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Abstract. Manual design of self-organized behavioral control for
swarms of robots is a complex task. Neuroevolution has proved a viable
alternative given its capacity to automatically synthesize controllers. In
this paper, we introduce the concept of Genome Variations (GV) in the
neuroevolution of behavioral control for robotic swarms. In an evolution-
ary setup with GV, a slight mutation is applied to the evolving neural
network parameters before they are copied to the robots in a swarm.
The genome variation is individual to each robot, thereby generating a
slightly heterogeneous swarm. GV represents a novel approach to the evo-
lution of robust behaviors, expected to generate more stable and robust
individual controllers, and benefit swarm behaviors that can deal with
small heterogeneities in the behavior of other members in the swarm. We
conduct experiments using an aggregation task, and compare the evolved
solutions to solutions evolved under ideal, noise-free conditions, and to
solutions evolved with traditional sensor noise.

Keywords: Neuroevolution, robot controllers, genome variations, swarm
robotics, robustness, heterogeneity

1 Introduction

Synthesizing control for swarms of robots is a challenging process since the in-
dividual rules that govern the behavior of each robot are non-trivial to discover
and implement [10]. In the research field of evolutionary robotics (ER), neu-
roevolution (NE) has been successfully applied to the synthesis of self-organized
behavioral control for swarms of robots [4]. Given the set of sensor inputs, the
controller, an artificial neural network (ANN), determines the value of the out-
puts that will be sent to the actuators. The weights, and sometimes the topology,
of the ANN are evolved by an evolutionary algorithm (EA) to optimize a given
fitness function. The evolution of controllers is usually conducted in simulation
due to its time-intensive nature, and, after evolution ends, the highest-performing
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controllers are transferred to real robotic hardware. Transferring controllers from
simulation to real robots often leads to a decrease in performance due to dif-
ferences between the simulated and real world, an issue known as “the reality
gap” [17].

In the evolution of homogeneous swarms, the same controller is cloned for
every robot [27], which means that each genome must encode the behavior for
all situations and all team members will react similarly in similar conditions.
This is different from biological swarms, where each individual has a different
genome and slightly different characteristics (physical, behavioral, etc.). The
question raised is “do these slight differences in swarm members play a part in
the swarms’ capabilities to solve problems?”. Potter et al. [22] show that behavior
homogeneity is a disadvantage when more complex swarm behaviors are needed
and specialization becomes a necessity. Even though certain types of ANN-based
controllers, such as continuous-time recurrent neural networks (CTRNN) [3],
have been shown to enable the emergence of dynamic task-allocation under spe-
cific conditions [11], and even in some cases the appearance of different roles
[2,23], such controllers tend to display homogeneous behaviors.

This paper introduces the concept of Genome Variations (GV), a novel tech-
nique that is based on mutating the individual controllers of each robot prior to
evaluation. Variations are obtained by adding noise to the weights of the artifi-
cial neural networks controlling the robots. The use of GV during training may
provide more stable and robust solutions for swarm controllers in coordinated
tasks and help bridge the reality gap. There are several potential benefits of
varying swarm controllers’ genomes during evolution, namely: (i) increased tol-
erance to minor, but unavoidable, hardware differences between different robots,
(ii) increased robustness to environmental noise and to (iii) slight heterogeneities
in swarm behavior. Increased tolerance to hardware differences [24], noisy sen-
sors [19] and varying environmental conditions, is expected since a small bias in
the input has very similar effects in terms of the internal computations from a
change in an input weight or a slight bias in the readings from a sensor. If the
GV solution is impervious to small variations in the weights, then it should also
be able to tolerate small changes in the input, whether these may be caused by
the environment or by the robot’s hardware.

GV should also increase robustness to small differences in behaviors of other
swarm members, since candidate solutions are exposed to slightly heterogeneous
swarms during training. It may be advantageous to have slight behavioral dif-
ferences in different individuals to break ties that can block the solution to a
problem (e.g. two robots both insisting on manipulating the same object). An-
other way in which GV may be advantageous is by forcing the robots to adapt to
different behaviors from teammates, whether these are simply small performance
differences or robots experiencing faults.

In this paper, we evaluate the effects of GV in swarms of robots in an ag-
gregation task [26,25]. We chose an aggregation task, since it is a fundamental
behavior in many collective systems found in nature [6]. The ability for a group
of individuals to aggregate is a precursor to many collective behaviors since be-
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ing within sensory range of each other is a paramount condition to coordinate
collective swarm behaviors. Also, successful aggregation requires the combined
use of different skills that are common with other problems (e.g. distributed
search, coordinated movement or cooperation).

We assess the performance of controllers evolved in three different scenarios,
an ideal evolutionary scenario with no noise (NF), which is used as a baseline,
one with sensor noise (SN), and a Genome Variations scenario. The highest
performing solution evolved in each scenario is tested in all three setups (NF,
SN and GV).

2 Related Work

Variation is a fundamental part of the evolutionary process, since new solutions
are based on previously successful solutions by applying evolutionary operators
such as mutation and recombination [1]. However, the use of variation for other
purposes in the evolution of controllers for swarms of robots remains unexplored.
In this section, we present a discussion of work related to variation, robustness
and generation of heterogeneity in swarm robotics.

The need to create robust solutions in simulation was identified early on in
the field of evolutionary robotics (ER). Cliff et al. [8] use the lowest fitness score
obtained, as opposed to the mean, obtained in multiple evaluation samples of the
evolved individuals in a simulated visually-guided robot navigation problem. The
authors adopt the selection method “to encourage robustness, remembering that
there is noise at all levels in the system”. Miglino et al. [19] and later Jakobi [17]
build on the ideas in [8] and apply noise to simulated sensors, actuators, and
environmental elements to create controllers that are more capable of crossing
the reality gap.

As other authors attempted alternatives to improve solution robustness that
did not involve noise, to compensate for the overhead that noisy conditions im-
pose on training in simulation [21], Gomez and Miikkulainen [16] report that “the
appropriate use of noise during evolution can improve transfer [of behaviors to
real world scenarios] significantly by compensating for inaccuracy in the simula-
tor”. The “appropriate use” refers to adding sensor noise and trajectory noise.
Authors report significant improvements in transferred behavior performance.

Lehman et al. [18] introduced the concept of reactivity and showed that it is
as effective in addressing the robustness problem as training with noise, while
being computationally more efficient. Reactivity promotes the learning agent to
use behaviors where there are dependencies in the magnitude of changes in a
robot’s sensors and actuators, i.e. if there is a large change in the sensors, there
should be some large change in the actuators. Reactivity should not be confused
with the concept of a reactive agent usually associated with the subsumption
architecture [5].

In the evolution of heterogeneous multirobot teams and swarms, either co-
evolution [22,14], or approaches in which whole teams are encoded in a sin-
gle genome [22] are typically used. Potter et al. [22] show that as tasks be-
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come more difficult, heterogeneity and specialization become more important,
although there is a trade-off in learning speed. Nitschke et al. [20] study the evolu-
tion of collective behaviors, with a focus on facilitating specialization and team
heterogeneity. The authors use genotypic and behavioral difference metrics to
group genomes in different sub-populations in order to regulate inter-population
recombination. Gomes et al. [14] propose Hyb-CCEA to facilitate the evolu-
tion of heterogeneous, cooperative multi-agent systems using co-evolution and a
method for merging and splitting sub-teams.

Silva et al. [25] apply online evolution [13] to swarms of robots by continuously
generating controllers that can adapt to periodic changes during task execution.
Shang et al. [24] report a variant of EA for creating heterogeneity by adapting
to each robot’s specific hardware: robots compensate for hardware differences
by individually retraining to adapt to the specificities of their hardware before
re-insertion in the team. D’Ambrosio et al. [9] see each element of the team
as a combination of policies, creating a continuum between homogeneity and
heterogeneity. As in our approach, all agents have the same base-genome, but
these agents also possess a “policy geometry” that makes the behavior of the
agent depend on its position and provides for the necessary diversity, as well as
keeping the homogeneity of the basic genome.

In the work discussed above, no attempt was made to generate heterogene-
ity in team or swarm behavior simply by introducing genome variations before
evaluation. The most common approach to achieve robustness is by introducing
noise during training at different levels of the simulation (sensors, actuators,
etc.). Also, the focus of heterogeneity is on task specialization, which generally
requires separate evolution of individuals or sub-teams, not on the effects of
small genome heterogeneities, as seen in biological swarms and in our approach.

3 Methodology

Artificial evolution is typically an iterative process composed of different stages.
The stages can be divided into: population generation, genome evaluation and
genome selection. Iterations are usually referred to as generations. The first
generation is commonly composed of a number of randomly-generated genomes.
During evaluation, the fitness of each genome is typically sampled several times
under different initial conditions to get a proper estimate of the genome’s quality.
In each sample, the genome is decoded into a controller that is copied to each
robot, and the performance of the swarm with respect to the target task is
assessed. In the final stage of the iterative process, a set of genomes is selected
for reproduction based on the fitness scores obtained. The selected genomes are
used as the seed for the next generation. The process typically continues for a
fixed number of generations, until stagnation is detected, or until a solution of
sufficient quality has been evolved.

In this study, the robotic controllers that are decoded from genomes are
CTRNNs [3]. Genomes are composed of the values of the weights, bias and re-
current connections of a fixed-size CTRNN (in this case: 8 x 5 x 2, with delayed
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self-connections at each node). In the evaluation phase, the fitness of each genome
is sampled 30 times in order to assess its fitness. The final fitness score corre-
sponds to the mean fitness score obtained in the 30 samples. After all genomes of
a generation have been evaluated, we use a simple elitist selection strategy that
retains the five highest-performing controllers from a generation and also uses
these elite genomes to create the new genomes for the next generation (a total
of 100 genomes). A new genome is created by mutating one of the elite genomes.
The evolutionary process continues until the desired number of generations is
reached (400).

In the case of conventional evolution with ANN-based controllers for swarms
of robots, an individual’s genome is decoded into an ANN, which is copied to each
robot in the swarm. With the GV approach studied in this paper, the genome
assigned to each robot in the swarm prior to evaluation is not an exact clone
of the genome under evolution. Instead, a slight variation of the base-genome is
copied to each robot. GV is applied to the base-genome in each evaluation sample
by adding a uniformly distributed random value (noise) in a defined range, to a
certain portion of the ANN weights, creating an heterogeneous swarm. Different
ranges for both the variation magnitude and portion of weights varied are tested
on the experiments conducted in this study (see Section 4). GV is only used when
assessing the performance of a genome. A different random variation is applied
to the ANN copied to each robot, thereby generating a different heterogeneous
swarm in every sample from the same base genome.

For our experiments, we use JBotEvolver [12], an open-source simulation
platform and neuroevolution framework.

4 Experiments

In this section, we compare our GV approach, neuroevolution with (SN) and
without sensor noise (NF). Adding noise to simulated sensors during evolution
has been shown to promote robust behaviors that are more capable of crossing
“the reality gap” [19], so we will replicate evolution with sensor noise to compare
with the robustness of the GV evolution in different scenarios. In the following
experiments, we study GV with different settings for both the magnitude of
variations and the proportion of ANN parameters varied.

The task used in these experiments is standard swarm robotics aggrega-
tion [26]. Our aggregation task is performed in a bounded arena, where 15 robots
should find each other and aggregate, i.e. form a connected cluster with the great-
est number of robots possible. A robot is considered in a cluster if it is within
0.25 m of at least one other robot from that cluster.

Robots can sense each other with four sensors dispersed evenly on their body,
and can also sense walls, using four sensors that are also dispersed evenly on
their body. All sensors have an opening angle of 90º, providing each robot with
omni-directional sensing, and they have a range of 1 m. All sensory readings are
linearized to the interval [0, 1] before being fed to the controller. The value of the
actual reading of the sensor is linearly proportional to the distance at which the
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object is sensed. In this task, the size of the arena is 4 m in odd samples and 8 m
in even samples. The size of the arena is varied to prevent overfitting of solutions
to a particular size. Controllers are scored based on the largest cluster of robots
in the environment, according to the following equation inspired by [15]:

Fitness =

∑T
t=0

(
max

(∑R
r=0 (Crt)

)2)
T

(1)

where T is the number of control cycles in the sample (3000), R the number of
robots (15), and Crt is the number of robots clustered with robot r at control
cycle t.

Throughout the following experiments we have three scenarios: Noise-Free
(NF), Sensor Noise (SN), and Genome Variations (GV), that will be detailed
in Sections 4.1, 4.2 and 4.3, respectively. We assess the performance of genomes
evolved in each scenario in all test setups (NF, SN and GV).

The noise-free NF scenario will be the baseline. In the SN scenario (Sec-
tion 4.2), each sensor in each robot is assigned with an offset uniformly dis-
tributed within the range [−0.1, 0.1], and a random noise on each of its sensor
readings, also in the same range. Sensor offset noise is kept constant through
the sample’s lifetime while sensor reading noise is random for each reading. To-
tal noise in the SN environment has an amplitude lower than the 0.4 suggested
by [17]. In the SN scenario, all genomes are evolved in a noisy environment. In the
GV scenario (Section 4.3), GV is used during evolution. We study three different
variants of the GV scenario, each with different parameters: (i) [−0.125, 0.125]
variation on 12.5% of the ANN weights, (ii) [−0.25, 0.25] variation on 25% of
the ANN weights, iii) [−0.5, 0.5] variation on 50% of the ANN weights. Post-
evolution we assess the performance of the highest scoring controllers from each
of the scenarios in all three test setups: NF, SN, and GV.

We are interested in assessing how the different solutions perform, and in
comparing the robustness and self-organization capabilities of controllers evolved
in the different scenarios. Five evolutionary runs are conducted in each scenario
(NF, SN, and three GV variants) with a total of 400 generations per run. Each
generation is composed of 100 genomes, which are evaluated in 30 samples each.
After the evolutionary process ends, the highest-performing genome of the last
generation is post-evaluated in 100 samples in the different test scenarios con-
sidered for each experiment.

4.1 Noise-free Neuroevolution

The first set of experiments serves as a baseline: we conducted a total of five
evolutionary runs in the noise-free (NF) scenario. We then assessed the perfor-
mance of the highest-scoring genome evolved in each run in all test setups, see
results in Figure 1. Notice that swarms are not being evolved with SN or GV,
only in the post-evolution assessment is SN or GV introduced.
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Fig. 1. Results for NF evolved controller in the three different scenarios: NF, SN and
GV with [−0.125, 0.125] variation on 12.5% of the ANN weights (GV-12.5), GV with
[−0.25, 0.25] variation on 25% of the ANN weights (GV-25) and GV with [−0.5, 0.5]
variation on 50% of the ANN weights (GV-50). Mean fitness obtained in 100 post-
evaluation trials with the highest-scoring controller for each run (five runs), resulting
in a total of 500 observations per box.

Controllers evolved in the NF scenario suffer from a significant fitness drop
when exposed to SN. Recall that in the GV test setups, we use a different vari-
ation for each robot in the swarm, creating an heterogeneous swarm. Still, since
controllers were not evolved with GV, performance degrades as the GV inter-
val increases (GV-12.5, GV-25 and GV-50). This provides an indication of the
amount of variation the solutions can cope with, before performance degrades,
namely between 0.25 and 0.5, in GV-25 and GV-50.

4.2 Sensor Noise Environment

In the second set of experiments, we conducted five evolutionary runs in the SN
scenario, and assessed the performance of the highest-scoring genome evolved in
each run in all test setups, see results in Figure 2. Details on how SN is applied
can be found in the beginning Section 4.

Controllers evolved in a SN environment have a good behavior in both NF
and SN test setup. The GV used in this test (heterogeneous swarms) maintains
a performance on par with NF and SN trained up to GV-25. Performance in
tests with high GV intervals (GV-50) degrades but performance is still higher
than the noise-free-evolved solutions in the SN test (SN in Figure 1). It can be
expected since SN evolution should enable the genome to cope with noise in the
input up to [−0.1, 0.1] ± [−0.1, 0.1].
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Fig. 2. Results for SN evolved controller in the three different scenarios: NF, SN and
GV. In this setup noise was added to random sensors in each robot. The GV scenar-
ios have [−0.125, 0.125] variation on 12.5% of the ANN weights (GV-12.5), GV with
[−0.25, 0.25] variation on 25% of the ANN weights (GV-25) and GV with [−0.5, 0.5]
variation on 50% of the ANN weights (GV-50). Mean fitness obtained in 100 post-
evaluation trials with the highest-scoring controller for each run (five runs), resulting
in a total of 500 observations per box.

In an additional set of experiments (not shown), GV evolved controllers were
tested in a setup that had both SN and GV simultaneously. These experiments
tested homogeneous versus heterogeneous swarms in SN scenarios, but we chose
not to include them since they were not significantly different from the results
presented in Figure 2.

4.3 Genome Variations

In the third set of experiments, we conducted five evolutionary runs in each
of the three GV scenarios, and assessed the performance of the highest-scoring
genome evolved in each run in all test setups, see results in Figure 3.

When using a small variation interval (GV-12.5), GV evolved solutions are
similar to the solutions evolved in the NF scenario. In this set of experiments,
both NF and GV-12.5, evolved behaviors in which the robots aggregate with
search-like patterns moving freely inside the environment. GV assessments with
larger variation intervals, GV-25 and GV-50, sometimes evolved a behavior in
which the robots group by following the walls, turning corners, and eventually
finding each other. All the behaviors evolved in the GV scenario solved the
aggregation task in the NF test setup.
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Fig. 3. Results for GV-12.5, GV-25 and GV-50 evolved controller in the three different
scenarios: NF, SN and GV (heterogeneous swarms). In GV tests, the variation interval
is the same as the one used on the evolution of that specific controller. Mean fitness
obtained in 100 post-evaluation trials with the highest-scoring controller for each run
(five runs), resulting in a total of 500 observations per box.

While a [−0.125, 0.125] variation on 12.5% of the weights has almost no
impact in the fitness, larger variations in more weights lead to solutions with an
increasingly worse fitness. GV-evolved solutions generally required more time to
form a group (around 1700 control cycles on NF evolved controllers and 2040
on GV-25 — tests done in the NF test scenario, small arena). Apart from the
quantitative evaluation shown above, a qualitative evaluation of the solutions
shows that the solutions evolved with GV with a low degree of variation, appear,
to the naked eye, to be equal to the ones evolved in the noise-free NF setup.
Also, robots in GV-evolved solutions with larger variation intervals lack the
smoothness of movements that NF and narrow-variation GV’s have.

As seen in Section 4.1, when tested in SN setup, controllers evolved in the
NF scenario have a significant drop in fitness when exposed to SN. Surprisingly,
the fitness drop of GV-evolved controllers in presence of SN is comparable to
that of noise-free-evolved controllers in this case. As mentioned above, larger
GV intervals tend to evolve different behaviors. The behavior where the robots
aggregate by following the walls and finding each other near them is probably a
more robust strategy in a SN environment.

5 Conclusions and Future Work

In this paper, we introduced Genome Variations, a technique in which small
mutations are applied to the evolving neural networks before they are copied to
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each robot in a swarm. The variation is introduced only in the evaluation of the
swarm, and it is individual to each robot, leading to slight behavioral hetero-
geneity in the swarm. GV was expected to provide a certain degree of robustness
whether by resembling the effects of sensor noise, and/or by promoting behaviors
robust enough to cope with slightly different peer behaviors during evolution.

Experiments in the aggregation task only partially confirm the hypothesis.
GV does indeed appear to produce more robust behaviors than those evolved in
noise-free scenarios, but robustness is not comparable to solutions evolved with
sensor noise, nor does the resulting mild degree of heterogeneity seem to have
any significant impact on the robots’ behavior in this task.

Future work will focus on increasing the number of evolutionary runs and
include additional tasks to provide a sufficient basis to determine the significance
of any performance differences. We intend to determine whether GV can provide
some form of generic robustness that is less expensive to train than tolerance to
each specific type of noise applied to sensors, actuators, or to the environment.
We will also try to use NEAT (more reactive and flexible than CTRNNs). NEAT
will also allow an interesting analysis of the different types of networks evolved
with each setup (number of nodes, connections, recurrent connections). Also,
we plan to assess the impact of GV on swarm fault-tolerance and its potential
advantages on behavior transfer from simulation to real-robot scenarios.
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