

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-04-08

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Lessa, I., Carneiro, G., Monteiro, M & Brito e Abreu, F. (2015). Scaffolding MATLAB and octave
software comprehension through visualization. In Haiping Xu, Kehan Gao, Shihong Huang (Ed.),
Proceedings of the 27th International Conference on Software Engineering and Knowledge
Engineering. Pittsburgh: KSI Research.

Further information on publisher's website:
10.18293/SEKE2015-073

Publisher's copyright statement:
This is the peer reviewed version of the following article: Lessa, I., Carneiro, G., Monteiro, M & Brito e
Abreu, F. (2015). Scaffolding MATLAB and octave software comprehension through visualization. In
Haiping Xu, Kehan Gao, Shihong Huang (Ed.), Proceedings of the 27th International Conference on
Software Engineering and Knowledge Engineering. Pittsburgh: KSI Research., which has been
published in final form at https://dx.doi.org/10.18293/SEKE2015-073. This article may be used for
non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.18293/SEKE2015-073

Scaffolding MATLAB and Octave Software

Comprehension Through Visualization

Ivan de M. Lessa, Glauco de F. Carneiro

Universidade Salvador (UNIFACS)

Salvador/Bahia, Brazil

ivan.lessa@gmail.com,

glauco.carneiro@unifacs.br

Miguel P. Monteiro

Universidade Nova de Lisboa (UNL)
NOVA LINCS

Lisbon, Portugal
mtpm@fct.unl.pt

Fernando Brito e Abreu

Instituto Universitário de Lisboa
(ISCTE-IUL)

Lisbon, Portugal

fba@iscte-iul.pt

Abstract— Multiple view interactive environments (MVIEs)

provide visual resources to support the comprehension of a

specific domain dataset. For any domain, different views can be

selected and configured in a real time fashion to be better

adjusted to the user needs. This paper focuses on the use of a

MVIE called OctMiner to support the comprehension of

MATLAB and GNU/Octave programs. The authors conducted a

case study to characterize the use of OctMiner in the context of

comprehension activities. Results provide preliminary evidence of

the effectiveness of OctMiner to support the comprehension of

programs written in MATLAB and Octave.

Keywords – software visualization; MATLAB/Octave; software

comprehension.

I. INTRODUCTION

Multiple view interactive environments (MVIE) provide
resources to support data analyses and unveiling information
that otherwise would remain unnoticed [1][4]. This work is
focused on MATLAB [8] and Octave [11] programs, following
reports in the literature that indicate a lack of support for the
comprehension of programs coded in these languages. We
contribute to fill this gap by implementing a MVIE named
OctMiner. Following previous research on this topic [2][9], we
conducted a case study using OctMiner to support the
comprehension of MATLAB/Octave programs, which aims at
characterizing the MVIE support to identify crosscutting
concerns.

This paper is structured as follows: section II describes key
functionalities of OctMiner and its architecture; section III
presents two case studies to characterize OctMiner as a means
to support MATLAB/Octave program comprehension; section
IV proposes a set of usage strategies to be performed with
OctMiner for comprehension purposes. Finally, section V
presents the final considerations and outlines opportunities for
future work.

II. MULTIPLE VIEW INTERACTIVE ENVIRONMENTS

Visualization is a means of providing perceivable cues to
several aspects of the data under analysis to reveal patterns and
behaviors that would otherwise remain unhighlighted and
unnoticed [13]. Card et al. [1] proposed a well-known reference
model for information visualization. According to them, the
creation of views goes through a sequence of successive steps:
pre-processing and data transformations, visual mapping and

view creation. Carneiro and Mendonça [3] extended this model
to adapt it to the context of MVIEs. Figure 1 shows the
extended model, emphasizing that the visualization process is
highly interactive. Moreover, it enables the combined use of
resources of a multiple view interactive environment. The
process starts with original (raw) data obtained from a
repository that undergoes a set of transformations to be
organized into data structures suitable for information
exploration. This process is called data transformation [3].
Next, the data structures are used to assemble visual data
structures. Those structures organize data properties and visual
information properties in ways that facilitate the construction of
visual metaphors. This step defines the mapping from real
attributes – which are derived from the data properties,
software attributes, in our case – to visual attributes such as
shapes, colors and positions on the screen. This process is
called visual mapping [3]. It is important to highlight that these
activities do not deal with rendering, but rather with building
suitable data structures from which the views can be easily
computed and rendered. The final step, presented in Figure 1, is
the view transformation, aimed at drawing the information on
the screen to produce the views. In this step, a specific visual
scene is actually rendered on the computer screen [3].

Figure 1. An Extended Reference Model for MVIEs [3]

Nunes et al. [10] proposed a toolkit implemented as a Java
Eclipse plugin from which MVIEs could be developed. The
plugin provides a basic structure that allows the creation and
inclusion of new resources and functionalities to develop
MVIEs. Figure 2 presents the way the toolkit was used and
extended by other plugins to comprise the SourceMiner MVIE.
This MVIE was originally developed to support the
comprehension of Java source code. As can be seen in the
figure, the extension points of the toolkit.aimv plugin enable
the inclusion of new plugins to the MVIE. Each of the
extension points conveyed provides an interface with methods
and their respective signatures. In the case of OctMiner, we
needed to access and transform raw data – the Abstract Syntax

Tree (AST) of MATLAB/Octave programs – to a format
compatible with the visual data structure. According to the
extended reference model for MVIEs, this is a requirement to
feed the views.

Figure 2. The MVIE SourceMiner [10]

Figure 2 presents a set of plugins that comprise the
SourceMiner MVIE. The following guides are available to help
MVIE developers: (1) Data Transformation: to extend the
plugin Import Module to implement the plugin
sourceminer.modules; (2) Creating and Applying Filters to
extend the plugins Filter and Filter View; (3) Creating Tools to
extend the plugin Tools; (4) Creating Views to extend the
plugins Data Views and Tools. These guides are available at
[14].

Figure 3. OctMiner Architectural Overview [7]

The goal of the toolkit is to provide an infrastructure to

develop MVIEs for different domains. The domain targeted in

this paper comprises programs written in MATLAB/Octave.

A. THE MATLAB AND OCTAVE PROGRAM LANGUAGES

MATLAB is an interpreted language very popular among
students and researchers of physics, biomedical engineering
and related areas. It is not uncommon that a young engineer is
fluent in using MATLAB, but hardly familiar with C, and even
less of Fortran [5][15]. MATLAB has been used to teach linear
algebra, numerical analysis, and statistics. Since the MATLAB
language is proprietary, a similar language, named Octave was
developed, and is distributed under the terms of the GNU
General Public License. It was originally conceived in 1988 to
be a companion programming language for an undergraduate-

level textbook on chemical reactor design. Due to the
similarities between these languages, it is possible to interpret
MATLAB programs in the interpreter of the GNU/Octave with
no major problems. The main differences among the two
languages are as follows: i) Some similar routines can have
different names in each language; ii) Comments in MATLAB
are written after “%” while in Octave you can use both “%”
and “#”; iii) In MATLAB the control blocks (while, if and for)
as well as the functions delimiter all finish with “end” while in
Octave you can also use “endwhile”, “endif”, “endfor” and
“endfunction” respectively; iv) In MATLAB the not equal to
operator is “˜=” while in Octave “!=” is also valid; v)
MATLAB does not accept increment operators such as “++”
and “—“, while Octave accepts them.

B. THE AIMV OCTMINER

The main motivation for representing concerns manifested

in MATLAB/Octave code in a MVIE is the enhancement of

the comprehension activities. The plugin structure supporting

the MVIE toolkit is the same as presented in Figure 2. The

main difference is that in this case the focus is on

MATLAB/Octave rather than Java. Figure 3 depicts the main

four elements of OctMiner: the Eclipse IDE RAP/RCP (Rich

Clients and Rich Ajax Applications), the Octclipse plugin, the

Octave interpreter and the MVIE toolkit proposed in [10]. The

Eclipse IDE enables its extension through the use of plugins.

The MVIE toolkit does this to provide its functionalities as

well as enabling the tailoring of the MVIE tailoring for the

analysis of data from different domains, e.g., the data gathered

from MATLAB/Octave programs.

We implemented an Analyzer module as presented in

Figure 3, which is analogous to sourceminer.modules – see

Figure 2. It is an extension of the Import Module, whose goal

is to import and convert data from the original data repository

to be represented in the multiple views. The Octclipse plugin

also provides an Octave development environment built on top

of Eclipse's Dynamic Languages Toolkit. This environment

enables programmers to create Octave scripts (*.m files), edit

them in a multi featured text editor, run the Octave interpreter

and see results displayed in the IDE's console. OctMiner is

available at [14].

To provide a short illustration of the visualization

capabilities of OctMiner, Figure 4 shows a typical

visualization scenario. Part A is the Project Explorer,

presenting all the repository files; Part B is the Outline,

showing the functions and variables of a given file, when it is

selected in the Project Explorer. Part C provides editing access

to the routine’s code. Part F is a filter dashboard. Parts D, E

and G are views corresponding to several different

visualization metaphors. For instance, the Treemap view (G)

provides panoramic view, e.g., of how names of routines are

distributed in the file repository. Colours represent different

concerns (be they crosscutting or no). We use the term “token”

to refer to routine names from the MATLAB/Octave systems.

The List view (E) presents a list of the files from the

repository. The Grid view (D) is be used to identify the tokens

Figure 4. A Typical Scenario of OctMiner Use in the Eclipse IDE [7]

used in the repository along with several different metrics,

e.g., number of occurrence of each token in each file or in the

whole repository. This view can also be presented in several

orderings, depending on what is convenient. Full details on the

visualizations are provided in our ITNG paper [7].

III. COMPREHENSION ACTIVITIES WITH OCTMINER

This section presents a case study to characterize the use of
OctMiner in comprehension activities. In it, we investigate the
following question: to which extent OctMiner provides
effective support to identify potential symptoms of crosscutting
concerns in MATLAB programs? In the study, we analyze 22
MATLAB image processing routines. The goal is the
identification of the dual symptoms of scattering and tangling
in the routines, as supported by OctMiner. Scattering [12] is the
degree to which a concern is spread over different modules or
other units of decomposition. Tangling [16] is the degree to
which concerns are intertwined to each other in the same
routines. Both scattering and tangling are indicators of the
presence of crosscuting concerns in program code.

The case study explores the potential of tokens to be
indicators of the scattering and tangling symptoms. The
approach is as follows: sets of tokens can be associated to a
given concern, which ideally would be modularized into its
own file, with no additional concerns. When the concern is not
modularized, its code is scattered across multiple files and its
associated tokens are found in such files – an indicator of
scattering. Often, such files also betray the presence of tokens
categorized under multiple concerns – an indicator of tangling.

To explore the aforementioned approach, participants
performed the following activities: i) Identify tokens most
commonly used in the 22 routines; ii) Characterize the

localization among files of the most commonly used tokens to
assess the symptoms of scattering; iii) Characterize the
relationship between the most commonly used tokens and other
tokens in the files to assess the symptoms of tangling; iv)
Determine the category (concern) to which the most commonly
used tokens belong; v) Using the category of each token,
identify the main functionalities (concerns) of the program.
Using this approach, it was possible to identify the top most
commonly used tokens in the analyzed routines and that this
same tokens presented evidences of scattering. This study was
the starting point for the use of OctMiner in comprehension
activities.

We identified the following limitations in this study:
considering that the routines were already analyzed by
OctMiner, any new modification in the original routines will
not be reflected in the views until a new analysis is performed
to obtain these modification from the repository. In addition,
the user can only select the predefined color in OctMiner. It is
also not possible to define new colors in this version of
OctMiner. The need to configure the XML file with the tokens
is also a limitation. To overcome it, we intend to provide a
XML file with a large number of MATLAB and Octave
functions and their respective categories.

We recognize that OctMiner may not be able to provide

support for all kinds of comprehension needs. To better

characterize and validate its range of applicability, we plan

additional studies (see section V). Another potential threat to

validity is that both design and execution of the study were

performed by the same person. To overcome this issue, further

independent experiments will be carried out to compare results

more thoroughly.

IV. PRELIMINARY STRATEGY BASED ON OCTMINER

Results from this case study enable us to propose a
preliminary usage strategy based on OctMiner for
comprehension purposes. The strategy includes a
comprehension question as its starting point, which drives
subsequent steps. The question is related to tangling and
scattering, using a set of tokens from programs of a repository
as a basis. Table 3 presents the steps proposed from evidences
collected from this case study.

Table 3. A Proposed Set of Usage Strategies

Suggested Steps

1 - Select a question: the programmer needs to identify an issue

relevant for his daily activities. Answers to the question should be

available considering that the routines used in the code should be
registered in the OctMiner configuration file.

2 – Identify a target routine: it should be the routine that plays a

relevant role in the code of the primary solution to the selected
question.

3 – Locate repositories that use the target routine: since

OctMiner aims at assisting the comprehension of a given target
routine, it is desirable that routines using the target routine provide

good examples and be the subject of analysis.

4 – Identify the routines and their respective categories
available in the official documentation: alternative routines used

in the repository selected in Item 3 must also be identified.

MATLAB and Octave routines are categorized in the official

language sites of MATLAB and Octave.

5 – Register the target routine as well as other routines from the

repository in the OctMiner configuration file: the routines should

be registered in OctMiner configuration file using their specific
group, identified according to Item 4.

6 – Create a To-Do list for identification through visualization:
activities that the user must perform should be described so that the
study is conducted as well as possible within OctMiner.

7 – Implementation of the proposed activities: the user must run

OctMiner according to the activities set out in Item 6.

8 - Answer the original question: to prove the effectiveness of the

tool, the user should be able to answer the question that started the

process in Item 1.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the following contributions: a) the
provision of an environment called OctMiner for the
comprehension of MATLAB/Octave routines supported by
multiple views; b) Evidences of the effectiveness of OctMiner
to support the identification of symptoms of code tangling and
code scattering as discussed in the study presented at section
III; c) the initial version of a sequence of steps for a strategy for
the usage of OctMiner for comprehension purposes.

A previous paper by the same authors describing the
architecture of OctMiner along with an illustrative example of
its main functionalities in a real scenario of program
comprehension, was presented at ITNG’2015 [7]. An extended
version of the present paper, where the validation case studies
are described in detail and additional information on the
proposal is provided, will appear in the proceedings of
ICCSA’2015 in Canada.

We will soon conduct a new version of a more detailed
study, based on answers posted at popular question-and-
answers sites (e.g., StackOverflow). We are planning research
questions to assess the extent to which OctMiner provides
effective support to clarify programmer´s issues. We believe
OctMiner can help programmers in understanding the context
of use of a routine through OctMiner‘s visualizations. Our goal
is to gather evidence of the effectiveness of OctMiner in
supporting acquisition of insights by means of the visualization
of target routines. We will base the next study on routines
referred in posts from question-and-answers sites.

REFERENCES

[1] Card, S. K., Mackinlay, J. and Shneiderman, B. Readings in Information
Visualization Using Vision to Think. San Francisco, CA, Morgan
Kaufmann, 1999.

[2] Cardoso, J.; Fernandes, J; Monteiro, M.; Carvalho, T; Nobre, R.
Enriching MATLAB with aspect-oriented features for developing
embedded systems. Journal of Systems Architecture 59 (2013) p. 412–
428.

[3] Carneiro, G.; Mendonça, M.. SourceMiner: Towards an Extensible
Multi-perspective Software Visualization Environment. In: Slimane
Hammoudi;José Cordeiro;Leszek A. Maciaszek;Joaquim Filipe. (Org.).
Enterprise Information Systems. 1ed.: Springer International Publishing,
2014, v. 190, p. 242-263.

[4] Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant’Anna, C., Garcia,
A., Mendonc¸ a, M., 2010. Identifying code smells with multiple
concern views. In: XXIV BrazilianSymp. on Software Engineering
(SBES 2010), IEEE Comp. Soc., Washington, DC, USA, pp. 128–137.

[5] Chaves, J.; Nehrbass, J.; Guilfoos, B.; Gardiner, J.; Ahalt, S.;
Krishnamurthy, A.; Unpingco, J., Chalker, A.; Warnock, A.; Samsi, S.
Octave and Python: High-Level Scripting Languages Productivity and
Performance Evaluation. In Proc. of the HPCMP Users Group
Conference (HPCMP-UGC '06).

[6] Data Explorer - StackExchange. Available at
http://data.stackexchange.com/.

[7] Lessa, I.; Carneiro, G.; Monteiro, M.; Abreu, F. A Multiple View
Interactive Environment to Support MATLAB and GNU/Octave
Program Comprehension. In: International Conference on Information
Technology:New Generations (ITNG), 2015, Las Vegas/EUA.

[8] MATLAB Programming Language. Available at
www.mathworks.com/products/matlab.

[9] Monteiro, M.; Cardoso, J.; Posea, S. Identification and characterization
of crosscutting concerns in MATLAB systems. In Conference on
Compilers, Programming Languages, Related Technologies and
Applications (CoRTA 2010), Braga, Portugal (pp. 9-10).

[10] Nunes, A.; Carneiro, G.; David, J. Towards the Development of a
Framework for Multiple View Interactive Enviironments. In:
International Conference on Information Technology:New Generations
(ITNG), 2014, Las Vegas/EUA. p. 23-30.

[11] Octave Programming Language. Available at
www.gnu.org/software/octave/.

[12] Robillard, M; Murphy, G. Representing Concerns in Source Code. ACM
TOSEM, 2007.

[13] Spence, R. Information Visualization: Design for Interaction (2nd
Edition). 2. ed.Prentice Hall, 2007.

[14] SourceMiner Website. Available at www.sourceminer.org/octminer

[15] Stenroos, M.; Mäntynen, V.; Nenonen, J. A MATLAB library for
solving quasi-static volume conduction problems using the boundary
element method. - Computer methods and programs in biomedicine,
2007.

[16] Tarr, P.; Ossher, H.; Harrison, W.; Jr., N. Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE, 1999.

