
 

 

ESSAYS ON THE ESTIMATION OF DISTRIBUTION MOMENTS 

 

 

 

Pedro Nogueira Serrasqueiro 

 

 

 

PhD in Management, specialization in Quantitative Methods 

 

 

 

 

Supervisor: 

Doctor José Dias Curto, Associate Professor with Habilitation, ISCTE 
- Instituto Universitário de Lisboa 
 

 

 

 

September, 2021 



 

 

Department of Quantitative Methods for Management and 
Economics 
 

ESSAYS ON THE ESTIMATION OF DISTRIBUTION MOMENTS 

 

Pedro Nogueira Serrasqueiro 

 

PhD in Management, specialization in Quantitative Methods 

 

Jury: 

Doctor Diana Aldea Mendes, Associate Professor, ISCTE - Instituto 
Universitário de Lisboa 
Doctor Nuno Marques, Assistant Professor, Universidade Nova de 
Lisboa  
Doctor Andreia Dionísio, Associate Professor, Universidade de 
Évora 
Doctor Pedro Ribeiro, Invited Assistant Professor, ISCTE - Instituto 
Universitário de Lisboa 
Doctor José Dias Curto, Associate Professor with Habilitation, 
ISCTE-IUL 
 

 

September, 2021 
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Resumo

No conjunto de quatro artigos aqui compilados, estudam-se aspectos particulares dos

primeiros quatro momentos das distribuições de probabilidade: média, variância, assime-

tria e curtose. A estrutura dos primeiros três artigos é semelhante, na medida em que

se estabelecem hipóteses e/ou se estudam propriedades teóricas, posteriormente testadas

em contexto de simulação e ilustradas por aplicações a situações reais; o quarto artigo

surge no contexto da actual pandemia SARS-CoV-2 e é de natureza emṕırica. O primeiro

artigo (Caṕıtulo 2) analisa a relação entre as médias geométrica e harmónica no âmbito da

agregação de rácios de natureza financeira. No segundo artigo (Caṕıtulo 3), a respeito da

estimação de modelos de regressão linear, propõe-se uma medida de ordenação de regres-

sores em termos da sua importância relativa para a explicação da variância em torno da

média da variável dependente. O terceiro artigo (Caṕıtulo 4) aborda as dificuldades conhe-

cidas na estimação dos coeficientes de assimetria e curtose. Recorrendo ao Método dos

Momentos Generalizado, propõem-se intervalos de confiança e testes de hipóteses robus-

tos para os coeficientes, atendendo à heteroscedasticidade e à autocorrelação tipicamente

presentes nas séries financeiras temporais. No último artigo (Caṕıtulo 5) procurou-se,

com recurso à classe de modelos GARCH e à introdução de variáveis dummy, investigar

e quantificar o impacte da recente pandemia por SARS-CoV-2 na volatilidade (desvio-

padrão) dos retornos de um conjunto de acções cotadas e ı́ndices bolsistas dos mercados

de capitais norte-americanos.

Palavras-chave: Média, Variância, Assimetria, Curtose, Estimação, COVID-19

JEL: C10, C13
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Abstract

The set of four articles herein compiled focuses on specific aspects of the first four moments

of probability distributions: mean, variance, skewness and kurtosis. The structure of the

first three articles is similar, where hypotheses are formulated and/or theoretical proper-

ties are studied and later tested with simulation and applied to real life cases. The fourth

article is of empirical nature, contextualized by the current SARS-CoV-2 pandemic. The

first article (Chapter 2) analyzes the relationship between the geometric and harmonic

means with respect to the aggregation of financial ratios. In the second article (Chapter

3), regarding the estimation of linear regression models, a new measure is proposed to

rank independent variables according to their relative importance to explain the variabil-

ity around the mean of the dependent variable. The third article (Chapter 4) approaches

known di�culties with the estimation of skewness and kurtosis. Applying the Generalized

Method of Moments, confidence intervals and hypothesis tests are derived, taking into ac-

count the heteroskedasticity and autocorrelation typically present in financial time series.

In the last article (Chapter 5), models of the GARCH family are estimated with the in-

troduction of dummy variables to investigate and quantify the impact of SARS-CoV-2 in

the volatility (standard deviation) of returns of a set of US-listed stocks and indices.

Keywords: Mean, Variance, Skewness, Kurtosis, Estimation, COVID-19

JEL: C10, C13
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CHAPTER 1

Introduction

The set of articles contained in this thesis is motivated by the interest of researchers and

practitioners in the application of statistical methods to financial risk management. The

classical problem faced by individuals, asset managers and institutions, among others, is

how to allocate financial resources to assets (e.g. stocks, bonds, funds and commodities)

in such a way as to provide acceptable levels of risk-adjusted returns. In other words, mar-

ket participants are generally concerned about maximizing returns for increasing levels

of risk, as well as monitoring the evolution of portfolio value while maintaining and safe-

guarding invested capital. Traditionally, this has been achieved by resorting to statistical

techniques that make use of the first two moments (mean and variance) of probability

distributions. Arguably, the most paradigmatic approach is that of Portfolio Selection

by Markowitz1952 (cited 51.466 times at the time of writing), where the well-known

“e�cient frontier” was first postulated, and is based on a general rule that investors “do

(or should) consider expected return a desirable thing and variance of return an unde-

sirable thing”. Put simply, an investor willing to take higher risk should, on average,

expect a higher return on investment. The literature on portfolio theory, allocation and

risk management has since been greatly expanded, and makes heavy use of the Normal

distribution to describe the probabilistic behavior of asset returns.

The choice of the Normal distribution is grounded on two fundamental results of statistical

theory, namely the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT).

The LLN was first proved by bernoulli1713, where he describes in detail the problem of

estimating the proportion of white balls in an urn containing an unknown total number

of balls (white and black), and concludes that by choosing a su�ciently large number of

samples, the proportion of white balls in the urn can be accurately estimated. The proof

is finalized with the following remark (p. 38-44):

Whence, finally, this one thing seems to follow: that if observations of all

events were continued throughout all eternity, and hence the ultimate prob-

ability would tend toward perfect certainty, everything in the world would be

perceived to happen in fixed ratios and according to a constant law of alterna-

tion, so that even in the most accidental and fortuitous occurrences we would

be bound to recognize, as it were, a certain necessity and, so to speak, a certain

fate.

Financial markets are a complex web of agents and instruments that express, via prices

and their variability, the expectation and will of said agents. Within the framework of
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financial risk management, at least from a contemporary point of view, while the location

(center) of return distributions seems to be well described by a vast collection of theoretical

models (informally, we seem to get by “normally” most of the time), the tails of observed

(empirical) distributions contain improbable and very consequential events that are hard

to predict according to any known tractable law. Markets, institutions and individuals

are often caught barehanded by these improbable events, of which the financial crisis of

2007 is a flagrant example. An additional remark by bernoulli1713 illustrates this point:

It certainly remains to be inquired whether after the number of observations

has been increased, the probability is increased of attaining the true ratio be-

tween the number of cases in which some event can happen and in which it

cannot happen, so that this probability finally exceeds any given degree of cer-

tainty; or whether the problem has, so to speak, its own asymptote - that is,

whether some degree of certainty is given which one can never exceed.

The CLT, fundamental to probability theory, is at the heart of many statistical considera-

tions of asymptotic convergence to the Normal distribution when general results are not

attainable for small samples. While there are several versions of the theorem, the general

result states that, under certain conditions, the sum of n independent and identically

distributed summands converges in probability to the Normal distribution as n grows to

infinity. A widely applied corollary relates the sum to the sample mean, i.e. the sampling

distribution of the sample mean is normally distributed, for su�ciently large n, regardless

of the original distribution of summands. The history of the CLT is humorously and well

encapsulated in the first paragraphs of a paper by cam1986, entitled “The Central Limit

Theorem around 1935”:

In the beginning there was de Moivre, Laplace, and many Bernoullis, and they

begat limit theorems, and the wise men saw that it was good and they called it

by the name of Gauss. Then there were new generations and they said that it

had experimental vigor but lacked in rigor. Then came Chebyshev, Liapounov

and Markov and they begat a proof and Polyá saw that it was momentous and

he said that its name shall be called the Central Limit Theorem [...].

The appelation “central” is due to Polyá who used it because of the central

role of the theorem in probability theory, not as the modern French do, be-

cause it describes the behavior of the center of the distribution as opposed to

its tails.

While both the CLT and the LLN seem, to a certain extent (and especially after being

formulated), intuitive, the variable of interest in this context is the sample size n or,

rather, the su�ciency of n. How large must a sample be so that statistical inference

provides reliable measures of a probability distribution, and what does it depend on?

How long does it take to reach the asymptote? An interesting analysis of this problem is

provided in taleb2018, where a measure of required sample size is derived for di↵erent
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parametrizations of the stable family of distributions.

Financial research is often referred to as being blessed with overwhelming amounts of data

and a haven for scientists; in fact, while many data points and sampling frequencies are

available at little or no cost, and a trade-o↵ between noise and sample size seems to exist,

they may be deemed insu�cient for convergence, due to the presence of very large outliers

in the data. As will be shown in Chapter 4, outliers are extremely consequential to the

estimation of distribution parameters, especially in the case of higher-order moments. In

this regard, a paper by fama1963, alluding to previous work by mandelbrot1961 is

particularly illustrative:

If Mandelbrot’s hypothesis is upheld, it will radically revise our thinking con-

cerning both the nature of speculative markets and the proper statistical tools

to be used when dealing with speculative prices. Prior to the work of Man-

delbrot the usual assumption, which we shall henceforth call the Gaussian

hypothesis, was that the distribution of price changes in a speculative series is

approximately Gaussian or normal. In the best-known theoretical expositions

of the Gaussian hypothesis, arguments are based on the central-limit theorem

to support the assumption of normality. If the price changes from transaction

to transaction are independent, identically distributed, random variables with

finite variance, and if transactions are fairly uniformly spaced through time,

the central-limit theorem leads us to believe that price changes across di↵er-

encing intervals such as a day, a week or a month will be normally distributed

since they are simple sums of the changes from transaction to transaction.

[...] Mandelbrot contends, however, that past research has overemphasized

agreements between empirical distributions of price changes and the normal

distribution and has neglected certain departures from normality which are

consistently observed.

In fact, it has now long been recognized that the behavior of financial market returns does

not agree with the often assumed normal distribution. Departures from the normal dis-

tribution are often illustrated by resorting to higher-order moments such as skewness and

kurtosis, and it has become an irrefutable stylized fact that financial market returns have

negative asymmetry and excess kurtosis (see, for example, Bastianin2020, WU2019

and BeraPremaratne2017).

According to kimwhite04, the role of higher moments has become increasingly important

in financial literature, mainly because the variance (or standard deviation), the traditional

measure of risk, fails to fully capture the true risk of market returns’ distributions. Esti-

mation of skewness and kurtosis comes with its own problems, as the standard estimators

(standardized third and fourth moments) are essentially based on distances to the sam-

ple (arithmetic) mean raised to the third and fourth powers and therefore substantially

sensitive to outliers. Additionally, while corrected versions of the standard estimators
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are known to be unbiased under normality (JoanesGill1998), their reliability in small

samples decreases drastically under di↵erent distributional assumptions. In Chapter 2, al-

ternative location measures, namely the geometric and harmonic means, are investigated

with respect to their increased robustness to outliers when aggregating financial ratios

such as Price-to-Earnings (P/E). Besides the violation of the distributional assumption

(of normality), departures from the assumption that observations are independent over

time are also frequent and have been extensively documented. Accordingly, in Chap-

ter 4, after assessing the performance of standard estimators in the presence of outliers,

the Generalized Method of Moments is applied to derive the asymptotic distribution of

estimators of skewness and kurtosis and confidence intervals and hypothesis tests are con-

structed, taking into account the heteroskedasticity and autocorrelation typically present

in financial time series. In Chapter 5, an empirical application of several GARCH-family

models is pursued, in order to model the conditional variance of returns of a set of listed

stocks and indices. Specifically, an Asymmetric Power GARCH (APARCH) model with

dummy variables is estimated to investigate if the current COVID-19 pandemic has sig-

nificantly increased the volatility of returns. Using a Likelihood Ratio test, the proposed

model is compared to traditional GARCH models with respect to their predictive ability.

In Chapter 3, we focus on variance partitioning and adopt a more general approach that

goes beyond the realm of financial markets. Namely, the problem of decomposing the

coe�cient of determination (commonly designated as R2) and assigning variation shares

to independent variables to determine their relative importance (to “explain” variability

of the dependent variable around the mean) is addressed. While it has an unique solution

when regressors are mutually independent, this problem is no longer trivial in the pres-

ence of collinearity. An attempt to overcome this di�culty is provided by employing the

Variance Inflation Factor (VIF) as a weighting criterium.

The articles herein compiled roughly follow a common methodological approach: theo-

retical properties of estimators are evaluated and devised, tested under simulation and

then applied to real life cases and series. The order in which they are presented corre-

sponds to the moment-order of the estimators being addressed (mean, variance, skewness

and kurtosis). The one exception is the fourth article (Chapter 5), presented last due

to its empirical nature when compared to the first three. Overall, this compilation re-

flects the author’s desire to contribute to the existing literature and to consolidate his

understanding by attempting to tackle some of the aforementioned estimation issues.
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CHAPTER 2

Averaging ratios: geometric vs. harmonic mean

ABSTRACT

Ratios represent a special kind of relation between two magnitudes. Averaging ratios is

common practice among academics and Finance practitioners. For example, how does one

best aggregate (average) firms’ price-to-earnings (P/E) at portfolio level? The arithmetic

mean is the natural alternative. However, for financial ratios, it is generally accepted

that the much less familiar harmonic mean is more valuable because it solves the upward

bias problem encountered while using arithmetic mean and is a more intuitive and logical

approach. To the best of our knowledge, there is no statistical evidence to show the

superiority of the harmonic mean when computing the average of ratios. By bootstrapping

P/E ratios and earnings yields of the companies listed in eight large stock indices, we

compare the traditional averages and it is shown that geometric, and not the harmonic

mean, as it is commonly accepted, is more suitable to average ratios.
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2.1. Introduction

Ratios represent a special kind of relation between two magnitudes, and are of common

use in everyday life, as well as in scientific fields (Brown2011) such as Mathematics,

Engineering, Statistics, Economics, Finance, Medicine, etc. In Finance, market multiples

such as market-to-book value, price to cash flow, price to sales, dividend payout ra-

tios (gilletal2010; HusnaSatria2019; Sriram2020; HusainSunardi2020) and price-

earnings (or P/E) ratio are often used (agrrawal2010; Musallam2018). Other exam-

ples are the estimation and inference about the Sharpe ratio and the average excess return

per unit of volatility or total risk. Distribution properties and estimation of the ratio of

independent random variables are the subject of several studies, e.g. NadKotz2005. For

the conversion of odds ratios and hazard ratios to risk ratios see Weele2020.

When computing an average, the arithmetic mean1 is the natural alternative (seeBerishvili2020

for usage of the arithmetic mean to calculate the industry average financial ratios for

Georgia). As a consequence, alternative approaches to capture the center of a probability

distribution are frequently discarded (coggeshall1886). When ratios are at play, the

choice of averaging method does matter (as we show), and sometimes the much less fa-

miliar harmonic mean provides a more logical approach to average the ratio between two

magnitudes (agrrawal2010). See also MartinStanford2007 for the application of the

harmonic mean to the ABC inventory classification systems.

We define three di↵erent situations when datasets consist of ratios. The first, which we

name “All Equal”, when either the numerators or denominators are the same (or we can

admit the equality) in all the ratios to be averaged. An example is the average number of

spectators per football match in the last five seasons. To obtain the exact value (the real-

ized value, represented by “TA”, the true average), we divide the sum of all spectators by

the number of matches. Alternatively, as the data is available per year, we can compute

the ratio per season and then compute the average of ratios. The question is what type

average to employ. If it is reasonable to admit that the number of matches is constant

(the denominator of ratios per season), the arithmetic average of ratios is exactly the TA.

Consider only two seasons, where the number of spectators is 301,000 and 400,400 and

the number of matches is 70 per season. The average number of spectators per match is:

TA = (301000 + 400400)/(70 + 70) = 5010.

The two ratios per season are R1 = 301000/70 = 4300, R2 = 400400/70 = 5720 and the

simple arithmetic average of the two ratios is exactly TA: (4300+ 5720)/2 = 5010. Thus,

the simple arithmetic average of ratios results in the true average if the denominators of

the ratios are equal. When the equality is in the numerators, it is the harmonic average

1We use “average” and “mean” interchangeably.
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that results in the TA2, as exemplified in the next paragraph and we explained in detail

in Section 2.2.

The second situation, which we name “Become Equal”, when neither the numerators or

denominators are equal, but it is reasonable to conceive a constant value for either. For

example, suppose one invests in two stocks with prices of 400 and 200, and earnings per

share 20 and 40, respectively. The true average of price per unit of earnings (the value-

weighted average (VWA)) is: VWA = (400 + 200)/(20 + 40) = 10. The two P/E ratios

are R1 = 400/20 = 20, R2 = 200/40 = 5 and the arithmetic and harmonic averages are

12.5 and 8, respectively. None of the ratios equals 10, but we can buy two shares of the

second stock (as a portfolio is generally composed by more than one share per stock) and

now the investment is the same for both stocks: 400. The true average of a portfolio with

1+2 shares is (400+400)/(20+80) = 8, the value of the harmonic average of R1 and R2.

According to agrrawal2010, this is the main reason to use the harmonic mean, because

it has a much more intuitive and logical investment assumption, since most portfolios are

neither on an equal number of shares per position basis, nor on an equalized earnings per

holding basis. So, it makes more sense to talk about portfolios with equal amount invested

in each company. When computing the harmonic or the arithmetic mean of ratios we are

assuming equal numerators/denominators. If that is a reasonable assumption, the two

averages are still appropriate.

The last situation, which we name “All Di↵erent”, when the numerators and denomina-

tors are di↵erent and it is not reasonable to assume that either is constant or it is not

possible to make it constant. We face two di↵erent cases when averaging such ratios.

Firstly, if all data is available, including the individual numerators and denominators

of the ratios, it is possible to compute the true mean by summing all the numerators,

all the denominators and obtaining the ratio. Secondly, if available data consists only

of observed values of ratios (individual values of numerators and denominators are un-

known), one must learn from the previous case (when granular data is available) to decide

appropriately. By bootstrapping several samples including real financial data (see Sec-

tion 2.4), we conclude that, when it is unreasonable to assume a constant numerator

or denominator (“All Di↵erent” situation), the geometric average, and not the harmonic

average, as it is commonly accepted, is more suitable to estimate the true average of ratios.

The purpose of this paper is to clarify academics and professionals about di↵erences

on averaging methods when data involves ratios. Our contribution is threefold: firstly,

2The true or realized average (TA) is crucial to conclude which of the averages is more appropriate,
by comparing each one with TA. This is the reason why the realized P/E portfolio value is included in
equation (2.18) – the realized value is needed to infer about the most appropriate measure to average the
ratios.
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starting from the generalized average, we show in Subsection 2.2.1 that the harmonic mean

is equivalent to a weighted arithmetic average, where the weights are inversely proportional

to the original values and they are computed in such a way that the contribution of

each value to the final average is exactly the same. Thus, the weights compensate the

original values to equal the contribution of each value to the final average. We also

generalize the formula, having the harmonic and arithmetic averages as particular cases.

Secondly, in Subsection 2.2.2 we elaborate on di↵erent central tendency measures and

their interpretation as the center of a probability distribution. Lastly, in Section 2.3, we

present and discuss traditional applications of the harmonic average and emphasize the

price-to-earnings ratio (P/E). In Section 2.4, by bootstrapping eight real financial time

series, we show that geometric average seems more appropriate to estimate the average of

ratios. At the end of the paper present our concluding remarks. We note that our results

apply to strictly positive values only.

2.2. The Generalized or Power Average (GA)

The classical methods of averaging data are the three Pythagorean means: the familiar

arithmetic mean, the geometric mean (the nth root of the product of data points) and

the harmonic mean (the reciprocal of the arithmetic mean of the reciprocals of the data

points). The three means are particular cases of the generalized or power mean. For

recent applications of the generalized mean see, for example, gouetal2019, Luetal2020,

priam2020 and kolahdouzetal2020.

If k is a non-zero real number, and x1, x2, . . . , xn are positive real numbers, then the

generalized or power mean with exponent k of these positive real numbers is:

X̄
k

GA1
(x1, x2, . . . , xn) =

 
1

n

nX

i=1

x
k

i

! 1
k

(2.1)

and the three Pythagorean means are special cases of X̄k

GA1
for particular values of k. For

k = �1 and k = 1 we get the harmonic and the arithmetic mean and when k ! 0 we get

the geometric mean. In the bootstrap simulation study (see Section 2.4) the constant k is

estimated and confidence intervals are computed to conclude about the appropriateness

of each averaging method.

The arithmetic mean, or simply the mean or average, is the sum of all xi divided by the

number of observations (n):

X̄A =
1

n

nX

i=1

xi =

P
n

i=1
xi

n
, i = 1, 2, . . . , n, (2.2)
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where xi represents the di↵erent values assumed by the X variable. See Chen1995 for

statistical inference about the arithmetic mean in the case of positively skewed distribu-

tions.

The geometric mean3 also measures the central tendency of a set of numbers, being defined

as the root of order n of the product of values xi:

X̄G = n

vuut
nY

i=1

xi =
n
p
x1 ⇥ x2 ⇥ . . .⇥ xn = (x1 ⇥ . . .⇥ xn)

1
n or X̄G = exp

"
1

n

nX

i=1

ln (xi)

#
,

(2.3)

where the capital letter ⇧ represents a series of products. As galton1897 suggested in

one of the earliest papers on geometric average, the distribution of X̄G will approach log-

normality as n increases, for all parent distributions to which the central limit theorem

applies. Thus, the distribution of X̄G will approach the log-normal form, even though

the parent distribution of X may not be log-normal (alfgrossberg1979). The geometric

mean applies only to numbers of the same sign in order to avoid the nth root of a negative

number when n is even, which is not defined in the set of real numbers. In general, only

positive numbers are admitted.

We note that the geometric mean of a ratio of two variables equals the ratio of their

geometric means, and give an example:

G

✓
Xi

Yi

◆
=

XG

Y G

or n

vuut
nY

i=1

Xi

Yi

=

n

r
nQ

i=1

Xi

n

r
nQ

i=1

Yi

. (2.4)

G

✓
Xi

Yi

◆
= 4

r
1

4
⇥ 4

6
⇥ 6

10
⇥ 8

14
=

3.722

7.614
= 0.489.

Therefore, if all data is available, including individual numerators and denominators, the

geometric mean of the ratios is the ratio of the geometric means of numerators and de-

nominators, respectively.

The equally weighted harmonic mean is expressed as the reciprocal of the arithmetic mean

of the reciprocals. Let 1

x1
,

1

x2
, . . . ,

1

xn

be the reciprocals of the given set of observations.

Then:

X̄H =

 P
n

i=1

1

xi

n

!�1

=
nP
n

i=1

1

xi

. (2.5)

3For a recent application of the geometric mean see, for example, Tofallis2015.
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If di↵erent weights �1, �2, . . . , �n are assigned to the xi observations, the weighted harmonic

mean is defined by:

X̄H =

P
n

i=1
�iP

n

i=1

�i

xi

. (2.6)

The three means are related with regards to their relative size, as X̄H  X̄G  X̄A.

2.2.1. Contributions to the final average

As

X̄H =
nX

i=1

xi

wiP
n

i=1
wi

=
nP
n

i=1

1

xi

, (2.7)

where wi =
P

n

i=1 xi

xi

, the harmonic mean is equivalent to a weighted arithmetic average,

where the weights are inversely proportional to the original values and they are computed

in such a way that the contribution of each value (xi) to the final average is exactly the

same4:

x1

w1P
n

i=1
wi

= x2

w2P
n

i=1
wi

= . . . = xi

wiP
n

i=1
wi| {z }

pi

= . . . = xn

wnP
n

i=1
wi

=
1P

n

i=1

1

xi

. (2.8)

If xm is the minimum value and its (highest) weight is pm, the weight (smaller) of the

other values xi is given by pi =
xm

xi

pm; the weight is inversely proportional to the values,

where the constant of proportionality is l = xi ⇥ pi, which is the constant contribution of

each value to the harmonic average. All data points, regardless of magnitude, contribute

equally to the harmonic average, as more weight is attributed to the smallest observations

in the data set. We note, though, that due to its insensitivity to outliers, the harmonic

mean can obscure large values that may be consequential.

Di↵erent R packages have built-in functions to calculate the harmonic mean. We have

written a simple R function for the purpose of our work (shown below for illustration of

a coded version of Equation 2.7):

HarmonicMean <- function(x){
weigs1 = sum(x)/x

weigs = weigs1/sum(weigs1)

HarmonicMean <- t(x)%*%weigs

return(HarmonicMean)}

Equation 2.7 can be generalised to:

X̄GA =
nX

i=1

xi

w
l

iP
n

i=1
w

l

i

, (2.9)

4See appendix 2.6 for demonstrations.
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where l is a real number. If l = 1, X̄GA is the harmonic average; if l = 0, X̄GA is the

arithmetic average, for wi 6= 0. The geometric average is obtained for a particular value

of l in the range 0 < l < 1, which is not always constant.

In the (simple) arithmetic average the weight associated to each data point is constant:

X̄A =
nX

i=1

1

n
xi =

1

n
x1 +

1

n
x2 + . . .+

1

n
xn. (2.10)

Therefore, if xi di↵er, the contribution of each (ci =
1

n
xi) to the arithmetic average is not

constant and higher values will have greater contribution, directly proportional to the xi;

the reason for the arithmetic average to be influenced by outlying observations is that the

constant of proportionality is k = ci

xi

and ci = kxi =
1

n
xi (LyuZhangChurch2020).

The simplest way to reduce the importance of extreme observations is to use, as alter-

native to the arithmetic, the harmonic or geometric means when the data set includes

outlying observations. As mentioned, the geometric average is the root of order n of

the product of xi and the contribution of each value to the geometric average is neither

constant nor directly proportional to the respective value; it is an intermediate situation,

resulting in an intermediate value between the harmonic and the arithmetic averages.

By taking the natural log of both sides of equation (2.3) we obtain:

ln
�
X̄G

�
=

1

n

nX

i=1

ln(xi) =
1

n
ln(x1) +

1

n
ln(x2) + . . .+

1

n
ln(xn). (2.11)

By taking the anti-logarithm of both sides:

X̄G = exp

(
1

n

nX

i=1

ln(xi)

)
= x

1
n

1
x

1
n

2
. . . x

1
n

2
. (2.12)

Based on Jensen’s inequality5, we conclude that the value of the arithmetic average is

at least the value of the geometric average: X̄A � X̄G (where the equality holds only if

all the xi are equal). The contribution of each data point to the geometric average is

not directly proportional to xi, reducing the impact of outlying observations in the final

result.

2.2.2. Di↵erent meanings of the center

Choosing the appropriate mean to represent the central tendency of a distribution is an

old and yet highly controversial matter (see coggeshall1886, p. 84): the mean commonly

employed by an economist is not a real quantity, but rather a quantity assumed as the

representative number of the set, diverging more or less from it. Its ‘fictitious” character

renders possible the choice among di↵erent values, and thus among di↵erent methods of

obtaining it. The same conclusion holds for median when the number of observations is

5See appendix 2.6.2 for demonstrations.
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even.

Consider the median as a representation of the central tendency of a distribution. By

ranking observations from lowest to highest, the ranks associated to each observation

are given by r1, r2, . . . , rn where r1 and rn represent the minimum and the maximum,

respectively. The median
�
X̄M

�
corresponds to the midpoint in terms of observation

count (absolute frequency): rM = r1+rn

2
. Also, note that the following property holds for

median:
nX

i=1

(ri � rM) = 0, (2.13)

where ri represents the ranks of ordered observations and rM is the rank corresponding

to the median. The sum of di↵erences between ranks and the rank corresponding to the

median equals zero.

The arithmetic average
�
X̄A

�
defines the center of the distribution in terms of the obser-

vations’ values:
nX

i=1

�
xi � X̄A

�
= 0, (2.14)

where xi represents the value of each observation in the data set.

The geometric average
�
X̄G

�
defines the center of the distribution in terms of the log

percentage deviations Tornqvist1985 around X̄G and the following property holds:
nX

i=1

ln

✓
xi

X̄G

◆
= 0, (2.15)

or, alternatively, the sum of the di↵erences between the log of xi and the log of the

geometric average is zero:
nX

i=1

⇥
ln (xi)� ln

�
X̄G

�⇤
= 0, (2.16)

where ln (xi)� ln
�
X̄G

�
, when multiplied by 100, is the log percentage deviation between

each observation and the geometric average. Thus, the geometric average is the value

that balances the negative and positive log percentage deviations.

The harmonic average
�
X̄H

�
defines the center of the distribution in terms of the absolute

deviations weighted by wiP
n

i=1 wi

(see equation (2.7)):

nX

i=1

�
xi � X̄H

� wiP
n

i=1
wi

= 0. (2.17)
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Thus, the harmonic mean defines the center of the distribution such that the weighted

deviations on its left compensate the weighted deviations on its right. The weights are

inversely proportional to the original values6.

2.3. Traditional Applications

Consider the classic “average speed” example. Suppose a car is traveling from cities A to

B. If the average speed from A to B is 80 miles per hour (mph) and the average speed

on the return trip is 48 mph, what is the average speed roundtrip? If you compute the

arithmetic average between 80 and 48 the average speed is 64 mph. This is not the cor-

rect answer because the travel time over the same distance varies over the two legs. This

is the common problem when we average ratios with two independent variables in the

numerator and the denominator (distance and time in this example; see agrrawal2010

for details).

Let D, T and S represent the distance, time and speed. In our example, S1 = 80, S2 = 48,

D1 = D2 = D and the distance travelled equals speed multiplied by time: D = S ⇥ T .

Time on each leg of the trip is T1 =
D

80
and T2 =

D

48
and the average roundtrip speed SA

is the total distance travelled (2D) divided by the total elapsed time (D/80 +D/48):

SA =
2D

D

80
+ D

48

=
2

1

80
+ 1

48

= 60 mph,

This is the harmonic mean applied to the average speeds over the same distance travelled.

The harmonic instead of the arithmetic mean provides the correct answer. Therefore, to-

tal travel time is the same as if the driver travelled the whole distance (2D) at the average

speed of 48 mph.

Now consider two trips where the travel time is the same but the distance is di↵erent. As

T1 = T2 = T , then D1 = S1 ⇥ T , D2 = S2 ⇥ T and the average speed is given by:

SA =
D1 +D2

T + T
=

S1 ⇥ T + S2 ⇥ T

2T
=

S1 + S2

2
= 64 mph,

which is the arithmetic average.

Given several sub-trips at di↵erent speeds, if each one covers the same distance, the av-

erage speed is the harmonic mean of all the sub-trip speeds; if the time is the same, then

the average speed is the arithmetic mean of all the sub-trip speeds; choosing the correct

averaging method depends on whether one is traveling the same distance or the same time.

In Finance, individual market multiples such as market-to-book, price to cash flow, price

to sales and price-earnings (P/E) are aggregated very often at the portfolio level to pro-

vide a unified number. Our paper focuses on the price-to-earnings ratio (or P/E ratio),

6See appendix 2.6.3 for simple applications of the results of this subsection.
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which measures the current share price of a company relative to its per-share earnings.

Consider two stocks A and B with prices $150 and $60, and earnings per share (EPS) $10
and $20, respectively. The price earnings ratios are: P/EA=

150

10
= 15 and P/EB=

60

20
= 3

for stocks A and B, respectively. The realized portfolio P/E (including stocks A and B)

is the sum of prices divided by the sum of earnings or the weighted average of the price-

to-earnings ratios of stocks A and B, where the weights are proportional to the earnings

per share of each stock:

P/EVWA =
150 + 60

10 + 20
= 15⇥ 10

10 + 20
+ 3⇥ 20

10 + 20
= 15⇥ 0.6667 + 3⇥ 0.3333 = 7,

the value-weighted average P/E (assuming a portfolio of one share per company). Thus,

the average price per unit of earnings (no matter the stock) is 7 (the sum of the two prices:

210, is divided by the sum of the two earnings: 30). The weighted average is closer to the

lower individual ratio P/EB = 3 because the earnings weight of stock B is 20/30 = 0.667

(or 66.67%), against 33.33% of stock A.

The arithmetic mean of the two P/Es is P/EAA = 15+3

2
= 15⇥ 1

2
+3⇥ 1

2
= 9. Thus, both

P/Es are weighted by 1/2 no matter the earnings of each stock. So the less profitable

stock drives the average up, due to its higher P/E. The prices of the two stocks are not

diluted by the $30 of earnings, but each price is divided by the respective earnings. The

average price per unit of earnings of stock A and B is 15 and 3, respectively, and the

simple arithmetic average is 9: the average price per unit of earnings is 9 and 7 depending

on whether simple or price-weighted averaging is applied, respectively.

The harmonic mean P/EHA = 2
1
15+

1
3

= 5, yields the lowest value, that is, after computing

the arithmetic mean of the inverse of the portfolio P/E ratio (the earnings-to-price ratio,

0.2) we take its inverse, resulting in 1/0.2 = 5, the value of the harmonic mean. If the

average of earnings yield is 0.2 (or 20%) the average P/E is 5.

The arithmetic mean P/E (average price per unit of earnings) equals the P/E of an equal

earnings portfolio:

P/EA =
150

10
+ 60

20

2
=

300

20
+ 60

20

2
=

300

40
+

60

40
=

360

40
= 9,

where two shares of A are needed for every share of B, to equalize the earnings accruing

from each holding (the common denominator of the ratios): the arithmetic mean assigns

equal weights to the earnings in each ratio.
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The harmonic mean P/E (the inverse of the average earnings per unit of price) equals the

mean of an equal investment portfolio, a much more straightforward financial interpreta-

tion than the arithmetic mean:

P/EH =
300 + 300
300

15
+ 300

3

= 5,

where equal weights are assigned to the price in each ratio.

In this example, the realized portfolio P/E is 7. The arithmetic overstates and the har-

monic mean understates its value. This reinforces the need of the realized value in equation

(2.18) to infer about the most appropriate measure to average the ratios.

According to matthews2004 and agrrawal2010, applying the harmonic mean is bene-

ficial, when compared to the arithmetic mean, because it solves the upward bias resulting

from the arithmetic mean (P/EH = 5 against P/EA = 9) and it has a much more intuitive

and logical investment assumption, since most portfolios are neither on an equal number

of shares per position basis, nor on an equalized earnings per holding basis. So, it is more

reasonable to consider portfolios with equal amounts invested in each company; when this

is the case, there is broad consensus on the harmonic average (“All Equal” and “Become

Equal” situations).

However, as it is unlikely that all the companies share the same position, how should we

average price-to-earnings ratios if the investment in each company is not the same? (“All

Di↵erent” situation) Furthermore, even if the financial reasoning seems logical, intuitive

and appropriate, statistical evidence is unclear, because the harmonic mean also shows a

downward bias influenced by the smaller ratios.

In the next section we perform a bootstrapping simulation study to estimate k, the expo-

nent in the generalized (or power) mean to shed light and get evidence about the averaging

methods available.

2.4. Bootstrapping P/E ratio and Earnings Yield

The bootstrap will be used to compare the appropriateness of the three averages to es-

timate the realized portfolio P/E (the value-weighted average P/E). The eight bootstrap

samples include the companies listed in the Standard and Poor’s 500 (421), NASDAQ 100

(90), Euro Stoxx 600 (467), Japanese NIKKEI 225 (171), UK FTSE 100 (74), Shanghai

Composite SSEC (1282), French CAC40 (32) and German DAX30 (23) with non-negative

P/E ratio on November 27, 2020. The number of sampled companies is in parenthesis.

The data set includes stock price (P), earnings per share (EPS), P/E ratio and earnings

yield (EY) for all the sampled companies7. The earnings yield (which is the inverse of the

7The data source is: https://www.investing.com. Data refers to November 27, 2020.
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P/E ratio) refers to the earnings per share for the most recent 12�month period divided

by the current market price per share.

Descriptive statistics are shown in Tables 1 (P/E ratios) and 2 (EY). The empirical

distribution of P/E ratio is always positive asymmetrical and leptokurtic pointing to the

presence of outlying observations. This is confirmed by the large di↵erence between the

arithmetic average and the other three central tendency measures. In case of Earnings

Yield, the distributions are still positive asymmetrical and leptokurtic (DAX index is the

exception), but not so strong as in the P/E case. The estimates for k, the exponent of

the generalized or power mean in (2.1) that minimizes the squared error defined in (2.18)

– the realized value is shown in column realrat, seem far from �1, the value of the

harmonic average. As most of k estimates are close to zero, we foresee that the geometric

mean will be the most appropriate to average the ratios P/E and EY.

As the two financial ratios are non-negative, the bootstrapping simulation study is condu-

cted by splitting the ratios into two di↵erent categories: ratios whose value is greater than

one (P/E) and ratios ranging from zero to one (EY). Thus, we exclude the case of negative

ratios. The statistics of interest are the value-weighted average (VWA, or realized P/E),

the realized EY value, the median, and the arithmetic, geometric and harmonic averages.

The value of the ratio results from the division of x by y: r = x

y
. In the bootstrap simula-

tion process we repeatedly draw samples from the eight original datasets with replacement

10,000 times to create simulated datasets. This process involves drawing random samples

from the eight original samples. Thus, for each bootstrapped sample we get n values

(the sample size) for r (P/E and EY ratios), x (Price in P/E and Earnings per share in

EY) and y (Earnings per share in P/E and Price in EY): r1, r2, . . . , rn; x1, x2, . . . , xn; and

y1, y2, . . . , yn.

A useful general principle to consider when deciding which mean is more appropriate is to

replace each observation by the mean and see which one produces the correct result in the

context of the question being asked. In this paper “the correct result” is the realized ratio,

resulting from the division between the sum of numerators and the sum of denominators.

By searching for the value of k that minimizes the Squared Error (SE)

SE =

2

4
 
1

n

nX

i

r
k

i

! 1
k

� rr

3

5
2

, (2.18)

which is the di↵erence between the average resulting from (2.1) and the realized ratio

given by

rr =

P
n

i=1
xiP

n

i=1
yi
, (2.19)

we are looking for the measure that is closer to the “correct result”, the portfolio P/E

realized value (rr). In our simulation, it is possible to compute the realized value of each
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ratio at a given point in time because the individual values for x and y are available (see

the situation 3 “All Di↵erent” with all x and y data available). The objective is to find,

for each sample, the average value that is closer to the realized value of each ratio. At the

end we get 10,000 estimates for k and we can obtain a 95% confidence interval based on

the standard error of the sequence of estimates resulting from the simulations performed

before. The simulation routines have been programmed in R and they are available upon

request. Based on the limits of the central 95% bootstrapped confidence interval it is

possible to infer about the true value for k and conclude about the most suitable measure

to average the ratios. The results are shown in Tables 3 and 4, column k. The bootstrap

is also used to estimate 95% confidence intervals for each measure (see columns HA, GA,

MED and AA).

Rather than conducting a hypothesis test for whether the value of k is significantly dif-

ferent from k = �1 (harmonic average), k = 0 (geometric average) and k = 1 (arithmetic

average), we calculate bootstrapped 95% confidence intervals for k. This enables us to

assess if an interval estimate for k includes the values �1, 0 and 1. The geometric average

shall be the preferred option if the lower confidence interval boundary is greater than

�1 and the upper confidence interval boundary is less than unity (including the value

0); the harmonic average beats the remaining alternatives if the lower confidence interval

boundary is less than �1 and the upper confidence interval boundary is less than zero

(including the value �1); the arithmetic average is preferred when the lower limit is higher

than zero and the upper limit is higher than 1 (including the value 1).

In the case of P/E (ratios with value higher than 1), we do not reject the null that k = �1

in one (DAX) of eight cases, and we do not reject the null that k = 1 in one (CAC40)

of eight cases. Thus, the inference rules out the possibility that the harmonic or the

arithmetic means can produce mostly the lowest di↵erence in (2.18), questioning their

suitability to average the ratios. On the other hand, the null of k = 0 is not rejected

in all the eight stock indexes (the value 0 is always within the bootstrapped confidence

intervals for k). As the geometric average is the particular case of the generalized av-

erage when k ! 0, our simulation suggests that it is the most appropriate measure to

average the P/E ratios. Additional confirmation is provided, based on the bootstrapped

confidence intervals for each of the central tendency measures. In all cases, no matter the

stock index, the realized P/E value (see column realrat of Table 1) is always within the

intervals for the geometric average (bold font figures). For the remaining three measures,

the bootstrapped confidence intervals contain the realized P/E value in a few cases only.

The results confirm also the upward bias of the arithmetic average (where the lower

limit of the confidence interval exceeds the realized value) and the downward bias of the

harmonic average (where the upper limit of the confidence interval is lower than the re-

alized value). Due to the presence of lower and upper outlying observations, neither the
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harmonic average nor the arithmetic average seem to be the most suitable measures to

average the P/E ratios. Our simulation suggests that, as the geometric average provides

intermediate values and is not as influenced by extreme observations. Therefore, it seems

more appropriate to estimate the true average of price per unit of earnings, especially

when only one share per stock is considered. This result leads us to choose the geometric

average as the most appropriate measure to estimate the true average P/E when only one

share per stock is considered (“All Di↵erent” situation). If the portfolio includes di↵erent

quantities per stock, but we can admit, as aforementioned, equal investment or equal

earnings per stock, the harmonic and arithmetic averages are still the preferred ones (“All

Equal” and “Become Equal” situations, respectively). Conclusions for Earnings Yield

(ratio between 0 and 1) are generally similar (see Table 4) also pointing to the geometric

as a preferable measure to average ratios (proportions) when values range between 0 and 1.

We have adopted a non-dynamic perspective, because, in general, there are no reasons to

change the value of the numerator and denominator to keep the ratio constant. Further-

more, the portfolio’s realized P/E value is computed for simulation purposes only, as in

practice the average is directly computed based on the ratios at a given point in time. A

“true value” for the price per unit of earnings is needed (see the Introduction to clarify the

importance of the “true average” – TA) for benchmarking. By minimizing the squared

error in (2.18), we search for the estimate of k that “makes” the generalized average closer

to the “true” value computed before. The resulting average is the harmonic, geometric

or the arithmetic if k = �1, k = 0 or k = 1, respectively. A possible issue regarding the

portfolio realized P/E value is that it can change, for the same sample, due to a stock split

(or reverse stock split), while the companies’ P/E ratios remain constant. However, this

does not alter our conclusions because, as aforementioned, the realized value is computed

for simulation purposes to assess the most suitable measure to average the ratios.For con-

firmation, we performed additional simulations. The purpose is to test, if, despite the

stock slit, the geometric mean is still the most suitable measure to average the ratios.

The conclusions seem clear against harmonic and arithmetic averages. The steps of this

simulation were as follows:

(1) For each sample, corresponding to a particular stock index8, we generated a ran-

dom number between 1 and 10, one per company in the sample.

(2) We divided the price and earnings per share of each company by that random

number. As we divide the numerator and denominator by the same constant, the

P/E ratio per company remains constant (depicting the e↵ect of a stock split),

while the portfolio P/E realized value as well as the estimate for k can change.

8We consider the six stock indices with larger sample sizes to avoid the small sample bias.
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(3) Based on the changing portfolio P/E realized value, we searched for the value of

k that minimizes the squared error in (2.18).

(4) The simulation is repeated 10,000 times (results are shown in Table 5). As the

estimate for k can change in the same sample simply due to a stock split, our

purpose is not to find an “optimal” k, but to infer about the most appropriate

mean to average the ratios, based on the simulated values of k.

Our results show that the estimate for k never reaches the value �1 (“the one of” the

harmonic mean) in 4 of the 6 stock indices under analysis. In the case of FTSE100

and NASDAQ100 the minimum value for k is less than minus one, but the number of

simulations where the estimate for k could “accommodate” the harmonic mean is very

small: 75 (0.75%) and 5 (0.25%), respectively. On the other hand, all the 95% confidence

intervals resulting from the simulated 2.5 and 97.5 percentiles (bold figures in the table)

include the value 0 for k, but the limits never reach the values of �1 or 1, reinforcing the

conclusion that the geometric mean seems more appropriate than the other two central

tendency measures to average the P/E ratios. Thus, even if the portfolio realized P/E

value and the estimate for k change due to the stock split, the null hypotheses of k =

0 is still not rejected considering the confidence interval resulting from the empirical

percentiles.

2.5. Conclusions

Ratios represent a special kind of relation between two magnitudes, and averages of ratios

are ubiquitous in many fields of application. Our study focuses on which average to use

when computing the mean of individual ratios.

In finance, several authors argue that the harmonic mean is preferable to average ratios

because the arithmetic mean assigns greater weights to higher ratios and lesser weight

to lower ratios in the sample. However, the harmonic mean tends strongly toward the

smallest elements, as it tends (compared to the arithmetic mean) to mitigate the impact

of large outliers and amplify the impact of the smallest ones. Thus, the arithmetic mean

tends to overestimate and the harmonic mean tends do underestimate the realized true

value of the mean ratio. On the other hand the geometric mean is the one that provides

a better fit to the portfolio realized P/E value. We confirm this by presenting and dis-

cussing our results based on real financial time series. Replacing the arithmetic with the

geometric mean in the estimation of other widely applied financial ratios is an avenue

for further research may prove a valuable alternative to better understand the underlying

risk in portfolios of financial assets.

We note two special situations where one of the two means beats the other (and also the

geometric average): if equal weight is assigned to the numerator’s variable in each ratio,

the harmonic mean is more suitable; when the same weight is given to the variable in the
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denominator, the arithmetic average provides a better result. If neither situation occurs,

the geometric average, providing intermediate values, seems to be more appropriate to

estimate the true average of P/E, especially in the presence of outlying observations.
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2.6. Appendix

2.6.1. Contributions of each data point

See Equation (2.7):
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See Equation (2.9):
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2.6.2. Average inequalities

According to the means definition, see Equations (2.2), (2.3) and (2.5), their logarithms

are:

ln
�
X̄
�
= ln
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By Jensen’s inequality,

ln

 
1

n

nX

i=1

Xi

!
� 1

n

nX

i=1

ln (Xi) ,

which can be exponentiated to give the arithmetic mean-geometric mean inequality:
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, thus X̄ � X̄G.

Now comparing the harmonic with the geometric mean (and by Jensen’s inequality):
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and by exponentiating both sides:
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, thus X̄H  X̄G.
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2.6.3. Di↵erent meanings of the center

Median:

Consider a first data set: 4, 6, 10, 100 (n = 4, even). Thus, the median rank is rM = 1+4

2
=

2.5, the median is X̄M = 6+10

2
= 8 and

P
4

i=1
(ri � rM) = (1� 2.5)+ (2� 2.5)+ (3� 2.5)+

(4� 2.5) = 0.

For a second data set 4, 6, 10, 20, 100 (n = 5, odd), the median rank is rM = 1+5

2
= 3, the

median is X̄M = 10 and
P

5

i=1
(ri � rM) = (1�3)+(2�3)+(3�3)+(4�3)+(5�3) = 0.

Thus, the median is the center of the distribution in terms of the counting observations:

one half of the observations is on the left and one half is on the right of the median, no

matter the value of the observations.

Arithmetic average:

Consider again the second data set: X̄A = 4+6+10+20+100

5
= 28 and

P
5

i=1

�
xi � X̄A

�
= (4� 28) + (6� 28) + (10� 28) + (20� 28) + (100� 28) = 0.

The arithmetic average is the center of the distribution in terms of the deviations in

absolute terms: the arithmetic mean is such that the absolute deviations on its right is

compensate by the absolute deviations on its left. So, the center is defined in terms of

the absolute deviations (or distances) between each value and the arithmetic average:

(4� 28)| {z }
�24

+(6� 28)| {z }
�22

+(20� 28)| {z }
�8

(20� 28)| {z }
�8| {z }

�72

+(100� 28)| {z }
+72

.

Geometric average:

For the second data set: X̄G = 5
p
4⇥ 6⇥ 10⇥ 20⇥ 100 = 13.69 and

xi ln(xi) ln(xi)� ln(X̄G)

4 1.386 -123.00L%

6 1.792 -82.45L%

10 2.303 -31.37L%

20 2.996 37.94L%

100 4.605 198.89L%

Sum = 0
Compounding percentage deviation means:

4 = 13.69 ⇥ exp(�123L%), . . ., 100 = 13.69 ⇥ exp(198.89L%), where L% is the log per-

centage, see Tornqvist1985.
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The geometric average is the value that balances the negative and positive log percentage

deviations.

Harmonic average:

xi xi � X̄H wi = 1/xi
wiP
n

i=1 wi

�
xi � X̄H

� ⇣
wiP
n

i=1 wi

⌘

4 -4.671 0.250 0.434 -2.025

6 -2.671 0.167 0.289 -0.772

10 1.329 0.100 0.173 0.231

20 11.329 0.050 0.087 0.982

100 91.329 0.010 0.017 1.584

0.577 1 0
The harmonic average defines the center of the distribution such that the weighted devia-

tions on its left compensate the weighted deviations on its right. The weights are inversely

proportional to the original values.
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Table 1. Descriptive statistics – Price Earnings Ratio (P/E)

Index # obs skew kurt realrat k HA GA MED AA
S&P500 421 8.0097 102.171 27.89 -0.1037 22.62 28.62 27.62 38.43
DAX 23 4.4375 20.8144 23.85 -0.6752 22.16 30.94 22.95 113.77
NIKKEI 171 12.4934 160.346 23.30 0.0988 16.41 22.21 18.73 82.22
FTSE100 74 4.2071 23.6284 23.96 -0.1333 18.57 24.98 21.69 36.76
CAC40 32 1.2931 4.4211 37.68 0.9478 22.06 29.07 27.63 38.18
NASDAQ100 90 6.5800 49.9882 41.87 0.0395 32.53 41.36 33.48 66.49
SSEC 1268 11.4250 190.5089 33.31 -0.0491 23.36 34.06 31.18 64.10
STOXX600 467 9.0850 126.0639 27.50 0.3191 14.72 26.01 24.04 40.89

skew: skewness coe�cient, kurt: kurtosis coe�cient; realrat is the realized ratio: the sum of prices
divided by the sum of earnings per share; k is the estimate for k, the exponent of the generalized or
power mean in (2.1) that minimizes the squared error defined in (2.18); the columns HA, GA, MED and
AA refer to the harmonic, geometric, median and arithmetic averages, respectively.

24



Table 2. Descriptive statistics: Earnings Yield – EY

Index # obs skew kurt realrat k HA GA MED AA
S&P500 421 5.68 62.71 0.0359 0.1037 0.0260 0.0349 0.0362 0.0442
DAX 23 0.54 2.48 0.0419 0.6753 0.0088 0.0323 0.0436 0.0451
NIKKEI 171 0.88 3.23 0.0429 -0.0988 0.0122 0.0450 0.0534 0.0609
FTSE100 74 4.94 34.78 0.0417 0.1333 0.0272 0.0400 0.0461 0.0538
CAC40 32 1.23 3.71 0.0265 -0.9478 0.0262 0.0344 0.0362 0.0453
NASDAQ100 90 1.74 8.26 0.0239 -0.0395 0.0150 0.0242 0.0299 0.0307
SSEC 1268 1.84 6.98 0.0300 0.0492 0.0156 0.0294 0.0321 0.0428
STOXX600 467 21.09 451.98 0.0379 -0.3191 0.0245 0.0384 0.0416 0.0679

skew: skewness coe�cient, kurt: kurtosis coe�cient; realrat is the realized ratio: the sum of earnings
per share divided by the sum of prices; k is the estimate for k, the exponent of the generalized or power
mean in (2.1) that minimizes the squared error defined in (2.18); the columns HA, GA, MED and AA
refer to the harmonic, geometric, median and arithmetic averages, respectively.
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Table 3. Price Earnings Ratio - P/E (ratios higher than 1)

k HA GA MED AA
S&P500

Normal -0.5751 0.3650 20.78 24.38 26.67 30.50 25.65 29.41 33.94 42.82
Basic -0.5649 0.3657 20.77 24.37 26.58 30.44 26.09 29.56 33.64 42.36
Percentile -0.5731 0.3575 20.87 24.48 26.79 30.65 25.68 29.15 33.64 43.22
BC↵ -0.6205 0.3235 20.55 24.21 26.80 30.66 25.57 29.12 33.64 44.27

DAX
Normal -1.5608 0.2886 15.88 27.64 14.94 45.28 14.97 28.77 -39.21 268.37
Basic -1.5231 0.3811 15.05 26.73 10.47 40.87 9.55 24.12 -53.30 202.48
Percentile -1.7316 0.1726 17.58 29.27 21.02 51.42 21.79 36.36 -53.30 280.84
BC↵ -1.7141 0.1934 17.33 28.70 22.55 60.44 20.19 31.10 -53.30 439.57

NIKKEI
Normal -0.3326 0.5447 14.71 18.05 18.93 25.41 16.13 20.58 -6.68 170.82
Basic -0.3745 0.5095 14.61 17.93 18.60 25.08 15.84 20.31 -16.92 136.61
Percentile -0.3119 0.5721 14.88 18.20 19.34 25.81 17.15 21.62 27.82 181.35
BC↵ -0.2538 0.6839 14.87 18.19 19.54 26.23 16.96 21.24 32.87 283.89

FTSE100
Normal -0.6787 0.4151 14.160 22.451 20.331 29.392 17.603 25.147 26.045 47.468
Basic -0.6916 0.3875 14.101 22.401 19.954 29.041 16.866 24.363 25.053 46.187
Percentile -0.6542 0.4249 14.743 23.043 20.919 30.006 19.010 26.507 25.053 48.460
BC↵ -0.6131 0.4894 13.624 22.044 20.986 30.104 18.675 25.989 25.053 52.505

CAC40
Normal -0.0124 1.8694 15.51 27.73 20.95 36.55 16.49 36.28 28.08 48.12
Basic -0.1349 1.7750 14.71 26.77 20.39 35.81 10.26 33.54 27.56 47.59
Percentile 0.1207 2.0306 17.35 29.42 22.33 37.75 21.72 45.00 27.56 48.80
BC↵ 0.1744 2.1518 16.87 28.53 22.24 37.56 18.08 43.26 27.56 49.87

NASDAQ100
Normal -0.5143 0.6067 27.92 36.83 34.44 48.02 26.43 39.19 38.97 94.02
Basic -0.5555 0.5811 27.66 36.58 33.83 47.32 24.03 36.76 34.23 87.92
Percentile -0.5021 0.6346 28.48 37.40 35.40 48.88 30.21 42.94 34.23 98.74
BC↵ -0.4329 0.7695 28.15 36.98 35.86 49.73 30.21 42.94 34.23 120.23

SSEC
Normal -0.1911 0.1015 22.22 24.46 32.25 35.84 29.65 32.82 55.61 72.55
Basic -0.1914 0.1039 22.21 24.44 32.18 35.78 29.54 32.95 55.02 71.93
Percentile -0.2021 0.0931 22.28 24.50 32.35 35.95 29.41 32.83 55.02 73.17
BC↵ -0.1866 0.1079 22.26 24.47 32.37 35.96 29.37 32.77 55.02 75.01

STOXX600
Normal -0.0898 0.8007 7.28 20.56 23.92 28.06 21.82 25.87 34.66 47.07
Basic -0.0662 0.8067 8.92 19.72 23.86 27.98 21.83 25.66 34.08 46.38
Percentile -0.1685 0.7044 9.72 20.52 24.05 28.17 22.42 26.25 34.08 47.71
BC↵ -0.0692 0.8230 6.73 19.85 24.06 28.17 22.34 26.11 34.08 49.66

The lower and upper limits of the (central) 95% bootstrap confidence intervals are computed as follows:
Standard (Normal), Percentile (Percentile), Pivotal or Empirical (Basic) and Accelerated bias-corrected
(BC↵). See, for example, Manteiga1994, for bootstrap details. k is the estimate for k, the exponent of
the generalized or power mean in (2.1) that minimizes the squared error defined in (2.18). HA: Harmonic
Average, GA: Geometric Average, MED: Median and AA: Arithmetic Average. Bold font indicates that
the portfolio P/E realized value (see Table 1) is inside the confidence interval for each central tendency
measure.
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Table 4. Earnings Yield – EY (ratios between 0 and 1)

k HA GA MED AA
S&P500

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper
Normal -0.3656 0.5722 0.0230 0.0290 0.0326 0.0373 0.0338 0.0388 0.0407 0.0477
Basic -0.3772 0.5583 0.0229 0.0290 0.0325 0.0372 0.0333 0.0381 0.0404 0.0475
Percentile -0.3509 0.5846 0.0231 0.0291 0.0327 0.0374 0.0343 0.0391 0.0409 0.0480
BC↵ -0.3206 0.6185 0.0225 0.0286 0.0327 0.0374 0.0343 0.0389 0.0413 0.0486

DAX
Normal -0.2982 1.5754 -0.0217 0.0255 0.0175 0.0456 0.0358 0.0537 0.0338 0.0565
Basic -0.4261 1.5308 -0.0225 0.0140 0.0170 0.0447 0.0376 0.0550 0.0332 0.0560
Percentile -0.1803 1.7766 0.0036 0.0400 0.0200 0.0477 0.0322 0.0495 0.0342 0.0570
BC↵ -0.1678 1.8013 0.0022 0.0341 0.0175 0.0450 0.0275 0.0456 0.0349 0.0577

NIKKEI
Normal -0.5444 0.3232 -0.0102 0.0259 0.0385 0.0513 0.0483 0.0603 0.0548 0.0671
Basic -0.5032 0.3725 -0.0114 0.0188 0.0384 0.0510 0.0485 0.0605 0.0546 0.0669
Percentile -0.5701 0.3056 0.0056 0.0357 0.0390 0.0517 0.0463 0.0583 0.0550 0.0673
BC↵ -0.7089 0.2510 0.0036 0.0308 0.0385 0.0512 0.0453 0.0572 0.0552 0.0674

FTSE100
Normal -0.4053 0.6764 0.0185 0.0349 0.0326 0.0472 0.0393 0.0536 0.0413 0.0663
Basic -0.3675 0.7078 0.0177 0.0341 0.0322 0.0468 0.0399 0.0538 0.0398 0.0643
Percentile -0.4412 0.6341 0.0203 0.0367 0.0332 0.0479 0.0385 0.0523 0.0434 0.0679
BC↵ -0.4985 0.5947 0.0189 0.0348 0.0330 0.0476 0.0377 0.0523 0.0454 0.0742

CAC40
Normal -1.8664 0.0206 0.0187 0.0328 0.0250 0.0433 0.0262 0.0473 0.0334 0.0573
Basic -1.7713 0.1419 0.0176 0.0319 0.0240 0.0424 0.0245 0.0502 0.0329 0.0567
Percentile -2.0375 -0.1242 0.0205 0.0348 0.0264 0.0448 0.0222 0.0479 0.0340 0.0577
BC↵ -2.0959 -0.1533 0.0201 0.0339 0.0265 0.0450 0.0222 0.0470 0.0351 0.0592

NASDAQ100
Normal -0.6128 0.5253 0.0081 0.0206 0.0202 0.0279 0.0254 0.0350 0.0265 0.0349
Basic -0.5747 0.5736 0.0077 0.0198 0.0201 0.0278 0.0266 0.0364 0.0262 0.0347
Percentile -0.6527 0.4957 0.0103 0.0224 0.0205 0.0282 0.0233 0.0331 0.0268 0.0353
BC↵ -0.7938 0.4269 0.0088 0.0206 0.0203 0.0279 0.0230 0.0331 0.0271 0.0356

SSEC
Normal -0.1028 0.1941 0.0135 0.0176 0.0278 0.0309 0.0303 0.0336 0.0408 0.0449
Basic -0.1013 0.1924 0.0134 0.0176 0.0278 0.0309 0.0301 0.0337 0.0407 0.0448
Percentile -0.0941 0.1996 0.0137 0.0178 0.0278 0.0310 0.0305 0.0341 0.0408 0.0449
BC↵ -0.1095 0.1876 0.0134 0.0175 0.0278 0.0310 0.0305 0.0341 0.0409 0.0450

STOXX600
Normal -0.7983 0.0933 0.0206 0.0280 0.0353 0.0415 0.0384 0.0453 0.0350 0.1003
Basic -0.7990 0.0632 0.0207 0.0280 0.0352 0.0414 0.0386 0.0451 0.0324 0.0871
Percentile -0.7015 0.1607 0.0209 0.0282 0.0355 0.0416 0.0381 0.0446 0.0488 0.1035
BC↵ -0.8182 0.0721 0.0200 0.0276 0.0355 0.0416 0.0381 0.0444 0.0503 0.1532

The lower and upper limits of the central 95% bootstrap confidence intervals are computed as follows:
Standard (Normal), Percentile (Percentile), Pivotal or Empirical (Basic) and Accelerated bias-corrected
(BC↵). See, for example, Manteiga1994, for bootstrap details. k is the estimate for k, the exponent of
the generalized or power mean in (2.1) that minimizes the squared error defined in (2.18). HA: Harmonic
Average, GA: Geometric Average, MED: Median and AA: Arithmetic Average. The boldness indicates
that the portfolio P/E realized value (see Table 1) is inside the confidence interval for each central
tendency measure.
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Table 5. Price Earnings Ratio - P/E, simulating stock splits

Percentiles

Indices #  �1 MIN 0.50% 1.00% 2.50% 5.00% 95.00% 97.50% 99.00% 99.50% MAX

S&P 500 0 -0.9878 -0.7112 -0.6985 -0.6152 -0.5193 0.2671 0.3377 0.4054 0.4515 0.6242

NIKKEI 225 0 -0.6376 -0.3174 -0.2763 -0.2273 -0.1852 0.3798 0.4114 0.4412 0.4570 0.5171

FTSE 100 75 -1.3731 -1.0709 -1.0011 -0.8526 -0.7298 0.4006 0.5005 0.5949 0.6495 0.8991

NASDAQ 100 5 -1.2136 -0.7867 -0.7189 -0.5926 -0.4853 0.4470 0.5097 0.5839 0.6247 0.7661

SSEC 0 -0.3006 -0.2457 -0.2266 -0.2003 -0.1780 0.0714 0.0925 0.1158 0.1335 0.2024

STOXX 600 0 -0.2516 -0.0982 -0.0693 -0.0185 0.0260 0.6125 0.6616 0.6996 0.7282 0.8328

The estimates for the exponent k in (2.18) are obtained based on 10,000 simulations. #  �1 represents
the number of simulations where the estimate for k is at most �1, accommodating the harmonic average.
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CHAPTER 3

Revisiting relative importance: a VIF-based measure

ABSTRACT

In many multiple regression applications researchers are concerned with relative impor-

tance of predictor variables. We revisit the concept and propose a new measure based

on part correlations and the Variance Inflation Factor (VIF). The measure assigns shares

of variation that combine individual contributions from regressors with a VIF-weighted

”common variance” component. The shares add up to the coe�cient of determination and

rank regressors accordingly. The measure showed acceptable variability for applications

when simulated under di↵erent conditions. Especially in situations involving many regre-

ssors, our measure is advantageous in that it provides an intuitive and additive variable

ranking while requiring low computational intensity. Results are discussed with a real life

application.
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3.1. Introduction

In many linear regression applications, assessing the relative importance of a set of ex-

planatory variables (EV) is one of the key goals of researchers, particularly in sciences

that work with observational data such as finance, psychology, weather, etc. Namely, re-

searchers are frequently interested in ranking EV with respect to their individual impact

in the dependent variable (DV). When regressors are uncorrelated, the question of rela-

tive importance has an unique solution: the standardized coe�cients (�j) and zero-order

correlations (⇢Y,Xj
, j = 1, ..., k) are equal and therefore the single contribution of each

regressor can be isolated. However, because observational data are frequently correlated,

isolating said contributions is not obvious. Decomposing DV total variation around the

mean in the presence of collinearity presents a challenge and an all encompassing solution,

if it exists, has not yet been found.

Several methods are available, and many di↵er on what is meant by “variable importance”

(Bring1994; Kruskal1989; Achen1982; Thomas1999). Thus, relative importance

should be seen as construct, as opposed to a plain, objective quantity to be estimated.

Typically, importance metrics focus on partitioning variance based on regression sums

of squares and calculate shares of DV variation to quantify the individual contribution

of each EV to a model’s predictive ability. For the purpose of the present article, we

measure predictive ability by the coe�cient of determination (R2). It is interpreted as

the explanatory power of the regression, i.e. the percentage of total variation in the DV

that can be accounted for by the in-sample variation of EV. We also borrow the following

definition of ‘relative importance” from Johnson2004:

The proportionate contribution each predictor makes to R2, considering both

its direct e↵ect (i.e., correlation with the criterion) and its e↵ect when com-

bined with the other variables in the regression equation.

The nature of the research question should determine the selection of importance metrics.

Measures can be broadly classified into three distinct groups: single analysis, multiple

analysis and variable transformation. Single analysis methods focus on the output of a

single regression model and measure relative importance based on estimated correlations

and/or regression coe�cients (Ho↵man1962; Thompson1985; Courville2001). By

making use of readily available quantities, single analysis typically requires low computa-

tional intensity. These measures are more appropriate to evaluate importance when the

entry-order of EV is not relevant or a theoretically meaningful entry order is known (the

measure introduced in this paper falls into this category, see Lmg1980). Multiple analy-

sis methods draw from several regression outputs generated by di↵erent permutations of

EV (to predict the DV). Lmg1980 proposed measure LMG (named after the authors)

which employs squared part (also called semipartial) correlations to calculate relative

importance, by averaging the correlations across all possible combinations of predictors.
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Feldman2005 modified LMG by assigning a data-dependent set of average weights (in-

stead of uniform) to orders of regressors, to fulfill the so-called exclusion criterium (i.e.

attributing no importance to EV with � = 0) . Using simulation, Gromping2006 com-

pared the two measures along a range of covariance matrices and concluded that they

provide similar results in most cases, although with substantial di↵erences in variabil-

ity (the same author provided the package relaimpo for R, which calculates several of

the available importance metrics). Budescu1993 introduced the notion of dominance,

claiming that if the predictive ability of one EV does not exceed that of another across

all permutations of EV, variables cannot be ranked meaningfully and therefore, a dom-

inance analysis should always be conducted (for a recent application see Stadler2017).

Variable transformation methods resemble principal-component analysis in that EV are

transformed to be as highly related as possible to the original EV while preserving their in-

dividual characteristics. Notably, Johnson2000 suggested calculating relative weights, by

regressing the original EV onto their orthogonal counterparts, which are frequently cited

and employed in applied research for their convenience and interpretability. For more

recent work on transformation methods, see Lipovetsky2015 and Garthwaite2019.

We propose a new measure of relative importance to deal with the known issue of collinear-

ity in single analysis methods. The usage of regression coe�cients (in their standardized

and unstandardized forms), partial and semipartial correlations and t statistics to eval-

uate relative importance has been criticized due to its sensitivity to correlation between

regressors. We address this issue by combining semipartial correlations with the Variance

Inflation Factor (VIF), a quantity that is commonly employed to diagnose collinearity in

the estimation of linear regression models, into a measure that is both intuitive and easy

to compute.

This paper is organized as follows: in Section 2 we provide the theoretical background for

our measure by revisiting familiar collinearity concepts. In Section 3 we test our measure

under simulation to evaluate its behavior in di↵erent settings. In Section 4 we apply our

measure to a real data set and discuss the results. Section 5 contains some concluding

remarks, and a snippet of R code to compute the proposed measure is provided in the

Appendix.

3.2. Theoretical background

As mentioned in the introduction, allocating variation to regressors when they are linearly

uncorrelated has an unique and simple solution. We start by noting that

R
2 =

SSR

SST
=

P
n

i=1

⇣
Ŷi � Ȳ

⌘2

P
n

i=1

�
Yi � Ȳ

�2 = 1�

P
n

i=1

⇣
Yi � Ŷi

⌘2

P
n

i=1

�
Yi � Ȳ

�2 , (3.1)
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where SSR and SST are the Regression and Total Sum of Squares, respectively. By

simple manipulation, R2 can be expressed as a ratio of the sample variances of Ŷ and Y :

R
2 =

P
n

i=1(Ŷi�Ȳ )
2

n�1

P
n

i=1(Yi�Ȳi)
2

n�1

=
S
2

Ŷ

S
2

Y

. (3.2)

Also, the predicted value of Yi for k regressors is given by:

Ŷi = �̂0 + �̂1X1i + . . .+ �̂kXki (3.3)

and therefore the variance of Ŷ (the numerator of the last term of Equation 3.2) can be

written as:

S
2

Ŷ
=

kX

j=1

�̂
2

j
S
2

Xj
+

kX

j=1

kX

l=1

�̂j�̂lSXjXl
, j 6= l (3.4)

By combining Equations (3.2) and (3.4), we can write:

R
2 =

S
2

Ŷ

S
2

Y

=

P
k

j=1
�̂
2

j
S
2

Xj
+
P

k

j=1

P
k

l=1
�̂j�̂lSXjXl

S
2

Y

, (3.5)

where S
2

Xj
is the sample variance of the explanatory variable Xj and SXjXl

is the sample

covariance between the explanatory variables Xj and Xl. As the second summand in

the numerator represents the non-diagonal elements of the covariance matrix, the indi-

vidual contribution of regressor Xj to R
2 reduces to the squared standardized coe�cient

�̂
2

j
S
2

Xj
/S

2

Y
if all regressors are linearly independent (all non-diagonal elements are zero). If

that is not the case, allocating the covariance summand to individual regressors requires

a non-trivial choice of weights (i.e. how much covariance should be allocated to each

regressor). Additionally, because it can take negative values, the covariance summand

may arbitrarily lead to negative shares of R2, which may be more di�cult to interpret.

We propose a heuristic measure based on two familiar concepts: part correlations and

the Variance Inflation Factor (VIF), which we approach in subsections 3.2.1 and 3.2.2.

Throughout this section, we use an illustrative case of one dependent (DV) and three

independent (EV) variables when needed for clarity, without loss of generality.

3.2.1. Part correlations

Let Y be the (standardized) DV, X1, X2 and X3 be three standardized and arbitrarily

correlated random variables (EV), and consider the linear estimated model:

Ŷi = �̂0 + �̂1X1i + �̂2X2i + �̂3X3i (3.6)

Squared part correlations are natural candidates to evaluate relative importance of EV,

because they measure the nominal change in R
2 as that particular EV is removed from

the model. That is, for X1:
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sr
2

1
= R

2

Y.123
�R

2

Y.(1)23
(3.7)

where (1) means the exclusion of X1 from the model. It must be noted that sr2
i
can be

interpreted in di↵erent ways and can be obtained by (1) regressing Xi on the remaining

k � 1 EV (2) extracting the residuals and (3) squaring the Pearson correlation of those

residuals with Y , i.e. if we let êXj
be the residuals from regressing Xj on the remaining

two variables:

X
sr

2

i
=

Cov
2(Y, êX1)

V ar(Y )V ar(êX1)| {z }
sr

2
1

+
Cov

2(Y, êX2)

V ar(Y )V ar(êX2)| {z }
sr

2
2

+
Cov

2(Y, êX3)

V ar(Y )V ar(êX3)| {z }
sr

2
3

(3.8)

Cohen1975 showed that the sum of squared part correlations generally does not exceed

R
2 and thus the following holds:

X
sr

2

i
 R

2

Y.123
(3.9)

Because each sr
2

i
represents the individual contribution of EV Xi to the model’s R2, when

P
sr

2

i
< R

2

Y.123
, a measure of ”shared variance” (svar) (i.e. the percentage of DV variance

that is commonly explained by the EV) can be obtained as

X
sr

2

i
+ svar = R

2

Y.123
, svar = R

2

Y.123
�
X

sr
2

i
(3.10)

i.e. the variance that is not captured individually by the EV is stored in svar. We

note that svar is not covariance as defined in Equation (3.5), because in the presence of

collinearity �̂
2

j
S
2

Xj
/S

2

Y
6= sr

2

j
. Our measure (see Section 3.2.3) is a method of allocating

shares of svar to each EV and ensuring that R2 (positive) shares sum to the total R2.

3.2.2. Variance Inflation Factor (VIF)

The VIF is a commonly employed measure in collinearity diagnostics of linear models.

For EV Xj it is given by:

V IFj =
1

1�R
2

Xj

(3.11)

where R2

Xj
is the coe�cient of determination from regressing Xj on the remaining (k� 1)

EV. We can see that the typical rule of thumb that excludes variables with V IF > 10

implies a threshold of 0.1 for R
2

Xj
, i.e. if more than 90% of Xj variation is “explained”

by the remaining EV, then Xj is typically removed and the model re-estimated.

The term inflation stems from the fact that the variance of the unstandardized coe�cient

can be expressed as
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ˆV ar(�̂j) =
S
2

(n� 1)S 02
Xj

⇤ 1

1�R
2

Xj

(3.12)

where S2 is the variance of the model’s residuals and s
02
Xj

is the corrected sample variance

of regressor Xj. The second term on the rhs (V IFj) represents the number of times the

presence of Xj ”inflates” ˆvar(�̂j), compared to the variance otherwise obtained if Xj was

orthogonal to the remaining EV, where V IFj = 1. It is thus a measure of how strongly

correlated Xj is with the other predictors.

In the next subsection, we show how to combine squared part correlations with VIF to

obtain additive shares of R2.

3.2.3. An alternative to partition variance

A measure of shared variance can be obtained by calculating svar (Equation (3.10)). The

challenge is how to split svar into shares so that
P

R
2

j
= R

2. To address the problem,

we start by generating a set of weights v:

vj =
V IFjP
V IFj

, (3.13)

and then compute R
2

j
as

R
2

j
=

Cov
2(Y, êXj

)

V ar(Y )V ar(êXj
)
+ vj ⇤ svar = sr

2

j
+ vj ⇤ svar, (3.14)

where R
2

j
is the nominal share of the model’s R2 allocated to EV Xj. In words, it is the

sum of its squared semipartial correlation and its VIF-weighted svar. While allocating

svar to EV has no unique solution and remains arbitrary, any procedure attempting to

do so must be practical and intuitive. The rationale behind using VIF is that the share

of commonly explained variance should be higher for EV that are most correlated with

their counterparts and vice-versa.

Table 1. Desirability criteria for measures of relative importance

Criterium Definition
1. Positivity All shares (of variance) must be positive
2. Additivity The sum of shares must be the model’s variance
3. Inclusion Any regressor with � 6= 0 must receive a positive share
4. Exclusion Any regressor with � = 0 must receive a zero share

A set of desirability criteria is commonly accepted in the literature, so as to guide re-

searchers when developing methods for variance decomposition. Table 1 summarizes those

criteria. By definition, our measure fulfills all but Criterium 4, as an EV with � = 0 may

still be assigned a share of svar because V IFj � 1. Although this criterium is not ful-

filled by definition, the typical exclusion of EV with statistically insignificant coe�cients
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avoids the assignment of non-zero shares in most cases. We also note that fulfilment

of this criterium has been considered optional when causal interpretations are in mind

(seeGromping2006), exactly the type of interpretation our measure is meant to address.

We note that, for svar � 0,

X
R

2

j
=
X

sr
2

j
+ vj ⇤ svar (3.15)

and that for svar = 0 (i.e. orthogonal EV)
X

R
2

j
=
X

sr
2

j
(3.16)

where the sums are over all EV. From Equations (3.15) and (3.16) we can see that if

EV are statistically independent, each allocated share is both its respective squared part

correlation and squared standardized coe�cient.

3.2.4. Supression

Suppression can be understood to mean that the dependence between EV is distorting

their real relation to the DV, which, as measured by the regression coe�cients, may in fact

be larger or of opposite sign. Supression can take di↵erent forms and may be empirical or

induced (for a complete discussion on the di↵erent types of supression see Ludlow2014

and Tzelgov1991). For example, when the introduction of a supressor EV Xj increases

the variance of Y explained by the EV already in the model (as measured by their squared

part correlation) and, in turn, the squared part correlation of Xj also increases, supres-

sion is called cooperative: the inclusion of a cooperative supressor mutually reinforces

the predictive power of the ”cooperating” EV. Cohen1975 showed that while in regular

cases (no supresssion) the sum of squared semipartial correlations does not exceed R
2, the

bound does not necessarily hold if supression is present, as it may lead to
P

sr
2

j
> R

2

Y.123

and make svar in Equation (3.10) negative. In turn, a negative svar may render negative

R
2

j
for EV with high V IFj and low sr

2

j
. As negative values of svar ”may be obtained

in situations where some of the variables act as supressors” (see pedhazur1997), we

follow the approach of Thompson2006 and recommend that our measure be applied

after checking for the presence of supressor variables. This can be achieved by confirming

that no predictor simultaneously has a zero (or near-zero) structure coe�cient (i.e. the

Pearson correlation between predictors and Ŷ ) and a large absolute regression coe�cient.

While it would be convenient to discard it as a nuisance to variance partitioning, supres-

sion is not common but does occur. For instance, Pandey2010 reviewed several cases

of supression in applied social research, and we note that a careful analysis of the full

correlation matrix is indispensable for any method of variance decomposition to deliver

accurate conclusions.
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3.3. Simulation

In this section we investigate the behavior of the proposed measure in terms of its vari-

ability under di↵erent conditions. Table 2 shows the simulation settings. We simulate

four multivariate normal regressors with mean 0 and variance 1, i.e. Y = �0 + �1X1 +

�2X2 + �3X3 + �4X4 + u, where u is an independent normal term with mean 0. The

variance of u is calculated from the correlation matrix in each simulation to control the

True R
2, and correlation matrix is simulated as corr(Xj, Xk) = ⇢

|j�k| to obtain di↵erent

interactions depending on the choice of ⇢. Simulations were repeated 500 times for each

⇢.

Table 2. Simulation settings

Setting Observations

Correlation structure of (X1, ..., X4) corr(Xj , Xk) = ⇢|j�k| �0.9  ⇢  0.9 in steps of 0.1
True coe�cient vectors �1 = (1, 1, 1, 1)T

�2 = (5, 1, 1, 1)T

�3 = (2, 3, 2.5,�0.4)T

Sample sizes n = 10 sampled from multivariate normal
n = 100 sampled from multivariate normal
n = 1000 sampled from multivariate normal

True R2 0.25
0.75
0.90

Figure 1 shows the interquartile ranges of R2

j
for a true R2 = 0.25 and across the domain

of ⇢ (lines were drawn for clarity). Overall, the measure provides acceptable levels of

variability for applications, with the exception of large absolute � when sample sizes are

low (first chart, middle row). We note that the variability tends to decrease slightly with

stronger collinearity (because the correlation matrix is designed as corr(Xj, Xk) = ⇢
|j�k|,

maximum covariance is obtained for ⇢ = 0.9). Increasing the sample size substantially

decreases the variability of our measure. This is to be expected, as part correlations are a

function of standardized regression coe�cients and their variance decreases with sample

size. Accordingly, the lowest variability was found for n = 1000. The sample sizes were

chosen to di↵er by orders of magnitude to give insight for di↵erent fields of application.

Medical and psychological research frequently deal with smaller samples and therefore re-

sults should be interpreted with caution, and this holds true for the generality of relative

importance measures. Other fields, like finance and economics, typically deal with larger

sample sizes which should provide more stable results, depending on the distributional

properties of the variables being considered. We note that in its variability, the behav-

ior and size of our measure closely resemble those of LMG (Lmg1980) as simulated in

Gromping2006.
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Figure 1. Interquartile ranges of R2

j
for each EV

Each chart shows the interquartile range of 500 simulations of R2
j ran for a given covariance matrix as a

function of ⇢ as defined in Table 2. Each row of charts di↵ers in its set of � coe�cients as indicated on
the left. The simulations were run for n = 10 (dashed), n = 100 (dotted) and n = 1000 (plain).

Figure 2. Interquartile ranges of R2

1
for each level of R2

Each line represents the interquartile range of the share allocated to EV X1 according to the level of
true R2 as defined in Table 2: 0.25 (dashed), 0.75 (dotted) and 0.9 (plain). The set of coe�cients is as

indicated on the left. Sample size was fixed at n = 100 (intermediate scenario).
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Figure 2 shows the interquartile ranges of R2

1
(the share of X1) for di↵erent levels of true

R
2. Noticeably, the variability decreases with increasing collinearity (⇢) of the same sign

as the regression coe�cients when sample sizes are lower. This indicates that the measure

is more stable when the squared part correlations play a weaker role in determining R
2

(i.e. when individual EV contribution to explanation of variance is relatively lower),

therefore leaving a greater amount of shared variance (svar) to allocate to each EV. The

lowest variability was found for a true R
2 = 0.90. Overall, variability levels appear to be

acceptable for applications, especially for larger sample sizes.

3.4. Discussion

The application of relative importance measures based on variance decomposition requires

an a priori analysis of the research problem. For essentially predictive and exploratory

problems, the choice should fall on multiple analysis methods that rank importance based

on entry-order permutations of EV. For models involving many EV, these methods are

computationally intensive. For explanatory problems, provided that variable selection

is grounded on a sound theoretical background (i.e. order of EV entry is irrelevant)

single analysis methods are computationally cheaper and most provide an intuitive way

to decompose the variation of DV.

Table 3. Selected regression outputs

Variable Std. coe↵ rY Xi
sri sr

2

i
V IFi Weight (vi) Share of R2 Importance rank

Income (X2) 0.0390 0.9300 0.0104 0.0001 14.0572 0.4666 0.4019 1
Appliances (X4) 0.3384 0.8861 0.1148 0.0132 8.6947 0.2886 0.2617 2
Air conditioning (X3) 0.5462 0.9273 0.2935 0.0861 3.4642 0.1150 0.1851 3
Size (X1) 0.1446 0.8575 0.0726 0.0053 3.9113 0.1298 0.1171 4

In this section, we apply the measure derived in Section 3.2.3 to a practical case, and dis-

cuss the results and their limitations. The data set is adapted from montgomery1981

and has been collected by an utility company during an investigation of factors that in-

fluence peak demand Y (kWh) for electricity by residential customers. The explanatory

variables are customer’s residence size X1 (ft2/1000), annual family income X2 ($/1000),
tons of air-conditioning capacity X3 and the appliance index X4 (obtained by summing

the kilowatt ratings for all major appliances). We assume that the model is well speci-

fied and that selected EV are relevant and applied as explanatory of Y . A preliminary

inspection of the correlation matrix (Table 4) reveals very strong correlations between

EV pointing to low individual contributions to R
2. This is confirmed in Table 3 by the

low values of squared part correlations, sr2
j
. Note that the model R2 is 0.9657 and that

Income (X2) (sr2j = 0.0001) seems irrelevant in practice.

Further inspection of Table 3 reveals that all part correlations are positive (sri) and never

exceed the zero-order correlations (rY Xj
) and therefore we can expect svar > 0 (in fact,

svar = 0.9657 � 0.1047 = 0.861, see Equation 3.10). The VIF weights (vj) sum to 1
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and represent the proportion of svar allocated to each EV. Particularly noteworthy is

weight v2 (0.4666) allocated to Income (X2). Although it is the least relevant EV from

an individual perspective, its strong correlation with the remaining EV (V IF2 = 14.0572)

make X2 the most relevant when svar is accounted for, with a share R
2

2
= 0.4019. This

is what our measure is intended to do, and provides an intuitive way to allocate additive

(i.e.
P

R
2

j
= R

2) shares even when squared partial correlations are low. A practical

conclusion from this analysis is that Income X2 is the most important EV to explain

variation in peak demand (Y ), not because of its individual contribution but because it

is highly correlated with the remaining EV.

Table 4. Correlation matrix

Y X1 X2 X3 X4

Y 1
X1 0.8575 1
X2 0.9300 0.8576 1
X3 0.9273 0.7344 0.8270 1
X4 0.8861 0.8253 0.9343 0.7191 1

We use the results from this application to a real dataset to show how assigning shares

of svar based on VIF weights mitigates the issue of multicollinearity a↵ecting measures

of relative importance, and may even reverse importance ranks otherwise based solely

on squared part correlations when VIF weights di↵er substantially. Notwithstanding,

we note that Income (X2) has a VIF of 14.0572, implying that it is strongly correlated

to the remaining three EV. A typical heuristic employed in research is to exclude from

estimation any EV with V IF � 10. Therefore, we re-estimate the model without X2

(because 14.0572 > 10) and analyze the results, shown in Table 5.

Table 5. Selected regression outputs (without Income (X2))

Variable Std. coe↵ rY Xi
sri sr

2

i
V IFi Weight (vi) Share of R2 Importance rank

Air conditioning (X3) 0.5571 0.9273 0.3613 0.1305 2.3774 0.2525 0.3302 1
Appliances (X4) 0.3622 0.8861 0.1954 0.0382 3.4354 0.3649 0.3268 2
Size (X1) 0.1494 0.8575 0.0787 0.0061 3.6009 0.3825 0.3087 3

We start by noting that svar is positive (0.9656 � 0.1748 = 0.7908) and that the re-

estimated model assigns V IFi < 10 to all EV, pointing to absence of strong collinearity.

Although the relative position (in terms of ’Importance rank’) of variables Appliances

(X4) and Size (X1) is maintained, Air conditioning (X3) is the most important variable

to explain Peak demand (Y ) when the redundant EV Income (X2) is removed. This is

because X3 increases the total R2 the most when added to the model (sr2
3
= 0.1305),

despite being assigned the lowest VIF weight (v3 = 0.2525). We also note that, although

from a strictly numerical perspective it is possible to assign importance ranks (R2

3
> R

2

4
>

R
2

1
), the assigned shares of total R2 are similar across all EV, pointing to close to equal

importance when collinearity is taken into account. If we were to base the importance rank
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solely on the squared part correlations, the relative positions of EV would be maintained

although their contributions would di↵er substantially (sr2
3
� sr

2

4
> sr

2

1
), corroborating

the relevance of accounting for collinearity when evaluating relative importance of EV.

3.5. Conclusion

We have discussed the problem of relative importance of regressors and the challenge of

partitioning dependent variable variation in the presence of collinearity. As the issue does

not have an unique solution, several di↵erent methods have been devised with its own pros

and cons, and ours has its own limitations, as it must be applied to regression models of

an explanatory nature (rather than exploratory or predictive), i.e. inclusion of EV must

be solidly justified rather than simply tested for possible satisfactory correlations. In such

cases where a predictive analysis is intended, multiple analysis methods such as LMG are

preferred. Especially in situations involving many regressors, our measure is advantageous

in that it provides an additive variable ranking while requiring low computational power.

A wide set of relative importance metrics is available to researchers, and many di↵er in

their underlying interpretation of variable importance. To draw meaningful conclusions

from data, a careful analysis of the correlation matrices must be performed, as no mea-

sure should be applied blindly as a general solution . Rather, comparison of results from

di↵erent methods is advised, as it provides a greater insight on the relationships between

variables. Accordingly, our measure is a contribution to the researcher tool kit of rel-

ative importance, meant to account for collinearity, be intuitive and easy to compute.

For future research, we suggest (1) the investigation of svar in terms of its behavior and

interpretability as well as its relationships with correlation-type coe�cients and (2) the

simulation of the established relative importance measures that rely on regression coe�-

cients in the presence of heteroskedasticity.
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3.6. Appendix

Code

#ASSIGNING R^2 SHARES TO 4 REGRESSORS

#Variables Y and X_j must be loaded from the dataset and the number expanded if needed

#This is a basic code snippet for illustration. NOT RUN.

model <- lm(Y ~ X1 + X2 + X3 + X4) #Estimate model

rsq <- summary(model)$r.squared #Store model R^2

#Calculating squared part correlations for each coefficient (there are faster ways to compute part correlation)

a <- cor(lm(scale(X1) ~ scale(X2) + scale(X3) + scale(X4), data)$residuals, scale(Y), method="pearson")^2

b <- cor(lm(scale(X2) ~ scale(X1) + scale(X3) + scale(X4),data)$residuals, scale(Y), method="pearson")^2

c <- cor(lm(scale(X3) ~ scale(X1) + scale(X2) + scale(X4),data)$residuals, scale(Y), method="pearson")^2

d <- cor(lm(scale(X4) ~ scale(X1) + scale(X2) + scale(X3),data)$residuals, scale(Y), method="pearson")^2

#Summing squared part correlations

sumsemipart <- a + b + c + d

#Computing VIF and VIF weights

vifs <- VIF(model)

vifweights <- vifs/sum(VIF(model))

#Calculating ’svar’ (see Equation 10)

svar <- rsq - sumsemipart

# Populate vectors of individual and svar contributions

indiv <- cbind(a,b,c,d)

shared <- vifweights * c(svar)

# Computing R^2 shares (see Equation 14)

totalshare <- indiv+shared #This is a vector with assigned shares to each regressor

# Print results

vifs

rsq

sum(indiv + shared) #Sum of shares = rsq

totalshare #R^2 shares

rowRanks((indiv+shared)) #Ranking shares by size
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CHAPTER 4

Contributions to the diagnosis of Skewness and Kurtosis

ABSTRACT

This paper is motivated by the widespread interest in higher-order moments for financial

risk management, namely skewness and kurtosis. Firstly, we evaluate the behavior of a set

of estimators of skewness and kurtosis employing robust central tendency measures under

simulation and conclude about their superiority against the standard alternatives avail-

able. Secondly, we derive the asymptotic sampling distributions of skewness and kurtosis

coe�cients in the case of non-i.i.d. random variables applying the Generalized Method of

Moments. We add to the existing literature by simulating a conditionally heteroskedastic

process and compute heteroskedasticity-autocorrelation consistent (HAC) standard errors

for hypothesis testing. The proposed skewness test significantly outperforms the tradi-

tional alternatives, while the kurtosis test corroborates known di�culties of accurately

estimating kurtosis even for very large samples. In an illustrative example we analyze the

daily returns of four major currency pairs in the period 2010-2020.

43



4.1. Introduction

This paper focuses on the third and fourth moments of financial time series data. The

motivation for examining these moments is based on empirical observations about the

asymmetry and kurtosis of financial assets’ returns. It is a familiar stylized fact that

market returns have negative skewness and severe excess kurtosis, i.e. downturns (neg-

ative returns) tend to be more severe and less frequent than upturns (positive returns)

and the tails of empirical distributions are heavier when compared to the normal distri-

bution. These stylized facts have been supported by a large collection of empirical stud-

ies. Some recent papers on this issue include Bastianin2020, WU2019, Clark2018,

BeraPremaratne2017 and Jaggia. The departure of financial assets’ returns from the

normal distribution is further documented inBates1996,Hwang1999 andHarvey2000.

The relevance of skewness and kurtosis goes beyond the realm of empirical finance. See,

for example, hernandez2014, AndersonMattson2012 and Blanca2013 for applica-

tions in statistics, engineering and psychology, respectively. hernandez2014 propose an

approach to derive approximations of arbitrary order to estimate high percentiles of sums

of positive independent random variables exhibiting heavy tails (excess kurtosis). They

conclude that for higher quantiles, and especially for heavier tails, the quality of the esti-

mate improves as more terms are included in the series, up to a certain order. Bal1988

recognize that many formalizations of the concepts of skewness and kurtosis may arise, as

these can be viewed ’vaguely’ as a location- and scale-free movement of probability from

the shoulders of a distribution into its center and tails.

The role of higher moments has become increasingly important in the financial litera-

ture mainly because the traditional measure of risk, variance (or standard deviation), has

failed to fully capture the risk of financial assets. According to kimwhite04 ”true risk”

may be a multidimensional concept and other measures of distributional shape, such as

higher moments, can be used for a better description of risk.

In face of the increasing interest in the skewness and kurtosis of time series data, three

papers deserve particular emphasis: JoanesGill1998 performed a comparison between

the measures adopted by well-known statistical computing packages, focusing on bias and

mean-squared error for normal samples, and presenting comparisons based on simulation

results for non-normal samples. kimwhite04 provide a survey of robust measures of

skewness and kurtosis and carry out extensive Monte Carlo simulations that compare

the conventional measures (that is, the standardized third and fourth moments or some

variants of these) with selected and robust alternatives. An empirical application of the ro-

bust measures to daily S&P500 index returns indicates that the stylized facts related with

skewness and kurtosis are also found when the robust measures are used. BaiSerena2005

discuss the sampling distributions of the coe�cients of skewness and kurtosis and propose
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a joint test of normality for time series observations. They show that when data are

serially correlated, consistent estimates of three-dimensional long-run covariance matri-

ces are needed for testing symmetry or kurtosis. Through Monte Carlo simulations they

show that the test statistics for symmetry and normality have good finite-sample size and

power. However, size distortions render testing for kurtosis almost meaningless except

for distributions with thin tails, such as the normal distribution. Skewness and kurtosis

are combined to construct a useful test of normality provided that the limiting variance

accounts for the serial correlation in the data. All tests are computed and analyzed for

21 macroeconomic time series.

The properties of conventional skewness and kurtosis measures are also analyzed by

Bonato2011 and they are compared with the robust alternatives when fat-tailed dis-

tributions which do not possess variance or third or fourth moment are considered. This

paper produces two outstanding conclusions. First, for symmetric fat-tailed distribution,

skewness is far from being a valid indicator of the presence of asymmetry. Second, Monte

Carlo simulation and empirical applications to the series of daily returns on a large cap

US stock show why alternative measures are a better tool to describe the skewness and

kurtosis of financial returns distribution.

More recently, BeraPremaratne2017 introduce adjustments on the standard test for

skewness to discriminate between symmetric and asymmetric distributions in the pres-

ence of excess kurtosis. The main reason for the failure of the standard test is that the

expression of its variance is derived under the assumption of no excess kurtosis. They

also suggest an adjusted test for kurtosis in the presence of asymmetry. Both tests are

applied to simulated and real data. The finite sample properties of the adjusted tests are

far superior when compared to those of their unadjusted counterparts.

In most statistical tests involving the sampling coe�cients of skewness and kurtosis it is

assumed that random variables are independent and identically distributed. Noteworthy

exceptions are BaiSerena2005 and Lobato2004, where serial correlation is taken into

account. When analyzing financial time series, the dependence of high frequency data

(e.g. daily returns) raises the issues of autocorrelation and/or conditional heteroscedas-

ticity, which render the traditional inference methods inappropriate. Other exceptions

are Boutahar2009, where tests are developed for long-term memory processes.

The contribution of this investigation is as follows: firstly, we examine the behavior of

an alternative set of skewness and kurtosis estimators in terms of Mean Squared Error

(MSE), and convergence in the absence/presence of a single extreme observation. The

estimators are applied to non-normal i.i.d. data. Secondly, due to the characteristics of

financial data, we propose heteroskedasticity-autocorrelation consistent (HAC) standard
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errors for the sample coe�cients of skewness and kurtosis, and construct test statistics

to detect skewness and kurtosis as financial time series typically exhibit serial correlation

and conditional heteroskedasticity. The proposed skewness test significantly outperforms

the traditional alternatives, while the kurtosis test corroborates known di�culties of ac-

curately estimating kurtosis even for very large samples. In an illustrative example we

analyze the daily returns of four major currency pairs in the period 2010-2020.

The layout of the paper is as follows: in Section 2, we define a set of alternative estima-

tors for skewness and kurtosis based on robust central tendency measures and evaluate

their behavior and accuracy using simulation. In Section 3, we derive the asymptotic

sampling distribution of the skewness and kurtosis estimators and corresponding statis-

tical tests using the Generalized Method of Moments (GMM). We apply these results in

a Monte Carlo setting, compare the proposed estimators to their traditional alternatives

and perform an empirical application. Section 4 contains concluding remarks.

4.2. Alternative estimators for non-normal i.i.d. data

Let {Xt}Tt=1
denotes a series with mean µ and variance �

2. The coe�cients of skewness

(⌧) and kurtosis () are defined as:

⌧ =
µ3

(�2)3/2
and  =

µ4

(�2)2
, (4.1)

where µ3 = E (X � µ)3 and µ4 = E (X � µ)4 are the third and fourth moments of the Xt

distribution, respectively. The standard estimators for these parameters are:

⌧̂ =
µ̂3

(�̂2)3/2
and ̂ =

µ̂4

(�̂2)2
, (4.2)

where µ̂
3 = 1

T

P
T

t=1
(Xt � µ̂)3, µ̂4 = 1

T

P
T

t=1
(Xt � µ̂)4, µ̂ = 1

T

P
T

t=1
Xt and

�̂
2 = 1

T

P
T

t=1
(Xt � µ̂)2.

In this section, we compare the performance of estimators ⌧̂ and ̂ (for skewness and kur-

tosis, respectively) with an alternative set of estimators using simulation of i.i.d. random

variables. It has long been established that the estimation of higher order moments may

lead to substantial biases, not only because of the moment order (3 and 4 for skewness

and kurtosis) but also because traditional estimators rely on the sample mean as the

central tendency measure of reference, namely due to the unbiasedness of the standard

estimators under normality. This analysis is motivated by the hypothesis that, especially

for asymmetric distributions, other central tendency measures, such as the trimmed mean

and the median should provide stabler estimates of skewness and kurtosis as they are less

sensitive (or not at all) to observations originating from distribution tails.
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In addition to ⌧̂ , we define three estimators for skewness (⌧̂2, ⌧̂3 and ⌧̂4) by replacing the

sample mean in ⌧̂ by the trimmed mean, where the trim-proportion is equal to 1/[2(n�
4)1/2], the median and an adjusted median as proposed by DiasCurto2021, such that:

⌧̂2 =
1

T

P
T

t=1
(Xt � µ̂m)3

[
P

T

t=1
(Xt � µ̂)2]3/2

, ⌧̂3 =
1

T

P
T

t=1
(Xt � µ̂med)3

[
P

T

t=1
(Xt � µ̂)2]3/2

, ⌧̂4 =
1

T

P
T

t=1
(Xt � µ̂amed)3

[
P

T

t=1
(Xt � µ̂)2]3/2

(4.3)

where µ̂m is the trimmed mean, µ̂med is the median and µ̂amed is the adjusted median. The

adjusted median generates an intermediate value between the median and the arithmetic

mean, assigning higher weights to extreme observations, when compared to the median,

harmonic and geometric averages, and lower weights when compared to the arithmetic

mean. Therefore, outlying observations are still relevant to central tendency estimation,

but not as much as in the arithmetic mean. It is calculated as:

µ̂amed = X̄M +
SR � SL

SR + SL

|X̄A � X̄M | (4.4)

where SL =
P

n1

xi<X̄M

(X̄M � xi) and SR =
P

n2

xi>X̄M

(xi � X̄M) are the sum of deviations of

xi to the left and right of the median, respectively, and X̄A is the arithmetic mean.

Analogously, we define three estimators for kurtosis (̂2, ̂3 and ̂4), which di↵er from the

estimators in Equation 3 only in their moment order:

̂2 =
1

T

P
T

t=1
(Xt � µ̂m)4

[
P

T

t=1
(Xt � µ̂)2]2

, ̂3 =
1

T

P
T

t=1
(Xt � µ̂med)4

[
P

T

t=1
(Xt � µ̂)2]2

, ̂4 =
1

T

P
T

t=1
(Xt � µ̂amed)4

[
P

T

t=1
(Xt � µ̂)2]2

(4.5)

In the next subsection, we evaluate the behavior of estimators in Equations 3 and 5 under

a simulation setting and compare their accuracy to that of the standard estimators define

in Equation 2.

4.2.1. Simulation results

We performed a two-stage simulation study regarding the accuracy of the six alternative

estimators of skewness and kurtosis defined above. Namely, we simulate i.i.d. random

variables from three asymmetric and three symmetric theoretical distributions [chi-square

with 1 degree of freedom: �
2(1) (A1), beta: B(1, 10) (A2) and gamma: G(1, 6) (A3);

standard normal: N(0, 1) (S1), t-student with 5 degrees of freedom: t(5) (S2), uniform:

U(0, 1) (S3)]. Since the di↵erent estimators di↵er only in the central tendency measure

employed, in the subsequent paragraphs and for ease of interpretation we refer to each

estimator by the measure employed therein.

In the first stage, we compute estimates of skewness and kurtosis by applying the alterna-

tive estimators as well as their standard counterparts, and calculate Mean Squared Error

(MSE) as a loss function to evaluate consistency. The goal is to evaluate our hypothesis

47



that robust central tendency measures yield more accurate estimates, especially for asy-

mmetric distributions and smaller sample sizes. For each sample size, 10000 samples were

generated from each distribution and the estimates of skewness and kurtosis compared

to the true parameter values. The simulation routines were programmed in R and are

available upon request to the authors.

The results are exhibited in Table 1 and confirm our hypothesis. With respect to skew-

ness, for smaller sample sizes (up to T = 100), the robust central tendency measures yield

lower MSE in the vast majority of cases for asymmetric distributions. For distribution

A2 , the arithmetic mean is the preferred measure for sample size T = 50 or higher.

We also note that while for distributions A1 and A3 either the median or the adjusted

median provide the best results for smaller sample sizes, skewness for distribution A2

is more accurately estimated applying the trimmed mean. This is due to the fact that,

compared to the chi-square (A1) and gamma (A3), the beta (A2) distribution has a longer

left tail. For sample sizes T � 1000, the arithmetic mean gives lower MSE for all dis-

tributions, because increasing sample sizes linearly decrease the weight assigned to each

observation, thus reducing the influence of extreme observations. For all symmetric dis-

tributions, where negative and positive extreme observations are expected to cancel out,

the traditional estimator (i.e. with the arithmetic mean as the central tendency measure)

performs best in terms of MSE.

Results of kurtosis estimation further corroborate our hypothesis that higher order mo-

ments are more accurately estimated by replacing the arithmetic mean in the standard

estimators with more robust central tendency measures. We note that, for T = 10, the

median results in lower MSE for all distributions (symmetric and asymmetric) except for

S3 (uniform). Regarding distribution S2 (t-student), and in contrast to the estimation

of skewness, results are best when applying the median up to T = 50. For sample sizes

T � 1000, the arithmetic mean achieves lowest MSE for all distributions considered.

In the second stage of our simulation study, we assess the behavior of each estimator by

including an extreme outlier in the samples generated from the same distributions. Figures

1-8 contain boxplots describing the distribution of 1000 skewness and kurtosis estimates

for increasing sample sizes in the vertical axes. Each figure contains twelve windows

corresponding to the simulated distributions and figures are paired for comparison (no

outlier and outlier cases). To ensure some consistency in the introduction of the outlier

(which we call m), we generate random samples from each distribution and replace the

tenth observation (x10) by a multiple of 50 of the first quartile of each sample, i.e., after

simulating,

x10 = m = 50 ⇤ F�1(0.25) (4.6)
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for all samples obtained.

The behavior of all eight estimators is remarkably similar. Figures 1-8 show the box-type

convergence of estimators to the true values of skewness and kurtosis in the absence of

outliers, although asymmetric distributions exhibit a substantial number of observations

above the upper quartile. Noticeably, the performance of all estimators deteriorate as

distributions depart from the standard normal. The one exception is the uniform distri-

bution, where estimators converge consistently and similarly to the normal distribution.

Introducing the outlier, on the other hand, produces spectacular results. Although conver-

gence occurs when estimating skewness by employing robust central tendency measures,

a substantial bias is still present. For example, applying the median (⌧̂3) to estimate the

skewness of the gamma distribution results in a median skewness of around 5 (for a true

⌧ of 2) even for sample sizes as high as T = 500 (Figure 3). The same type of behavior

occurs for the standard normal distribution, where the median skewness is close to -5 (for

a true ⌧ of 0) for T = 5000. These results point to reliability issues of these estimators

in the presence of outliers, which, depending on their relevance for the desired research

application, may or may not be removed (i.e. while outlier removal for estimation of a

natural quantity such as blood pressure or heart rate may not invalidate results for the

generality of individuals, the same cannot be said when considering financial market risk

models where extreme (negative) outliers have equally extreme associated payo↵s).

Results are even more remarkable in the estimation of kurtosis. For symmetric distri-

butions, the e↵ect is maximized around T = 1000, after which the estimators start to

converge, but estimates remain unsatisfactory. For example, the trimmed mean estimator

yields median kurtosis estimates between 200 and 300 for the normal and uniform dis-

tributions, for true parameter values of 3 and 1.8, respectively. The results indicate that

it may not be feasible to assign any meaningful interpretation to large values of kurtosis

estimators even when apparently su�cient large samples are considered. While it must

be true that if an outlier occurs only once (and its magnitude does not depend on sample

size), its influence eventually disappears as T grows to infinity, finite sample behavior is

poor if extreme observations are present.

In general, results from our simulation study favor the use of skewness and kurtosis

estimators that employ more robust central tendency measures as these provide more

accurate estimates in terms of MSE when datasets do not contain extreme observations.

Outliers, on the other hand, greatly a↵ect the behavior of all estimators considered as

these involve the sample mean and sample standard deviation, known to be more sensitive

than e.g. the median to outlying observations. In such cases, the choice of estimators

may befall on strictly quantile based measures.
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Table 1. Root MSE: Estimators of Skewness and Kurtosis

Skewness Kurtosis

Mean Trimmed mean Median Adj. Median Best Mean Trimmed mean Median Adj. Median Best

n = 10

A1 1.813 1.256 1.083 1.508 Median 12.049 10.533 9.848 11.424 Median

A2 0.935 0.829 0.908 1.277 Trim mean 3.550 3.026 2.762 3.185 Median

A3 1.280 1.007 0.996 1.098 Median 6.531 5.688 5.286 6.000 Median

S1 0.493 0.793 0.966 1.014 Mean 1.183 1.140 1.106 1.305 Median

S2 0.661 1.006 1.133 1.172 Mean 6.753 6.408 6.239 6.249 Median

S3 0.402 0.708 0.978 1.068 Mean 0.491 0.712 0.958 1.355 Mean

n = 20

A1 1.384 1.012 0.711 1.024 Median 10.231 9.039 7.481 9.378 Median

A2 0.699 0.647 0.811 1.280 Trim mean 2.878 2.721 2.541 3.444 Median

A3 0.979 0.797 0.773 0.718 Adj. Median 5.451 4.903 4.182 4.808 Median

S1 0.432 0.577 0.790 0.812 Mean 0.873 0.893 0.887 0.957 Mean

S2 0.764 0.961 1.101 1.120 Mean 5.942 5.802 5.634 5.635 Median

S3 0.308 0.429 0.812 0.850 Mean 0.321 0.379 0.693 0.876 Mean

n = 30

A1 1.179 0.919 0.705 0.838 Median 9.187 8.274 6.410 8.262 Median

A2 0.594 0.577 0.822 1.281 Trim mean 2.601 2.573 2.615 3.629 Trim mean

A3 0.843 0.730 0.769 0.614 Adj. Median 4.929 4.600 3.903 4.313 Median

S1 0.387 0.481 0.685 0.693 Mean 0.752 0.773 0.777 0.801 Mean

S2 0.770 0.912 1.039 1.044 Mean 5.573 5.501 5.367 5.367 Median

S3 0.253 0.319 0.690 0.714 Mean 0.247 0.266 0.515 0.617 Mean

n = 50

A1 1.007 0.815 0.829 0.726 Adj, Median 8.270 7.533 6.050 7.397 Median

A2 0.487 0.504 0.832 1.267 Mean 2.345 2.389 2.682 3.711 Mean

A3 0.714 0.651 0.821 0.571 Adj. Median 4.510 4.320 3.967 4.037 Median

S1 0.310 0.379 0.542 0.548 Mean 0.612 0.623 0.624 0.634 Mean

S2 0.804 0.915 1.002 1.003 Mean 5.254 5.242 5.168 5.168 Median

S3 0.196 0.242 0.555 0.565 Mean 0.181 0.189 0.351 0.398 Mean

n = 100

A1 0.828 0.740 1.012 0.667 Adj, Median 7.459 7.084 6.561 6.866 Median

A2 0.372 0.425 0.859 1.272 Mean 2.004 2.101 2.722 3.779 Mean

A3 0.579 0.576 0.892 0.571 Adj. Median 4.116 4.090 4.247 3.918 Adj. Median

S1 0.236 0.281 0.403 0.403 Mean 0.460 0.466 0.468 0.469 Mean

S2 0.800 0.874 0.924 0.924 Mean 5.374 5.421 5.386 5.383 Mean

S3 0.143 0.170 0.404 0.408 Mean 0.121 0.124 0.204 0.218 Mean

n = 1000

A1 0.397 0.422 1.212 0.527 Mean 5.073 5.141 7.026 5.257 Mean

A2 0.125 0.172 0.888 1.275 Mean 0.768 0.820 2.350 3.509 Mean

A3 0.249 0.283 0.951 0.542 Mean 2.399 2.458 3.786 2.807 Mean

S1 0.077 0.084 0.130 0.130 Mean 0.152 0.152 0.152 0.152 Mean

S2 0.554 0.569 0.582 0.582 Mean 7.765 7.789 7.793 7.791 Mean

S3 0.045 0.048 0.130 0.130 Mean 0.036 0.036 0.040 0.041 Mean

n = 5000

A1 0.195 0.220 1.215 0.453 Mean 2.762 2.807 5.902 3.230 Mean

A2 0.058 0.090 0.890 1.272 Mean 0.363 0.395 2.285 3.458 Mean

A3 0.119 0.145 0.951 0.525 Mean 1.237 1.270 3.264 1.975 Mean

S1 0.035 0.036 0.059 0.059 Mean 0.068 0.068 0.068 0.068 Mean

S2 0.411 0.415 0.420 0.420 Mean 10.983 10.990 10.985 10.985 Mean

S3 0.020 0.021 0.059 0.059 Mean 0.016 0.016 0.016 0.016 Mean

Simulation results: root mean squared error values for the standard and alternative estimators of ⌧ (skewness) and 

(kurtosis) for each distribution and sample size n. Column ’Best’ designates the estimator yielding the lowest MSE. For

ease of interpretation, we refer to the central tendency measure employed in each estimator, i.e. for skewness, ’Mean’

corresponds to ⌧̂ , ’Trim mean’ to ⌧̂2, ’Median’ to ⌧̂3 and ’Adj. Median’ to ⌧̂4. The same reasoning applies to estimators of

kurtosis.50



Figure 1. Sampling distributions of ⌧̂ (box-plots): no outlier (top half)
and outlier (lower half) cases

Each set of six windows corresponds to the six distributions (�2(1), B(1, 10), G(1, 6), N(0, 1),

t(5) and U(0, 1)) and each window contains six box-plots for di↵erent sample sizes. The

numbers on the vertical axes indicate the corresponding sample sizes. Dots beyond the

whiskers represent estimates either below the lower or above the upper quartiles. This note

applies to all subsequent figures.
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Figure 2. Sampling distributions of ⌧̂2 (box-plots): no outlier (top half)
and outlier (lower half) cases
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Figure 3. Sampling distributions of ⌧̂3 (box-plots): no outlier (top half)
and outlier (lower half) cases
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Figure 4. Sampling distributions of ⌧̂4 (box-plots): no outlier (top half)
and outlier (lower half) cases
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Figure 5. Sampling distributions of ̂ (box-plots): no outlier (top half)
and outlier (lower half) cases
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Figure 6. Sampling distributions of ̂2 (box-plots): no outlier (top half)
and outlier (lower half) cases
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Figure 7. Sampling distributions of ̂3 (box-plots): no outlier (top half)
and outlier (lower half) cases
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Figure 8. Sampling distributions of ̂4 (box-plots): no outlier (top half)
and outlier (lower half) cases
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4.3. The asymptotic distribution of skewness and kurtosis estimators

In the previous section we evaluated the performance of a set of estimators for skewness

and kurtosis for the i.i.d. case. Because in many applications, especially in finance, the

i.i.d. assumption is frequently violated, in this section we derive the asymptotic distribu-

tion of the standard estimators of skewness and kurtosis and develop confidence intervals

using the Generalized Method of Moments (GMM). Additionally, we evaluate the per-

formance of these estimators with respect to the size and power of the corresponding

statistical tests by simulating an ARCH(1) process to induce autocorrelation and hetero-

skedasticity.

If Xt is i.i.d. and normally distributed, then (see, e.g., kendallstuart69)
p
T ⌧̂

d! ⇠N(0, 6) and
p
T (̂� 3)

d! N(0, 24). (4.7)

When the i.i.d. assumption for (X1, X2, . . . , XT ) does not hold, these results are of lim-

ited practical value and the asymptotic distribution can be derived by using a ”robust”

estimator for the coe�cients of skewness and kurtosis. If Xt satisfies the assumption of

stationarity, then a version of the Central Limit Theorem still applies to most estimators

and the corresponding asymptotic distribution can be derived. Following Lo2002 we

apply the GMM to estimate µ, �2, µ3, µ4 and the results of Hansen1982 can be used to

derive the asymptotic distribution of the coe�cients of skewness and kurtosis.

Denote by ✓̂ the column vectors (µ̂ �̂
2

µ̂
3)0 and (µ̂ �̂

2
µ̂
4)0 and by ✓ the corresponding

column vector of population values (µ �
2

µ
3)0 and (µ �

2
µ
4)0. Hansen shows that:

p
T

⇣
b✓ � ✓

⌘
a⇠ N (0, V✓) , where V✓ ⌘ H

�1⌃
�
H

�1
�0
, (4.8)

H ⌘ lim
T!1

E

"
1

T

TX

t=1

'✓ (Xt, ✓)

#
, ⌃ ⌘ lim

T!1
E

"
1

T

TX

t=1

TX

s=1

' (Xt, ✓)' (Xs, ✓)
0

#
, (4.9)

and '✓ (Xt, ✓) represents the derivative of ' (Xt, ✓) with respect to ✓. Let 'j (Xt, ✓)

denotes the vector function with the following moment conditions:

'⌧ (Xt, ✓) =

2

64
Xt � µ

(Xt � µ)2 � �
2

(Xt � µ)3 � µ
3

3

75 and ' (Xt, ✓) =

2

64
Xt � µ

(Xt � µ)2 � �
2

(Xt � µ)4 � µ
4

3

75 . (4.10)

The GMM estimator of ✓ is given by the solution to:

1

T

TX

i=1

'j (Xt, ✓) = 0, (4.11)

yielding the standard estimators µ̂, �̂2, µ̂3 and µ̂
4 defined before.
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For the moment conditions in equation (4.10), the matrix H is given by:

H⌧ ⌘ lim
T!1

E

8
><

>:
1

T

TX

t=1

2

64
�1 0 0

�2 (Xt � µ) �1 0

�3 (Xt � µ)2 0 �1

3

75

9
>=

>;
⌘

2

64
�1 0 0

0 �1 0

�3�2 0 �1

3

75 , (4.12)

H ⌘ lim
T!1

E

8
><

>:
1

T

TX

t=1

2

64
�1 0 0

�2 (Xt � µ) �1 0

�4 (Xt � µ)3 0 �1

3

75

9
>=

>;
⌘

2

64
�1 0 0

0 �1 0

�4µ3 0 �1

3

75 . (4.13)

Therefore, the asymptotic distribution of the coe�cients of skewness and kurtosis estima-

tors follows from the delta method:

p
T (⌧̂ � ⌧)

a⇠ N (0, V✓⌧
) , where V✓⌧

=
@f (✓⌧ )

@✓⌧
H

�1

⌧
⌃⌧

�
H

�1

⌧

�0 @f (✓⌧ )

@✓0
⌧

, (4.14)

p
T (̂� )

a⇠ N (0, V✓
) , where V✓

=
@f (✓)

@✓
H

�1


⌃

�
H

�1



�0 @f (✓)

@✓0


. (4.15)

As ✓⌧ = (µ �
2

µ
3)0, ✓ = (µ �

2
µ
4)0, f (✓⌧ ) = ⌧ = µ3

(�2)3/2
and f (✓) =  = µ4

(�2)2
,

then

@f (✓⌧ )

@✓⌧
=

2

64
�3/�

�3

2
µ3/�

5

1/�3

3

75 and
@f (✓)

@✓
=

2

64
�4µ3/�

4

�2µ3/�
6

1/�4

3

75 . (4.16)

In order to estimate the asymptotic variance, an estimator for @f(✓i)

@✓i
may be obtained

by substituting ✓̂i into equation (4.16) and an heteroskedasticity and autocorrelation1

consistent (HAC) estimator ⌃̂i may be obtained by using the Newey and West’s procedure:

⌃̂i = ⌦̂0 +
mX

j=1

!(j,m)
⇣
⌦̂j + ⌦̂0

j

⌘
,m ⌧ T, (4.17)

⌦̂j ⌘
1

T

TX

t=j+1

'

⇣
Xt, ✓̂

⌘
'

⇣
Xt, ✓̂

⌘0
,

!(j,m) = 1� j

m+ 1
,

where m is the truncated lag that must satisfy the condition m/T ! 1 as T increases

without bound to ensure consistency.

Therefore, for non-i.i.d. random variables, the standard error of the coe�cients of skew-

ness and kurtosis estimators can be estimated by SE (⌧̂)
a
=
q

V
✓̂⌧

T
and SE (̂)

a
=
q

V
✓̂

T
.

Confidence intervals and the equivalent two-sided t-tests can also be constructed for ⌧

and :

⌧̂ ± z(1�↵

2 )
SE (⌧̂) and ̂± z(1�↵

2 )
SE (̂) , (4.18)

1Heteroscedasticity and/or autocorrelation of unknown form are often important specification issues,
especially in macroeconomics and financial applications.
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where z(1�↵

2 )
is the (1� ↵

2
) quantile of the standard normal distribution.

4.3.1. Simulation results

We perform a Monte Carlo simulation to compare the performance of the traditional and

GMM estimators when attempting to detect the presence of skewness and kurtosis in data

sets with varying degrees of persistence. The simulation design is as follows: we generate

an ARCH(1) process

at = et

q
↵0 + ⇢ ⇤ a2

t�1
(4.19)

where et is drawn from five symmetric and five asymmetric distributions, namely from

the Skewed Generalized T-Distribution (SGT) family, to assess the size and power of the

proposed tests. In choosing to simulate an ARCH(1) process, we add to the results of

BaiSerena2005 by generating a conditionally heteroskedastic series, which we account

for by using HAC standard errors. The choice of the SGT family of distributions was

made based on the ease of parametrization (SGT distributions assume their location and

shape base on five parameters (µ, �, �, p, q) where the last two control tail behavior, and

the first three control the location, variance and skewness, respectively) and the availabil-

ity of closed form expressions for population moments. The di↵erent parametrizations

are provided in the Appendix.

The ARCH(1) series was generated by incorporating the simulated et for three di↵erent

degrees of persistence: ⇢ = 0 (independent), ⇢ = 0.5 and ⇢ = 0.8. It should be noted that

estimation of ARCH(1) coe�cients does not a↵ect the distribution of tests of skewness

and kurtosis, which allows us to apply the traditional and GMM tests to the generated

series directly (see BaiSerena2005 and White1980). The asymptotic variance of the

GMM estimator is based on the kernel method described in (4.17). The number of

simulations for each run was 500, and the significance level set at ↵ = 0, 05.

4.3.2. Testing skewness

To evaluate the size of the proposed estimator, we obtained samples from five symmetric

distributions (S4 is the standard normal distribution, and the remaining four are from the

SGT family). We compute the relative frequency of rejection of the true null hypothesis

⌧̂ = 0 for the GMM and standard estimators (Table 2). By standard estimators we mean

estimators ⌧̂ as defined in Section 2 and ⌧̂
0, defined as

⌧̂
0 =

p
n(n� 1)

n� 2
⌧̂ (4.20)

We note that both estimators (⌧̂ and ⌧̂
0) are unbiased under normality.
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Table 2. Size and Power of GMM Test of Skewness

Sample size

50 100 500 1000

⌧ ⌧̂ ⌧̂
0 GMM ⌧̂ ⌧̂

0 GMM ⌧̂ ⌧̂
0 GMM ⌧̂ ⌧̂

0 GMM

⇢ = 0

Size

S4 0 0,04 0,04 0,00 0,05 0,05 0,00 0,06 0,06 0,00 0,04 0,04 0,00

S5 0 0,40 0,43 0,14 0,52 0,53 0,20 0,70 0,70 0,13 0,78 0,78 0,10

S6 0 0,44 0,47 0,22 0,58 0,59 0,22 0,77 0,77 0,14 0,83 0,83 0,11

S7 0 0,49 0,51 0,23 0,67 0,68 0,34 0,82 0,83 0,21 0,86 0,86 0,16

S8 0 0,60 0,62 0,33 0,70 0,70 0,39 0,87 0,87 0,25 0,90 0,90 0,20

Power

A4 -5,46 0,84 0,86 0,43 0,98 0,98 0,86 1,00 1,00 0,95 1,00 1,00 0,96

A5 -3 0,58 0,60 0,26 0,80 0,80 0,57 0,99 0,99 0,86 1,00 1,00 0,89

A6 1,94 0,49 0,51 0,22 0,69 0,71 0,39 0,93 0,93 0,61 0,98 0,98 0,72

A7 4,14 0,64 0,66 0,30 0,86 0,87 0,57 0,99 0,99 0,81 1,00 1,00 0,86

A8 18,8 0,88 0,89 0,53 0,98 0,98 0,84 1,00 1,00 0,91 1,00 1,00 0,92

⇢ = 0.5

Size

S4 0 0,14 0,15 0,00 0,23 0,24 0,00 0,41 0,41 0,00 0,50 0,50 0,00

S5 0 0,43 0,46 0,06 0,54 0,55 0,06 0,82 0,82 0,01 0,84 0,84 0,00

S6 0 0,46 0,48 0,10 0,66 0,67 0,10 0,81 0,81 0,01 0,86 0,86 0,01

S7 0 0,55 0,58 0,17 0,67 0,68 0,15 0,85 0,85 0,04 0,90 0,90 0,01

S8 0 0,57 0,59 0,22 0,75 0,76 0,26 0,88 0,88 0,05 0,94 0,94 0,03

Power

A4 -5,46 0,78 0,80 0,22 0,93 0,94 0,44 1,00 1,00 0,48 1,00 1,00 0,45

A5 -3 0,56 0,58 0,09 0,80 0,81 0,20 0,97 0,97 0,24 0,98 0,98 0,27

A6 1,94 0,51 0,54 0,08 0,71 0,72 0,15 0,93 0,93 0,12 0,95 0,95 0,10

A7 4,14 0,59 0,62 0,17 0,82 0,83 0,32 0,96 0,96 0,27 0,99 0,99 0,26

A8 18,8 0,88 0,90 0,40 0,97 0,98 0,63 1,00 1,00 0,55 1,00 1,00 0,54

⇢ = 0.8

Size

S4 0 0,33 0,36 0,00 0,44 0,46 0,00 0,76 0,76 0,00 0,81 0,81 0,00

S5 0 0,45 0,46 0,03 0,62 0,63 0,04 0,84 0,84 0,00 0,89 0,89 0,00

S6 0 0,53 0,56 0,08 0,65 0,66 0,03 0,88 0,88 0,00 0,90 0,90 0,00

S7 0 0,51 0,52 0,09 0,68 0,68 0,09 0,89 0,89 0,00 0,93 0,93 0,00

S8 0 0,61 0,63 0,21 0,75 0,76 0,19 0,92 0,92 0,03 0,94 0,94 0,01

Power

A4 -5,46 0,75 0,78 0,16 0,90 0,91 0,23 0,99 0,99 0,17 0,99 0,99 0,08

A5 -3 0,56 0,60 0,08 0,75 0,75 0,09 0,94 0,94 0,04 0,97 0,97 0,02

A6 1,94 0,52 0,54 0,05 0,68 0,69 0,04 0,92 0,92 0,01 0,97 0,97 0,00

A7 4,14 0,62 0,64 0,09 0,78 0,79 0,15 0,95 0,95 0,07 0,98 0,98 0,05

A8 18,8 0,81 0,83 0,28 0,93 0,94 0,42 0,99 0,99 0,26 1,00 1,00 0,22
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The GMM estimator shows good size, generally improving with the level of persistence.

As an example, note that for distribution S4 and n = 100, size decreases from 0.22 to 0.10

and 0.03 for the three increasing levels of persistence. The e↵ect of increasing sample size

is noteworthy, especially in the cases where autocorrelation is present: for the sample sizes

considered and in relative terms, the same distribution (S4) showed a greater decrease of

size for ⇢ = 0.5 (0.1 to 0.01) than for ⇢ = 0 (0.22 to 0.11).

The GMM estimator is clearly preferable in terms of size, which validates our applica-

tion of HAC estimators for standard errors. This is mainly due to the fact that both

⌧̂ and ⌧̂
0 are unbiased for normal samples but not so otherwise. Additionally, we note

that even when sampling from a normal population, the GMM estimator outperforms the

traditional estimators across all levels of persistence: the fitness of these estimators to the

distribution is outweighed by the presence of conditional heteroskedasticity.

To evaluate test power, we compute the frequency of rejection of a false null hypothesis

(⌧ = 0) based on five asymmetric distributions from the SGT family (three platykurtic

and two leptokurtic), considering the true value of skewness of the selected distributions.

In spite of performing increasingly better for lower levels of persistence and larger sample

sizes, the GMM estimator is outperformed by the standard alternatives, even though its

power increases as sample size grows. As an example, note that for distribution A5,

⇢ = 0.5 and n = 500, GMM showed a power of 0.24, against 0.97 from the competing

estimators. As expected, power increases for both alternatives as (absolute) values of

skewness increase.

4.3.3. Testing kurtosis

To evaluate the performance of our GMM estimator for kurtosis, we chose five symmetric

and five asymmetric distributions with varying degrees of kurtosis. All distributions are

from the SGT family, except for S4 (standard normal for size and t-student with 5 degrees

of freedom for power). It should be noted that, for the SGT family, the product of the

tail behavior parameters must be greater than or equal to the order of the moment being

estimated, that is pq � n for E[(X�µ)n], where p and q control left and right tail behav-

ior, respectively. Hence, parameters were selected to ensure the existence of the fourth

moment and provide di↵erent degrees of kurtosis (true values of  are provided in Table 3).

To evaluate size, we test the simulated sample kurtosis against the true alternative (the

kurtosis of the simulated ARCH process is calculated according toTsay2010), whereas for

power we test the frequency of rejection of  = 3, the kurtosis of the normal distribution.

We note that in the set of traditional estimators for kurtosis (those commonly applied

in software packages), only the Fisher-Pearson standardized coe�cient is unbiased under

normality:
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̂
0 =

(n� 1)

((n� 2)(n� 3))
(n+ 1)

m4

m
2

2

(4.21)

For this reason, we exclude other standard estimators from the present comparison. Be-

cause issues of reliability when estimating kurtosis were anticipated, reported sample sizes

were set to much larger values than those for skewness.

Test size is generally poor for both the traditional and the GMM estimators, and their

performance is similar. In most cases, the traditional estimator rejected the true null

hypothesis in all simulations, even for the i.i.d. case (⇢ = 0). The one exception is, as

expected, when samples are obtained from the normal distribution, where size is low and

the GMM estimator is generally outperformed, although sizes converge as the sample

size increases. The poor size of both estimators implies that kurtosis cannot be reliably

estimated from serially correlated, heteroskedastic, non-normal data, even with sample

sizes as large as 5000. The standard estimator ̂ is severely biased (generally downwards)

and although its values are usually reported by statistical packages its practical value is

limited without additional checks of the data distribution.

The GMM estimator exhibits high power. Both tests show high power to reject  = 3,

and in most cases the null hypothesis was rejected by the traditional estimators in all

simulations. This was expected because the standard error substantially decreases with

increasing sample size. It is worth noting that power increases with the level of persistence.

As an example, for distribution A6 and n = 1000, power increases from 0.90 (⇢ = 0) to

0.99 (⇢ = 0.8), which points to the benefit of using HAC estimators to compute the

standard error of ̂. Despite the high power exhibited by both estimators, the test results

are based on severely biased estimates from ̂. Interpretation of these results must take

the di�culties of accurately estimating  into account.
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Table 3. Size and Power of GMM Test of Kurtosis

Sample size

100 500 1000 5000

 Size Power (vs 3) Size Power (vs 3) Size Power (vs 3) Size Power (vs 3)

⇢ = 0 ̂
0 GMM ̂

0 GMM ̂
0 GMM ̂

0 GMM ̂
0 GMM ̂

0 GMM ̂
0 GMM ̂

0 GMM

S4 3 1,00 0,13 0,72 0,53 0,04 0,09 1,00 0,83 0,04 0,08 1,00 0,91 0,04 0,05 1,00 0,90

S5 35,67 1,00 0,99 0,85 0,74 1,00 0,96 1,00 0,93 1,00 0,94 1,00 0,91 1,00 0,93 1,00 0,88

S6 60,84 1,00 0,99 0,88 0,81 1,00 0,98 1,00 0,95 1,00 0,98 1,00 0,90 1,00 0,97 1,00 0,90

S7 56,61 1,00 1,00 0,93 0,86 1,00 0,99 1,00 0,96 1,00 0,99 1,00 0,92 1,00 0,96 1,00 0,86

S8 39,51 1,00 0,97 0,92 0,87 1,00 0,91 1,00 0,97 1,00 0,84 1,00 0,89 1,00 0,61 1,00 0,89

A4 74,77 1,00 1,00 0,90 0,62 1,00 1,00 1,00 0,96 1,00 0,99 1,00 0,92 1,00 0,95 1,00 0,85

A5 53,38 1,00 1,00 0,90 0,69 1,00 0,99 1,00 0,94 1,00 0,97 1,00 0,90 1,00 0,92 1,00 0,89

A6 44,20 1,00 0,99 0,85 0,71 1,00 0,97 1,00 0,92 1,00 0,97 1,00 0,90 1,00 0,93 1,00 0,87

A7 92,52 1,00 1,00 0,90 0,70 1,00 1,00 1,00 0,95 1,00 1,00 1,00 0,92 1,00 0,96 1,00 0,84

A8 48,87 1,00 1,00 0,95 0,71 1,00 1,00 1,00 0,99 1,00 1,00 1,00 0,97 1,00 0,99 1,00 0,88

⇢ = 0.5

S4 3 1,00 1,00 0,89 0,80 1,00 1,00 1,00 0,98 1,00 1,00 1,00 0,98 1,00 0,99 1,00 0,94

S5 35,67 1,00 1,00 0,89 0,82 1,00 1,00 1,00 0,98 1,00 1,00 1,00 0,95 1,00 0,91 1,00 0,89

S6 60,84 1,00 1,00 0,93 0,84 1,00 1,00 1,00 0,98 1,00 1,00 1,00 0,95 1,00 0,93 1,00 0,90

S7 56,61 1,00 0,99 0,95 0,87 1,00 1,00 1,00 0,99 1,00 1,00 1,00 0,98 1,00 0,92 1,00 0,90

S8 39,51 1,00 0,99 0,96 0,88 1,00 0,99 1,00 0,99 1,00 1,00 1,00 0,98 1,00 0,91 1,00 0,88

A4 74,77 1,00 1,00 0,93 0,71 1,00 0,99 1,00 0,98 1,00 1,00 1,00 0,97 1,00 0,93 1,00 0,89

A5 53,38 1,00 1,00 0,91 0,74 1,00 0,99 1,00 0,98 1,00 1,00 1,00 0,95 1,00 0,90 1,00 0,89

A6 44,20 1,00 1,00 0,88 0,76 1,00 1,00 1,00 0,98 1,00 1,00 1,00 0,97 1,00 0,91 1,00 0,88

A7 92,52 1,00 1,00 0,91 0,77 1,00 1,00 1,00 0,98 1,00 1,00 1,00 0,97 1,00 0,88 1,00 0,89

A8 48,87 1,00 0,98 0,96 0,76 1,00 1,00 1,00 0,99 1,00 0,99 1,00 0,99 1,00 0,91 1,00 0,92

Rho 0.8

S4 3 1,00 1,00 0,95 0,83 1,00 1,00 1,00 0,96 1,00 1,00 1,00 0,96 1,00 0,93 1,00 0,97

S5 35,67 1,00 0,99 0,95 0,85 1,00 1,00 1,00 0,99 1,00 1,00 1,00 0,98 1,00 0,92 1,00 0,95

S6 60,84 1,00 0,98 0,93 0,84 1,00 1,00 1,00 0,99 1,00 1,00 1,00 0,99 1,00 0,94 1,00 0,96

S7 56,61 1,00 0,99 0,95 0,87 1,00 0,99 1,00 0,99 1,00 0,99 1,00 0,98 1,00 0,95 1,00 0,95

S8 39,51 1,00 0,98 0,97 0,90 1,00 0,98 1,00 0,98 1,00 0,99 1,00 0,98 1,00 0,93 1,00 0,93

A4 74,77 1,00 0,99 0,93 0,76 1,00 0,98 1,00 0,99 1,00 0,99 1,00 0,98 1,00 0,95 1,00 0,95

A5 53,38 1,00 0,99 0,92 0,80 1,00 0,99 1,00 0,98 1,00 0,99 1,00 0,98 1,00 0,92 1,00 0,96

A6 44,20 1,00 0,97 0,94 0,84 1,00 0,99 1,00 0,98 1,00 0,99 1,00 0,99 1,00 0,93 1,00 0,95

A7 92,52 1,00 0,98 0,94 0,83 1,00 0,99 1,00 0,99 1,00 0,99 1,00 0,98 1,00 0,91 1,00 0,93

A8 48,87 1,00 0,98 0,97 0,80 1,00 0,98 1,00 0,98 1,00 0,99 1,00 0,99 1,00 0,94 1,00 0,96

4.3.4. Empirical application

Accurately estimating skewness and kurtosis of financial returns is relevant for risk adjust-

ment of investment strategies. An argument commonly put forward is that rational

investors should prefer strategies with positive asymmetry and no excess kurtosis. In-

corporating sound estimates into risk models may thus lead to safer and more e�cient

capital allocation. We applied the proposed GMM estimators to the logarithmic daily

returns of four major currency pairs from January 1st 2010 to December 31st 2020 (EUR,

JPY, GBP and CHF, against 1 USD), comprising ten years of data (2870 observations

for each series). We have also computed the tests using the traditional estimators and
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their respective standard errors. All series showed statistical significance for the presence

of persistence and conditional heteroskedasticity (Ljung-Box and ARCH tests). Table 5

shows the results for H0 : ⌧ = 0 and H0 :  = 3 at ↵ = 0, 05.

Table 4. Test results (Skewness)

⌧̂ t-stat (g1) p-value Std. Error t-stat (G1) p-value Std. Error t-stat (GMM) p-value Std. Error

EUR 0,09 2,17 1,51E-02 0,05 2,17 1,50E-02 0,05 0,88 0,19 0,11

JPY 0,11 2,44 7,29E-03 0,05 2,44 7,26E-03 0,05 0,64 0,26 0,17

GBP 1,03 22,45 6,16E-112 0,05 22,46 4,73E-112 0,05 1,22 0,11 0,84

CHF -5,4 -118,16 0,00E+00 0,05 -118,22 0,00E+00 0,05 -1,19 0,12 4,54

Table 5. Test results (Kurtosis)

̂ t-stat (G2) p-value Std. Error t-stat (GMM) p-value Std. Error

EUR 5,25 24,65 2,02E-134 0,09 0,50 0,31 22,9

JPY 7,01 43,90 0,00E7 0,09 0,88 0,19 22,5

GBP 18,57 170,23 0,00E8 0,09 3,43 0,00 31,62

CHF 181,75 1954,40 0,00E9 0,09 39,39 0,00 100,75

The null hypothesis of symmetry was rejected for all series when applying traditional

estimators. Applying the GMM estimator, the same hypothesis was never rejected, which

suggests that the stylized fact of asymmetric financial returns may be too readily ac-

cepted, especially when dealing with serially correlated and heteroskedastic series. Even

for USDCHF, which contains a severe outlier (-18% on Jan. 16th 2015), the GMM does

not reject the null hypothesis of symmetry. This corroborates the benefit of using robust

(HAC) estimates of the estimator’s (GMM) standard error.

The null hypothesis of mesokurtosis was also rejected for all series when applying the

traditional estimator. The GMM estimator does not reject the null hypothesis for the

USDEUR and USDJPY series, and the dimension of the consistent standard error plays

a significant role, leading to the non-rejection. Although this may point to the absence of

excess kurtosis in these series and the refutability of the stylized fact, the erratic behavior

of ̂, as discussed in the previous section, makes it di�cult to obtain solid conclusions. It

is also noteworthy that the Swiss franc, despite its typical stability, as the Swiss National

Bank actively maintains exchange rates, exhibits a very large sample kurtosis (̂= 181.75),

where the aforementioned severe outlier plays a dominant role. This points once more to

the di�culty of accurately estimating the true kurtosis of financial return distributions in

the presence of outliers and brings into question the option of non-parametric estimators

of higher moments.

4.4. Conclusion

The estimation of higher order moments has attracted increasing attention in the finan-

cial literature. Fully capturing the risk of financial assets is paramount to robust asset
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management strategies. Namely, the standard Value-at-Risk models used by financial

institutions rely on the Normal distribution to estimate expected portfolio losses over dif-

ferent time periods. As stated, it is a commonly accepted fact amongst both practitioners

and researchers that financial return distributions are negatively skewed and leptokur-

tic, and empirical analyses of returns are often performed that calculate their respec-

tive skewness and kurtosis to demonstrate the departures from normality (zudietal2010;

Ivanovski2015). Employing robust tests of skewness and kurtosis in such situations may

prove a valuable tool for verification of the aforementioned departures. In this paper, we

start by evaluating the standard estimators of skewness and kurtosis against an alterna-

tive set of estimators by replacing the sample mean with more robust central tendency

measures in their calculation. Using MSE as a loss function, we conclude that employing

the trimmed mean, the median and an adjusted median provide more accurate estimates

of higher order moments. Additionally, we proposed two GMM tests (of skewness and

kurtosis) for time series where serial correlation and conditional heteroskedasticity are

present, applying a robust procedure to estimate standard errors. Their performance was

assessed using Monte Carlo simulation, and compared to the standard alternative that

assumes normality and independence. The GMM test of skewness exhibited good size

and seems a better alternative to estimate the true asymmetry of returns. Regarding kur-

tosis, none of the estimators considered provides reliable estimates of the fourth moment.

Sample kurtosis behaves erratically, rendering the estimation inaccurate even for sample

sizes as large as n = 5000.

We applied the estimators to a 10-year series of logarithmic returns of four major cur-

rency pairs. Testing skewness using GMM and traditional estimators led to opposite

conclusions. For all series, the former does not reject the null hypothesis of symmetry,

whereas the latter points to its rejection (↵ = 0.05). This suggests that the stylized

fact of asymmetry of financial returns may be too readily accepted when persistence and

heteroskedasticity are unaccounted for. Kurtosis estimates of the currency pairs lead to

the non-rejection of mesokurtosis in two series of returns, contradicting the conclusions

obtained from the traditional test.
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4.5. Appendix: Distributions used in simulation

All distributions used for simulation in Section 3 were chosen from the SGT family, with

two exceptions (the standard normal and t-student distributions). The SGT density re-

quires 5 parameters fSGT (x;µ, �,�, p, q) for location, scale, skewness and tail behavior

(kurtosis), respectively. Parametrizations used in the simulations are provided below.

Skewness

S4: N(0, 1)

S5: fSGT (0, 1, 0, 1.7, 2.5)

S6: fSGT (0, 1, 0, 1.6, 2.6)

S7: fSGT (0, 1, 0, 1.5, 2.8)

S8: fSGT (0, 1, 0, 1.9, 2.2)

A4: fSGT (0, 1,�0.5, 1.7, 2.5)

A5: fSGT (0, 1,�0.3, 1.7, 2.5)

A6: fSGT (0, 1, 0.2, 1.7, 2.5)

A7: fSGT (0, 1, 0.3, 1.6, 2.6)

A8: fSGT (0, 1, 0.5, 1.2, 4)

Kurtosis

S4: N(0, 1) for size, t(5) for power.

S5: fSGT (0, 1, 0, 1.7, 2.5)

S6: fSGT (0, 1, 0, 1.6, 2.6)

S7: fSGT (0, 1, 0, 1.5, 2.8)

S8: fSGT (0, 1, 0, 1.9, 2.2)

A4: fSGT (0, 1,�0.5, 1.7, 2.5)

A5: fSGT (0, 1,�0.3, 1.7, 2.5)

A6: fSGT (0, 1, 0.2, 1.7, 2.5)

A7: fSGT (0, 1, 0.3, 1.6, 2.6)

A8: fSGT (0, 1, 0.5, 1.2, 4)

68



CHAPTER 5

The impact of COVID-19 on S&P500 sector indices and

FATANG stocks volatility: An expanded APARCH model

ABSTRACT

In this paper we hypothesize that not all stocks and sectors are a↵ected equally by COVID-

19 in terms of return volatility. Specifically, we hypothesize that at least some sectors

(Information Technology, Consumer Discretionary, Telecom Services, Consumer Staples

and Energy) must show statistically significant di↵erences. We analyze eleven SP500

sectors and FATANG stocks, estimating an Asymmetric Power GARCH model including

a dummy variable to account for the outbreak. Results reveal an exacerbation of volatility

after February 2020 and validate our hypothesis with few exceptions. Based on a likelihood

ratio test, the null hypothesis is rejected in most cases in favor of our APARCH(1, 1).
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5.1. Introduction

Prior to the breakout of COVID-19, the USA witnessed a strong economic expansion,

which had a large positive impact on US stocks and originated the longest bull market

in US history. As the e↵ects of pandemic transferred to the US economy and financial

markets, the S&P 500 dropped 25% during March 2020. The year 2020 was thus charact-

erized by unusual variations in stock prices leading to a period of extremely high volatility.

This paper concerns the impact of COVID-19 on the volatility of financial returns. While

there is a general perception of impact, econometrical approaches are relevant to quantify

the statistical significance of such perception. Baietal2020 applied an extended GARCH-

MIDAS model to financial returns and a newly developed volatility tracker (EMV-ID) is

used to investigate the e↵ects of COVID-19 on volatility of several markets, between

January 2005 and April 2020. Results show that, up to a 24-month lag, the pandemic

had significant positive impacts on the permanent volatility of international stock mar-

kets, even after controlling for the influences of realized volatility, global economic policy

uncertainty and the volatility leverage e↵ect. Shehzadetal2020 found, based on the

Asymmetric Power GARCH model, that COVID-19 has significantly harmed the US and

Japan’s market returns to a greater extent than the Global Financial Crisis (GFC).

Assessing the impact of events on volatility has a long tradition in financial literature.

Gribisch2016 generalizes the basic Wishart multivariate stochastic volatility model by

allowing for state-dependent (co)variance and correlation levels and state-dependent volatil-

ity spillover e↵ects. The model is applied to five European stock index return series. Re-

sults show that the proposed regime-switching specification substantially improves the fit

to persistent covariance dynamics relative to the basic model. BrixLunde2015 investi-

gate the finite sample performance of the Prediction-based estimating functions (PBEFs)

– based estimator and compare its performance to that of the Generalized Method of

Moments (GMM). Banerjee2021 analyzes time-varying volatility spillovers between in-

dex future markets by applying an ADCC EGARCH (to address dynamic conditional

correlations) on the residuals of a VAR model, concluding that most markets that had

trade relations with China witnessed volatility contagion due the COVID-19 breakout as

well as for the presence of asymmetric volatility.

Researchers have been prolific with respect to the impact of COVID-19 on financial mar-

kets. Apart from detecting statistical significance, several authors have attempted to

provide an economic rationale underlying those relations. Baker2020 resorted to auto-

mated and human readings of newspapers, looking back to the year 1900, and found that

no other extreme event has impacted the markets as strongly as the current pandemic.

They suggest that such unprecedented impact may be due to the role of government re-

strictions on a service-oriented economy. Baek2020 applied a Markov-switching model
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to assess the impact of COVID-19 on total, systematic and idiosyncratic risk. While to-

tal and idiosyncratic risks have increased across all industries of the S&P500, systematic

risk appears to have increased in defensive industries such as telecom and utilities and

decreased in their aggressive counterparts such as automobiles and business equipment.

The authors attribute the di↵erence between industries to their respective price elastici-

ties. Additional contributions on the topic have been made byMazur2020, Verma2021,

Malgorzata2020 and Zaremba2020.

As the volatility of financial asset returns remains an important investigation topic in

finance, and due to the lack of empirical analyses involving S&P500, FATANG stocks and

S&P500 sector indices, the motivation of this study is to address and compare the impact

of COVID-19 on return volatility of these classes of US stocks and indices. We wish to

address how the three main stylized facts (see Cont2001) return volatility (clustering,

persistence and asymmetry) compare di↵erently among the eleven S&P500 sector indices

and the six FATANG stocks, and to conclude if the impact of COVID-19 has been di↵er-

ent in size and direction of financial returns.

Our contribution is threefold. Firstly, because Tesla has become an important player in

technology sector, we include it in the set of FAANG stocks and refer to the new set

jointly as FATANG. Second, we analyze COVID-19 impact on the volatility of all the

11 S&P 500 sector indices (Information Technology (IT), Health Care (HC), Financials

(FI), Consumer Discretionary (CD), Telecom Services (TS), Industrials (ID), Consumer

Staples (CS), Energy (EN), Utilities (UT), Real Estate (RE), and Materials (MT)) and

on the volatility of FATANG stocks’ returns (Facebook, Amazon, Tesla, Apple, Netflix

and Google). Considering all sectoral indices, and not just the global index, as is com-

mon, also contributes to di↵erentiate this investigation. Secondly, we include six stocks

in the empirical analysis to conclude more generally about the impact of COVID-19 on

the largest capitalization tech stocks. Finally, an extended Asymmetric Power GARCH

(APARCH) model is proposed to assess the statistical significance of COVID-19 on stock

volatility. Extreme events are, by definition, rare. We believe that taking the opportunity

to test the econometrical toolbox in stressful conditions is a valuable contribution to the

scientific community, not only in terms of descriptive but also predictive abilities.

Although it may be unsurprising that not all stocks/indices are a↵ected in the same man-

ner by COVID-19, it is important to assess if di↵erences are statistically significant, and

not merely by chance. Our research hypothesis is that at least some sectoral indices (IT,

CD, TS, CS, EN) must show significantly di↵erent behavior in terms of volatility. As

governments impose lockdown restrictions, IT and TS companies providing remote work

tools saw a surge in demand, while more idling time may increase online purchases and
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therefore bring higher demand to Consumer Discretionary products and services. Spend-

ing more time at home should also significantly increase the purchase of Consumer Staples.

We also hypothesize that the EN sector should be negative and significantly a↵ected, as

confinements halt the consumption of fuel for automobiles and airplanes.

The dataset includes prices and returns from March 9, 2009 (a market bottom after the

2008 subprime mortgage crisis) to May 24th, 2021. The time period was selected to in-

clude the longest bull market in the history of the US financial markets and to include

di↵erent clusters of volatility (not just the one resulting from COVID-19) in the estima-

tion process to better model, and describe the conditional heteroskedasticity of financial

returns. Specifically, we estimate the APARCH model twice, including a dummy variable

(0 before March 2020, 1 otherwise): once ending in December 2020 and another ending in

May 24th 2021. In the second estimation, we include an additional dummy (from January

2021 through May 24th 2021) to anticipate, although it may be premature, and assess

the impact of vaccination programs on volatility.

The paper is organized as follows: In Section 5.2 we discuss the econometrical methods

used in the paper and describe our dataset. Time varying volatility is modeled in Section

5.3 by using an AR-APARCH specification. Inspection of the estimated models point to

significant di↵erences in parameter estimates, volatility clustering, volatility persistence

and to an asymmetric e↵ect. Section 5.4 concludes the analysis and sheds light on the

volatility of returns for the financial assets under scrutiny.

5.2. Methodology

5.2.1. Econometrical framework

We start by establishing the typical representation of financial asset returns as a time

series with a predictable and a random component:

rt = E [rt | �t�1] + ut, (5.1)

where �t�1 is the relevant (past) information set until (and including) time period t� 1.

A natural assumption for the conditional mean (E [rt | �t�1]) is to model its dynamics as

a white noise process, because the empirical distributions of returns under study relate

to the most liquid and e�cient global equity markets. However, anticipating our findings

in the data analysis section, we specify the conditional mean equation as a fourth-order

autoregressive process, AR(4), in order to remove the observed linear dependency in

returns:

rt = c+ �1rt�1 + �2rt�2 + �3rt�3 + �4rt�4 + ut, (5.2)

where ut = zt�t and the standardized innovations (zt) are assumed to be independently

and identically distributed (i.i.d.) following a Student’s t distribution (seeBollerslev1987):
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zt ⇠ t (v), where t (v) is the zero-mean Student’s t distribution with v degrees of freedom.

This statistical distribution has a long tradition in econometrics as a popular choice from

the set of fat-tailed distributions, because it has finite second moment, of its mathemati-

cal tractability, and is often found capable of capturing the excess of kurtosis observed in

financial time-series. Other non-Normal alternative distributions have also been used in

econometrical literature. nelson91 proposed the Generalized Error distribution (GED),

while the Laplace distribution has been employed by GrangerDing1995. Hsieh1989

applied both the Student’s t and GED as alternative distributional models for innovations.

Stable Paretian distributions have been investigated, among others, by LiuBrorsen1995,

MittnikPaolellaRachev1998 and CurtoPintoTavares2009.

To model the conditional variance of ut: E [u2

t
| �t�1] = �

2

t
, we apply the Asymmetric

Power ARCH (APARCH) model proposed by DingGrangerEngle1993 in which the

power of the conditional heteroskedasticity equation is estimated from the data:

�
�

t
= ! +

qX

i=1

↵i (|ut�i|� �iut�i)
� +

pX

i=1

�i�
�

t�i
. (5.3)

This model couples the flexibility of a varying exponent with the asymmetry coe�cient,

therefore accounting for the well-known leverage e↵ect (see for exampleTavaresCurtoTavares2007

and CurtoPinto2012). APARCH is in fact a general class that encompasses seven

other models, namely the GARCH in Standard Deviation [� = 1, �i = 0 (i = 1, · · · , q)]
(Taylor1986 and Schwert1990), GARCH (p, q) [� = 2, �i = 0 (i = 1, · · · , p)] (Bollerslev1986)

and GJR [� = 2] (Glosten1993) models. As observed by Black1976, volatility responds

asymmetrically to the sign of any change in the price of the financial asset, i.e., volatil-

ity increases are greater after negative changes than after positive changes of the same

magnitude. This phenomenon has become known as the leverage e↵ect. By estimating

an asymmetrical model, we attempt to capture the presence of this leverage e↵ect in the

indices and stock returns under analysis. We show that the Utilities sector and Tesla

stock returns exhibit no leverage e↵ect, i.e. positive and negative news have the same

impact on volatility in the selected time period. However, the leverage e↵ect is detected

in the remaining sectors and FATANG stocks.

APARCH models are defined by their order, that is, the number of relevant dependence

lags, given by parameters (p, q). Despite the theoretical interest of general (p, q) models,

the (1, 1) specification is, in general, satisfactory when modeling financial returns’ volatil-

ity (see Bollerslev1992 and more recently hansenlunde05). To analyze the impact

of COVID-19 on volatility we expand the standard APARCH(1,1) model by including a

dummy (Dt) as exogenous variable that assumes the value 1 after the end of February,

2020 and 0 otherwise:

�
�

t
= ! + ↵ (|ut�i|� �ut�1)

� + �i�
�

t�1
+ ✓1Dt. (5.4)
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The model is estimated using maximum likelihood (MLE) and the APARCH model in

(5.4) is used to analyze how the three stylized facts of the returns’ volatility (clustering,

persistence and asymmetry) compare di↵erently among the eleven S&P 500 sector indices

and the six FATANG stocks.

By comparing the MLE values from the unrestricted model (APARCH) with those from

restricted models: � = 1 and � = 0 (Taylor/Schwert), � = 2 and � = 0 (GARCH) and

� = 2 (GJR), a nested Likelihood Ratio (LR) test can be constructed to compare the

in-sample goodness-of-fit of APARCH against either of the other three models, that is,

the LR test serves as a procedure to select which model is likely to provide the best fit.

Let l0 be the maximum log-likelihood value under the null hypothesis that the true model

is a Taylor/Schwert’s GARCH in standard deviation, a GARCH or a GJR, and l1 be

the maximum log-likelihood value under the alternative that the true model is APARCH,

then:

LR = 2(l1 � l0) (5.5)

should have a �
2 distribution with 2, 2 and 1 degrees of freedom, respectively, when the

null hypothesis is true. Rejecting the null hypothesis in favor of the alternative that

the true model is the proposed APARCH structure provides evidence in support of our

model as the data generating process. Our analysis focuses therefore on detecting this

asymmetric e↵ect and testing the significance of the COVID-19 dummy variable when

APARCH-modeled asymmetry is present.

5.2.2. Data

Our dataset consists of daily closing prices of the S&P 500, the eleven S&P 500 sector

indices and six American stocks, five of which go under the acronym FAANG (Facebook,

Amazon, Apple, Netflix and Google/Alphabet). We add Tesla as a sixth element and

refer to the set of six stocks as FATANG. The period under analysis starts on March 9,

2009 (the market bottom after the 2008 crash. We note that this local minimum is not

concurrent to all series – see Table 1). The two exceptions to the time period are Tesla

and Facebook stocks, in which prices go back to their first trading day, which occurred

later than the otherwise starting date of March 9, 2009. The end date is May 24, 2021 for

all series. We performed two distinct analysis: one until December 31st 2020 and another

until May 24th 2021, as per referee suggestion, to evaluate the impact of vaccination pro-

grams. All data was obtained from https://www.investing.com.

We compute the continuously compounded percentage rates of return as:

rt = 100⇥ [ln (Pt)� ln (Pt�1)] . (5.6)
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where Pt is the closing value for each index or stock at time t. Table 1 summarizes the

basic statistical properties of the data. All results, with the exception of skewness (which

is positive for two series), corroborate the stylized facts of financial returns.

Table 1. Summary statistics of rt

Index/Stock Starting date # Obs Mean Median Min Max St Dev Skew Kurt J-B
IT 9 Mar ’09 2981 0.08 0.12 -14.98 11.30 1.34 -0.47 12.19 0.000
HC 9 Mar ’09 2981 0.05 0.08 -10.53 7.31 1.07 -0.36 8.82 0.000
FI 9 Mar ’09 2981 0.05 0.07 -15.07 16.33 1.72 0.31 15.42 0.000
CD 9 Mar ’09 2981 0.08 0.13 -12.88 8.29 1.23 -0.59 9.99 0.000
TS 9 Mar ’09 2981 0.03 0.07 -11.03 8.80 1.14 -0.41 8.46 0.000
ID 9 Mar ’09 2981 0.06 0.08 -12.16 12.00 1.33 -0.41 10.84 0.000
CS 9 Mar ’09 2981 0.04 0.05 -9.69 8.07 0.88 -0.38 15.17 0.000
EN 9 Mar ’09 2981 -0.00 0.02 -22.42 15.11 1.73 -0.90 19.63 0.000
UT 9 Mar ’09 2981 0.03 0.09 -12.27 12.32 1.12 -0.28 19.54 0.000
RE 9 Mar ’09 2981 0.05 0.09 -18.09 16.24 1.70 0.07 16.93 0.000
MT 9 Mar ’09 2981 0.05 0.09 -12.15 11.00 1.41 -0.46 7.22 0.000
SP500 9 Mar ’09 2981 0.05 0.07 -12.77 8.97 1.14 -0.64 14.32 0.000
FACEBOOK 18 May ’12 2170 0.09 0.11 -21.02 25.94 2.34 0.34 15.11 0.000
AMAZON 9 Mar ’09 2981 0.13 0.10 -13.53 23.74 2.07 0.64 10.81 0.000
TESLA 29 Jun ’10 2646 0.19 0.12 -23.65 21.83 3.53 -0.04 6.05 0.000
APPLE 9 Mar ’09 2981 0.13 0.11 -13.77 11.32 1.79 -0.27 5.98 0.000
NETFLIX 9 Mar ’09 2981 0.15 0.05 -42.92 35.22 3.20 -0.30 23.34 0.000
GOOGLE 9 Mar ’09 2981 0.08 0.07 -11.77 14.89 1.62 0.29 9.67 0.000

S&P 500 sectors: Information Technology (IT), Health Care (HC), Financials (FI), Consumer Discre-
tionary (CD), Telecom Services (TS), Industrials (ID), Consumer Staples (CS), Energy (EN), Utilities
(UT), Real Estate (RE) and Materials (MT). Skew: Coe↵. of Skewness, Kurt: Coe↵. of Kurtosis and
J-B is the p�value associated to the Jarque-Bera test.

We note that average returns are all positive but close to zero (higher means correspond

to the FATANG stocks), with the exception of the Energy sector. The distribution of re-

turns appears to be asymmetric as reflected by negative and positive skewness estimates.

All series exhibit heavy tails and show a strong departure from normality (the skewness

and kurtosis coe�cients are all statistically di↵erent from those of the Normal distribu-

tion). The Jarque-Bera normality test statistic is highly significant, which points to the

departure of rt from normality for all series.

In 2020, some sectors have seen a more definitive shock than others (positive or negative).

The EN sector was down more than 37%, primarily because crude-oil prices entered a bear

market, and have been battered by fears that the outbreak could hurt uptake of crude from

China. Three other sectors stand out for their negative returns and impact of COVID-19:

RE (�5.17%), FI (�4.10%) and UT (�2.83%). Returns of the remaining sectors have

been positive. The best performers among the S&P 500’s sectors were IT (+42%), CD

(+32%) and TS (+22%). The CS sector showed the weakest growth: 7.63%. Regarding

FATANG stocks, the growth in price has been substantial, with Tesla standing out with

a remarkable 743.44%. Apple, Amazon, Netflix, Facebook and Google fill the next ranks

in terms of stock price growth, contributing significantly to the positive performance of

the IT sector.
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Table 2. Growth of Stocks and S&P 500 Sector Indices

Prices Growth
Index/Stock Mar 3 ’09 Dec 31 ’19 Dec 31 ’20 Dec 31 ’19 Dec 31 ’20
IT 199.62 1611.17 2291.28 707.12% 42.21%
HC 253.27 1188.20 1324.01 369.14% 11.43%
FI 83.77 511.39 490.43 510.47% -4.10%
CD 125.72 986.29 1302.56 684.51% 32.07%
TS 88.10 181.64 221.92 106.17% 22.18%
ID 132.83 687.60 749.54 417.65% 9.01%
CS 199.80 646.97 696.32 223.81% 7.63%
EN 310.92 456.46 286.14 46.81% -37.31%
UT 113.81 328.36 319.07 188.52% -2.83%
RE 44.42 240.32 227.90 441.02% -5.17%
MT 108.82 385.85 455.71 254.58% 18.11%
SP500 676.53 3230.78 3756.0701 377.55% 16.26%
FACEBOOK 38.23 205.25 272.00 436.88% 32.52%
AMAZON 60.49 1847.84 3256.93 2954.79% 76.26%
TESLA 4.77 83.67 705.67 1655.48% 743.44%
APPLE 2.56 72.78 130.20 2743.12% 78.89%
NETFLIX 5.50 323.57 540.73 5783.09% 67.11%
GOOGLE 144.50 1337.02 1752.64 825.27% 31.09%

S&P 500 sectors: Information Technology (IT), Health Care (HC), Finan-
cials (FI), Consumer Discretionary (CD), Telecom Services (TS), Industrials
(ID), Consumer Staples (CS), Energy (EN), Utilities (UT), Real Estate (RE)
and Materials (MT).

In terms of correlation analysis, Figure 11 shows positive correlations between all stocks

and sectoral indices, i.e. all returns tend to move in the same direction. We note that

correlations remain positive and generally increase (larger, darker circles) after March

2020 (after COVID-19). This corroborates the well known concern with portfolio theory

that diversification benefits erode in face of extreme events (correlations increase and tend

to +1).

5.3. Empirical Results

In Table 3, we report the MLE APARCH(1,1) parameter estimates for the 18 return series.

Volatility clustering is evident in all series, from the signal and significance of estimates

for ↵ and �. By ’volatility clustering’ we mean persistence of high and low volatility, i.e.

large (absolute) returns tend to be followed by returns of similar (large) magnitude.

Inspection of parameter estimates reveals that the ARCH e↵ect (volatility clustering) is

present in all series (↵ and � are significant across the board with only slight di↵erences).

For most series, APARCH(1,1) processes are highly persistent (almost-integrated: Face-

book and Netflix) with the estimate for ↵ + � ranging from 0.9492 to 0.9999, i.e. shocks

on volatility not only cluster but also cancel out slowly, in line with the extant literature.

These results are of practical relevance to practitioners, pointing to a slow decay of large

(absolute) returns when dealing with FATANG stocks and S&P500 sectoral indices.

1As per referee suggestion.
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Figure 1. Pearson correlation between FATANG stocks, S&P 500 and
sectoral indices

S&P 500 sectors: Information Technology (IT), Health Care (HC), Financials
(FI), Consumer Discretionary (CD), Telecom Services (TS), Industrials (ID),
Consumer Staples (CS), Energy (EN), Utilities (UT), Real Estate (RE) and
Materials (MT). We use the R corrplot package. Larger, darker circles represent
stronger absolute value correlations.

The leverage e↵ect (�) is statistically significant for all series, except for Utilities sector

and Tesla. By leverage e↵ect we mean the asymmetric impact of good and bad news

on the volatility of financial returns. For the remaining series, where leverage is present,

negative shocks (bad news) have a stronger impact than their positive counterpart (good

news).

Considering the e↵ect of COVID-19 on return volatility, results show that the estimate

for the coe�cient (✓1) of the dummy variable is always positive, revealing an increase in

volatility after February 1st, 2020. However, the estimate is statistically significant only

for the IT, CD, TS, ID, CS and EN sectors, in spite of the significance of the asymmetric

� estimates. The statistical significance of ✓̂1 reinforces the impact of shocks (due to bad

news) on volatility, i.e. COVID-19 exacerbated the leverage e↵ect. From the performance

of these sectoral indices in 2020 we can conclude that higher volatility had a positive

impact on the returns of the first five, extending their uptrend in price, and a strong

negative impact on the returns of the EN sector (see Table 2). For FATANG stocks, the

estimate is statistically significant for Apple and Google only, and the volatility had a

strong positive impact on their prices. For the remaining sectoral indices and prices, the

impact of COVID-19 may be already included in the asymmetric � estimate, reinforcing,
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but not increasing statistically, the e↵ect of bad news on volatility.

In terms of the Likelihood Ratio test results, the rejection of the null in favor of the

APARCH model occurs in most of the eighteen series under study. However, in the case

of Tesla, we do not reject that the data may have been generated by the symmetric Tay-

lor/Schwert or GARCH models. This conclusion is in accordance with the aforementioned

insignificance of the � estimate. Non-rejection of the null in favor of the asymmetric GJR

model occurs in the IT, CD, UT and RE time series.

Our hypothesis is generally validated – sectors that seemed a priori candidates for a sta-

tistically significant impact of COVID-19 (IT, CD, TS, CS and EN) on volatility show in

fact significance, most likely due to lockdown-induced behaviors such as remote work and

increased consumption (the one exception is the ID sector, where we did not expect sig-

nificance). Our results are generally in line with the financial COVID-19 literature: while

most authors describe a relevant impact of COVID-19 on financial markets, Baek2020

finds that systematic risk has increased significantly for telecoms. Verma2021 and

Mazur2020 observe significant downturns in the energy sector (specifically crude oil

companies). The latter author also establishes the impact of COVID-19 in the food and

software industries.

We have re-estimated our APARCH model to include the period from January 1, 2021

through May 24th 2021 and evaluate the impact of vaccination programs on volatility as

well as leverage of the same stocks and sectoral indices2. To that e↵ect, we introduced

an additional dummy variable Vt in Equation 5.4 (1 from January 1st 2021 through May

24th 2021, 0 otherwise):

�
�

t
= ! + ↵ (|ut�i|� �ut�1)

� + �i�
�

t�1
+ ✓2Dt + �Vt (5.7)

Table 3 shows the estimate for ✓1, which represents the e↵ect of COVID-19 until Decem-

ber 31st, 2020, while the estimate for ✓2 that represents the e↵ect of COVID-19 until

May 24, 2021 (the sample is increased by five months). The estimate �̂ represents the

impact of the vaccination on the US stock markets volatility. Re-estimating the model

necessarily a↵ected the initial estimates for the remaining parameters. New estimates

show very small deviations, which, for clarity, we do not show. These results are available

upon request to the authors.

The estimates for ✓2 (which include data from the first five months of 2021) are very

close to those of ✓1 (which included data up until December 2020 only). Re-estimated

values are slightly di↵erent, signs are maintained and only those estimates that were

statistically significant so remain. Thus, it seems that COVID-19 impact on FATANG

2As per referee suggestion.
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and S&P500 sectors did not change substantially in the first five months of vaccination.

With regards to �, estimates are almost all negative (except for EN sector and Google),

indicating a negative impact of vaccination on volatility. However, none of the estimates

is statistically significant. Therefore, we cannot yet conclude that vaccination had a

statistically significant impact on US stock market volatility.
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5.4. Conclusion

We compared the impact of COVID-19 on US stock prices and volatility by analyzing the

continuously compounded returns of the eleven S&P 500 sectors and the six FATANG

stocks from March 9th, 2009 to May 24th, 2021.

We note the remarkable growth of US stocks since the subprime crisis in 2008 until De-

cember, 2019. In 2020, however, we observed mixed results, as some sectors were more

heavily impacted than others. All year-to-year returns of FATANG stocks have exceeded

30%, and a similar performance was only achieved by the IT and CD sectors.

To assess the e↵ect of COVID-19 on return volatility we proposed an expanded Asymme-

tric Power GARCH (APARCH) model (by introducing a dummy variable controlling for

the breakout of COVID-19). Results show that the estimate for its coe�cient is always

positive, revealing an increase in volatility after February 2020. The estimate is statisti-

cally significant for the IT, CD, TS, ID, CS and EN sectors. For FATANG stocks, the

estimate is statistically significant for Apple and Google. These results generally validate

our research hypothesis (with the exception of increased volatility of Apple and Google),

and serve as reminder to portfolio and risk managers that while it may be unsurprising

that not all sectors of the economy are a↵ected equally in terms of volatility, there may be

certain regularities in population behavior that impact specific sectors. COVID-19 should

therefore serve as a learning experience to identify which sectors may be most a↵ected by

similar circumstances in the future.

Based on the likelihood ratio test, we conclude that the symmetrical GARCH model is

rejected and the asymmetrical GJR model is the particular case of APARCH that is ac-

cepted more often in our data set. For most series, therefore, we conclude for the presence

of the volatility leverage e↵ect. Exceptions are the UT sector and Tesla, where good and

bad news have the same level of impact. APARCH processes are highly persistent for

most series. The exceptions are the UT, TS, CS, CD sectors, and Apple, where the e↵ect

of shocks on volatility is less persistent, canceling out quickly.

Concluding, we can retrospectively state that the COVID-19 outbreak did not hit all the

US sectors and all the US stock prices in the same manner, and our analysis provides an

attempt at quantifying those di↵erences. The higher volatility has favored mainly FA-

TANG stocks and the IT, CD, TS, ID and CS sectors, while the EN sector was the most

negatively a↵ected. Promising, albeit simple, explanations are the significant increase in

remote work (IT and TS) and the stay-at-home population behavior (and needs), which

became prevalent as a result of lockdown restrictions (CD and CS).
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We have focused on the S&P 500 due to its dimension, recognition and importance for

portfolio managers. Further research can be done by replicating our method to indices

from di↵erent countries (e.g. EUROSTOXX 600) and asset classes (e.g. fixed income).

As countries are still rolling out their vaccination programs, the available sample size to

assess their impact may be too small. We did not find that vaccination has impacted

return volatility in this time period. Re-estimating models when more data is available

may also prove a valuable contribution to better understand the impact of pandemic

events on stock market returns and volatility.
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CHAPTER 6

Conclusion

As stated in the Introduction, the main goal of this thesis is to tackle known estimation is-

sues pertaining to the unreliability of standard estimators of distributional moments when

traditional regularity conditions are violated, such as the normality of random variables

and the identical and independent distribution of observations, as well as the absence of

collinearity between explanatory variables in linear regression models. The author con-

cludes that, generally, the ongoing quest for more robust alternatives proves valuable as

it increases the reliability of estimation procedures.

In Chapter 2, the main conclusion is that the geometric mean provides a better fit to

portfolio realized price-to-earnings values. While several authors argue that the harmonic

mean is preferable to average ratios due to the arithmetic mean’s sensitivity to in-sample

ratio sizes, it is also true that the harmonic mean tends strongly towards the smallest

observations, mitigating the impact of large outliers and amplifying the impact of smaller

ones. This conclusion is confirmed by applying this theoretical result to real financial

time series. In this regard, further research may be conducted by extending the results

to other financial ratios and quantities.

In Chapter 3, the issue of variance partitioning and relative importance of independent

variables in linear regression is addressed. While a wide set of relative importance metrics

is available to researchers, drawing meaningful conclusions from data requires the careful

analysis of correlation matrices must be performed. As relative importance is a construct

rather than an actual quantity to be estimated, it is argued that no measure should be

applied as a general solution. Notwithstanding, our measure tackles the known issue of

single analysis methods being strongly a↵ected by the presence of collinearity, while being

intuitive and easy to compute. It accounts for this interdependence by incorporating the

Variance Inflation Factor as a weighting criterium when assigning shares of the coe�cient

of determination to explanatory variables to determine their relative importance. On this

topic, further research may be conducted by either extending the simulation settings to

di↵erent distributions, as well as to the presence of heteroskedasticity and autocorrelation,

or incorporating the Variance Inflation Factor into other existing single analysis methods.

In Chapter 4, using Mean Squared Error as a loss function, we conclude that employing

the trimmed mean, the median and an adjusted median provide more accurate estimates

of higher order moments. Regarding the GMM tests and confidence intervals, we conclude
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that, to estimate skewness in the presence of heteroskedasticity and autocorrelation, our

solution is a more robust procedure to estimate standard errors. With respect to kurto-

sis, none of the estimators considered provides reliable estimates of the fourth moment.

Sample kurtosis behaves erratically, rendering the estimation inaccurate even for sample

sizes as large as n = 5000. Further research may be conducted by extending the results to

evaluate the behavior of hypothesis tests and confidence intervals to temporal aggregation

and/or the multivariate case.

In Chapter 5, to assess the e↵ect of COVID-19 on return volatility we proposed an ex-

panded Asymmetric Power GARCH (APARCH) model by introducing a dummy variable

controlling for the breakout of COVID-19. Results show that the estimate for its co-

e�cient is always positive, revealing an increase in volatility after February 2020. The

estimate showed statistical significance for several sectors of the S&P500 index, namely

the Information Technology, Consumer Discretionary, Telecom, Industrial, Consumer Sta-

ples and Energy sectors. For FATANG stocks, the estimate showed statistical significance

for Apple and Google. These results generally validate our research hypothesis, and serve

as reminder to portfolio and risk managers that while it may be unsurprising that not all

sectors of the economy are a↵ected equally in terms of volatility, there may be certain reg-

ularities in population behavior that impact specific sectors. COVID-19 should therefore

serve as a learning experience to identify which sectors may be most a↵ected by similar

circumstances in the future.

84



CHAPTER 7

Appendix (code)

This appendix contains samples of the R code written for simulation in the first three

articles. Code for the last article is excluded because no simulation was performed.
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7.1. Averaging ratios: geometric vs. harmonic mean
library(moments)

library(rmutil)

# Mean definition

# Geometric mean

gm_mean <- function(a){prod(a)^(1/length(a))}

# Harmonic mean

hm_mean <- function(b){length(b)/(sum(1/b))}

## CUBIC ROOT AVERAGE

dados <- c(300, 20, 10)

hm_mean(dados)

CRAve <- function(x){

len <- length(x)

invs <- vector(length=len)

weigs <- vector(length=len)

for(j in 1:len){

invs[j] <- 1/(x[j]^(1/2))

}

for(j in 1:len){

weigs[j] <-invs[j]/sum(invs)

}

CRAve <- t(x)%*%weigs

return(CRAve)

}

CRAve(dados)

# Sample sizes

size <- 10

smplsize <- c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100)

library(rmutil)

numbout <- matrix(ncol=3, nrow=size)

for(j in 1:size) {

n <- smplsize[j]

reps <- 10000

SM1 <- matrix(NA,reps)

for(i in 1:reps) {

#(rat <- rbeta(n, 1, 1))

(rat <- runif(n, 0, 1))

# Symmetric distributions

#(rdx <- rnorm(n, 2, 1))

#(rdx <- rnorm(n, 10, 5))

#(rdx <- rlogis(n, 2, 1))

#(rdx <- rlogis(n, 10, 5))

# (rdx <- rt(n, 10))

#(rdx <- rt(n, 10))

## BETA(3, 3)

v <- 3

w <- 3

#(rdx <- rbeta(n, v, w))

v <- 2

w <- 5

#(rdx <- rbeta(n, v, w))
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v <- 1

w <- 10

#(rdx <- rbeta(n, v, w))

## LOGNORMAL

# (rdx <- rlnorm(n, 0, 1))

# (rdx <- rlnorm(n, 2, 1))

# (rdx <- rlnorm(n, 4, 1))

## WEIBULL

lam <- 1 # scale

k <- 2 # shape

# (rdx <- rweibull(n, k, lam))

#(rdx <- rweibull(n, 1, 1))

lam <- 2 # scale

k <- 5 # shape

#(rdx <- rweibull(n, k, lam))

## GAMMA

b <- 1 # scale

c <- 6 # shape

#(rdx <- rggamma(n, c, b, 1))

b <- 2 # scale

c <- 5 # shape

#(rdx <- rggamma(n, c, b, 1))

b <- 3 # scale

c <- 3 # shape

#(rdx <- rggamma(n, c, b, 1))

## EXPONENCIAL

# (rdx <- rexp(n))

# (rdx <- rexp(n, 5))

# (rdx <- rexp(n, 10))

## CHI-SQUARED(1)

# v <- 1

# (rdx <- rchisq(n, v))

v <- 5

(rdx <- rchisq(n, v))

#v <- 15

#(rdx <- rchisq(n, v))

(rdy <- rdx/rat)

(rat <- rdx/rdy )

(realrat <- sum(rdx)/sum(rdy))

(len <- length(rat))

powermean <- function(k) { (((1/len)*sum(rat^k))^(1/k)-realrat)^2}

opt <- optimize(powermean, interval=c(-100, 100), maximum=FALSE)

(SM1[i] <- opt$minimum)

## MSE

#MSEHA <- ((hm_mean(rat)-realrat)^2)/len

#MSEGA <- ((gm_mean(rat)-realrat)^2)/len

#MSECRA <- ((CRAve(rat)-realrat)^2)/len

#MSEAA <- ((mean(rat)-realrat)^2)/len

}

numbout[j, 1] <- quantile(SM1, 0.025)

numbout[j, 2] <- mean(SM1)

numbout[j, 3] <- quantile(SM1, 0.975)

#numbout[j, 4] <- MSEHA

#numbout[j, 5] <- MSEGA

#numbout[j, 6] <- MSECRA

#numbout[j, 7] <- MSEAA
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7.2. Revisiting relative importance: a VIF-based measure

library(MASS)

library(mvtnorm)

library(car)

library(lmSupport)

library(ppcor)

library(regclass)

library(QuantPsyc)

library(matrixStats)

library(gridExtra)

#number of observations

k = 0

n <- 100

nsims <- 500 #number of simulations

#Create matrix to store simulation results

simres <- matrix(, nsims, 4)

simres2 <- matrix(, nsims, 4)

iqrs <- matrix(, 19, 4)

rsmpl <- matrix(,19,4)

rhocount = 1

######SIMULATION

for (rho in seq(-0.9,0.9, by = 0.1)){

for (z in 1:nsims){

j=0

#Generate covariance matrix

varX1 <- 1

varX2 <- 1

varX3 <- 1

varX4 <- 1

varvec <- cbind(varX1, varX2, varX3, varX4)

cormat <- matrix(, nrow = 4, ncol = 4)

covmat <- matrix(, nrow = 4, ncol = 4)

for (i in 1:4){

for(j in 1:4){

covmat[i,j] = rho^abs(i-j)*sqrt(varvec[i])*sqrt(varvec[j])

}

}

#Cov matrix as described in the paper (see Table 2, first line)

#Simulate Multivariate Normal, 4 regressors

bcoeffs <- cbind(5, 1, 1, 1) # Coefficients

X <- rmvnorm(n, c(0, 0, 0, 0), sigma = covmat) # Regressors

intercept <- 0 #Intercept

truersq <- 0.90 #Desired true rsq
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#Computing variance without error term to control R^2

woerror <- t(intercept + bcoeffs %*% t(X)) #True model

Xvar <- var(woerror) #Variance of true model

u <- rnorm(n, sd = sqrt((Xvar/truersq)-Xvar)) #Setting the variance of u to control rsq

#Generate Y and check Rsq

Y <- t(intercept + bcoeffs %*% t(X) + u) #Y

sum((woerror - mean(Y))^2)/sum((Y-mean(Y))^2) #Check Rsq (should be close to ’truersq’, difference due to sampling error)

#Estimate linear model

model <- lm(Y ~ scale(X[,1]) + scale(X[,2]) + scale(X[,3]) + scale(X[,4]))

rsq <- summary(model)$r.squared #storing rsquared

#Compute semipartial correlations from output

a <- cor(lm(scale(X[,1]) ~ scale(X[,2]) + scale(X[,3]) + scale(X[,4]))$residuals, Y, method="pearson")^2

b <- cor(lm(scale(X[,2]) ~ scale(X[,1]) + scale(X[,3]) + scale(X[,4]))$residuals, Y, method="pearson")^2

c <- cor(lm(scale(X[,3]) ~ scale(X[,2]) + scale(X[,1]) + scale(X[,4]))$residuals, Y, method="pearson")^2

d <- cor(lm(scale(X[,4]) ~ scale(X[,2]) + scale(X[,3]) + scale(X[,1]))$residuals, Y, method="pearson")^2

sqpart <- rbind(a,b,c,d)

#Building the measure

sumindividual <- a + b + c + d #Sum individual squared part correlations

vifs <- VIF(model) #Compute VIFs for each regressor

vifweights <- vifs/sum(vifs) #Compute VIF weights

#Generate matrices to store shares

unexpshare <- matrix(,4,1)

expshare <- matrix(,4,1)

totalshare <- matrix(,4,1)

#Fill matrices

unexpshare = vifweights %*% (rsq-sumindividual)

expshare = sqpart

totalshare = unexpshare + expshare

simres[z,] <- t(totalshare)

#print(all.equal(sum(totalshare), rsq)) #check if shares add up to r-squared

#sumindividual <= rsq #Check supression

}

iqrs[rhocount,] <- cbind(iqr(simres[,1]),iqr(simres[,2]), iqr(simres[,3]), iqr(simres[,4]))

rhocount = rhocount + 1

}
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7.3. Contributions to the diagnosis of Skewness and Kurtosis
library(e1071)

library(matlib)

library(muStat)

##########################################################

#ESTIMATORS

#Aux function adj_median

adj_median <- function(arr){

med1 <- median(arr)

sumleft <- sum(med1-arr[arr<med1])

sumright <- sum(arr[arr>med1]-med1)

tot <- sumleft + sumright

sk <- (sumright-sumleft)/tot

diff1 <- abs(mean(arr)-median(arr))

diff2 <- sk*diff1

if(mean(arr)< median(arr)) {

aMED <- median(arr)-diff2 } else {

aMED <- median(arr)+diff2 }

return(aMED)

}

#Skewness

#Mean

emeans <- function(n, arr){

mean((arr-mean(arr))^3)/(var(arr)^(3/2))

}

#Trimmed mean

tmeans <- function(n, arr){

tmean = mean(arr, trim = 1/(2*sqrt(n-4)))

mean((arr-tmean)^3)/(var(arr)^(3/2))

}

#Median

emedians <- function(n,arr){

mean((arr-median(arr))^3)/(var(arr)^(3/2))

}

#Adjusted median

eadjmeds <- function(n,arr){

mean((arr-adj_median(arr))^3)/(var(arr)^(3/2))

}

#Kurtosis

#Mean

emeank <- function(n, arr){

mean((arr - mean(arr))^4)/(var(arr)^(2))

}

#Trimmed mean

tmeank <- function(n, arr){

tmean = mean(arr, trim = 1/(2*sqrt(n-4)))

mean((arr-tmean)^4)/(var(arr)^(2))

}
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#Median

emediank <- function(n,arr){

mean((arr-median(arr))^4)/(var(arr)^(2))

}

#Adjusted median

eadjmedk <- function(n,arr){

mean((arr-adj_median(arr))^4)/(var(arr)^(2))

}

##########################################################

reps = 10000

n = 10

x = 0

Ssse <- matrix(0, 4,7)

Ksse <- matrix(0, 4,7)

repeat{

#DISTRIBUTIONS

#1. Chi-square distribution

#Parameters

k = 1

#true skewness and kurtosis

scsq = sqrt(8/k)

kcsq = (12/k) + 3

#simulation

csq <- rchisq(n,k)

#plot(density(csq))

#2. t-student distribution

#Parameters

v = 5

#true skewness and kurtosis

st = 0

kt = 6/(v-4) + 3

#simulation

t <- rt(n, v)

#plot(density(t))

#3. Beta distribution

#Parameters

alphapar = 1

betapar = 10

#true skewness and kurtosis

sbeta = (2*(betapar-alphapar)*sqrt(alphapar+betapar+1))/((alphapar+betapar+2)*sqrt(alphapar*betapar))

kbeta = (6*((alphapar-betapar)^2 * (alphapar+betapar+1)-alphapar*betapar*(alphapar+betapar+2)))

/(alphapar*betapar*(alphapar+betapar+2)*(alphapar+betapar+3)) + 3

#simulation

beta <- rbeta(n,alphapar,betapar)

#plot(density(beta))

kbeta
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#4. Uniform distribution

#Parameters

low = 0

high = 1

#true skewness and kurtosis

sunif = 0

kunif = -6/5 + 3

#simulation

unif <- runif(n,low,high)

#plot(density(unif))

#5. Standard normal distribution

#Parameters

m = 0

sig = 1

#true skewness and kurtosis

snor = 0

knor = 3

#simulation

norm <- rnorm(n,m,sig)

#plot(density(norm))

#6. Gamma distribution

#Parameters

shape = 1

rate = 6

#true skewness and kurtosis

sgam = 2/sqrt(shape)

kgam = (6/shape) + 3

#simulation

gamma <- rgamma(n,shape,rate)

#plot(density(gamma))

#7. Exponential distribution

#Parameters

lamb = 1

#true skewness and kurtosis

sexp = 2

kexp = 6 + 3

#simulation

exp <- rexp(n,lamb)

#plot(density(exp))

#Storing data

truth <- matrix(c(scsq,kcsq,st,kt,sbeta,kbeta,sunif,kunif,snor,knor,sgam,kgam,sexp,kexp),7,2,byrow=TRUE)

data <- cbind(csq,t,beta,unif,norm,gamma,exp)

#for (i in 1:7){

# data[10,i] <- 50 * quantile(data[,i], probs = 0.25)

#}
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#Estimates

#Skewness

Ssse = Ssse + (sweep(rbind(

apply(data,2, function(arr) emeans(n,arr)),

apply(data,2, function(arr) tmeans(n,arr)),

apply(data,2, function(arr) emedians(n,arr)),

apply(data,2, function(arr) eadjmeds(n,arr))), 2, truth[,1]))^2

#Kurtosis

Ksse = Ksse + (sweep(rbind(

apply(data,2, function(arr) emeank(n,arr)),

apply(data,2, function(arr) tmeank(n,arr)),

apply(data,2, function(arr) emediank(n,arr)),

apply(data,2, function(arr) eadjmedk(n,arr))), 2, truth[,2]))^2

x = x + 1

if(x == reps) {

rownames(Ssse) = c(’Mean’, ’Trimmed Mean’, ’Median’, ’Adj. Mean’)

rownames(Ksse) = c(’Mean’, ’Trimmed Mean’, ’Median’, ’Adj. Mean’)

break}

}

t(sqrt(Ssse/reps))

t(sqrt(Ksse/reps))

reps = 1000

n1 = 50

n2 = 250

n3 = 500

n4 = 1000

n5 = 2500

n6 = 5000

set.seed(123)

data1 <- matrix(runif(n1 * reps,0,1), nrow = reps)

data2 <- matrix(runif(n2 * reps,0,1), nrow = reps)

data3 <- matrix(runif(n3 * reps,0,1), nrow = reps)

data4 <- matrix(runif(n4 * reps,0,1), nrow = reps)

data5 <- matrix(runif(n5 * reps,0,1), nrow = reps)

data6 <- matrix(runif(n6 * reps,0,1), nrow = reps)

#OUTLIER REPLACEMENT

for (i in 1:1000){

data1[i,10] <- 50 * quantile(data1[i,], probs = 0.25)

data2[i,10] <- 50 * quantile(data2[i,], probs = 0.25)

data3[i,10] <- 50 * quantile(data3[i,], probs = 0.25)

data4[i,10] <- 50 * quantile(data4[i,], probs = 0.25)

data5[i,10] <- 50 * quantile(data5[i,], probs = 0.25)

data6[i,10] <- 50 * quantile(data6[i,], probs = 0.25)

}

a <- apply(data1,1, function(arr) eadjmedk(n1,arr))

b <- apply(data2,1, function(arr) eadjmedk(n2,arr))

c <- apply(data3,1, function(arr) eadjmedk(n3,arr))

d <- apply(data4,1, function(arr) eadjmedk(n4,arr))

e <- apply(data5,1, function(arr) eadjmedk(n5,arr))

f <- apply(data6,1, function(arr) eadjmedk(n6,arr))
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#SKEWNESS

library(gld)

library(tidyverse)

library(e1071)

library(sgt)

########CALCULATION OF SKEWNESS FOR SGT DISTRIBUTION

skewsgt <- function (mu, sigma, lambda, p, q){

v = (q^(-1/p))*(1/(sqrt((((3*lambda^2)+1)*(beta(3/p,q-(2/p))/beta(1/p,q))

-4*(lambda^2)*((beta(2/p, q-(1/p))/beta(1/p,q))^2)))))

skewsgtc = ((2 * (q^(3/p)) * lambda * ((v*sigma)^3)) / (beta(1/p,q)^3))

* ( 8 * lambda^2 * beta(2/p, q-(1/p))^3 - 3 * (1+3*lambda^2)

* beta(1/p,q) * beta(2/p, q-(1/p)) * beta(3/p, q-(2/p)) + 2 * (1+lambda^2) * beta(1/p,q)^2 * beta(4/p,q-(3/p)))

return(skewsgtc)

}

varsgt <- function(mu,sigma,lambda,p,q){

v <- (q^(-1/p))*(1/(sqrt((((3*lambda^2)+1)*(beta(3/p,q-(2/p))/beta(1/p,q))

-4*(lambda^2)*((beta(2/p, q-(1/p))/beta(1/p,q))^2)))))

varsgtc = (((v*sigma)^2)*q^(2/p)) * ( (3*lambda^2 + 1)*(beta(3/p,q-(2/p))/beta(1/p,q))

-(4*lambda^2) * ((beta(2/p,q-(1/p))/beta(1/p,q))^2))

return(varsgtc)

}

################################TEST SIZE#############################################

s1 = 0

s2 = skewsgt(0 , 1, 0, 1.7, 2.5)/(varsgt(0 , 1, 0, 1.7, 2.5)^(3/2))

s3 = skewsgt(0,1, 0, 1.6, 2.6)/(varsgt(0,1, 0, 1.6, 2.6)^(3/2))

s4 = skewsgt(0, 1, 0, 1.5, 2.8)/(varsgt(0, 1, 0, 1.5, 2.8)^(3/2))

s5 = skewsgt(0, 1, 0, 1.9, 2.2)/(varsgt(0, 1, 0, 1.9, 2.2)^(3/2))

param <- cbind(s1, s2, s3, s4, s5)

nsims = 200

MATFINAL <- lapply(1:6, matrix, data = NA, nrow = nsims, ncol = ncol(param))

MATFINAL1 <- lapply(1:3, matrix, data = NA, nrow = nsims, ncol = ncol(param))

for (z in 1:nsims){

size = 500

MATS <- lapply(1:3, matrix, data = NA, nrow = size, ncol= 5)

j = 0

for (rho in c(0, 0.5, 0.8)){

j = j + 1

S = rnorm(size)

MATS[[j]][1, 1] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 1] = rho*MATS[[j]][ssize - 1, 1] + S[ssize]

}
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S = rsgt(size,mu = 0, sigma = 1, lambda = 0, p = 1.7, q = 2.5, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 2] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 2] = rho*MATS[[j]][ssize - 1, 2] + S[ssize]

}

S = rsgt(size,mu = 0, sigma = 1, lambda = 0, p = 1.6, q = 2.4, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 3] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 3] = rho*MATS[[j]][ssize - 1, 3] + S[ssize]

}

S = rsgt(size,mu = 0, sigma = 1, lambda = 0, p = 1.5, q = 2.3, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 4] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 4] = rho*MATS[[j]][ssize - 1, 4] + S[ssize]

}

S = rsgt(size,mu = 0, sigma = 1, lambda = 0, p = 1.4, q = 2.2, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 5] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 5] = rho*MATS[[j]][ssize - 1, 5] + S[ssize]

}

}

i = 0

j = 0

T = size - 1

for (a in 1:3){

for(b in 1:ncol(param)){

avgcubdev <- sum((MATS[[a]][, b] - mean(MATS[[a]][, b]))^3)/T

skew = skewness(MATS[[a]][, b], na.rm = FALSE, type = 1)

#MOMENT CONDITIONS

mom1s <- MATS[[a]][, b] - mean(MATS[[a]][, b])

mom2s <- mom1s^2 - var(MATS[[a]][, b])

mom3s <- mom1s^3 - avgcubdev

#NEWEY-WEST KERNEL ESTIMATION OF SKEWNESS ESTIMATOR ASYMPTOTIC VARIANCE

momvec <- matrix(c(mom1s, mom2s, mom3s), ncol = 3)

#Omega0

omega0 <- cov(momvec)

#Omega1

omega1 <- matrix(0L, nrow = ncol(momvec), ncol = ncol(momvec))

omega2 <- matrix(0L, nrow = ncol(momvec), ncol = ncol(momvec))

#Truncation lag

m <- 6
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#Computing sigmahat

for(i in 1:ncol(momvec)){

for(k in 1:ncol(momvec)){

for(j in 1:m){

w <- 1 - (j/(m+1)) #weights

for(t in (j+1):T){

omega1[i,k] <- omega1[i,k] + momvec[t,i]*momvec[(t-j),k] #VER OUTRA VEZ

}

}

}

}

omega1 <- (1/T) * omega1

omega2 = omega2 + w*(omega1 + t(omega1))

sigmahat <- matrix(nrow = ncol(momvec), ncol = ncol(momvec))

sigmahat = omega0 + omega2

#VECTOR OF ESTIMATED DERIVATIVES

ders <- ders <- matrix(c(-3/sqrt(var(MATS[[a]][, b])), -(3/2)*avgcubdev/(sqrt(var(MATS[[a]][, b]))^5),

1/sqrt(var(MATS[[a]][, b]))), 3, 1)

#H matrix

r1 <- c(-1, 0, 0)

r2 <- c(0, -1, 0)

r3 <- c(-3*var(MATS[[a]][, b]), 0, -1)

H <- rbind(r1, r2, r3)

hinv <- solve(H)

# Calculating asymptotic variance

avars <- t(ders) %*% hinv %*% sigmahat %*% t(hinv) %*% ders

avars = sqrt(avars/T)

#lb = skew - qnorm(0.95, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) * avars

#ub = skew + qnorm(0.95, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) * avars

x = param[b]

#c = between(x,lb,ub)

test = (skew-x)/avars

test2 = (skew-x)/sqrt(6/T)

c = (abs(test) >= 1.96)

d = (abs(test2) >= 1.96)

MATFINAL[[a]][z,b] = c

MATFINAL[[a+3]][z,b] = d

#MATFINAL1[[a]][z,b] = ub - lb

}

}

}

sum(MATFINAL[[1]][,1])

sum(MATFINAL[[1]][,2])

sum(MATFINAL[[1]][,3])

sum(MATFINAL[[1]][,4])

sum(MATFINAL[[1]][,5])
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########################################TEST POWER########################################

#Asymmetric

a1 = skewsgt(0 , 1, -0.5, 1.7, 2.5)/(varsgt(0 , 1, -0.5, 1.7, 2.5)^(3/2))

a2 = skewsgt(0 , 1, -0.3, 1.7, 2.5)/(varsgt(0 , 1, -0.3, 1.7, 2.5)^(3/2))

a3 = skewsgt(0,1, 0.2, 1.7, 2.5)/(varsgt(0,1, 0.2, 1.7, 2.5)^(3/2))

a4 = skewsgt(0, 1, 0.3, 1.6, 2.6)/(varsgt(0, 1, 0.3, 1.6, 2.6)^(3/2))

a5 = skewsgt(0, 1, 0.5, 1.2, 4)/(varsgt(0, 1, 0.5, 1.2, 4)^(3/2))

param <- cbind(a1, a2, a3, a4, a5)

param

nsims = 200

MATFINAL <- lapply(1:6, matrix, data = NA, nrow = nsims, ncol = ncol(param))

for (z in 1:nsims){

size = 1000 #+ 1

MATS <- lapply(1:3, matrix, data = NA, nrow = size, ncol= 5)

j = 0

for (rho in c(0, 0.5, 0.8)){

j = j + 1

S = rsgt(size,mu = 0, sigma = 1, lambda = -0.5, p = 1.7, q = 2.5, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 1] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 1] = rho*MATS[[j]][ssize - 1, 1] + S[ssize]

}

S = rsgt(size,mu = 0, sigma = 1, lambda = -0.3, p = 1.7, q = 2.5, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 2] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 2] = rho*MATS[[j]][ssize - 1, 2] + S[ssize]

}

S = rsgt(size,mu = 0, sigma = 1, lambda = 0.2, p = 1.7 , q = 2.5, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 3] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 3] = rho*MATS[[j]][ssize - 1, 3] + S[ssize]

}

S = rsgt(size,mu = 0, sigma = 1, lambda = 0.3, p = 1.6, q = 2.4, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 4] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 4] = rho*MATS[[j]][ssize - 1, 4] + S[ssize]

}

S = rsgt(size,mu = 0, sigma = 1, lambda = 0.5, p = 1.5, q = 2.3, mean.cent = TRUE, var.adj = TRUE)

MATS[[j]][1, 5] = median(S)

for(ssize in 2:size){

MATS[[j]][ssize, 5] = rho*MATS[[j]][ssize - 1, 5] + S[ssize]

}

}
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#ESTIMATION

i = 0

j = 0

T = size - 1

for (a in 1:3){

for(b in 1:(ncol(param))){

avgcubdev <- sum((MATS[[a]][, b] - mean(MATS[[a]][, b]))^3)/T

skew = skewness((MATS[[a]][, b]))

#MOMENT CONDITIONS

mom1s <- MATS[[a]][, b] - mean(MATS[[a]][, b])

mom2s <- mom1s^2 - var(MATS[[a]][, b])

mom3s <- mom1s^3 - avgcubdev

#NEWEY-WEST KERNEL ESTIMATION OF SKEWNESS ESTIMATOR ASYMPTOTIC VARIANCE

momvec <- matrix(c(mom1s, mom2s, mom3s), ncol = 3)

#Omega0

omega0 <- cov(momvec)

#Omega1

omega1 <- matrix(0L, nrow = ncol(momvec), ncol = ncol(momvec))

omega2 <- matrix(0L, nrow = ncol(momvec), ncol = ncol(momvec))

#Truncation lag

m <- 6

#Computing sigmahat

for(i in 1:ncol(momvec)){

for(k in 1:ncol(momvec)){

for(j in 1:m){

w <- 1 - (j/(m+1)) #weights

for(t in (j+1):T){

omega1[i,k] <- omega1[i,k] + momvec[t,i]*momvec[(t-j),k] #VER OUTRA VEZ

}

}

}

}

omega1 <- (1/T) * omega1

omega2 = omega2 + w*(omega1 + t(omega1))

sigmahat <- matrix(nrow = ncol(momvec), ncol = ncol(momvec))

sigmahat = omega0 + omega2

#print(sigmahat)

#VECTOR OF ESTIMATED DERIVATIVES

ders <- ders <- matrix(c(-3/sqrt(var(MATS[[a]][, b])), -(3/2)*avgcubdev/(sqrt(var(MATS[[a]][, b]))^5),

1/sqrt(var(MATS[[a]][, b]))), 3, 1)

#print(ders)
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#H matrix

r1 <- c(-1, 0, 0)

r2 <- c(0, -1, 0)

r3 <- c(-3*var(MATS[[a]][, b]), 0, -1)

H <- rbind(r1, r2, r3)

hinv <- solve(H)

# Calculating asymptotic variance

avars <- t(ders) %*% hinv %*% sigmahat %*% t(hinv) %*% ders

avars = sqrt(avars/T)

lb = skew - qnorm(0.95, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) * avars

ub = skew + qnorm(0.95, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) * avars

#x = kvec[b]

x = 0

#c = !(between(x,lb,ub))

test = skew/avars

test2 = skew/sqrt(6/T)

c = (abs(test) >= 1.96)

d = (abs(test2) >= 1.96)

MATFINAL[[a]][z,b] = c

MATFINAL[[a+3]][z,b] = d

}

}

}

sum(MATFINAL[[1]][,1])

sum(MATFINAL[[1]][,2])

sum(MATFINAL[[1]][,3])

sum(MATFINAL[[1]][,4])

sum(MATFINAL[[1]][,5])

#KURTOSIS

library(gld)

library(tidyverse)

library(e1071)

library(sgt)

######CALCULATION OF KURTOSIS FOR SKEWED GENERALIZED T-DISTRIBUTION##################

kurtsgt <- function(mu,sigma,lambda,p,q){

v <- (q^(-1/p))*(1/(sqrt((((3*lambda^2)+1) * (beta(3/p,(q-2/p))/beta(1/p,q))

- 4*(lambda^2) * ((beta(2/p, (q-1/p))/beta(1/p,q))^2)))))

kurtsgtc = (((q^(4/p))*((v*sigma)^4))/beta(1/p,q)^4)*((-48*(lambda^4))*(beta(2/p,q-(1/p))^4)

+ (24*(lambda^2))*(1+3*(lambda^2))*beta(1/p,q)*(beta(2/p,q-(1/p))^2)*beta(3/p,q-(2/p))

- (32*(lambda^2)) * (1 + lambda^2) * (beta(1/p,q)^2) * beta(2/p,q-(1/p)) * beta(4/p,q-(3/p))

+ (1+10*(lambda^2)+ (5*lambda^4))*( beta(1/p,q)^3) * beta(5/p,q-(4/p) ) )

return(kurtsgtc)

}

varsgt <- function(mu,sigma,lambda,p,q){

v <- (q^(-1/p))*(1/(sqrt((((3*lambda^2)+1) * (beta(3/p,q-(2/p))/beta(1/p,q))

-4*(lambda^2)*((beta(2/p, q-(1/p))/beta(1/p,q))^2)))))

varsgtc = (((v*sigma)^2)*q^(2/p)) * ((3*lambda^2 + 1)*(beta(3/p,q-(2/p))/beta(1/p,q))

-4*(lambda^2) * ((beta(2/p,q-(1/p))/beta(1/p,q))^2))

return(varsgtc)

}
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#ESTIMATION

i = 0

j = 0

T = size

for (a in 1:3){

for(b in 1:ncol(param)){

avgcubdev <- sum((MATS[[a]][, b] - mean(MATS[[a]][, b]))^3)/T

avgfdev <- sum((MATS[[a]][, b] - mean(MATS[[a]][, b]))^4)/T

#skew = skewness((MATS[[a]][, b]))

kurt = kurtosis((MATS[[a]][, b]), na.rm = FALSE, type = 1) + 3

#MOMENT CONDITIONS

mom1k <- MATS[[a]][, b] - mean(MATS[[a]][, b])

mom2k <- mom1k^2 - var(MATS[[a]][, b])

mom3k <- mom1k^4 - avgfdev

#NEWEY-WEST KERNEL ESTIMATION OF SKEWNESS ESTIMATOR ASYMPTOTIC VARIANCE

momvec <- matrix(c(mom1k, mom2k, mom3k), ncol = 3)

#Omega0

omega0 <- cov(momvec)

#Omega1

omega1 <- matrix(0L, nrow = ncol(momvec), ncol = ncol(momvec))

omega2 <- matrix(0L, nrow = ncol(momvec), ncol = ncol(momvec))

#Truncation lag

m <- 6

#Computing sigmahat

for(i in 1:ncol(momvec)){

for(k in 1:ncol(momvec)){

for(j in 1:m){

w <- 1 - (j/(m+1)) #weights

for(t in (j+1):T){

omega1[i,k] <- omega1[i,k] + momvec[t,i]*momvec[(t-j),k]

}

}

}

}

omega1 <- (1/T) * omega1

omega2 = omega2 + w*(omega1 + t(omega1))

sigmahat <- matrix(nrow = ncol(momvec), ncol = ncol(momvec))

sigmahat = omega0 + omega2

#print(sigmahat)

# Vector of estimated derivatives

ders <- matrix(c(-4*avgcubdev/(sqrt(var(MATS[[a]][, b]))^4), -2*avgfdev/(sqrt(var(MATS[[a]][, b]))^6),

1/(sqrt(var(MATS[[a]][, b]))^4)), 3, 1)

#print(ders)
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#H matrix

r1 <- c(-1, 0, 0)

r2 <- c(0, -1, 0)

r3 <- c(-4*avgcubdev, 0, -1)

H <- rbind(r1, r2, r3)

hinv <- solve(H)

# Calculating asymptotic variance

avark <- t(ders) %*% hinv %*% sigmahat %*% t(hinv) %*% ders

avark = sqrt(avark/T)

#lb = kurt - qnorm(0.95, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) * avark

#ub = kurt + qnorm(0.95, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) * avark

x = param[,b]

#c = between(x,lb,ub)

test1 = (kurt-x)/avark

test2 = (kurt-x)/(sqrt(24/T))

#print((kurt-x))

#print(avark)

c = (abs(test1) >= 1.96)

d = (abs(test2) >= 1.96)

MATFINAL[[a]][z,b] = c

MATFINAL[[a+3]][z,b] = d

#MATFINAL1[[a]][z,b] = ub - lb

}

}

}

sum(MATFINAL[[1]][,1])

sum(MATFINAL[[1]][,2])

sum(MATFINAL[[1]][,3])

sum(MATFINAL[[1]][,4])

sum(MATFINAL[[1]][,5])

sum(MATFINAL[[1]][,6])

sum(MATFINAL[[1]][,7])

sum(MATFINAL[[1]][,8])

sum(MATFINAL[[1]][,9])

sum(MATFINAL[[1]][,10])
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