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Abstract. Erschler and Karlsson in [5] construct a homomorphism of a finitely generated
group G to R using a random walk approach. Central to their construction were the word
length ` and a well behaved measure µ on G. In this note we define a class of abstract length
functions and prove that Erschler and Karlsson construction can also be applied to this class.

1. Introduction
It was Pólya [11], in 1921, who started the study of random walks on Zn. It took almost
40 years, until Kesten [10], in 1959, started the study of random walks on infinite, finitely
generated groups. After that, in 1972 Avez [1] introduced the entropy h of a random walk on
a finitely generated group, arguably the most important numerical invariant associated to a
group endowed with a probability measure, and connected entropy with the growth rate v of the
group. In his subsequent work [2], Avez put in evidence the strong connection between entropy
and the existence of bounded harmonic functions on the group. The drift ` is another number
that has emerged in the study of random walks. These numbers are linked via the fundamental
inequality popularized by Vershik [12], h 6 v`. For a comprehensive reference in a more general
setting see Kaimanovich and Vershik [9].

The length function of a finitely generated group is a well established concept in geometric
group theory. An abstract length function f , for a group G, associates to an element g ∈ G a
real number subject to certain axioms. In an attempt to understand cancelation properties for
elements of free groups, Lyndon [7] defined integer valued length functions. Later, Harrison [6]
used Lyndon axioms to define real abstract length functions on groups.

In this note we consider abstract length functions which are subject to the only basic axioms
of being subadditive and inverse invariant. Hence, we consider a broader class of length functions
which includes Lyndon’s length functions. Our class of abstract length functions give rise to a
pseudometric in G, that is, we admit some nonidentity elements to have (abstract) length zero.
The set of the elements {g ∈ G : f(g) = 0} actually has the structure of a subgroup of G which
we conveniently call the kernel of f . Some of its properties are studied in section 3.

There are several ways to construct nontrivial homomorphisms, depending on the setting. For
example, if G is amenable any homogeneous quasimorphism to R is in fact a homomorphism,
see [4]. Karlsson and Ledrappier in [8] proved that if a finite first moment random walk has zero
entropy and positive drift, then there exists a non-trivial homomorphism to R. Erschler and
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Karlsson [5] used a dynamical construction to establish the existence of such homomorphism in
the case where the drift can also be zero. In [3], the authors followed Erschler and Karlsson
construction to define a homomorphism to R for a certain class of semidirect products. The
original construction starts by making a judicious choice of a sequence of functions Tn, and of a
numerical sequence α(n) such that the product α(n)Tn will have a sublimit T which is precisely
the desired homomorphism.

We give now a brief description of this note. In section 2 we define abstract length functions
on a group G and give some examples. In section 3, we collect some elementary properties
of abstract length functions. Finally, in section 4 we focus on a dynamical way of obtaining
homomorphisms from a finitely generated group G to R. Specifically, we show that Erschler
and Karlsson construction still works for the broader class of abstract length functions. An
interesting question relating this construction with the notion of the kernel of a subadditive
inverse invariant functions f (see sections §2, 3) is to find under what conditions the kernel Kf

equals the kernel of the homomorphism T = limk T
α
nk

, see Remark (4.7).
The authors would like to thank the anonymous referees for their suggestions which helped

to improve the paper.

2. A class of subadditive functions
Let f : G→ R be a real function on a group G which is subadditive and inverse invariant, i.e.

f(gh) 6 f(g) + f(h) (1)

f(g−1) = f(g). (2)

These properties are a subset of the properties that characterize the usual length function on
groups, `(g). We denote the set of functions verifying (1) and (2) simply by SII (subadditive
inverse invariant).

Denoting by e the identity of G, we have

f(e) = f(gg−1) 6 f(g) + f(g−1) = 2f(g)

Taking g = e in the above inequality we obtain f(e) > 0. Hence,

f(g) > 0

for every g ∈ G.
Now, suppose there is some go ∈ G such that f(go) = 0. Define the following subset of G

K = {g ∈ G : f(g) = 0}. (3)

Since 0 6 f(e) 6 2f(go) then f(e) = 0 and e ∈ K. Also if g ∈ K then g−1 ∈ K by (2). On
the other hand, if g, h ∈ K it follows that

0 6 f(gh) 6 f(g) + f(h) = 0

and gh ∈ K. So we conclude the following

Proposition 2.1. Let f ∈ SII and suppose K is not empty. Then K is a subgroup of G.

This result motivates the following definition.

Definition 2.2. Let f ∈ SII. K = {g ∈ G : f(g) = 0} will be called the kernel of f .

We introduce some simple examples and remarks to elucidate these concepts.
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Example 2.3. Let G = (R+, ·) be the multiplicative group of positive real numbers and let
f : G→ R be the characteristic function of the set of positive irrational numbers

f(x) =

{
0 x ∈ Q+

1 x ∈ R+\Q+

Since x ∈ Q+ if and only if x−1 ∈ Q+ it follows that f is inverse invariant. It is also easy to
check subadditivity. We have K = Q+.

Example 2.4. More general, let G = (R+, ·) and let f : G→ R be defined by

f(x) =

{
α x ∈ Q+

β x ∈ R+\Q+

If 0 6 α 6 2β then f ∈ SII, which generalizes last example. Regarding the kernel, we have
• β = 0 then f = 0 and K = R+

• α = 0 and β > 0 then K = Q+

• α > 0 then K = ∅.
Here is a nonabelian example.

Example 2.5. Let G =

{ 1 x y
0 1 z
0 0 1

 : x, y, z ∈ Z

}
denote the discrete Heisenberg group

and let f : G→ R be defined by
f(g) = |x+ z|.

We see that f ∈ SII and the kernel is

K =

{ 1 x y
0 1 −x
0 0 1

 : x, y ∈ Z

}

We note that K is a normal subgroup of G.

Remark 2.6. It is interesting to note that if we consider a subadditive function which instead
of (2) verifies f(g−1) = f(g) only for g ∈ K we still have that K is a subgroup. Other properties
still remain valid, e.g. see (3.1), (3.2).

Some ways to generate new inverse invariant subadditive functions are given by the next
three results, whose proof is straightforward.

Proposition 2.7. Let f1, f2 ∈ SII, α > 0 and ϕ : H → G be a group homomorphism. We have

• αf1 ∈ SII

• f1 + f2 ∈ SII

• f1 ◦ ϕ ∈ SII

Proposition 2.8. Let f ∈ SII and ϕ : G→ G a group homomorphism. Then we have

1

n

n−1∑
k=0

f ◦ ϕk ∈ SII

Proposition 2.9. Let fk ∈ SII for all k ∈ N and ϕ : G→ G a group homomorphism. We have

1

n

n−1∑
k=0

fk ◦ ϕ ∈ SII
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We collect now some random remarks. The first connects elements of SII with the familiar
concept of distance, the second puts in evidence that subadditivity is the fundamental concept
in the defining equations (1) and (2), the third remark justify why the class SII is somehow
unusual to a reader familiar with group theory and homomorphisms, and finally, the last one
connects simple groups, a subclass of functions of SII and bi-invariant metrics. The first time
we saw this result was in the work of Polterovich.

Remark 2.10. If it happens that f(e) = 0, a left invariant pseudo metric d on G is defined as
d(g, h) = f(g−1h). If the kernel K of f is nonempty and trivial, then f defines a metric.

Remark 2.11. We also note that if we have a subadditive function f that is not inverse invariant
we can always construct an inverse invariant subadditive function by making

f̃(g) =
f(g) + f(g−1)

2
.

Remark 2.12. In the context of homomorphisms the concept of inverse invariance is void, that
is, if ψ : G→ R is a homomorphism to R which is inverse invariant, then ψ is trivial. In fact,

0 = ψ(e) = ψ(gg−1) = 2ψ(g)

so, ψ(g) = 0 for every g ∈ G.

Remark 2.13. Assume now that the group G is simple and suppose that f ∈ SII is also
conjugacy invariant, in the sense f(sgs−1) = f(g), for all s, g ∈ G. In particular for h ∈ K,
g ∈ G we have f(ghg−1) = f(h) = 0, and ghg−1 ∈ K, that is, K is normal on G. This means
that either K = G, which amounts to say that f is trivial, or K = {e}. Regarding the first
remark, keeping in mind that a right invariant metric is generated by a conjugacy invariant
function of SII, we can say that a bi-invariant non trivial pseudo metric on a simple group is
indeed a metric.

3. Some properties of the kernel
We recall that when φ : G → H is a group homomorphism, and h is an element of the kernel
then, for every g ∈ G we have

φ(gh) = φ(g)φ(h) = φ(g).

In our setting we still have the same result. For the remaining part of this section, G is an
arbitrary group and f ∈ SII. Suppose that K is nonempty and let h ∈ K. We have, for every
g ∈ G,

f(g) = f(ghh−1) 6 f(gh) + f(h−1) 6 f(gh).

Since
f(gh) 6 f(g) + f(h) = f(g)

it follows that f(gh) = f(g).
Conversely, if f(gh) = f(g), for every g, then

f(eh) = f(e)

and since K is nonempty, f(e) = 0, and h ∈ K. We have established the following criteria for
the elements of K

Proposition 3.1. Let K be nonempty. h ∈ K if, and only if, f(gh) = f(g) for every g ∈ G.

Evidently we also have the same statement regarding f(hg) = f(g). A condition of normality
of K is available:
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Proposition 3.2. Let K be nonempty. K is normal on G if, and only if, for every g, g ∈ G,
h ∈ K we have f(ghg) = f(gg)

Proof. If K is normal on G we have ghg−1 ∈ K for g ∈ G, h ∈ K. So gh = h′g and
f(ghg) = f(h′gg) = f(gg) where in the last identity we used proposition (3.1). On the other
hand, if the condition is fulfilled then for g = g−1, we have f(ghg−1) = f(gg−1) = f(e). But
f(e) = 0 since K is nonempty. In this way we see that ghg−1 ∈ K and K is normal on G.

Now suppose we have two elements g, h such that f(gh) = 0. What can be said about f(g)
or f(h)? To answer this question, just notice that

f(g) = f(ghh−1) 6 f(gh) + f(h) = f(h)

f(h) = f(g−1gh) 6 f(g) + f(gh) = f(g)

Hence, we have the following

Proposition 3.3. If gh ∈ K then f(g) = f(h).

This result is obvious for g, h ∈ K. The interesting point is that it works for all g, h ∈ G,
and in particular for all g, h ∈ G\K. For concreteness let a, b ∈ G such that ab ∈ K and neither
a and b belongs to K. Let A = {a, b, a−1, b−1}. The previous result can be reformulated as

Proposition 3.4. Let a, b ∈ G\K such that ab ∈ K, and A as above. We have f(A) = {f(a)}
In the same vein of reasoning we can ask what are the possible images of f(xy) for x, y ∈ A.

We have

Proposition 3.5. Let a, b ∈ G\K such that ab ∈ K, and A as above. We have

f(A2) ⊂ {0, f(a2), f(b2), f(ba)}.

Proof. Enumerating all possible cases we have
Case 1, (x = a):

{f(ay) : y ∈ A} = {f(aa), f(aa−1), f(ab), f(ab−1)} = {f(a2), f(e), 0, f(ab−1)}

Using proposition (3.1)

f(ab−1) = f(abb−1b−1) = f(b−2) = f(b2)

and we have
{f(ay) : y ∈ A} = {0, f(a2), f(b2)}

Case 2, (x = a−1):

{f(a−1y) : y ∈ A} = {f(e), f(a−1a−1), f(a−1b), f(a−1b−1)}

Again, by proposition (3.1)

f(a−1b) = f(a−1a−1ab) = f(a2) and f(a−1b−1) = f(ba).

In this case we have
{f(a−1y) : y ∈ A} = {0, f(a2), f(ba)}

Case 3, (x = b):

{f(by) : y ∈ A} = {f(ba), f(ba−1), f(b2), 0} = {f(ba), f(ab−1), f(b2), 0} = {f(ba), f(b2), 0}
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Case 4, (x = b−1):

{f(b−1y) : y ∈ A} = {f(b−1a), f(b−1a−1), 0, f(b−2)}.

Since f(b−1a) = f(a−1b) = f(a2), we have

{f(b−1y) : y ∈ A} = {f(a2), f(ab), f(b2), 0}.

Summing up we have the result.

If a and b are as in the former proposition but in addition, f(ba) = 0, the values that f(xy)
can attain are even more restricted. In this case we have

f(b2) = f(bb) = f(ba−1ab) = f(ba−1) = f(baa−1a−1) = f(a2).

This is resumed as

Corollary 3.6. Let a, b ∈ G\K such that ab ∈ K, and A as above. Assume ba ∈ K. We have

f(A2) ⊂ {0, f(a2)}.

We note that if we have a, b ∈ G\K such that ab ∈ K, and if a and b commute we have
f(ab) = f(ba). Another situation where this can also happen is when K is a normal subgroup
of G. Just note that ab ∈ K CG means that for all g ∈ G gabg−1 = h′ ∈ K. Let g = a−1. We
have f(a−1aba) = f(h′) = 0, that is f(ba) = 0.

Corollary 3.7. Let a, b ∈ G\K such that ab ∈ K, A as above and K CG. We have

f(A2) ⊂ {0, f(a2)}

These type of results are generalizable. One typical result is given by the next reasoning.
Assume that a, b, c ∈ G\K are such that f(abc) = 0. We have

f(a) = f(abcc−1b−1) = f(c−1b−1) 6 f(b) + f(c)

that is
f(a)− f(c) 6 f(b).

We also have
f(c) = f(b−1a−1abc) = f(b−1a−1) 6 f(a) + f(b),

which implies
f(c)− f(a) 6 f(b).

Hence, we have proved the following:

Proposition 3.8. Let a, b, c ∈ G\K such that abc ∈ K. We have

|f(a)− f(c)| 6 f(b).
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4. A dynamical construction
From now on we restrict to infinite, finitely generated groups G, endowed with a probability
measure µ. Denote by e the identity of G. Let S = {s1, · · · , sp} ⊂ G be a finite set of generators.
The word length of g is defined to be

l(g) = min{n ∈ N : g = s1 · · · sn, si ∈ S}.

The set of generators is called symmetric if X−1 = X. In that case the word length is generated
in the usual way by the distance associated with the Cayley graph of G and satisfy the ususal
properties:

l(gh) 6 l(g) + l(h). (4)

l(g−1) = l(g). (5)

Definition 4.1. We say that µ has finite first moment if∑
g∈G

l(g)µ(g) < +∞

Given probability measures µ and ν on G, define the convolution measure as

µ ∗ ν(g) =
∑
h∈G

µ(h)hν(g)

=
∑
h∈G

µ(h)ν(h−1g)

where hν(g) = ν(h−1g). Denote by µ∗n the n-fold convolution.
Using the word length define a sequence Ln as

Ln =
∑
h∈G

l(h)µ∗n(h). (6)

The sequence Ln is subadditive, Ln+m ≤ Ln + Lm. Hence, the classical Fekete lemma ensures
that the limit

`µ = lim
n→+∞

Ln
n

exists in R
⋃
{−∞,+∞}. Since l ≥ 0 and Ln is subadditive we have Ln ≤ nL1 and since µ has

finite first moment it follows that `µ < +∞.

It will be usefull to define the following map

Kn
g (h) = gµ∗n(h)− µ∗n(h) (7)

which play the role of a kernel and verifies∑
g∈G

Kn
g (h)µ(g) = µ∗(n+1)(h)− µ∗n(h). (8)

Now, given an abstract length function f , we may still define in analogy with (6)

Fn =
∑
h∈G

f(h)µ∗n(h). (9)
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We note that Fn verifies Fn+m ≤ Fn + Fm, hence we have Fn ≤ nF1. In view of this, for an
abstract length function f in G, we consider a measure µ such that∑

g∈G
f(g)µ(g) < +∞

Therefore, we have F1 < +∞.
Following the construction of Erschler-Karlsson [5], we will define the function Tn(g) as

follows:

Tn(g) =
∑
h∈G

(f(gh)− f(h))µ∗n(h) (10)

=
∑
h∈G

f(h)Kn
g (h).

The function Tn verifies the following properties

Lemma 4.2. Let Tn(g) be defined as above. Then

(i) Tn(e) = 0

(ii) |Tn(g)| 6 f(g)

(iii)
∑

g∈G Tn(g)µ(g) = Fn+1 − Fn.

Proof. The proof is a simple calculation.

Tn(g) is not a homomorphism, but it will be fundamental to understand how far it is from
being one. The next result bounds this difference. For the sake of readability we will sometimes
use the following notation

DefTn (g1, g2) = Tn(g1g2)− Tn(g1)− Tn(g2). (11)

Lemma 4.3. We have
|DefTn (g1, g2)| 6 f(g1)

∑
h∈G
|Kn

g2(h)|. (12)

Note that, since ∑
h∈G
|Kn

g (h)| ≤ 2

we can consider a sequence β(n) such that for every g ∈ G there exists C(g) with∑
h∈G
|Kn

g (h)| ≤ C(g)β(n).

In fact, the above constant C(g) can be made more explicit.

Lemma 4.4. If
∑

h∈G |Kn
g (h)| 6 C(g)β(n) then there exists a constant Co such that∑

h∈G
|Kn

g (h)| 6 l(g)Coβ(n).

See [3] for the proof of lemmas (4.3) and (4.4). It is convenient to introduce the following
notation:

γ(n) = max
s∈S
|Tn(s)|.

We have the following
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Proposition 4.5. Let Tn(g) be defined as above, µ a probability measure on G and g ∈ 〈supp µ〉.
We have

|Tn(g)| 6 C1β(n)l2(g) + l(g)γ(n). (13)

Proof. Let g ∈ 〈supp µ〉 ⊂ G. Since G is generated by the finite set S = {s1, · · · , sp} we can
write g = s1 · · · sm where m = l(g). By the previous lemmas we have

|DefTn (s1 · · · sm−1, sm)| 6 f(s1 · · · sm−1)
∑
h∈G
|Kn

sm(h)|

6

(
m−1∑
i=1

f(si)

)∑
h∈G
|Kn

sm(h)| 6

(
m−1∑
i=1

f(si)

)
Coβ(n).

Writing fo = maxs∈S f(s), we get

|DefTn n(s1 · · · sm−1, sm)| 6 (m− 1)foCoβ(n)

Therefore,

|Tn(g)| = |Tn(s1 · · · sm)|
= |Tn(s1 · · · sm)− Tn(s1 · · · sm−1)− Tn(sm) +

+Tn(s1 · · · sm−1)− Tn(s1 · · · sm−2)− Tn(sm−1) + · · ·

· · ·+ Tn(s1s2)− Tn(s1)− Tn(s2) +
m∑
i=1

Tn(si)|

6 foCoβ(n)((m− 1) + (m− 2) + · · ·+ 1) +
m∑
i=1

|Tn(si)|

6 foCoβ(n)((m− 1) + (m− 2) + · · ·+ 1) +mγ(n)

6 foCoβ(n)m2 +mγ(n).

Denote ∆nL = Ln+1 − Ln and ∆nF = Fn+1 − Fn. We may now state and prove the main
result of this section.

Theorem 4.6. Suppose that µ is non-degenerate, has finite second moment and for some
sequence nk it holds that ∆nkF ≥ ∆nkL > 0 and

lim
k→+∞

β(nk)

∆nkL
= 0.

Then G admits a non-trivial homomorphism to R .

Proof. By proposition (4.5) we have |Tn(g)| 6 C1β(n)l2(g) + l(g)γ(n) so∑
g∈G
|Tn(g)|µ(g) 6 C1β(n)

∑
g∈G

l2(g)µ(g) + γ(n)
∑
g∈G

l(g)µ(g)

= C2β(n) + γ(n)C3.

Using the hypotheses of this proposition and lemma (4.2) we have

0 < ∆nkL 6 ∆nkF =
∑
g∈G

Tnk(g)µ(g) = |
∑
g∈G

Tnk(g)µ(g)|
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6
∑
g∈G
|Tnk(g)|µ(g) 6 C2β(nk) + γ(nk)C3

Again using the hypotheses we have that for any ε > 0 there exists nk such that β(nk) 6 ε∆nkL
and we have

0 < ∆nkL 6 C2ε∆nkL+ γ(nk)C3.

Choosing ε such that C2ε < 1/2 we know that for nk big enough we have

0 < (1/2)∆nkL 6 (1− C2ε)∆nkL 6 γ(nk)C3. (14)

From this inequality we can draw two conclusions. First we see that for nk sufficiently big we
have

0 < γ(nk)

which allows us to define the coefficient

α(nk) =
1

γ(nk)

and the second conclusion is
0 < α(nk) ∆nkL 6 2C3.

So we see that

0 6 α(nk)β(nk) = α(nk) ∆nkL
β(nk)

∆nkL
6 2C3

β(nk)

∆nkL

and using our convergence hypothesis we conclude that

α(nk)β(nk)→ 0

Let us define
Tαn (g) = α(n)Tn(g), and T (g) = lim

k→+∞
Tαnk(g).

Using lemma (4.3) we can say that

|DefTαnk
(g1, g2)| 6 f(g1)C(g2)β(nk)α(nk)

and
lim

k→+∞
DefTαnk

(g1, g2) = 0

which amounts to say that
T (g1g2) = T (g1) + T (g2).

Remark 4.7. Let h ∈ Kf , i.e, f(h) = 0. By proposition 3.1, f(gh) = f(g) for every g ∈ G
and so Tn(g) = 0, for every n. Hence, Kf ⊂ KerT . It would be interesting to know under what
conditions we have that Kf = KerT .
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