is used to enable transaction control, while the latter is used for identity and 
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data exchange protocol. The decentralized Digital Rights Management scheme in (Zhaofeng et al., 2020) uses 
Hyperledger Fabric and Ethereum. The prior acts as a storage mechanism and data exchange control that 
prevents public access to the data being protected, while the latter supports token economics and usage control 
mechanism. The intelligent traffic system in (Zichichi et al., 2020) uses IOTA and Ethereum. The prior acts as 
a low cost and scalable storage mechanism and the latter provides data access control smart contract support. 
Finally, one used a Side-chained in which the implementation uses a sub-blockchain to handle transactions 
quickly and then write the results to the main chain. In (Robert et al., 2020) the implementation sidechains 
Bitcoin to enable micropayments. 

 

  
Figure 4 – Implementations’ distributed ledgers. Figure 5 – Implementations’ distributed ledgers 

deployment types. 

 
RQ1: How does DLT enables the people-centered approach in IoT? 
Our review of the selected papers in accordance with the people-centered DLT roles classification is shown 

on Table 4. The results we observed align with our expectations. Storage is used by 19 studies (34%) making 
it the most used DLT capability. As mentioned in Section 2.2 anchoring data to the ledger protects it from 
tampering and promotes accountability. Also as discussed in Section 2.2, the use of digital payments (22%) is 
completely justifiable since that was the reason for the invention of Bitcoin, the first DLT. Smart-contracts are a 
known mechanism to implement access-control (Cruz et al., 2018), and are used by 11 implementations (22%). 
Finally, performance, scalability, and cost (in the case of public ledgers) can explain the low percentage of 
studies that used smart contracts for data processing (13%) or reputation management (7%). 

Table 4 – DLT uses in people-centered IoT ecosystems 

Capability Pattern Papers 

IoT Storage 

Full 
(Dimitriou and Mohammed, 2020; Gur et al., 2019; Lv et al., 
2020; Ochoa et al., 2019; Pu et al., 2020; Wang et al., 2019; 
Zhang et al., 2021; Zhou et al., 2018) 

Hashing 

(Angeletti et al., 2017; Dib et al., 2020; Kim and Lampkins, 
2019; Makhdoom et al., 2020; Ou et al., 2019; Md Abdur 
Rahman et al., 2020; Mohamed Abdur Rahman et al., 2020; 
Rifi et al., 2018; Zhaofeng et al., 2020) 

Hybrid  (Uddin et al., 2018; Zichichi et al., 2020) 

Data 
Access 
Control 

Ecosystem Smart Contract 
(Barati et al., 2020; Ding and Sato, 2020; Gur et al., 2019; 
Makhdoom et al., 2020; Sultana et al., 2020; Zichichi et al., 
2020) 

IoT-device Smart Contract 
(Fan et al., 2020; Md Abdur Rahman et al., 2020; Rifi et al., 
2018) 

Second layer Channel ACL (Lucking et al., 2020) 
Datum Smart Contract (Chuang et al., 2020, 2018) 

Data 
Processing 

Pricing (Liu et al., 2019) 
Contact Tracing (Lv et al., 2020) 

Bitcoin
2

5%

Custom
9

22%

Ethereum
18

43%

Hyperledger 
Fabric

7
17%

Hyperledger 
Indy

1
2%

Hyperledger 
Iroha

1
2%

IOTA
3

7%

IoTex.io
1

2%

Hierarchical
2

5%

Hybrid
3

8%

Side-chained
1

2%

Single
33

85%
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Capability Pattern Papers 

Data Exchange Criteria Matching 
(Dib et al., 2020; Lopez and Farooq, 2019; Loukil et al., 2018; 
Nawaz et al., 2020; Rantos et al., 2019) 

Digital 
Payment 

Traditional 
(Chuang et al., 2020, 2018; Dimitriou and Mohammed, 2020; 
Fan et al., 2020; Nawaz et al., 2020; Zhaofeng et al., 2020; 
Zichichi et al., 2020) 

Anonymous (Ou et al., 2019) 
Fairtrade (Li et al., 2021; Zhao et al., 2019) 
Micro-payments  (Radhakrishnan et al., 2019; Robert et al., 2020) 

Reputation - 
(Chuang et al., 2020, 2018; Pu et al., 2020; Mohamed Abdur 
Rahman et al., 2020; Saldamli et al., 2020) 

 
As shown on Figure 6, 19 implementations (49%) use ledger technology as a storing mechanism. Of those, 

8 store the full data set, 9 store the hash of the data set, and 2 use a policy to store the complete data set on 
or off-ledger. We researched what ledgers were being used for full set data storage on Figure 7. Of those 
implementations that store the full data set, the ones that use Ethereum store small data sets. One stores 
worker location and task policy information in a crowdsourcing platform (Zhang et al., 2021), and the other 
stores license plate scanning owner’s privacy preferences (Ochoa et al., 2019). The implementation that uses 
IOTA leverages the Masked Authenticated Messaging (MAM) (Shafeeq et al., 2019) feature and is used as 
distributed storage of the patient data (Lucking et al., 2020). 
 

  
Figure 6 – Implementation’s storage mechanism. Figure 7 – On-ledger full data storage implementations’ 

distributed ledgers. 

 
We identified 14 sensing-as-a-service implementations (i.e., rewarded data sharing). Of those 12 used a 

ledger with crypto payment support. In the case of (Lopez and Farooq, 2019) it is stated that the reward layer 
can “be added in future with minimum effort”. In the case of (Liu et al., 2019) it was not clear how the 
permissioned blockchain custom implementation enabled payments. As shown in Figure 8 most of those 
payments followed a simple crypto exchange, while five used specific strategies to improve payment 
performance, protected against malicious behavior from either the data provider or the data requester, and 
ensured no data about the payer, including the amount, could be inferred. In Figure 9 we show the ledgers used 
by these implementations. 
 

Full
8

21%

Hashed
9

23%

Off-ledger
20

51%

Variable
2

5%

Custom
3

37%

Ethereum
2

25%

Hyperledger Fabric
2

25%

IOTA
1

13%



12 

  
Figure 8 – Implementation’s crypto payment types. Figure 9 – Crypto-payment supported implementations’ 

distributed ledgers. 

As illustrated on Figure 10, most of the implementations that use smart contracts to define access control 
lists (ACL) use a single ecosystem smart contract. The Hyperledger framework (i.e., Fabric and Iroha) account 
for 4 of those implementations while Ethereum accounts for 2. Ethereum is used across all the different patterns 
apart from the second layer channel ACL (Figure 11). 
 

  
Figure 10 – Implementations’ ledger-based ACL types. Figure 11 – Ledger-based ACL implementations’ 

distributed ledgers. 

 
RQ 1.1. – Are there DLT-IoT people-centered emerging patterns? 
We found a wide diversity of DLT-based architectures used to implement people-centered IoT solutions. We 

found no evidence of emerging patterns. However, we were able to observe that: 
• Ethereum is the dominant ledger with 44% of the implementations, while Hyperledger the distance 

second only has 20% (Figure 4). 
• IOTA, a fit-for-purpose IoT distributed ledger, was only used in three implementations, one of which 

also utilized Ethereum. 
• Self-Sovereign Identity (SSI), an approach that offers individuals agency of the data about them, 

was only used by two implementations. Both implementations were data-marketplaces. One used 
Hyperledger Indy (Lopez and Farooq, 2019) while the other used IoTex.io (Fan et al., 2020). SSI is 
an emerging concept that uses DLT to create decentralized identifiers (DIDs) which are under the 
sole control of consumers and offer strong support for consumer-controlled data management 
(Ferdous et al., 2019). Each DID has an associated set of cryptographic metadata which allows to 
establish an end-to-end secure channel using a transport-agnostic protocol called DIDComm 
(“DIDComm Messaging,” 2020). In the context of IoT ecosystems the SSI concept facilitates device 
ownership, enhances privacy, and enables the exchange of data without the dependency on third 
parties. While it could be argued that the low number of SSI-based implementations is due to its 
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novelty or even to the difficulty of running SSI implementations like Hyperledger Indy/Aries over 
computing and bandwidth-constrained networks we were still surprised that more implementations 
did not consider using the identity and communication mechanisms provided by SSI 
implementations. 

• Edge computing was only used in eleven implementations (28%) (Figure 12) however, its use grew 
significantly since 2019 (Figure 13). This increase is explained by the need to improve system 
performance and network resource utilization by off-load blockchain and/or ecosystem 
management functions from IoT nodes (Chuang et al., 2018). 

• The term data owner is dominant to describe the individual who controls the IoT device. It is used 
in fifteen implementations (Figure 14), while the term data consumer and data buyer are dominant 
describing the entities who seek access to the IoT device data (Figure 15). While we could observe 
a tendency towards the use of “data owner” designation, we did not observe the same level of 
convergence towards the designation of entities seeking IoT data. We think that the standardization 
of IoT ecosystem vocabulary will eventually happen driven by IoT consortia. However, we also think 
that the “data owner” concept may end up not being used because there are voices cautioning and 
opposing data propertization (Ishmaev, 2020) 

• Privacy preserving schemes adoption has been steadily growing since 2018 and in 2020 almost 
40% of the implementations used it and in 2020 four of the implementations offered multiple 
preserving schemes (Figure 16) (Li et al., 2021; Lv et al., 2020; Pu et al., 2020; Mohamed Abdur 
Rahman et al., 2020; Zhang et al., 2021). As shown in Figure 17 the most common strategies are 
zero knowledge and homomorphic encryption. While privacy preserving schemes increase system 
complexity and require additional resources, it seems that there is a clear tendency towards its 
utilization. This observation seems to be further confirmed by a tendency in 2020 to use multi-level 
schemes towards protecting the confidentiality of not only the data being sharing but also the 
requests for data. 

 

  
Figure 12 – Implementations’ overall edge computing 

support. 
Figure 13 – Implementations’ edge computing support 

growth over time. 
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Figure 14 – Implementations’ terms to refer to the indiviual 

who controls the IoT device. 
Figure 15 – Implementations’ terms to refer to entity that 

seeks access to the IoT device’s data. 

  
Figure 16 – Implementations’ privacy-preserving growth 
over time (left axis) and single versus multiple privacy 
preserving support (right axis), over imposed with the 
privacy preserving schemes growth trend (in gray). 

Figure 17 – Implementations’ privacy preserving schemes. 

 
RQ 1.2 – Is there a correlation between a DLT-IoT implementation and an IoT application domain? 

We reviewed the studies in accordance with the IoT application domain classification defined in section 4 as 
shown on Table 6. 

Table 5 – IoT Application Domain 

Sub Exchanged Pattern Papers 
Generic (Chuang et al., 2020; Fan et al., 2020; Kim and 

Lampkins, 2019; Li et al., 2021; Liu et al., 2019; Loukil et 
al., 2018; Nawaz et al., 2020; Radhakrishnan et al., 2019; 
Rantos et al., 2019; Robert et al., 2020; Sultana et al., 
2020; Zhang and Fan, 2020; Zhao et al., 2019; Zhaofeng 
et al., 2020; Zhou et al., 2018) 

Smart-City (Makhdoom et al., 2020) 
Smart-Grid (Dimitriou and Mohammed, 2020; Gur et al., 2019; 

Wang et al., 2019) 
Smart-Health (Angeletti et al., 2017; Ding and Sato, 2020; Kumar et 

al., 2020; Lucking et al., 2020; Lv et al., 2020; Mohamed 
Abdur Rahman et al., 2020; Rifi et al., 2018; Uddin et al., 
2018) 

Smart-Home (Barati et al., 2020, 2019) 
Smart-Mobility (Chuang et al., 2018; Dib et al., 2020; Lopez and 

Farooq, 2019; Ou et al., 2019; Pu et al., 2020; Md Abdur 
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Sub Exchanged Pattern Papers 
Rahman et al., 2020; Saldamli et al., 2020; Zhang et al., 
2021; Zichichi et al., 2020) 

Smart-Security (Ochoa et al., 2019) 

 
To assess a potential relationship between DLT type and the IoT application domain we created the bubble 

chart (Figure 18). 

 

Figure 18 – Implementations’ distributed ledger versus IoT application domain. 

The “generic” IoT application domain is implemented by all types of DLT types which indicates that there is 
no correlation among them. As such, we decided to research whether there is a relationship between data 
exchange and the DLT type. We applied the data exchange classification to the papers as shown on Table 6. 

Table 6 – IoT Data Exchange Patterns 

Exchanged Pattern Sub Exchanged Pattern Papers 
Individual Controlled Sensing-as-a-Service (Chuang et al., 2020; Dimitriou 

and Mohammed, 2020; Fan et al., 
2020; Liu et al., 2019; Lopez and 
Farooq, 2019; Nawaz et al., 2020; Ou 
et al., 2019; Radhakrishnan et al., 
2019; Robert et al., 2020; Zhao et al., 
2019; Zhaofeng et al., 2020; Zichichi 
et al., 2020) 

Data Processing (Dib et al., 2020; Lv et al., 2020; 
Zhang and Fan, 2020) 

Monitoring (Ding and Sato, 2020; Lucking et 
al., 2020; Uddin et al., 2018) 

Voluntary Ecosystem Sharing (Angeletti et al., 2017; Kim and 
Lampkins, 2019; Kumar et al., 2020; 
Loukil et al., 2018; Makhdoom et al., 
2020; Md Abdur Rahman et al., 2020; 
Rantos et al., 2019; Rifi et al., 2018; 
Saldamli et al., 2020; Sultana et al., 
2020; Zhang et al., 2021; Zhou et al., 
2018; Zichichi et al., 2020) 

Federated Learning (Mohamed Abdur Rahman et al., 
2020) 
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Exchanged Pattern Sub Exchanged Pattern Papers 
Service Provider Controlled Metering (Gur et al., 2019; Wang et al., 

2019) 
Smart living (Barati et al., 2020, 2019) 
Surveillance (Ochoa et al., 2019) 

 
As depicted in Figure 19, 90% of the papers we analyzed reflected an individual-controlled scenario. Of 

those 79% were Sensing-as-a-Service and voluntary ecosystem sharing scenarios (Figure 20). 
 

  
Figure 19 – Implementations’ individual-controlled versus 

third party-controlled data exchange patterns. 
Figure 20 – Implementations’ individual-controlled data 

sub-exchange patterns. 

 
As we had concluded from Figure 18 that there was no correlation between DLT type and IoT application 

domain, we also found no correlation between DLT type and sub-data exchange pattern (Figure 21).  

 

Figure 21 – Implementations distributed ledger versus IoT sub-data-exchange pattern. 

RQ 1.3 – Are there gaps in the solutions analyzed? 
The following gaps were identified: 

• No implementation addresses the issues pertaining to the user experience.  
• Except for implementations (Dib et al., 2020; Lopez and Farooq, 2019; Loukil et al., 2018; Nawaz 

et al., 2020; Rantos et al., 2019) that have smart contracts that pair data providers with data 
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requesters the aspects pertaining the discovery of data or services that need data is not 
appropriately discussed. 

• Except for (Zhaofeng et al., 2020) no other paper talks about digital management rights. Once the 
data providers exchange or sell data they have little or no insight to what data requesters do with 
the data. In other words, the implementations have sophisticated data exchange capabilities but 
offer no functionality to manage any data economy events associated with the exchange. 

RQ 2 –What are the people-centered DTL-IoT strategies publishing trends? 
 
RQ 2.1 – In which years were the papers published? 
As shown on Figure 22, the year 2020 represents a transition year during which the number of papers 

published on journals clearly outnumbers those published in conferences for the first time. From an IoT 
application domain point of view smart mobility and smart health gained momentum (Figure 23). In Figure 24, 
it can be observed that voluntary sharing and sensing-as-a-service are the two dominant sub-data exchange 
patterns over time. Except for metering and surveillance, that were only found in 2019, and smart living that has 
kept constant, all other exchange patterns are growing. 
 

  
Figure 22 – Publications’ type over time. Figure 23 – Publications’ IoT application domain over time. 

 

  
Figure 24 – Publications’ data sub-exchange pattern over 

time. 
Figure 25 – Publications’ rewarded versus unrewarded 

sub-data exchange patterns over time. 

Finally, while we cannot infer a future pattern in terms of whether “rewarded data exchange” is gaining an 
edge over “voluntary sharing”, it is still possible to observe that “sensing-as-a-service” solutions are a topic of 
interest among the research community (Figure 25). 
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Except for the MDPI Sensors9, IEEE Internet of Things Journal10, IEEE Access each with three papers and 
the IEEE Network with two papers, no other journal or conference has more than one paper. This confirms the 
cross-disciplinarian nature of people-centered IoT solutions. In terms of the knowledge domain most papers are 
published in “networks” followed by “IoT” and “computer science” as can be seen in Figure 26. 
 

 

Figure 26 – Publications’ knowledge domain over time. 

R 2.3 – What is researchers’ country of affiliation? 
After analyzing the researchers’ affiliation country, we observed that Chinese researchers have produced 

more than twice the number of papers than the next country which is the US. However, when we aggregate the 
European Countries (EC), we observed that European affiliated researchers lead over Chinese researchers 
(Figure 27). 

  

Figure 27 – Publications’ author’s affiliation country over time with EC grouped on the last bar. 

While we did not observe any references to manufacturing national strategies (e.g., China 2025 - China, 
Industrie 4.0 – Germany, Industrial Internet Consortium (IIC) - US), we did find abundant references to GDPR 
(Barati et al., 2020, 2019; Dib et al., 2020; Gur et al., 2019; Kumar et al., 2020; Lopez and Farooq, 2019; Loukil 
et al., 2018; Lucking et al., 2020; Lv et al., 2020; Makhdoom et al., 2020; Ochoa et al., 2019; Rantos et al., 
2019; Zichichi et al., 2020). While the prior observation could be indicative of a lack of coordination between 
OEMs’ IoT standards and the research community, the latter observation is an indication that GDPR is 
influencing researchers. However, that impact is mostly observed among European affiliated researchers 
(Figure 28). It is important to note that no references were registered for the California Consumer Privacy Act 

 
9 https://www.mdpi.com/journal/sensors 
10 https://ieee-iotj.org/ 
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(CCPA). Lastly, we observed that Chinese researchers have an edge on privacy preserving strategies (Figure 
29) as they used it more frequently including multiple strategies combined. 
 

  
Figure 28 – Publications’ GDPR mentions per authors’ 

affiliation country. 
Figure 29 – Publications’ privacy-preserving strategies 

versus authors’ affiliation country. 

6 DISCUSSION AND FUTURE RESEARCH DIRECTIONS 

Despite very encouraging signs on the potential of people-centered DLT-IoT solutions, success depends on 
the future research of several important topics. 

While we observed that Ethereum seems to be the dominant ledger among people-centered DLT-IoT 
architectures, each one of the implementations used its unique architecture. This situation leads to the 
impossibility of comparing solutions side-by-side. Research is necessary to define a minimum set of capabilities 
of a people-centered IoT solution. Even though we did not observe a consistent set of capabilities, we measured 
an increased interest over “edge computing” and “privacy preservation” (Figure 13, Figure 16). Governments 
(e.g., NIST), business consortia (e.g., Industrial Internet Consortium (IIC)11, Digital Twin Consortium12), 
professional associations (e.g., IEEE13) and non-profits (e.g. Sovrin Foundation14) should work together to help 
define and standardize those capabilities (Bello and Zeadally, 2019). A wider consensus platform will balance 
individuals’ interests better and those of market players that invest in product development thereby contributing 
to innovation. Per our research, this cooperation has yet to start as none of the studies made a single reference 
to the concept of digital twin, a term of great interest to OEMs. 

Even though we identified implementations seeking to improve profit and/or fairness of individuals in sensing-
as-a-service scenarios, they were limited in scope. Except for (Zhaofeng et al., 2020) no other studies offered 
individuals control of how data could be used (i.e., usage control). To improve data-economy fairness, 
individuals must be able to understand why data is collected and how it is used so they can make informed 
decisions about the use of their private data (Koskinen et al., 2019). To enable it, further research is needed to 
increase data economy’s value chains’ transparency. Along with personal data stores it will make individuals 
active stakeholders in data value creation (Lehtiniemi, 2017) granting them “data outcome-control”. However, 
making individuals active participants in data value-chains will have to be further understood as data 
propertization can lead to counter intuitive results (Ishmaev, 2020). 

Finally, while data value-chain transparency is key for individual data control it requires the existence of 
personal data stores. While 90% (Figure 19) of the implementations we studied assumed the individual had 
control over IoT data storage, most of today’s IoT-enable devices do not allow it. Further research is necessary 
in the articulation of SSI and PDS in DLT-IoT implementations. While we observed little interest by the research 

 
11 https://www.iiconsortium.org/ 
12 www.digitaltwinconsortium.org 
13 P2418.1 - Standard for the Framework of Blockchain Use in Internet of Things (IoT) 
14 https://sovrin.org/library-iot/ 
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community in SSI, we think it will gain a lot more attention in the future given its foundational nature in allowing 
individuals to have control over the data about them. 

7 CONCLUSIONS 

The need to improve the privacy, security, ethics, and fairness of IoT data exchange has led to a growing 
interest in distributed ledger technology. DLT-IoT enables a people-centered approach to data exchange. It 
offers individuals a more active role in the exchange, allowing them to participate in the outcomes of the data 
economy. 

This review examined the state-of-the-art of people-centered DLT-IoT architectures. The aim of this work 
was to assess whether there are architecture patterns emerging, and what the DLT-IoT’s publication trends are. 
We surveyed solely papers that tested the proposed implementations. We manually reviewed over five hundred 
papers of which we selected thirty-nine (39). 

We observed that DLT is used in different IoT solutions for different purposes and that there is no relation 
between the IoT application domain (i.e., smart-health) or data exchange pattern (e.g., sensing-as-a-service). 
While we found no evidence of emerging patterns, we noted a growing interest in privacy-preserving and edge 
computing mechanism. 

We also observed that European affiliated countries researchers have a slight edge in terms of volume over 
Chinese researchers. However, the latter are using more sophisticated privacy-preserving schemes. 

Based on our observations we proposed three vectors for future research: definition of the minimum 
capability-set of a people-centered DLT-IoT solution, definition of “data outcome-control” concept, SSI and PDS 
integration. 

We conclude that DLT-IoT architectures and the protection of individuals’ interests in the data economy is in 
an embryonic state. While there is a need for additional technological research advances to mature DLT-IoT 
architectures, continuous privacy leaks, IoT’s continued explosive growth, and the interest in global passports 
triggered by COVID pandemic, may lead to increased collaboration between organizations and governments. 
This will accelerate the emergence of accessible, scalable, and reliable people-centered IoT solutions based 
on DLT. 
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