
Developing games with Magic Playground: a gesture-
based game engine

Carolina Cabral
ADETTI

Av. das Forças Armadas,
Edifício ISCTE 1600-082 Lisboa
(+351) 21 782 64 80, Portugal

carolinacabral@netcabo.pt

Juana Dehanov
ADETTI

Av. das Forças Armadas,
Edifício ISCTE 1600-082 Lisboa
(+351) 21 782 64 80, Portugal

juana@netcabo.pt

Rafael Bastos
ADETTI

Av. das Forças Armadas,
Edifício ISCTE 1600-082 Lisboa
(+351) 21 782 64 80, Portugal

rafael.bastos@sapo.pt

José Miguel Salles Dias
ADETTI

Av. das Forças Armadas,
Edifício ISCTE 1600-082 Lisboa
(+351) 21 782 64 80, Portugal

Miguel.Dias@adetti.iscte.pt

ABSTRACT
This paper presents Magic Playground, a game engine that
enables the development of entertainment applications with real-
time gesture-based Human-Computer Interaction (HCI). We
describe the main architectural elements of our system and
provide a guideline on how to program the engine in order to
create games. Finally, we present usability evaluation results of a
game, which emulates the known Tetris game1.

Categories and Subject Descriptors
D.3.3 I.5.4 I.4.8 [Image Processing and Computer vision]: Scene
Analysis -- Motion, Tracking; J.7 [Computer in other systems]:
consumer products.

General Terms
Algorithms, Measurement, Experimentation, Human Factors.

Keywords
Game Engine, Gesture based Human-Computer Interaction,
Usability Evaluation.

1. BACKGROUND
Gesture recognition systems based on computer vision are subject
of widely diffused research works. In [1] we find gesture
recognition systems applied to useful, Sign Language
interpretation. Other systems, like in [2], are more directed for
human-computer interface control. Recognition techniques, either
image or vector based, all tend to acquire hand contour as a
starting point for gesture perception and then its motion, being
somewhat influenced by the human visual system process.
Background scenario complexity is not frequently addressed,
requiring gestures to be executed against a homogenous prepared
scene. Related works from the computer vision domain, like
advanced background subtraction [3], can be useful for gesture
recognition. The EyesWeb toolkit [4] has provided a framework

1 TETRIS was invented by Alexey Pazhitnov, in 1985, in an

Electronica 60 computer at the Moscow Academy of Science's
Computer Center.

for the detection of human body motion, specially oriented to
performing arts applications. Recent developments in game
technology by Sony, namely the EyeToy2 for Playstation, brought
new possibilities for the interaction between the player and the
game. The technique uses a camera that captures the player hands
and body motion and places him/her in the game, allowing
him/her to interact with virtual elements, possibly replacing the
real background with a virtual one (fixed or moving) and
increasing his/her sense of being part of the game. The Magic
Playground exploits this new concept for PC gaming, adding new
possibilities for the interaction and providing a programmable
SDK for the game engine.

2. SYSTEM ARCHITECTURE AND
FUNCTIONS
The Magic Playground engine intends to support he creation
human hands and body motion-based entertainment applications
and games. The engine is divided in five main modules depicted
in Figure 1: Video Capture, Statistical Image Processing Unit,

Motion Analyzer, Image Segmentation and Rendering. The Video
Capture Module is responsible for acquiring the image data from
the input video device (Web Camera, Firewire DV Cam, Video In

2 EyeToy and Playstation are registered trademarks of Sony

Computer Entertainment Inc.

Video Capture
Module

Statistical Image
Processing Unit

Motion AnalyzerImage Segmentation
Unit

Rendering Module

Image (RGB)

Image (YUV)Motion Mask (Binary)

Motion Contours and Movement Ratio

Figure 1 – Magic Playground Architecture and System

Flow Diagram

or other) and for delivering it to the Statistical Image Processing
Unit. This unit main goal is to create a statistical model of the
input real scene, by analyzing each pixel luminous energy and by
computing color thresholds that will be delivered to the Motion
Analyzer. The Motion Analyzer performs an image
transformation into the YUV subspace and then, a convulsion
with a Gaussian Filter, in order to reduce image noise and to
perform contour smoothing. The previous computed (in the
Statistical Image Processing Unit) color thresholds are then used
to compose a motion mask binary image, where 0 is considered to
be a pixel classified as a part of the real scene background and 1, a
pixel classified as a foreground moving object (which can be, for
example, the user playing the game). The next stage is Image
Segmentation, where all foreground contours are retrieved and the
movement ratio of all foreground image blobs is computed. This
final data is then delivered to the Rendering Module, which is
responsible for blending fixed or moving virtual backgrounds with
the foreground segmented image, so that background substitution
can be performed.

2.1 How to create a game with Magic
Playground
Our engine provides a set of utilities and classes, supporting
gesture-based HCI. To develop entertainment applications using
this engine, we have to create a class that extends XMotionApp.
This class allows dynamic loading of XMotionSystem based
applications and has three main methods that will be called
sequentially when the application runs: GetInstance(), called only
when cloning the application object at initialization; PreRender(),
called before rendering and PostRender(), called after rendering.
PreRender() and PostRender() are called until the application
ends. The PreRender() is where the programmer can modify the
motion mask computed by the main system and overlay the areas
that fits the needs of the game. He/she can overlay the background
with fixed or moving pictures, by blending the silhouette of the
player captured by the camera and the image(s) selected for the
background. In the PostRender() function, the programmer can
define and manipulate objects that provide 2D custom graphical
rendering as CDXAnimatedSprite, CDXBall, CDXButton,
CDXImageSprite, CDXImageSpriteInterpolatorEx, etc. These
classes allow the programmer to create an attractive user interface
that responds to the motion performed by the player, when
performed in the areas where they are located, and/or compute the
collision between the user silhouette and virtual objects in the
viewport. The class CDXAnimatedStripe is useful when rendering
animated objects, such as backgrounds, objects with motion (AVI
movies), etc. The CDXImageSprite performs 2D graphical
rendering of 2D objects, supporting various image formats. It
provides also other functionalities, such as a spatial interpolator.
The CDXBall class contains a gravity-enabled physical ball
model, which is responsible for all motion computation before the
rendering stage, so that a more enhanced and realistic movement
effect can be perceived.

3. EVALUATION AND DISCUSSION
We have evaluated the engine with a game - MagicTetris, which
emulates the well known Tetris game, where the user manipulates
the motion and rotation of the pieces by producing moving hand
gestures in the appropriated screen control areas, as it can be seen
in Figure 2. The experiment was run on a sample of 10 unpaid
users in one run. The subjects were students with an age range

between 20 and 24 from both sexes, selected randomly from
undergraduate students at our institute in Lisbon.

Figure 2 – MagicTetris game

Regarding the evaluation methodology, we began by performing
the first part of a questionnaire to each subject, aiming at
understanding the subject profile, in particular if the subject had
already been in contact with this kind of gesture-based HCI, with
the Tetris game and if he/she knew how a Webcam works.
Afterwards the facilitator gave a briefly explanation on how to
operate the game. The subject was given approximately two
minutes to gain acquaintance with the game, after which the game
testing begun. The subject had to play MagicTetris the maximum
time possible and reaching the higher game level possible
(passing a level meant to complete 5 lines). At that point,
experimental data was retrieved by observing the subject playing:
such as the number of lines completed, the high score obtained,
the time duration and the accomplished level, among others.
Finally, the second part of the questionnaire was performed upon
completion of the game, were we asked each subject to give
his/her opinion, regarding the game’s usability/understanding and
the easiness to work with it, and the observations and comments
obtained were:
• Only approximately half of the group had already been in contact

with this type of HCI, which took some time to adapt to;

• Since the HCI is accomplished through the subject’s motion, some
physical tiredness has occurred with some subjects;

• The subject’s willingness to experience this kind of HCI was high;

• The HCI, the usability and the enjoyment that the game provided,
were considered “good”;

• Subjects recommended a re-organisation of the buttons layout and a
better response of the gesture HCI modality.

4. REFERENCES
[1] Yoshinori Niwa, et. al., “Robust face detection and Japanese Sign

Language hand posture recognition for human-computer interaction
in an "intelligent" room”. VI'2002, Faculty of Engineering, Gifu
University, 2002.

[2] Mario Aguilar, et. al.. “Facilitating user interaction with complex
systems via hand gesture recognition”. ACMSE'03.Knowledge
Systems Laboratory, Jacksonville State University, 2003.

[3] Larry S., et. al., “A statistical approach for real-time robust
background subtraction and shadow detection”. Technical report,
Computer Vision Laboratory University of Maryland, 1999.

[4] Barbara Mazzarino, et. al., “Analysis of expressive gesture: The
eyesweb expressive gesture processing library”. Proc. of Gesture
Workshop 2003, Genova, 2003.

