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Portugal
plsmo@iscte-iul.pt

Susana Marta Almeida
Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Lisboa,
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Abstract

This paper addresses the problem of automated learning of air pollution predictive models
that were trained using information gathered by a set of mobile low cost sensors. Concretely,
fast to compute machine learning methods (Decision Trees and Support Vector Machines)
were used to build regression models that predict air pollution levels for a given location.
The models were trained using the data collected by the OpenSense project, in particular,
number of particulate matter, particle diameter and lung deposited surface area (LDSA).
We examined two different sets of attributes: one based on a geographical description of
the location under analysis (e.g., distribution of households and roads), and another based
on a time series of past air pollution observations in that location. Overall, we have found
out that past measures lead to better pollution predictions. The best R2 score was 0.751
obtained with the model that predicts LDSA and was trained with the data set with time
series attributes, while the worst R2 was 0.009 obtained with the geographical data set to
predict number of particles. The performance of the best model is on par with similar air
pollution systems. Moreover it can be used in a production system that requires frequent
updates.

Keywords: machine learning, air pollution, time-series, land-use, decision tree, support vector
machine.

Introduction

Air pollution is one of the most pressing problems in urban areas with very harmful impacts on
the health and ecosystems. It is well documented that exposure to air pollution lead to adverse
health effects, such as premature mortality and morbidity, mainly related to respiratory and
cardiovascular diseases, asthma and allergies [35]. Moreover, the World Health Organization
(WHO) has classified air pollution as carcinogenic to human beings [12]. More recently, the
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latest report on air quality in Europe [5] shows that air quality implications are mainly due to
high levels of particles suspended in the atmosphere (PM).

Airborne particulate matter sources range from coal combustion, transportation, power sta-
tions, among others. Its rise is linked to economical growth [10] and can trigger the development
of different diseases [13]. Historically, air pollution is linked to industrialisation and urbanisa-
tion growth [37]. Part of these pollution sources are used to produce different types of energy
which are fundamental to run an economy [9]. The impact in the environment is also well doc-
umented [20] ranging from over fertilisation, reduced photosynthesis, emission of green-house
gases, among others. Tackling air pollution will require compromises in the energy sources that
are used by our current society as well as current patterns of consumption.

The recognition of the sources of air pollution has lead to enactment of several laws to treat
pollutants at the source [37]. Variations in anthropogenic emissions in Europe, especially in
the last 30 years, have caused a decrease in the PM concentration values. However, several
ecosystems and cities in Europe are still confronted with PM concentrations that go beyond
European standards and, principally, the WHO Air Quality Guidelines. Rough calculations of
the impacts of air pollution to health point out that PM2.5 (particles whose diameter is less than
2.5 µm) concentrations in 2018 were the cause of 417 000 deaths in the countries belonging to the
European Union [5].

Air Pollution is perceived as the second biggest environmental concern for Europeans, after
climate change [2] and, therefore, there is a growing political, public and media interest in air
quality issues and increased public support for action. Moreover, exceeding European Standards
and WHO guidelines leads to illnesses and to social and economic disruptions such as workplace
slowdown, absenteeism and congested emergency rooms. China has experienced rapid indus-
trial growth, which has lead to severe air pollution. This has raised the interest to tackle this
issue [10]. Consequently, national, regional and local authorities have developed extensive air
quality monitoring and information programs, whose objective is to increase the public’s aware-
ness of air quality state, especially with regard to health effects, so that individuals can modify
their behaviour to protect their health.

It is vital to improve the systems used to predict air quality and warn the public of pending
unhealthy conditions, so that direct exposure to ambient air pollution can be avoided during
specific periods. Air pollution prediction is a complex and non-linear problem, once various
factors affect air quality, such as the atmospheric conditions and geographical context like land
use, traffic, topography, and location. Therefore, in the last decades, a wide variety of prediction
techniques have be developed, which can be classified in two major categories: deterministic and
statistical. One of the most used deterministic methods is the Gaussian Dispersion Model, where
the physical and chemical processes that occur in the atmosphere are simulated in order to predict
the quality of the air in a given place [33, 23]. Although the accuracy provided by dispersion
models is good, we need reliable information regarding the places where pollutants appear, as
well as the chemical and physical characteristics of the atmosphere, which can be difficult to
obtain principally for large-scale applications. In addition, applying these models in a realistic
setting, where the quantity of data is large, is very time consuming. These disadvantages have
led to further development of the statistical methods to solve real-life problems, such as Machine
Learning (ML) methods, which can model the complex relationships between air pollution and
temporal and spatial variables [14], as these models are capable to approximate any complex
non-linear function.

Due to decreasing costs, researchers have been using networks of sensors to monitor air
quality. Having a set of mobile and low cost sensors (LCS) fits in the context of the Internet
of things (IoT) as we are tapping in the available of cheap and accessible sensors to monitor air
quality. This is a line of work that uses IoT to provide a sustainable society. In [21] the authors

3



review the latest work on the usage of IoT technologies to provide a more sustainable society.
One of the areas of IoT is on smart-cities where a network of sensors is deployed in order to
monitor life quality indicators, manage critical systems, and provide real time information.

An example of a network of LCS to monitor environmental effects of air pollution is described
in [1] where the authors report a network deployed in Salt Lake City, USA, which figures in the top
most USA polluted regions. Their network has been used to study the exposure to air pollution.
Another example is presented [34] where the authors describe how data collected by the sensor
network was used to train a pollution classifier capable of tracking pollution on a hourly basis.
The OpenSense project also deployed a network of mobile LCS in the city of Zurich. They were
able to construct PM maps with high spatial and temporal resolutions, although maps with
weekly or higher time scales were more accurate [11]. A final example is shown in [15], where the
authors present a method to combine measures from their network of low cost sensors with the
data collected by the Taiwan environmental monitoring stations that is able to improve spatial
and temporal resolution of PM estimation.

The research reported here is part of the ExpoLIS project. Our goal in the ExpoLIS project
is to deploy a network of mobile LCS to monitor air quality and to develop a set of software
tools [28]. This paper is an extended version of our previous work [18] aiming at developing a
pollution prediction software tool to assist the population. As such, in this paper we investi-
gate how data collected from this type of network can be used to predict pollution levels. This
contrasts with standard models where prediction is based on land-use, geographical and meteo-
rological attributes. We improve the geographical data set (used on the previous paper) and we
use a new data set based on a time series. This work improves on similar systems in that the
prediction model is based on data collected by a network of mobile LCS and has to be updated
on a regular basis.

This paper is organised as follows. We start by presenting in Section Material and Methods
the data sets and the ML methods that we used on the pollution prediction task. Next, in
Section Results, we present the results that we obtained in terms of prediction performance and,
in Section Discussion, we discuss and compare the predictions made by the models trained with
the two data sets. We wrap up in Section Conclusions with concluding remarks and future
avenues of research.

Materials and Methods

Data Set Preparation

As we have yet not deployed any sensors, we used the data collected by the OpenSense project [17]
to train the ML models. They deployed a set of LCS in the trams of the city of Zurich. As
we have mentioned, this data contains measurements of number of particles, particle diameter
and LDSA. Besides air pollution data, they also stored the date and time with a precision of
minutes, latitude, longitude, the GPS error, and the tram identification. The entire data set
contains 36 818 362 sensor readings. Figure 1 shows an overview of the OpenSense data that we
used.

For the purpose of the present work, the original data set was post-processed and extended
to create two separate data sets, one based on geographical information and another based
on temporal series. This separation has the goal of allowing investigating the impact that each
information source may have on air pollution prediction error. The data set based on geographical
information is a direct extension of our previous work [18].
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(a) Location and number of sensor readings. The map also
shows the Open Street Map (OSM) objects that were used in
computing the geographical attributes: vegetation in green;
buildings in brown; roads in grey.
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(b) Histograms of collected sensor data.

Figure 1: Overview of OpenSense data.
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Table 1: OSM tags and values used when computing a geographical attribute.

attribute tag value
building building not empty

greenery

landuse forest

landuse garden

landuse grass

landuse plant nursery

leisure garden

leisure park

natural grass

natural grassland

road highway not empty

Geographical Data Set

The geographical data set is stored in three databases. The raw sensor data, directly obtained
from the OpenSense project, is stored in the first database, which is based on PostgreSQL with
PostGIS extension.

The data that was used to compute geographical information is stored in a second database,
also based on PostgreSQL with PostGIS extension. This data was fetched from an Open Street
Map (OSM) provider1. We only selected the data located in a rectangle with geographical
coordinates (47◦17′N, 8◦26′E) and (47◦30′N, 8◦39′E). To import the data from OSM to the
database, the tool osm2pgsql2 was used.

The third database contains the attributes used to train the pollution model. The attributes
are the date, time, and geographical characterisation of the location where sensor data was
collected by a tram. The date and time corresponds to the OpenSense data. The geographical
characterisation is composed of the area of the buildings, road, and vegetation that are located in
a circle around the location mentioned earlier. Compared to our previous work [18], the building
area has been included in the present work. In an urban environment, buildings are a common
feature, as well as urban canyons, which are known to reduce pollution dispersion. As such,
building distribution is a crucial attribute that was missing from the previous paper.

We used the API of PostGIS to calculate the geographical characterisation. This API supplies
functions that are used to filter objects on the surface of a sphere, for instance, objects within
a circular region. We also selected the OSM objects that match the geographical attribute that
we defined. This means setting conditions on OSM tags. Table 1 shows the conditions that were
used in all three geographical attributes, namely, buildings, greenery/vegetation, and roads.

The geographical rectangle that we used is the same as the one from our previous paper [18], as
it showed to encompass a number of OSM objects to be imported into the database that properly
trades-off spatial coverage and computational efficiency. Concretely, this rectangle is wide enough
to contain all relevant OSM objects that are at most 2 m from any sensor geographical location
while simultaneously not resulting in excessive time required for a function to compute a single
geographical attribute.

Another factor that has an impact on computing geographical attributes is the number of
locations. The OpenSense data set that we used has 21 019 480 distinct geographical points. Such
high number of points has an impact on the time needed to compute all geographical attributes.
To cope with this challenge, a rectangular grid with grid cells of 2 m was used. A grid cell of

1https://overpass-api.de
2https://github.com/openstreetmap/osm2pgsql
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Table 2: Attributes used in the pollution prediction based on geographical data task.

attribute values
minute of day {0, 1, . . . , 60 · 24− 1}
day of week {0, 1, . . . , 6}
week of year {0, 1, . . . , 52}
building area ]0,+∞[
vegetation area ]0,+∞[
road area ]0,+∞[

2 m spans a latitude of 0◦0′0.0972′′ and a longitude of 0◦0′0.0648′′. This approach results in
489 478 grid cells and a gain of 93.98% in terms of time to compute the geographical attributes.
Figure 1a shows the result of building this rectangular grid where we can see grid cells and how
many readings are per cell. This figure also presents the OSM objects that were used to compute
the geographical attributes. Table 2 presents an overview of the attributes used in the pollution
prediction based on geographical data task.

The histograms of air pollution data, presented in Figure 1b, clearly show a prevalence of low
values. Number of particles shows a long tail that decays exponentially to outliers. It also has
the greatest range of values compared to particle diameter and LDSA.

Time Series Data Set

Before creating the time series that was used to build the prediction model, the OpenSense data
was checked for mistakes, outliers, or invalid values. A set of 44 records were found to be outside
the places reached by trams. There is one record with a negative particle diameter value. In [7],
the authors discuss the performance of the sensors used to collect the OpenSense data. They
mention that for particles larger than 250 nm the sensor readings are not reliable. This lead us
to exclude sensor readings whose particle diameter were greater than 250 nm. This condition
only excludes 13 654 records from the time series creation. Examining the box plots of the sensor
readings excluding the aforementioned data, it is possible to see that there are still outliers. A
possible solution to remove these outliers would be to filter out sensor readings that are located
above the third quartile plus 1.5 times the inter quartile range (computed in the original data).
However, this procedure would exclude around 6%, 3.1% and 5.2% records considering only the
number of particles, particle diameter, and LDSA, respectively. In alternative, we opted to
exclude records whose number of particles value is greater than 106, which is a higher threshold
than the inter quartile range criteria. This condition only excludes 2565 records. Combining all
the conditions, a total of 16 263 records were discarded for the time series creation.

To create a time series, the spatial area under analysis is first divided in a rectangular grid
with a cell size of c meters. In turn, time is divided in a sequence of slots s1, s2, . . ., each with a
duration of d minutes. For each cell g and slot s we compute the average of air pollution data
yielding a set of xgs values. If there is no data during a slot s in a cell g, then xgs is undefined.
The number of points of a time series is defined by l. A time series is thus described by:

〈xgst+1
, xgst+2

, . . . , xgst+l
〉 , (1)

and is only created if all the xgst+i
, with 1 ≤ i ≤ l, are defined.

Different values for the time series length (i.e. the number of points) and the duration of time
slot were considered, as this allows us to build time series in order to generate predictions, given
the last l − 1 hours or the last l − 1 days. Table 3 shows the time series generator parameters
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Table 3: Parameter values used to create time series from the OpenSense data: l time series
length, d duration of a time series slot (in minutes), c grid cell (in meters). The two right most
columns show how many time series were created and how many geographical cells have time
series.

l d c number of time series number of cells
2 60 50 4 498 529 2919
3 60 50 3 543 084 2412
6 60 50 2 153 097 1947

12 60 50 854 828 1483
18 60 50 170 529 1303 ?
24 60 50 5192 168
2 120 50 3 099 352 3036
3 120 50 2 489 213 2571
6 120 50 1 233 259 2094

12 120 50 9502 570
24 120 50 857 13
2 180 50 2 221 138 3123
3 180 50 1 671 246 2626
8 180 50 62 421 1448

16 180 50 7925 488
2 720 50 866 444 3198
3 720 50 653 907 2704
7 720 50 293 631 2136 ?
2 1440 50 455 255 3269
3 1440 50 324 337 2737
7 1440 50 120 587 1838 ?

values considered in the context of this article. This table also shows the number of time series
that were created with the given time series generator parameters, and the number of unique
geographical cells that have a time series associated. Overall, a decrease on the number of time
series and geographical cells covered is observed when the time series length and the time slot
duration is increased. The main reason for this being daily gaps in measuring activity and
absence of trams during the night.

Different ML methods have different requirements in terms of time complexity to train a
model. Coupled with finding a set of hyper-parameters with reasonable performance, this in-
creases the time spent finding a suitable model. This aspect is made more clear in the following
section where we present the ML that we used in this paper. With this in mind, we selected ML
methods with low time complexity to investigate which time series resulted in the best possible
prediction model (see below). ML methods with higher time complexity were only tested in three
time series (the ones marked with a star in Table 3). In Figure 2 we display the time series grid
cells that were used with the more computationally time intensive ML methods. For comparison,
this figure also shows time series generator parameters that produced the time series with the
highest number of locations.

Prediction Models

To build air pollution prediction models, we used different machine learning methods, known
to be fast to compute, namely Decision Trees (DTs), Neural Networks (NNs), Support Vector
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(a) Time series length 18, time series slot dura-
tion 60min, cell size 50m.

(b) Time series length 7, time series slot duration
12 hours, cell size 50m.

(c) Time series length 7, time series slot duration
1 day, cell size 50m.

(d) Time series length 2, time series slot duration
60min, cell size 50m.

Figure 2: Locations of selected time series: a to c used in time intensive Machine Learning
methods; d time series generator parameters that produced highest time series count.
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Machiness (SVMs), and k-nearest neighbourss (KNNs). These methods belong to two of the five
main fields of machine learning [4]. All the algorithms that build these methods have at least one
hyper-parameter. The scikit-learn software library [22] was used to build the prediction models
and to find a suitable set of hyper-parameters for them.

Overview of Prediction Models

A DT is a ML method that produces a set of if-then rules organised as a tree [19, 25]. Each inner
node of the tree consists in a condition involving one attribute of the data set (e.g., geographical
location). A leaf node is tagged with a class or in the case of regression a linear function of a
subset of the attributes. While learning an optimal DT is a hard problem, greedy algorithms are
usually used; these are very fast in creating a DT. Whenever the algorithm has to split a leaf
node into an inner node, it looks for the attribute that is able to discriminate best the subset
of the training samples at that leaf node. Afterwards the subset of training samples is divided
among the child nodes of the newly created inner node, and then the algorithm examines the
next leaf node. A leaf node is not split, if its subset of training samples have the same class or the
same value (in the case of regression), or the size of the subset is small enough, or the depth of the
node is high enough. Typical hyper-parameters are the depth of the tree, and the threshold (on
the size of the subset samples of a leaf node) that blocks the algorithm from splitting a leaf node.
In this paper we will refer to the last parameter as min-samples-leaf. These parameters control
the over-fitting of the DT to the training set. There are other parameters that can be adjusted.
We did not discuss them here, however they can be consulted in the scikit-learn documentation3.

NNs are models inspired in the organisation of the neurons in the brain. A NN is composed
of units called neurons, organised in layers. Each neuron receives as inputs the data from the
previous layer, it performs a linear combination of the input, and then feeds the result to an
activation function to produce the neuron’s output [19, 25]. With the advent of deep learning,
the popularity of NNs has risen due to its success in a variety of tasks [31]. Regarding hyper-
parameters, we have to specify the activation function used in the middle and output layers, the
number of layers, the number of neurons in the hidden layers (the size of the input and output
layers are determined by the problem), and the number of training iterations. NNs are capable
of approximating any function given the correct set of hyper-parameters and a sufficiently large
model capacity (i.e., the number of neurons in the inner layers). The scikit-learn API provides
other parameters that have minor impact on the produced, that again we point to the scikit-
learn documentation. Training a single NN varies polynomial with the number of neurons, the
number of records, and the number of iterations, which means that finding the best combination
of hyper-parameters can be time consuming.

Before the rise of deep learning, SVM were very popular as they can also approximate any
function but with more efficient training and fewer hyper-parameters, compared with NN [29].
A SVM depends on a user-specified kernel function (e.g., linear, polynomial, radial basis) that
is used to map the attribute space to a higher order space, in which a linear combination can
be efficiently computed that is able to classify or to obtain a regression model. The hyper-
parameters of a SVM are related to the kernel function; please refer to complete scikit-learn
documentation for remaining parameters.

Building a Prediction Model

A good prediction model is one that has a high score when fed with data unseen during training.
That is to say, the model has to be to able to generalise. Moreover the algorithms to train a

3https://scikit-learn.org/

10

https://scikit-learn.org/


prediction model depend on a set of hyper parameters. This has lead to the following procedure
where the data set is divided into three subsets: the training and test sets are used when searching
for a suitable set of hyper-parameters; the validation set is used to assess the performance of the
selected set of hyper-parameters [19].

One method to obtain a model capable of generalisation and to evaluate the hyper-parameter
space and choose one set of values is to perform k-fold cross validation. This means splitting the
data set in two sets: the train/test set and the validation set. The train/test is divided in k folds.
To evaluate one set of hyper-parameters, the model is trained in k−1 folds and then tested in the
left-out fold. This procedure is repeated k times and the score of the set of hyper-parameters is
the average of the score obtained in all the k iterations. Afterwards, the set of hyper-parameters
that scored the highest is evaluated in the validation set in order to assess how good and how
capable is the model to generalise to unseen data.

After a hyper-parameter has been selected to build a prediction model, the importance of the
attributes in the result needs to be analysed. One way to achieve this is to perform an ablation
test, in which a prediction model is built but without some of the attributes. The performance of
the resulting model is then compared with the performance of the model which uses all attributes.
If the ablated model performs similarly to the full model, then one may conclude that the discard
attribute is irrelevant to the regression problem.

Results

Geographical Data Set

We begin by presenting the results of searching a set of hyper-parameters for DTs training
through cross validation (see Figure 3a). The DT hyper-parameters maximum tree length (shown
on the horizontal axis) and the min-samples-leaf (varied horizontally across the plots) were
tested. The maximum tree length varied between 4 to 20. We also allowed the tree to grow
as needed (marked as NA in the horizontal axis labels). As mentioned in the previous section,
parameter min-samples-leaf controls the growth of the DT during the training algorithm. At
each time step, the algorithm examines a tree leaf and must decide if it should expand it or leave
it as is. This depends on the subset of the training samples that are assigned to the leaf. As for
the values that we chose for this parameter, a percentage means that whenever the size of the
subset of training samples relative to the size of the test set was higher than this number, the
algorithm kept splitting the leaf nodes of the tree. When min-samples-leaf is equal to one, the
algorithm keeps splitting until the subset size becomes one.

The prediction error in the test data set is based on how different are the predicted and true
pollution levels (see the vertical axis of Figure 3a). The following equation shows how prediction
error is computed:

− 1

n

∑
i

|f(xi)− y(xi)|, (2)

where xi is the ith attribute vector, y(xi) is the pollution recorded by the sensor network (number
of particles, for instance) that corresponds to ith attribute vector, fi(xi) is the pollution value
as predicted by the DT model, and n is the data set size. With this expression, the best value
is zero, while negative values mean the DT is not predicting well.

Figure 3a shows that, as the trees get deeper, the performance on the test data set degrades.
This effect is greater when parameter min-samples-leaf forces the algorithm to keep splitting
until the subset of records is small. The left most plots in Figure 3a show a steep decline as the
tree depth increases.
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(a) Prediction error of Decision Tree parameter grid search. Values measured on test data set.
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Figure 3: Results using the geographical data set.
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We decided to perform the ablation experiments using DTs that were learned without im-
posing a limit to their depth. The prediction error obtained when using all the attributes or
when some attributes were removed is shown in Figure 3b. It shows that, if only one of the
geographical attributes is used, then the prediction error decreases considerably. Regarding the
time attributes, the effect is not as visible as for the geographical attributes. However, Figure 3c
shows that if any time attribute is removed, then the R2 score approaches zero, meaning that
the prediction is random. If only one geographical attribute is used, then the R2 score increases
a small amount compared to using all the geographical attributes. Regarding the different air
pollution data, particle diameter has the highest R2 score. Overall, the obtained score is far from
one, meaning DTs with the geographical data set fare poorly when predicting air pollution.

Time Series Data Set

Figure 4a shows the R2 score for the DT trained on all time series. Overall, the score increases
as the time series length increases, and as the time series slot duration decreases. Regarding air
pollution data, LDSA has the best score followed closely by particle diameter. As for number of
particles the score is good only when we use a time series with 18 slots of 60 minutes. However,
even in this case the R2 score is lower than 0.5.

As for the results using SVM, as this method requires quadratic space on the input size, only
the time series generator parameters that did not produced a high number of time series were
tested. The tested parameters are marked with a star in Table 3. Figure 4b shows the R2 score
of these experiments, which, as expected, is higher when compared to the results when using DT.
Again, air pollution data number of particles exhibited the worst performance. Although only
two different time series length were tested, it is noticeable that the longer time series showed
better performance, excepting in what regards the number of particles sensor data.

Discussion

Geographical Data Set

The prediction error depicted in Figure 3b shows that, when we remove either the attribute
minute of the day, or day of the week, or week of the year, the prediction error does not changes
much. However, if only one geographical attribute is used, the prediction error decreases, and
the final value is the same independently of which geographical attribute is considered.

Overall, the obtained R2 score is very low, with air pollution data particle diameter and LDSA
showing the best values. Even then, it is less than 0.1, which means that the model is casting
random guesses. The results also show that the effect of only using a geographical attribute does
not affect the R2 noticeable, compared to the effect of dropping a time attribute. These time
attributes have a higher effect on the R2 score compared to the geographical attributes, with
week of year having the greatest impact when removed.

Overall, we believe that the low results obtained with the models based on DT are a direct
consequence of the limited capacity and representation power of the models that can be obtained
with this method. In previous work [18] we considered alternative methods, such as NNs, but
these exhibit a major drawback, which is their time complexity on the number of samples.
With data sets as big as the ones considered in the present work, exploring the space of hyper-
parameters would be too time consuming. Another issue that may be hampering the results is
the unbalanced nature of the used data set. As can be seen from the histograms (depicted in
Figure 1b), the data are skewed towards low values.

13



60 120 180 720 1440

n
u
m

b
e
r p

a
rtic

le
s

p
a
rtic

le
 d

ia
m

e
te

r
L
D

S
A

2 3 6 12 18 2 3 6 2 3 2 3 7 2 3 7

0.25

0.50

0.75

0.25

0.50

0.75

0.25

0.50

0.75

time series length

R
² 

s
c
o

re
d

e
c
is

io
n

 t
re

e

(a) Prediction error of DT for all time series data set.

number particles particle diameter LDSA

l=7 d=720 l=7 d=1440 l=18 d=60 l=7 d=720 l=7 d=1440 l=18 d=60 l=7 d=720 l=7 d=1440 l=18 d=60

0.25

0.50

0.75

time series length and time slot duration

R
² 

s
c
o
re

s
u
p
p
o
rt

 v
e
c
to

r 
m

a
c
h
in

e

(b) R2 score of Support Vector Machines for selected time series generator parameters.

Figure 4: Results using the time series data set.
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One possibility to reduce the prediction error based on geographical attributes is to reduce
the data set size by considering not only cell size but also a time slot duration. If we increase
cell size, we reduce the number of geographical cells that have to be considered. Similarly, using
time slot duration parameter, we reduce the size of the data set, which opens the possibility to
use ML with higher time complexity.

Time Series Data Set

The low R2 score obtained in the geographical data set score lead us to test other attributes
when building air pollution models, in particular time series. The obtained results show that
the R2 score obtained with models trained with both geographical and time series information is
higher than when no time series is considered. Figures 3a and 4a show the R2 score when using
DTs. It can be seen that even the worst DT has a R2 score of around 0.15, which is considerably
higher than the one obtained by the best DT on geographical data set, which achieved a score
of around 0.04.

If a different ML method was considered, we would probably improve the R2 score of the
air pollution prediction model. To assess this possibility, in this work, we focused on SVM due
to their small number of hyper parameters. The experiments that were performed with SVM
showed promising results in terms of prediction accuracy for different time scales. We tested
a time series with 7 days and another with 18 hours. Both resulted in high R2 score for the
particle diameter (0.68 and 0.8 for 7 days and 18 hours, respectively) and LDSA (0.72 and 0.83
for 7 days and 18 hours, respectively) sensor data. We also tested a time series using 7 half-days,
which performed similarly to the 7 days time series.

Comparison

Regarding the two data sets that we present in this work, the time series data set was the one that
induced the models with the best results (compare the R2 score shown on Figures 3c and 4a).
Regarding our previous work [18], we were able to improve the performance of the air pollution
prediction model based on data collected by a network of mobile LCS. The geographical and
time series data sets obtained better scores compared to the work presented in [18].

We considered other ML methods, such as NN and KNN, but these were discarded due to the
unpractical training time they would require, given the large data set at hand. Overall, using
DT to select a particular data set for further investigation was proven successful. With DT,
we managed to quickly gain insight of which time series generator parameter or geographical
attribute is more favourable, given practical constraints on the available computational budget
required to handle a large data set such as one that a mobile sensor network can produce.

This work is an alternative to existing approaches for air pollution prediction, such as physi-
cally modelling the behaviour of air fluids [32], Krigging [30], taking into account the geographical
information around the land where sensor data is collected and using it to build a regression model
[27], and NN [3]. Our approach on using geographical information is similar to the one presented
in [27] where the authors use distance to roads, to the one presented in [32] where the authors
also focus on roads and specifically on urban canyons, and the one presented in [3] where the
authors consider terrain topography in general. Regarding time, in [3] the authors found out
that it had considerable success in the task of prediction the value of pollution data.

Air pollution prediction using time series is yet another approach. Different methods have
been, used such as SVM [36] and NN [26, 16, 6]. These methods are able to better capture non-
linearity in the problem when compared to more traditional statistical methods, which assume
that variables are linearly dependent. Several authors also mention the time complexity of these
methods [8].

15



There are several NN architectures such as Recurrent Neural Networks that we could have
used. Deep NN have rise in popularity due to their success [31]. However they suffer from a high
number of hyper-parameters.

When we need to build a pollution prediction model we are faced with the task of selecting
a set of suitable attributes and of selecting a set of training model hyper-parameters. We can
reduce the time required if we use a ML with low time complexity such as DT to select a set
of attributes. This allows us to save time and energy in this phase and focus on the task of
improving the performance of the pollution prediction model by tuning its hyper-parameters.

The results that we obtained were based on two types of data sets. The one based on
geographical attributes compares with the work of [11] (land-use and traffic), [34] (only land-
use), [26] (weather). As we have said, the performance obtained with this data set was not good.
Moreover, each of the aforementioned work obtained better results. Regarding the time series
data set, it compares favourably in terms of time span and time series length with the work: of
[26] where they use two time instants but only for two weather attributes, and the best results
where obtained when the data points were one hour apart compared to the 24 hour lag; of [6]
they use a set of meteorology and pollution variables from the previous 3 months to forecast
pollution values for the next 24 hours.

The best set of R2 scores was obtained with the time series data set, with the highest being
0.83. In [6] the authors reported a maximum value of 0.91 obtained with a recurrent NN to
predict SO2. In [26] they report a low root mean square error with their NN. The OpenSense
project has produced air pollution maps (with different time-scales) using land-use regression[11].
The maps with yearly and monthly resolutions had the best R2 score, 0.38, when compared to
measured values.

While not all the research that we reviewed uses the R2 score, the results obtained with the
time series data set is promising. The best score we obtained is higher than the results of [11],
the research group that produced the data we used. The time series data set that we used to
train the SVM does not cover all the geographical points as it is limited to locations where there
is a tram line (see Figure 2). Even in locations where there is tram traffic, time series with
hourly precision may be difficult to obtain when tram traffic is low (this problem is similar to
the poor performance of hourly pollution maps reported in [11]). One way to circumvent this, is
to allow missing data in the pollution prediction model. We can also include geographical and
time (minute of day, day of week, and week of year) attributes in the time series data set.

Conclusions

In this paper we presented two pollution prediction models using two different data sets. One
was based on geographical information and another on time series. The latter obtained the best
results as the average R2 score was 0.227, 0.390, and 0.438, for number of particles, particle
diameter and LDSA, respectively. These values contrast with the average score obtained by the
data set based on geographical information was 0.009, 0.036, and 0.025. When we used SVMs the
R2 score improved to 0.498, 0.721 and 0.752 for particle diameter and LDSA, respectively. The
geographical information data set may have produced worst results due to fine spatial resolution,
no aggregation in time, or differences in the geographical characterisation of sensor locations as
sensor data was collected between 2012 and 2014, and geographical information used data that
was introduced after 2014. In effect no single geographical attribute stand out when compared
to time attribute.

As the time series based pollution prediction model provided better accuracy, it is more suited
to be used as a tool that predicts regularly occurring pollution. When we compared our results
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with other models, while each uses different techniques to predict air pollution and they differ
to the ground truth used (ranging from high fidelity and costly measurement stations to low
cost sensors), the R2 score obtained with our methodology is promising. We can improve on its
accuracy by including attributes used in the aforementioned research. Thus, future work will
consist on introducing more attributes in the time series data set.

Having a system that is capable of predicting air pollution is an important tool in order
to improve population’s health. This system can be used by people to avoid polluted areas in
their daily routines. In the case of predicting periodic pollution events, this system can bring
awareness to the dangers of air pollution. In this way, citizens may demand from their politicians
solutions to the curb down pollution sources. Ultimately this will lead to changes on the energy
sources that are used to run the modern world and to our relation with the environment.
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[24] Joel J. P. C. Rodrigues and Sandro Nižetić, eds. 5th International Conference on Smart
and Sustainable Technologies (virtual conference, 23rd–26th Sept. 2020). 2020. isbn: 978-
953-290-100-9.

[25] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Fourth edi-
tion. Prentice Hall, 2020.

[26] Ana Russo, Frank Raischel and Pedro G. Lind. “Air quality prediction using optimal neural
networks with stochastic variables”. In: Atmospheric Environment 79 (2013), pp. 822–830.
issn: 1352-2310. doi: 10.1016/j.atmosenv.2013.07.072.

[27] Patrick H. Ryan et al. “A Comparison of Proximity and Land Use Regression Traffic
Exposure Models and Wheezing in Infants”. In: Environ Health Perspect. 115.2 (Feb. 2007),
pp. 278–284. doi: 10.1289/ehp.9480.

[28] Pedro Santana et al. “An Affordable Vehicle-Mounted Sensing Solution for Mobile Air
Quality Monitoring”. In: 5th International Conference on Smart and Sustainable Tech-
nologies (virtual conference, 23rd–26th Sept. 2020). Ed. by Joel J. P. C. Rodrigues and
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