
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2023-04-01

 
Deposited version:
Accepted Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Oliveira, P. M., Guerreiro, J. & Rita, P. (2022). Neuroscience research in consumer behavior: A review
and future research agenda. International Journal of Consumer Studies. 46 (5), 2041-2067

 
Further information on publisher's website:
10.1111/ijcs.12800

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Oliveira, P. M., Guerreiro, J. & Rita, P.
(2022). Neuroscience research in consumer behavior: A review and future research agenda.
International Journal of Consumer Studies. 46 (5), 2041-2067, which has been published in final form
at https://dx.doi.org/10.1111/ijcs.12800. This article may be used for non-commercial purposes in
accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1111/ijcs.12800


This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process, which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1111/ijcs.12800
 This article is protected by copyright. All rights reserved

Neuroscience Research in Consumer Behavior: A Review and Future Research 

Agenda

Pedro Miguel Oliveira*

Invited Lecturer, Research Assistant

Instituto Universitário de Lisboa (ISCTE-IUL), Business Research Unit (BRU-IUL), Lisboa, 

Portugal 

Av. das Forças Armadas, 1649-026 Lisboa, Portugal

Email: pedro.oliveira@iscte-iul.pt

ORCID: 0000-0002-2559-9852

João Guerreiro

Assistant Professor

Instituto Universitário de Lisboa (ISCTE-IUL), Business Research Unit (BRU-IUL), Lisboa, 

Portugal 

Av. das Forças Armadas, 1649-026 Lisboa, Portugal

Email: joao.guerreiro@iscte-iul.pt

ORCID: 0000-0001-6286-1437

Paulo Rita

Full Professor of Marketing

NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa

Campus de Campolide, 1070-312 Lisboa, Portugal

Email: prita@novaims.unl.pt

ORCID: 0000-0001-6050-9958

* Corresponding Author

CONFLICT OF INTEREST STATEMENT:

The authors declare that there is no conflict of interest.A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.1111/ijcs.12800
https://doi.org/10.1111/ijcs.12800
https://doi.org/10.1111/ijcs.12800
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fijcs.12800&domain=pdf&date_stamp=2022-03-11


This article is protected by copyright. All rights reserved

FUNDING INFORMATION:

No funding was received for this manuscript.

DATA AVAILABILITY STATEMENT:

The data are not publicly available due to privacy or ethical restrictions.

AUTHOR BIOS

Pedro Miguel Oliveira

Pedro Miguel Oliveira is an Invited Lecturer of Introductory and Advanced Excel at Soft Skills 

Lab (LCT) at Instituto Universitário de Lisboa – ISCTE, and a Research Assistant at the Business 

Research Unit (BRU) at ISCTE. At Universidade Europeia – IADE, Mr. Oliveira is an Assistant 

Professor and Head of Statistics, and of Media Planning and Audiences courses in the Marketing 

and Advertising bachelor’s degree program. Pedro Oliveira holds a bachelor’s degree in 

Economics at NOVA School of Business and Economics (NOVA SBE), a master’s degree in 

Applied Econometrics and Forecasting at ISEG – Lisbon School of Economics and Management, 

and is currently a Ph.D. candidate in Management with specialization in Marketing at ISCTE. His 

main research interests include advertising, neurosciences application in marketing, artificial 

intelligence, and applied statistics. 

João Guerreiro

João Guerreiro (Ph.D.) is an Assistant Professor in Marketing at Instituto Universitário de Lisboa - 

ISCTE, Portugal and currently the Vice-Director of the Business Research Unit (BRU) at ISCTE. 

His research interests and publications have been focused on the technological transformations 

and implications for Marketing, namely with publications on Augmented Reality, Virtual Reality 

and Artificial Intelligence implications for businesses. He has also published on high ranked 

journals on topics around sustainability and cause-related marketing. His publications include 

articles in journals such as the Journal of Sustainable Tourism, Journal of Travel Research, Journal 

of Business Research, Tourism Management, Journal of Business Ethics, European Journal of 

Marketing, among others. João Guerreiro has also received the best paper award in the Global 

Fashion Management Conference – 2019 at Paris (GAMMA) with a paper on Virtual Reality.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Paulo Rita

Paulo Rita is Full Professor of Marketing at NOVA Information Management School (NOVA 

IMS), Universidade Nova de Lisboa, Portugal. Dr. Rita has Post-Doc in E-Marketing (University 

of Nevada Las Vegas, USA), Ph.D. in Marketing (Cardiff University, UK) and Postgraduate 

certificate in Research Methods and Quantitative Skills (University of Glasgow, UK). He is 

Director of the Master in “Data-driven Marketing” and Postgraduate Programs in “Marketing 

Intelligence”, “Marketing Research and CRM”, “Digital Marketing and Analytics”, “Data Science 

for Marketing”, “Business Analytics in Hospitality and Tourism” also at NOVA IMS. Professor 

Rita research interests are focused on Digital Marketing/Social Media, Marketing Analytics, 

Consumer Behavior/Neuroscience and Tourism Marketing and has published over one hundred 

articles in peer-reviewed scientific international journals such as European Journal of Marketing, 

Journal of Business Ethics, Journal of Business Research, Journal of Marketing Communications, 

Journal of Retailing and Consumer Services, Computers in Human Behavior, Computers in 

Industry, Decision Support Systems, Expert Systems with Applications, Annals of Tourism 

Research, Tourism Management, International Journal of Hospitality Management, International 

Journal of Contemporary Hospitality Management, among others. 

A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

 

MR. PEDRO MIGUEL  OLIVEIRA (Orcid ID : 0000-0002-2559-9852) 

PROF. JOÃO  GUERREIRO (Orcid ID : 0000-0001-6286-1437) 

 

 

Article type      : Original Article 

 

 

Neuroscience Research in Consumer Behavior: A Review and Future 

Research Agenda 

 
Pedro Miguel Oliveira1, João Guerreiro1, Paulo Rita2 

1 Instituto Universitário de Lisboa (ISCTE-IUL), Business Research Unit (BRU-IUL), Lisboa, Portugal  
2 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa 

 

Consumer neuroscience is a growing field in both marketing and consumer behavior 

research. The number of articles published on the topic has increased exponentially in the last 

15 years. However, there is still no compreenshive analysis of the literature highlighting the 

main constructs, trends and research gaps found in such a large collection of papers. 

Therefore, this paper provides a text mining (TM) analysis that clusters and systematizes the 

complex and dispersed information of 469 articles, using the correlated topic model 

algorithm (CTM). Results show that “consumer neuroscience”, “brand memory”, and 

“willingness to buy” are the most relevant topics in the field. This study also reveals that the 

literature has been focusing on ethical concerns as well as on controversial concerns in the 

use of consumer neuroscience techniques. We include a final section on future research 

questions and opportunities that emerged from the conducted research. 

 

 

Keywords: Consumer Research; Consumer Behavior; Neuroscience; Text Mining; Correlated 

Topic Models 

 

  A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

1. Introduction 

The study of the human brain is no longer a matter of interest just to neurologists and health 

professionals (Camerer & Yoon, 2015). The last 15 years have seen significant advances in 

neurosciences, and multiple neurophysiological methods have been used to generate insights 

in marketing, consumer behavior and advertising (Stipp, 2015). Samples collected through 

computational methods can now provide more accurate predictions than self-reported 

measures (Ariely & Berns, 2010). In fact, the human brain hides useful information regarding 

consumer attitudes that cannot be easily uncovered just by assessing self-expressed individual 

preferences. The widely used questionnaires to register individual preferences and attitudes 

can lead to biased and inaccurate conclusions (Fisher, 1993).  

Shiv et al. (2005) published one of the pioneering articles discussing the relevance of 

neuroscience and how it could significantly improve future studies on decision making. In 

fact, “neuroscience has become both a useful tool and a source of theory development and 

testing in decision-making research” (Yoon et al., 2012, p. 474). The advances in technology 

provide new computerized neurophysiological recording systems that allow a non-invasive 

collection of behavioral data, building rich databases for theoretical analysis (National 

Research Council, 2008).  

In the course of time, scholars have reviewed the existing knowledge in consumer 

neuroscience and neuromarketing research. However, most previous literature reviews on the 

topic have used systematic approaches based on a limited number of articles, period range 

and research fields. For example, Smidts et al. (2014), Solnais et al., (2013), Jordão et al. 

(2017) and Lee et al. (2018) are limited to studies done more than 5 years ago. More recently, 

Rawnaque et al., (2020) studied only papers from 2015 to 2019, and focused on a 

technological scope, while our time frame and scope is much wider. Our paper is also the 

first to use a text mining approach to uncover latent topics in the text, removing some 

potential bias in the interpretation of the articles. Despite the important contributions of past 

literature reviews,  Lin et al. (2018) relied only on studies using EEG, while Lim (2018a) 

focused exclusively on studies around business-to-business (B2B) marketing without a 

systematic procedure. The review by Alsharif et al. (2021) was based on advertising research, 

Vences et al. (2020) limited themselves to studies on social networks and Mandolfo and 

Lamberti (2021) on impulsive buying. Finally, Alvino et al. (2020) conducted an overview of 

consumer neuroscience tools, based on a traditional review of a 15-year period, and restricted 

to non-invasive tools. Past studies have also looked at a limited number of articles. For 

example, the systematic review conducted by Cruz et al. (2016) was based on a selection of 
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20 indexed journals about consumer behaviour, marketing, psychology, and neuroscience, 

considering a total of 49 articles. Lim (2018b) performed content analysis on a group of 78 

articles from the Association of Business Schools (ABS) list of only 21 marketing 

publications. Despite the important literature reviews conducted in the past addressing the use 

of neuroscience methods, to the best of the authors’ knowledge, no study has yet made a 

comprehensive and integrated review of all the vast and complex information on the topic.  

Due to the exponential number of articles published in academic journals on 

consumer neuroscience and consumer behavior, the traditional or systematic literature review 

process is a very complex, voluminous, and time-consuming task (Delen & Crossland, 2008) 

generating a “data deluge” problem (the point where the amount of research on the topic 

exceeds the ability to manage so much information) (Ananiadou et al., 2009). Using a 

traditional approach, there is a need to conduct a manual screening of the literature to filter 

out less relevant papers (Thomas, McNaught, & Ananiadou, 2011), read every single article 

to identify the topics in a particular publication and evaluate the relevance of the published 

study (Griffiths & Steyvers, 2004). However, due to the growing number of articles available 

on several databases, important knowledge is potentially overlooked in the systematic review 

process (Delen & Crossland, 2008). To overcome this issue, this paper aims to provide 

comprehensive knowledge on consumer neuroscience and neuromarketing by clustering and 

systematizing the complex and disperse textual information available. Therefore, in order to 

identify the main topics and theories discussed over more than 70 years of applying 

neuroscience within social sciences, this paper conducts a comprehensive review of the 

literature using a text mining (TM) technique.  

TM is an efficient and accurate method to extract information, trends and patterns 

from large collections of documents (Ananiadou, Rea, Okazaki, Procter, & Thomas, 2009; 

Blei, 2012). This study employs the TM technique through R software, with application of 

the correlated topic model (CTM) algorithm due to its ability to model correlated topics, 

besides topic detection (S. Lee et al., 2010). 

 

2. Theoretical Background on Consumer Neuroscience 

Consumer neuroscience and neuromarketing are two terms used interchangeably in the 

literature though with subtle differences (Kenning & Plassmann, 2008; Lim, 2018; Reimann 

et al., 2011). Neuromarketing is a broader topic that entails the application of neuroscientific 

methods to understand conscious and unconscious consumer behavior in response to 

marketing stimuli (N. Lee et al., 2007, 2018; Solnais et al., 2013; Stipp, 2015). Formerly 
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considered a branch of neuroeconomics (Camerer et al., 2005), the neuromarketing jargon 

was originally formulated in two papers published in 2007 (Fugate, 2007; Lee et al., 2007), 

but initially referred to by Ale Smidts in 2002 (Lim, 2018b). Despite the growing interest in 

and relevance of consumer neuroscience over almost two decades, the use of neuromarketing 

techniques is still quite controversial due to rising ethical issues, concerning the “(1) 

protection of various parties who may be harmed or exploited by neuromarketing and (2) 

protection of consumer autonomy” (Murphy et al., 2008, p. 294).  

As for consumer neuroscience, Smidts et al. (2014) refer to it as a sub-field of 

neuromarketing, which applies neuroscience insights to study consumer behavior. Therefore, 

consumer neuroscience can be defined as an interdisciplinary field combining psychology, 

marketing, neuroscience and economics with the main goal of studying neural conditions and 

processes underlying consumption, physiological meaning and behavioral consequences (Lee 

et al., 2007; Reimann et al., 2011; Hansen, Kenning & Plassmann, 2010).  

In consumer neuroscience the majority of studies on the impact of external stimuli on 

consumer emotions and behavior are grounded on the seminal framework proposed by 

Mehrabian and Russell (1974). The Stimulus-Organism-Response (S-O-R) model has been 

used as a way to explain the emotional reactions an individual or organism experiences after 

exposure to specific stimuli in a particular context. The stimuli is meant to create certain 

emotional traits in individuals that vary across different dimensions such as intensity, degree 

of pleasure and activation (Russell & Pratt, 1980). As far as responses are concerned, the 

primary emotions triggered will determine the approach-avoidance response (Vieira, 2013; 

Vinitzky & Mazursky, 2011) defined by the interest in exploring the environment, 

willingness to interact with others, or even the level of satisfaction that may lead to certain 

behavior such as purchase or recommendation. Vieira (2013) ran a meta-analysis identifying 

the most significant constructs for S-O-R, including brand commitment, attitude towards the 

advertisement, service quality, site entertainment, among others. Chan, Cheung, and Lee 

(2017) used the S-O-R framework to study the factors that trigger online impulse buying, and 

classified them into internal and external stimuli, organism, and online impulse-buying 

response. Wang, Chen, Ou, and Ren (2019) developed a research model grounded in S-O-R 

to analyze the impact of marketing and social media stimuli on participants’ message 

reposting intention. Another example of an adaptive S-O-R framework has been proposed to 

study the components associated with the use of immersive technology (Suh & Prophet, 

2018), concluding that both system features and content topics influence participants’ A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

cognitive and affective responses, but also identifying which stimuli typologies potentiated 

these responses.  

The most common neuroscientific methods used by academics, researchers and 

business practitioners include functional resonance magnetic imaging (fMRI), 

electroencephalogram (EEG), eye tracking, magnetoencephalography among other 

psychophysiological and brain imaging tools (Lin et al., 2018) as described in Table 1 and 

Figure 1. 
 

INSERT TABLE 1 

 

INSERT FIGURE 1 

 

Biometrics are used to measure automatic responses to external stimuli (Venkatraman 

et al., 2015) as mechanisms to independently assess arousal. The heart rate is measured 

through Electrocardiogram (ECG) and is controlled by antagonistic systems, the sympathetic 

and parasympathetic nervous systems (Potter & Bolls, 2012). The sympathetic nervous 

system (SNS) increases heart and breathing rates showing evidence of arousal, while 

parasympathetic nervous system (PNS) activation leads to heart rate deceleration, enabling 

greater focus on the stimuli, and therefore is used as a measure of attention. In addition, SCR 

is employed to identify SNS activation from sweat level changes (Dimoka et al., 2012).  

The main advantage of using psychophysiological tools, such as  eye-tracking and 

facial electromyography (fEMG) is their low cost, accessibility, minor intervention and non-

invasiveness. However, SCR has been criticized as having low reliability and small latency 

(Venkatraman et al., 2015) and ECG is difficult to interpret due to the numerous factors that 

can influence heart rate. The eye-tracking methodology benefits from the identification of 

visual activities that cannot be self-reported. Nevertheless, it can also be biased because a 

fixation does not mean the participant has paid attention to a specific stimulus (Dimoka et al., 

2012). fEMG is widely used to measure participants’ emotional valence (Lajante et al., 

2017), in a continuous and precise way, but its limitations include the small number of 

muscles involved in research, the modification of natural expression as electrodes are 

positioned on an individual’s face, and its susceptibility to bias in interpreting results.   

As for brain imaging tools, EEG is the most widely used neurophysiological tool in 

advertising research (Y. J. Wang & Minor, 2008). EEG is a non-invasive technique with high 

temporal resolution, often used to assist in researching cause and effect relationships between A
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several marketing stimuli and the associated cognitive response, providing close to real-time 

data, and enabling the understanding of how neurons communicate between each other. 

Event-Related Potentials (ERP) are a specific application of EEG in which trials are “time 

locked” aiming to uncover emotional and cognitive brain activity elicited by sensory stimuli 

(Lin et al., 2018). As ERP signals are small due to signal obstruction by the skull, electrical 

brain activity amplification is required. These signals are characterized by peaks and troughs, 

called ERP components (Bastiaansen et al., 2018). ERP has been employed in perception, 

attention and memory research (Rugg, 2009). When compared with fMRI, Positron Emission 

Tomography (PET) and Magnetoencephalography (MEG), EEG is cheaper, easily portable 

and tolerant to participants’ movements. However, its major limitation is related to low 

spatial resolution as “it is restricted to measuring only cortical brain activity” (Venkatraman 

et al., 2015, p. 339). 

In the field of consumer neuroscience research, fMRI has been recurrently used to 

measure brain activation to different marketing stimuli and in decision-making research 

(Smidts et al., 2014). This non-invasive technology measures the activation of specific brain 

regions with an excellent spatial resolution but lacks good temporal resolution, being a good 

complement to EEG and MEG due to their higher temporal resolution (Dimoka et al., 2012; 

Harris et al., 2018; Reimann, Schilke, Weber, Neuhaus, and Zaichkowsky, 2011). While EEG 

is mostly used to measure attention and affect, fMRI can also measure memory and 

desirability (Venkatraman et al., 2015). With a similar spatial resolution to fMRI, PET’s 

temporal resolution is even lower (2 or 3 minutes) than fMRIs. Notwithstanding, PET is not 

commonly used in consumer neuroscience research due to its invasiveness, since subjects are 

injected with radioactive material (Dimoka et al., 2012; Harris et al., 2018). MEG has also 

been used to assess cognitive and affective stimuli in advertising research, but to a lesser 

extent than EEG or fMRI, as it is not a widely accessible tool, being comparable to EEG in 

terms of temporal resolution. Even though MEG is more effective than EEG in analyzing 

deeper brain structures, it is a quite costly and statistically complex device to work with. 

MEG  also has a lower spatial resolution than fMRI (Dimoka et al., 2012).  

The Single-Neuron Recording has some advantages over other neurophysiological 

methods due to its finer spatial resolution at a single neuron level (Cerf et al., 2015), but 

major disadvantages limit its use in neurosciences research, as it requires greater financial 

and human resources than EEG and fMRI, and because of its intrusiveness and restriction to 

patients with epilepsy and to a small set of neurons, in which implants are determined by 

“clinical criteria for epilepsy neurosurgery” (Cerf et al., 2015, p. 533). 
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3. Methodology 

 

3.1. Systematic Review Design 

Sytematic reviews can be classified in different categories (Paul & Criado, 2020), such as: a 

structured review when focusing on widely used methods, theories and constructs (Canabal 

& White, 2008; Kahiya, 2018; Paul & Singh, 2017; Rosado-Serrano et al., 2018); framework-

based when frameworks like ADO (Antecedents, Decisions, and Outcome) employed by Paul 

and Benito (2018), or  TCCM (Theory, Context, Characteristics, and Methodology) 

developed by Paul and Rosado-Serrano (2019) are used; a hybrid-narrative review when a 

framework is integrated in a narrative discussion leading to a future research agenda (Bahoo 

et al., 2020; Dabić et al., 2020; A. Kumar et al., 2020; Paul et al., 2017); a theory-based 

review (Gilal et al., 2019; Paul & Rosado-Serrano, 2019); a meta-analysis (Barari et al., 

2021a; Knoll & Matthes, 2017; Rana & Paul, 2020); a bibliometric review (Kumar et al., 

2029, 2020; Randhawa et al., 2016); a method-based review (Sorescu et al., 2017); a review 

aiming for model/framework development (Paul, 2019; Paul & Mas, 2020); or a text mining 

approach (Bilro et al., 2021; Guerreiro & Rita, 2020; Loureiro, Guerreiro, & Han, 2021; 

Muñoz-Leiva et al., 2021). The current study is based on the text mining approach, which 

extracts useful information from a large collection of data in a semi-autonomic way, 

otherwise considered as humanly impossible or unrealistically time-consuming. This 

technique is much more efficient, accurate and objective, giving structure to unstructured 

data, and allows statistical analysis of the retrieved data (Blei, 2012; Griffiths & Steyvers, 

2004; Guerreiro et al., 2016; Moro et al., 2017). Even though a bibliometric analysis also 

conducts a quantitative analysis of a large dataset and provides reliable indicators for quality, 

it does not analyze the textual information inside each article. Using a text mining approach, 

such information can be structured and clustered into different latent topics, which adds 

valuable context to a quantitative analysis. However, a hybrid approach between these two 

techniques can lead to results in much greater depth (Donthu et al., 2021; Islam et al., 2021; 

Paul et al., 2021). Even though this study is a review paper grounded on a text mining 

analysis, a section detailing future directions was conducted. This section was built upon the 

most cited articles from 2017 to 2021, in order to consider the most impactful studies up to A
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date (Aria et al., 2020; Loureiro et al., 2020; Paul & Bhukya, 2021). As the total number of 

citations is correlated with year of publication, the Average Number of Citations per Year 

(ACy) was calculated. 

 

3.2. Text Mining 

Text mining is an automated or semi-automated technique that extracts text from a large 

collection of unstructured documents (Delen & Crossland, 2008). The TM technique is a 

more efficient and accurate method than the traditional systematic literature review to extract 

information, select topics and studies of interest, and identify trends and patterns from a large 

collection of documents (Ananiadou et al., 2009; Blei, 2012). It reduces the time spent on 

identifying the relevant literature, its description, categorization and summarization. 

Considered as an extension of data mining (Ittoo et al., 2015), TM can lead to the discovery 

of new, hidden insights from unstructured documents. In TM, terms are usually represented 

as a bag-of-words, ignoring the lexical co-occurrence, i.e., assumed to occur independently, 

neglecting their context and order in sentences and documents (Blei et al., 2003; Yang, Wen, 

Kinshuk, Chen, and Sutinen, 2015). In this case, terms can be allocated into different topics. 

Each term frequency is then counted and stored in the Term-Document matrix (TDM). In 

order to deal with the bag-of-words approach, the importance of a term in a document and 

among documents can be calculated based on term frequency and inverse document 

frequency (tf-idf), which considers the relative frequency of a word within a document, and 

the length of that document (Karl et al., 2015), removing those terms which are frequent in a 

single document, but not frequent in other documents (Amado, Cortez, Rita, & Moro, 2018; 

Guerreiro, Rita, & Trigueiros, 2016). The conceptual text mining process encompasses 

several stages (Feinerer et al., 2008). After collecting the unstructured and heterogeneous 

corpora, the initial stage comprises preprocessing the dataset by tokenization, reformatting, 

stemming, punctuation and stop-word removal. Then, a TDM is generated, the most common 

textual data form for computation, and similar terms are clustered in the same groups, which 

will consist of the underlying topics (Cortez, Moro, Rita, King, & Hall, 2018; Guerreiro et 

al., 2016; Moro, Rita, & Cortez, 2017).  

 

3.3. Clustering Text via Correlated Topic Models 

Topic models are mathematical algorithms grounded on natural language processing and 

machine learning that cluster text into latent topics (Gutierrez & Nakai, 2016; Blei & A
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Lafferty, 2006). The Latent Dirichlet Allocation (LDA) and the Correlated Topic Models 

(CTM) are the two topic model algorithms usally used to model large collections of 

documents, but they differ in the first step of the generative process. In the case of the topic 

model LDA, the topic proportions are assumed to follow a Dirichlet distribution (S. Lee et 

al., 2010). However, this model fails to incorporate the correlation of topics, due to the topic 

mixture proportion independence assumptions of the Dirichlet distribution for each 

document. This limitation does not allow the occurrence of a term in more than one topic, 

which is less realistic when analyzing a real collection of documents (Paisley et al., 2012). In 

order to overcome this limitation, CTM uses the logistic normal distribution to capture the 

relations among topics, enabling a covariance structure between the random variables topic 

mixture proportions (Blei & Lafferty, 2007).  

Both CTM and LDA are classified as mixed-membership models, as documents are 

assumed not to belong to a single topic but to several topics simultaneously (Grün & Hornik, 

2011), and grounded on Bayesian probabilistic modeling, aiming for decomposition of the 

large collection of textual data into multiple latent topics (Blei & Lafferty, 2007). CTM has 

been employed to accomplish different tasks such as topic extraction (Guerreiro et al., 2016; 

Loureiro et al., 2019, 2020), query classification (Zhai et al., 2009), motif finding (Gutierrez 

& Nakai, 2016), human action recognition (Tu et al., 2014), facial expression recognition 

(K.-P. Chan et al., 2015), tracking scenes (Rodriguez et al., 2009), and image retrieval (Greif 

et al., 2008). 

In their research, Blei and Lafferty (2007) highlighted the enhanced prediction 

performance of CTM over LDA, as well as the richer descriptive statistics available. The 

authors concluded that CTM fits the data better and supports more topics than LDA, using 

likelihood and perplexity metrics. The perplexity of a statistical model is a measure of the 

uncertainty of predicting a word in a document, evaluating a model’s distribution accuracy to 

predict a sample, being equivalent to the geometric mean per-word likelihood. The lower the 

perplexity, the better the model fits the data (Gutierrez & Nakai, 2016). Blei and Lafferty 

(2007) found that under CTM, perplexity is nearly 10% lower than when using LDA. 

Therefore, the CTM algorithm is used in the current study to find hidden topics in the 

literature. 

 

3.4. Data Extraction A
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A query or search string using neuroscience and neuromarketing keywords was conducted on 

Scopus database. Scopus was used instead of Web of Science (WoS) due to its broader range 

of subject areas and categories (Alvino et al., 2020; Naz et al., 2021; Paul et al., 2021), 

providing a larger pool of articles, since our main goal is to provide a general overview of the 

topic. To obtain a sophisticated search string, the Boolean search operators AND and OR 

were added between different terms, and the search was restricted to specific parts of the 

article, such as title, abstract and keywords. The query was built in two parts. In the first part 

of the query, keywords about consumer neuroscience, neuromarketing and neuroscientific 

tools (including  derivatives) were used. The second part of the query limited the search 

based on field specifications (marketing) and inner disciplines (e.g., advertising, branding, 

promotion). The keywords for the first part of the query were adapted from the studies by 

Cerf et al. (2015), Criado et al. (2008), Dimoka et al. (2012), Harris et al. (2018), Lim (2018), 

and Venkatraman et al. (2015). Regarding the keywords for the marketing part of the query, 

we considered the journals from the Association of Business Schools’ (ABS) Academic 

Journal Guide (AJG, 2021) rated with 4*, 4 and 3 in the field of Marketing, such as Journal 

of Marketing, Journal of Marketing Research, International Journal of Research in 

Marketing, Psychology and Marketing, and European Journal of Marketing, amongst others. 

We built a database with all the keywords, analysed their frequencies, and considered the top 

4 terms, namely, Marketing, Advertising, Promotion, and Brand.  

The search query retrieved a total of 2,386 articles that were later narrowed down to 

the results of the top 4 areas, Neuroscience (330), Psychology (260), Business, Management, 

and Accounting (259), and Social Sciences (254), which generated the following query: 

 

(TITLE-ABS-KEY ("NEUROSCIENCE*" OR "NEUROMARKETING" OR 

"NEUROMANAGEMENT" OR "NEUROECONOMIC*" OR "NEUROTOURISM" 

OR "NEUROETHIC*" OR "NEUROPHYSIOLOG*" OR "NEUROIMAG*" OR 

"NEUROIS" OR "EYE-TRACK*" OR "FUNCTIONAL MAGNETIC RESONANCE 

IMAGING" OR "FMRI" OR "ELECTRO-ENCEPHALOGRA*" OR "EEG" OR 

"ELECTROCARDIOGRA*" OR "ECG" OR "ELECTROMYOGRA*" OR "FEMG" 

OR "SKIN CONDUCTANCE" OR "SCR" OR "ELECTRODERMAL" OR "EDA" 

OR "EDR" OR "GALVANIC SKIN*" OR "GSR" OR "BIOMETRIC" OR "HEART-

RATE") AND TITLE-ABS-KEY ("MARKETING" OR "ADVERTIS*" OR 

"PROMOTIONS" OR "BRAND*")) AND (LIMIT-TO (SRCTYPE, "j")) AND 

(LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "ip")) AND ( LIMIT-TO 
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(LANGUAGE, "English")) AND (LIMIT-TO ( SUBJAREA, "NEUR") OR LIMIT-

TO (SUBJAREA, "BUSI") OR LIMIT-TO (SUBJAREA, "PSYC") OR LIMIT-TO 

(SUBJAREA, "SOCI"))  

 

The query revealed a total of 893 articles, which were manually screened to reduce all 

possible noise and achieve a more robust analysis and coherent results (Ashraf et al., 2018; 

Moro et al., 2015a). This screening procedure followed the quality criteria used by Loureiro 

et al. (2021, p. 922), adapted from Macpherson and Holt (2007), and present in Table 2. In 

fact, some terms in the string are also used in different contexts with different meanings. 

Hence, there was a need to identify and remove articles that were not related to the topic. A 

final set of 469 articles met all the criteria and were later analyzed using R software. Figure 2 

shows the process followed to achieve the final set of articles.  

 

INSERT FIGURE 2 

 

INSERT TABLE 2 

 

Articles were copied into a txt file format (the most transversally accepted text format 

by the different platforms). The text of the articles was either copied directly from the 

publishers’ website or extracted using optical character recognition procedures (OCR). 

 

3.5. Data Pre-Processing and Model Parameters Estimation 

The collected dataset with all the text of the articles was pre-processed in order to remove 

punctuation, white spaces, numbers, and stop-words. A stemming algorithm was also applied 

to each word in the documents (see Fig. 3). Stemming consists of reducing inflected and 

derived terms into their root base form (Moro et al., 2015a; Richardson et al., 2014). Besides 

stop-word removal, other terms such as, “first”, “will”, “may”, “can”, “one”, “two”, “also”, 

“use”, “increase”, “however”, “found”, “find” were excluded from the analysis due to their 

high frequency in the documents, but meaningless for topic / terms interpretation (Guerreiro 

et al., 2016). The TDM was then created, in which the columns consisted of the different 

documents and the rows had the words and scores based on terms’ frequencies. The TDM 

matrix had a high sparsity level (98% of the elements are zero), with 35,232 terms in 469 

documents. To reduce matrix sparsity, a threshold of 90% was set to retain only the terms 

that occured at least 10% of the time, returning a much less sparse set of terms. In order to 
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reduce terms that were very frequent in one document but not in others, the term frequency 

and inverse document frequency (tf-idf) approach was employed, and set to values greater 

than .00260 (tf-idf > .0026), which was slightly lower than the median value (.00266) to 

guarantee the omission of high frequency terms (Grün & Hornik, 2011; Guerreiro et al., 

2016). The new TDM matrix had 1,856 terms in 469 documents. 

 

INSERT FIGURE 3 

 

Before proceeding with the CTM estimation, the appropriate number of topics (k) had 

to be determined. Instead of selecting a k value randomly, several simulations were 

undertaken to find the optimal number of topics using three different approaches 

simultaneously. Griffiths and Steyvers (2004) employed Gibbs sampling algorithm by 

computing the approximated likelihood of the data for each k, selecting the k value that 

maximizes the harmonic mean of the log-likelihoods. Cao, Xia, Li, Zhang, and Tang (2009) 

used the pairwise average cosine distance (ACD) among topics, reporting the optimal number 

of topics as the one that minimizes this indicator. In turn, Arun, Suresh, Veni Madhavan, and 

Narasimha Murthy (2010) minimized the symmetric Kullback-Lieber divergence between the 

singular values of the matrix factors. The results of these three metrics are plotted in Fig. 4. 

Cao’s and Griffiths’ measures point to a number of topics of k = 140, while Arun’s suggest k 

= 145. The existence of multiple inflexion points is quite common in cluster analysis (Greene 

et al., 2014), and it shows different appropriate solutions or topic structures. Several k values 

have been tested, comparing topics’ structure for each k to identify the most consensual and 

stable topics among the different analyses, which depicted much broader topics when 

selecting lower values for k, while higher values returned highly-specific and rather similar 

topics, making it difficult to distinguish some of them, an “over-clustering” situation similar 

to the findings of Greene et al. (2014).  

 

INSERT FIGURE 4 

 

To sustain the number of topics selected, the CTM was iteratively estimated for 

different k, storing the mean log-likelihood and perplexity metrics of each model. The k-value 

that fits the corpus best was chosen based on metrics’ variability as k increased. The method 

used to fit the CTM was the Variational EM algorithm as the marginal likelihood of the data A
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could not be calculated (Blei & Lafferty, 2007; Grün & Hornik, 2011; Wainwright & Jordan, 

2007). 

Both log-likelihood and perplexity scores show consistency regarding k = 23, as for a 

higher number of topics the changes in log-likelihood and perplexity were quite insignificant, 

and the increase in explained variability was marginal. The selection of k was also sustained 

by the results described in Figure 4, in which k = 23 was identified as one of the first 

inflexion points. Thus, the current paper explored and analyzed 23 topics hidden in the text. 

 

 

4. Results 

 

4.1. Descriptive Analysis of the Literature 

The top 5 most frequent terms were the stemmed terms studi, advertis, brand, particip, and 

attent, with an occurrence frequency above 10.000 (see Fig. 5 and Table 3), whereas 35 terms 

presented a frequency above 4.000. The first term studi was quite broad and not specific to 

any area, and related with academic journals (Guerreiro et al., 2016).  

 

INSERT FIGURE 5 

 

INSERT TABLE 3 

 

 

The second most frequent stemmed term advertis comes as no surprise given the 

focus of the query on Marketing and as one of the major concerns in this field has been 

advertising effectiveness (e.g., Daugherty et al., 2016; Li, Huang, & Bente, 2016; Russell, 

Russell, Morales, & Lehu, 2017) as well as brand attention and memory as the third and fifth 

most recurrent terms (e.g., Pieters, Warlop, & Wedel, 2002; Plassmann, Ramsøy, & 

Milosavljevic, 2012; Shang, Pei, Dai, & Wang, 2017). Neurosciences research is highly 

experiment-driven, so participants exposed to a stimulus are overtly present in the collected 

corpus. The interdisciplinary stemmed term effect was expected to occur frequently, and was 

related with cause-effect analysis, e.g., whether creative advertising has a positive effect on 

brand memory.  

Publications classified as Q1 according to Scimago Journal Rank (SJR) Best Quartile 

(Scimago, 2018) represented 73,56%, against Q2 (14,07%), Q3 (8,32%), Q4 (3,20%), and A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

unindexed articles (0,85%). Results show a 5-Year Journal Impact Factor of 3,36 on average 

(except for the unindexed 72 articles), with a 2,24 standard deviation (see Table 4).  

INSERT TABLE 4 

 

The period from 2013 to 2018 accounted for 58,8% of the articles included in this 

analysis, showing the emergence, importance and acceptance of this field. Figure 6 shows the 

number of articles by year. 

 

INSERT FIGURE 6 

 

 

The five main terms most correlated with each topic in Table 5 were used to classify 

each topic with a different name. Table 6 shows how each topic evolved over time. 

 

INSERT TABLE 5 

 

INSERT TABLE 6 

 

Tables 7 and 8 show the ranking of the articles by posterior probability regarding their 

correlation with each topic. Although we only included in the next section a comprehensive 

profiling for the top 10 topics ranked by number of articles, the classification of topics was 

created for the first twenty-two. However, a name was not given to Topic 23 as this topic was 

found to be quite broad. Indeed, the article with the highest posterior probability of belonging 

to this topic showed a value of only 6.3%. Therefore, no articles were assigned to this topic. 
 

INSERT TABLE 7 

 

INSERT TABLE 8 
 

The most mentioned topic (Topic 1) discusses consumer neuroscience, which 

corroborates the CTM analysis employed, as the identified main subject of this study. This 

emerging field of study was first discussed in 1984 (Weinstein et al., 1984), and more 

frequently in 2016. A
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The second topic (Topic 2) focused on brand memory research mainly using eye 

tracking data to acknowledge the process of generating attention and memory towards 

brands. This has been an active discussion since 1999 but still relevant in 2018, while the 

third most frequent topic (Topic 3) is related to willingness to buy, with increasing frequency 

since 2007, being a major concern from 2015 onwards. 

The year 2007 became an important milestone with a 240% increase in articles 

published on the subject from 2006, and a 120% increase in the number of active topics. 

Indeed, topics such as Willingness to Buy (topic number 3), Models of Data Processing 

(topic number 6), Visual Attention (topic number 11), Semiotics (topic number 15), and 

Measuring Emotional vs. Cognitive Appraisal (topic number 18) originated in 2007. Another 

important milestone was 2015, when consumer neuroscience received great attention with 

special editions from several top journals. By then, twenty out of the twenty-two profiled 

topics were active, with a 50% increase in published articles.  

 

4.2. Topics Description 

Topic 1 – Consumer Neuroscience 

The most correlated terms among the articles in the current topic were research, consum, 

neurosci, studi, and brain. The relevant articles discussed the emergence of consumer 

neuroscience, addressing future challenges, and its potential contribution to marketing theory 

and practice (Plassmann et al., 2015) (post. prob. = 0.604). Hubert (2010) (post. prob. = 

0.772) posited consumer neuroscience as a breakthrough in consolidating, validating or 

extending economic theories. This author claimed that its conceivable acceptance and 

integration as a branch of economic and consumer research relied on the ability to deal both 

with methodological hitches and practical implementation of outcomes by corporations. 

Rimkute et al. (2016) (post. prob. = 0.529) developed a systematic literature review on the 

effects of scent on consumer behavior, identifying thematic areas and a major gap related to 

consumers’ scent perception and to what extent it might stimulate their behavior.  

Topic 2 – Brand Memory  

The terms brand, memori, process, attent, and inform were highly correlated with the current 

topic. Due to the boom in advertising competition Pieters, Warlop, and Wedel (2002) (post. 

prob. = 0.661) discussed the effects of advertisement originality and familiarity on brand 

attention and memory. Through eye fixation data collection, the authors showed that original 

and familiar ads would grab the greatest brand attention, and subsequently brand memory. In 

addition, eye movements and fixations also have a major role in understanding the process by 

A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

which advertised brands are memorized, with Wedel and Pieters (2000) (post. prob. = 0.636) 

finding evidence related to the amount of information obtained during eye fixation on an 

advertisement and the inner negative impact on latency of brand memory.  

Neuroscience has had a major impact on brand memory studies (Venkatraman et al., 

2021) by measuring unconscious responses and thus collecting more credible and effective 

results for improved ad recall (Plassmann et al., 2015). 

Topic 3 – Willingness to Buy 

The articles with higher posterior probability within this topic were related to consumer’s 

choice of products researched in different contexts, using eye-tracking devices. This topic 

grouped the correlated terms product, consum, choic, price, and inform. The first article 

analysed the influence of products’ label elements such as production method, origin, and 

nutritional composition, on the willingness to pay for processed foods (Rihn & Yue, 2016) 

(post. prob. = 0.660), suggesting that consumers might be influenced in their product 

selection through the additional information about important product attributes displayed on 

labels and on in-store promotions. Consumers’ product preferences for brands, prices, and 

dietary restrictions are often in juxtaposition to what retailers want them to buy (Gidlöf et al., 

2017) (post. prob. = 0.597). Product packages and in-store displays contain tailored 

information on attributes to increase consumer attention, as visual attention was identified by 

the authors as the prime purchase predictor. Waechter, Sütterlin, and Siegrist (2017) (post. 

prob. = 0.628) focused on energy-friendly product choices, and their reliance on 

lexicographic strategies. The correct and current information on energy consumption leads to 

easy identification of energy-friendly products, while ambiguous information like energy 

efficiency might result in non-optimal product choices. As for online shopping, Liu, Hsieh, 

Lo, and Hwang (2017) (post. prob. = 0.626) concluded that brand awareness had a null effect 

when consumers browse with no time pressure.  

Applying neuroscientific tools, we were able to move from simply predicting 

behavior to measuring actual behavior (Ozkara & Bagozzi, 2021). By understanding actual 

behavior, brand strategies are adapted in ways that will enhance consumers’ persuasion and 

willingness to buy (Harris et al., 2018; Zhang et al., 2021).  

Topic 4 – Hedonic vs. Utilitarian Products  

The main terms identified with stronger correlations were activ, brain, brand, studi, and 

cortex. This topic encompassed fMRI studies analyzing subjects’ brain response when 

exposed to favorite or familiar brands recognized as culturally-based symbols (Schaefer & 

Rotte, 2007a) (post. prob. = 0.868). The authors acknowledged the activation of reward-
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related areas when individuals were exposed to favorite brands by studying cortical activity 

using brand logos as stimulus. Activity on the striatum was verified for favorite sports and 

luxury brands (hedonic), but the opposite was registered for rational brands (utilitarian). In 

the case of culturally familiar brands, Schaefer, Berens, Heinze, and Rotte (2006) (post. prob. 

= 0.829) reported activation in the medial prefrontal cortex, also for brands highly rated in 

“social competence” (Schaefer & Rotte, 2010) (post. prob. = 0.753), as well as for sports and 

luxury brands which improved participants’ “self-relevant thoughts” (Schaefer & Rotte, 

2007b, p. 101) (post. prob. = 0.824), while familiar brands revealed activation of the bilateral 

superior frontal gyri, hippocampus and posterior cingulate. As for value brands, the left 

superior frontal gyrus and anterior cingulate cortex were activated, which is hypothesized as 

being relevant for associating actions with consequences. Thus, by applying neuroscienctific 

tools, academics and practitioners are able to identify brain responses and triggers upon 

hedonic and/or utilitarian brand exposure (Audrin et al., 2018; Bettiga et al., 2020; Hubert et 

al., 2018). 

 

Topic 5 – Visual and Neural Cognition for Memory Detection 

The five most correlated terms in this topic were memori, use, imag, face, and perform. The 

literature on this topic examined visual cognition together with neural pattern classifiers and 

neural response decoding. Uncapher, Boyd-Meredith, Chow, Rissman, and Wagner (2015) 

(post. prob. = 0.878) tested the vulnerability of memory detection with fMRI using different 

strategies to mask memory signal (countermeasures). Participants were exposed to several 

images of male faces and measures were undertaken to guarantee a suitable behavioral 

performance. The authors concluded that when memory was truly reported by participants, 

the multivoxel pattern analysis (MVPA) classifiers accurately decoded their memory state, 

but still cognitive strategies could bias classifiers’ efficiency for memory detection. Visual 

stimuli were also used by Jiang, Summerfield, and Egner (2013) (post. prob. = 0.777) 

describing attention and expectation as the “main determinants of visual cognition” (p. 

18438). Moreover, attended and expected stimuli increased neural selectivity in the visual 

cortex. The authors grounded their research on the relationship between attention and 

perceptual prediction error (PE) hypotheses. Using not only images of faces but also outdoor 

and indoor scenes, the fMRI data revealed attention as an enhancer of neural pattern 

classifiers’ performance to distinguish expected from unexpected stimuli, while improving 

the accuracy of prediction errors. 

Topic 6 – Models of Data Processing  
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Model, refer, data, size, and featur were the most correlated terms in this topic, discussing 

several approaches to enhance information understanding and its effects, through eye-

tracking data and statistical modeling. The article published by Brocher, Chiriacescu, and von 

Heusinger (2018) (post. prob. = 0.831) aimed to study both conception and referent 

activation in discourse comprehension and planning. To deal with the dynamic process of 

language use, these authors developed the Dual-Process Activation Model, which proved to 

be effective in referent management. Feature advertising effectiveness was also a subject 

studied by Zhang, Wedel, and Pieters (2009) (post. prob. = 0.654) due to the recognized lack 

of knowledge on how feature ad characteristics, such as size, color, and location of the 

advertisement impact sales. The authors proposed a Bayesian statistical model 

accommodating variables’ endogeneity and relevant for meditating analyses, showing the 

positive and considerable effect on sales outcomes of gaze duration on feature 

advertisements. Yang, Toubia, and De Jong (2015) (post. prob. = 0.550) proposed a 

“dynamic discrete choice model of information search and choice under bounded rationality” 

(p.166), which showed greater predictive and discriminative performance when compared 

with benchmarks. 

Topic 7 – Emotional Responses to Advertisements 

This topic addressed one major purpose of consumer neuroscience, which consists of 

measuring consumers’ emotional responses to different advertising messages and content. 

The combination of methods enables the measurement of emotional experiences through 

three types of data, behavioral (e.g., facial responses), self-report (e.g., verbal or written 

reports), and physiological (e.g., HR, SCR, fEMG) (Bolls et al., 2001) (post. prob. = 0.671). 

This topic grouped messag, arous, measur, respons, and particip as the most correlated 

terms. Emotions such as fear and disgust were often analyzed in the context of anti-tobacco 

advertisements (Leshner et al., 2009) (post. prob. = 0.766). Through HR data, the authors 

found evidence of effects on cognitive resources allocated to encoding the message and on 

brand recognition in the presence of fear- and disgust-based message content. Self-reported 

emotional arousal and valence was also measured through the Self-Assessment Mannequin 

(SAM), a technique employed by Lee and Shin (2011) (post. prob. = 0.730) and also in 

combination with fEMG to test the emotional responses to anti-alcohol advertisements, using 

fear- and humor-related appeals. Individuals with heterogenous sensation-seeking levels 

responded differently to anti-alcohol abuse advertisements. Self-reports and physiological 

measures were used simultaneously (Yegiyan, 2015) (post. prob. = 0.707). In terms of 

neurophysiological measures, fEMG was used to assess appetitive and aversion activation, 
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while SCR was added to infer about the magnitude of activation, and participants’ arousal 

level during exposure to stimuli.  

Stimulating emotional responses is one key element of success, as emotional cues 

influence brand memory, ad recall, and hence, future brand choices (Pozharliev et al., 2017). 

Neuroscience enabled the study of consumers’ reactions, providing trustworthy and relevant 

information, so that advertisers can adapt their strategy to increase brand engagement through 

emotions (Barari et al., 2021b; Venkatraman et al., 2021). 

Topic 8 – Advertising Effectiveness 

The most correlated terms within this topic were advertis, effect, commerci, attitud, and 

brand. In growing and saturated markets, organizations are pursuing crucial factors for 

advertising effectiveness (Grigaliunaite & Pileliene, 2016) (post. prob. = 0.704). In their 

research, eye-tracking, implicit-association test (IAT), and questionnaires were used to study 

the attitude toward advertisement, attitude toward the brand, and purchase intentions. 

Attitude regarding emotional advertisements for convenience products in print / outdoor 

media had a much more positive effect than rational advertisement. Moreover, rational 

advertisement led to a stronger probability of purchasing convenience products. Russell, 

Swasy, Russell, and Engel (2017) (post. prob. = 0.646) tested the hedonic contamination 

process, i.e., how an entertainment experience was influenced by the presence of 

advertisements in different contexts (in-theater commercials, or watching television), 

measuring the attitude toward the movie using eye-tracking devices. Pre-exposure to 

advertising jeopardized participants’ entertainment experience, and they were less receptive 

to product placement. This type of communication was also studied by Boerman, van 

Reijmersdal, and Neijens (2015) (post. prob. = 0.593), also using eye-tracking data. This 

research provided evidence that textual and pictorial disclosure of product placement was 

most effective for brand memory but indirectly less promising for brand attitude. 

Advertisers’ effectiveness has been a major subject in consumer neuroscience 

research (Couwenberg et al., 2017; S et al., 2020). Applying neuroscientific tools, useful data 

on consumer attitudes towards the advertisement and the brand have been collected. This can 

improve campaigns’ effectiveness, unveiling unconscious emotions and preferences 

(Cummins et al., 2021; Pleyers & Vermeulen, 2021; Simola et al., 2020), also using several 

measures such as brand memory to predict this (Pieters & Wedel, 2020).  

Topic 9 – Neural Activity in Behavioral Research 

The terms food, use, activ, behavior, and neural had the highest correlation within this topic. 

Falk, Berkman, Whalen, and Lieberman (2011) (post. prob. = 0.710) looked for evidence on 
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whether neural activity could predict some smoking reduction among participants exposed to 

specific campaigns designed to help smokers to quit. The authors found a positive 

relationship between neural activity in the medial prefrontal cortex (data being collected with 

fMRI) and behavior change (successful quitting), reinforcing the prominence of 

neuroimaging in health promotion, and also that neural activity is a valuable complement to 

self-report measures. Falk et al. (2016) (post. prob. = 0.505) corroborated these results. Public 

organizations frequently use fear appeals in their communication (Cerf et al., 2015) (post. 

prob. = 0.506). By using the single-neuron method, the authors concluded that messages 

stimulating consumers’ feeling of fear through explicit instructions in the ad, would turn out 

to be effective. These authors stated that these insights would be difficult to obtain with self-

report measures.  

Topic 10 – Reliability of Eye-Tracking Data 

This topic has eye, fixat, search, user, and use as the most correlated terms related to 

neuroscience studies using eye-tracking devices. Niehorster, Cornelissen, Holmqvist, Hooge, 

and Hessels (2018) (post. prob. = 0.912) explored the use of remote eye-tracker, analyzing 

the performance of five different devices to help researchers choose the most suitable device 

when unrestrained users were their target. Eye-tracking was also used quite frequently in 

online searching either through mobile (Domachowski et al., 2016) (post. prob. = 0.743) or 

desktop devices. These authors found that the reliability and validity of eye-tracking data can 

be estimated with behavioral patterns. Linked to online search and product display, 

thumbnails were a useful resource (Lam et al., 2007) (post. prob. = 0.718) complemented 

with a short product description. These authors used eye-tracking to analyze users’ search 

behavior, the results not revealing any relevant differences in users’ fixation patterns, even 

with different reading directions. Consumers tended to address their focus to the middle of 

the thumbnail, then to the left, and finally to the right region. The authors also stated that eye-

movement data is important “for studying consumers’ information search and processing 

behaviors in the Web environment” (p. 43). In fact, eye-movements are an accurate indicator 

of stimulus processing intensity. 

 

 

5. Future Research Directions and Research Questions 

Although consumer neuroscience research is still in its early days, it has already captured the 

interest of 80% of the market (Ramsøy, 2019). The use of neuroscience techniques can shed 

further insights into consumer behavior studies and recent articles have discussed some future 
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research avenues. The current section (1) explores these future research proposals and (2) 

suggests other research questions that can move beyond the existing literature. To summarize 

the most relevant future research topics discussed in the literature, the articles collected in the 

current paper, published between 2017 to 2021, were ranked by the Average Number of 

Citations per Year (ACy). Then, the top 10 cited articles were selected for further analysis 

(Aria et al., 2020; Loureiro et al., 2020) (see Table 9). 

 

INSERT TABLE 9 

 

The study by Szabo and Webster (2021) on perceived greenwashing using neuroscience tools 

achieved the highest ACy score with 22.0 average citations per year. The authors suggest the 

use of neuroscience techniques to go further in the context of green marketing, namely the 

impact of green content on interactivity and ethical concerns when green marketing is used to 

persuade consumers. Niehorster et al. (2018) achieved the second highest average score in 

terms of citations per year (ACy = 21.0). In their research, the authors stress the need to 

extend studies using eye-trackers in non-optimal conditions in in-depth studies. Muñoz-Leiva 

et al. (2019) (ACy = 20.5) analyzed advertising effectiveness in social media, in the context of 

tourism. The authors suggested the study of advertising effectiveness while surfing the web 

versus during goal-oriented navigation, also highlighting the importance of extending eye-

tracking techniques specifically for smartphones. Meyerding and Mehlhose (2020) (ACy = 

20.0) examined the feasibility of mobile functional near-infrared spectroscopy (fNIRS) 

systems in the context of food products. These authors suggested that fNIRS using a cap 

instead of a headband provides more accurate results, and that it should be combined with 

other methods in the future (e.g, eye-tracking, questionnaires, EEG). Kahn (2017) (average 

score of 19.3 citations per year) explored the patterns of attention on small screens. More 

specifically, the study shows how visual design decisions affect consumers’ reactions in 

online environments. These authors propose additional moderators of attention toward small 

screens such as consumer expectations, individual differences, and expertise. Lee et al. 

(2020) (ACy = 18.0) studied green marketing practices in the fashion context using fMRI, and 

suggested that consumer attitudes should be compared between luxury and mass-market 

fashion using neuroscience techniques. Machín et al. (2020) (ACy = 18.0) explored how 

consumers make in-store food purchase decisions and identify which information they look 

for during that process. For future research, these authors suggested scholars should test the 

impact of in-store environments (e.g., changing the packaging, shelf position, logos, and 
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colours) on change habits, to persuade consumers to have a healthier lifestyle. Calogiuri et al. 

(2018) achieved 17.7 average citation score. These authors suggest the use of immersive 

virtual environments (IVE) to promote green exercise through simulating outdoor 

environments. The study by Lim (2018b) (ACy = 17.3) acted as a roadmap in the 

neuromarketing context, as it explored what has already been studied and the main priorities 

for the future. The author stressed the need to further address the ethical issues surrounding 

consumer neuroscience. Finally, van Reijmersdal et al. (2020) (ACy = 17.0) conducted an 

experiment using eye-tracking methods to analyze children’s ability to understand sponsored 

social influencer videos, highlighting the need for more longitudinal studies instead of studies 

focused only on immediate effects. 

Using the previous suggestions for further studies, we categorized the main future 

research topics into three dimensions and present additional research questions: (1) green 

marketing / sustainability; (2) new technology developments; and (3) privacy and ethical 

concerns.  

First, green marketing/sustainability was identified as an emerging topic in 

neuroscience. Green marketing strategies are becoming important to align the company with 

consumer expectations (Lee et al., 2020). Such strategies can be applied in different contexts, 

such as: (i) the luxury industry (perceived as one of the least sustainable industries), in the 

use of vegetarian leather instead of real leather; (ii) the inclusion of negative environmental 

cues in ads (Szabo & Webster, 2021); and also (iii) in anti-consumption ads. Using 

neuroscience techniques, researchers can efficiently study consumers’ unconscious responses 

to such stimuli (Bettiga et al., 2020; Ozkara & Bagozzi, 2021). Hence, we suggest that future 

studies can explore such problems from a neuroscience perspective.  

In the future, brands will increasingly use digital channels to connect with consumers 

(Hackl, 2021). From blockchain technology to metaverse, integration of the virtual world will 

allow organizations to bring together larger audiences in a unified virtual location (Cook & 

Kuczer, 2021; Gleim & Stevens, 2021; Sheth & Kellstadt, 2021). The metaverse arises as the 

most important futuristic digital environment, combining Artificial Intelligence (AI), 

Augmented Reality (AR) and Virtual Reality (VR) in one digital-place. These engagement-

facilitating technologies are emerging and evolving, bringing a revolutionary arena in which 

brands can enhance their interactivity with customers (Hollebeek et al., 2022). Consumer 

Brand Engagement (CBE) is a pivotal element in marketing strategies, able to foster positive 

attitudes and behaviors towards the brands (Hollebeek et al., 2014; Hollebeek & Belk, 2021). 

Recent studies suggest that as interaction experiences increase through AI, AR, and VR, 
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customer engagement is potentiated (Chen et al., 2021; Kull et al., 2021; Mostafa & 

Kasamani, 2021). Even though digital channels provide multiple ways of engagement (e.g., 

likes, comments, public sharing information), for emerging technologies such as AI, VR, AR, 

5G, and blockchain (the metaverse subset technologies), the engagement potential is far 

greater, allowing consumers to playfully experience a brand and explore the space virtually 

(McLean et al., 2021; Rauschnabel et al., 2022). It is crucial for marketing practitioners and 

academics to understand which are the groundbreaking technologies for CBE optimization, 

as well as those that will become obsolete. Furthermore, the ultimate integration of AI and 

anthropomorphism such as Ameca, a humanoid with fascinating facial expressions, is also 

expected to transform the way companies and brands engage with their customers (Hollebeek 

et al., 2021). 

Neuroscience techniques are crucial to identify and explore users’ interactions, predict 

behaviors and choices (Alsharif et al., 2021; Vences et al., 2020). The use of such techniques 

can enable researchers to collect insights and behavioral responses to understand how 

consumers react in such virtual environments.  

Finally, even though neuroscience is an emerging field with several advantages for 

brands and advertisers, it can also have negative impacts on consumers (Stanton et al., 2017). 

One such effect derives from potential bad use of private information which can lead to 

confidentiality issues. Second, using fMRI and EEG techniques, brands are able to 

understand how consumers´ brains react to different stimuli even before they rationalize such 

intentions, which can eventually lead to consumer manipulation (Aicardi et al., 2020; Rainey 

& Erden, 2020). Third, there is a need to address how to make such important and private 

information secure (Tham et al., 2021). Potential breaches in data security can represent a 

major obstacle to further developments in consumer neuroscience research. 

Table 10 summarizes the proposed research questions. 

 

INSERT TABLE 10 

 

6. Conclusions  

This study is based on an analysis of the literature on consumer neuroscience and focuses on 

identifying the prominent trends and topics in this area. Consumer neuroscience has been 

paid great attention as consumer attitudes, emotions and the decision making process are 

becoming overly complex (Plassmann, Ambler, Braeutigam, & Kenning, 2007; Steenkamp & 

Maydeu-Olivares, 2015). This field of consumer research has been mostly devoted to (1) the 
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preference for objective versus subjective measurement, and (2) a more cost-effective way to 

develop new products and advertising material more likely to engage consumers (Ariely & 

Berns, 2010; Daugherty et al., 2016). Further advances in consumer neuroscience will depend 

on the success of its translation into practice both for marketing academics and business 

practitioners (Levallois et al., 2012).  

The paper’s contribution is threefold: (i) it provides a structured overview on how 

consumer neuroscience has been evolving over time, (ii) identifies the prominent trends and 

topics in this field through topic modeling, and, (iii) addresses future directions and research 

questions, not only for theoretical purposes, but also with practical implications. 

A text mining technique was employed to analyze the literature using the correlated 

topic model algorithm. A total of twenty three topics emerged from the literature review on 

consumer neuroscience and neuromarketing. Each topic was then profiled exhaustively with 

the five most relevant terms and the most relevant articles. The results show that “consumer 

neuroscience”, “brand memory”, and “willingness to buy” are the most relevant topics in the 

field. This study also reveals that the literature has focused on ethical concerns and on 

controversial concerns in the use of consumer neuroscience techniques. 

The current paper is the first to group such a large number of papers on the topic of 

consumer neuroscience and neuromarketing. Despite the important literature reviews that 

have been conducted in the past, no study has yet performed a comprehensive and integrated 

review of the vast and complex information around the topic. The paper also contributes to 

the literature by suggesting research questions on three dimensions: green marketing / 

sustainability; new technology developments; and privacy and ethical concerns. 

As for practical implications, our research acknowledges the importance of 

neuroscience for practitioners. Through studying conscious and unconscious responses, 

managers can adapt their future strategy to meet their target expectations (Ozkara & Bagozzi, 

2021). This text mining analysis unveiled the most relevant topics in the literature, some of 

them receiving more attention from researchers than others. No immersive technology 

research, whether virtual, augmented or mixed reality, has been captured by the search string 

developed for this study, revealing a substantial gap for future research. 
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Tables 

 

Table 1. Most common neuroscientific methods: description and applications 
 

Neuroscientific Methods Measurement Application 

N
o

n
-N

eu
ro

im
a

g
in

g
 T

o
o

ls
 

      

Eye-Tracking Eye pupil’s and cornea’s position 

(eye position) or eye motion 

relative to the head (eye 

movement) 

Cognitive studies, computer usability, product 

development, virtual reality, advertising, web 

usability and design, sponsorship, shelf displays, 

sporting events, media usage, and human-computer 

interaction 

   
Skin Conductance Response (SCR) 

(Also known as Electrodermal Response or 

Galvanic Skin Response) 

Sympathetic nervous system that 

changes the sweat levels in 

eccrine glands of the palms or 

feet 

Arousal, emotion, fear, excitement, and attention 

   
Electrocardiogram (ECG) Electrical activity of the heart on 

the skin, and heart rate (heart 

beats in a minute) 

Anxiety, effort, stress, and arousal evaluation 

   
Facial Electromyography (fEMG) 

(Facial Coding) 

Muscle activity through electrical 

impulses caused by muscle fibers 

during the contraction of the two 

main facial muscles (the 

corrugator and the zygomaticus) 

Emotional reactions 

- Activity in the corrugator muscle: negative 

emotional stimuli and mood states (e.g., anger and 

disgust) 

- Activity in the zygomatic muscle: correlated with 

positive stimuli and mood states (e.g., pleasure and 

enjoyment)  

      

N
eu

ro
im

a
g

in
g

 T
o

o
ls

 

   
Electroencephalography (EEG) Electrical brain activity through 

the multiple electrodes placed on 

the scalp, revealing electrical 

signals of cortical brain areas 

Neuroscience, cognitive science, cognitive 

psychology, and psychophysiological research, 

including attention, recall, judgement, emotional 

engagement, choice behavior, preference ranking, 

sleeping disorder, coma, and epilepsy 

   
Magnetoencephalography (MEG) Magnetic fields induced by 

synchronized neuronal electrical 

potentials occurring naturally in 

the brain 

Consumer preferences, reactions, tastes, and choice 

behavior. Sensory and cognitive brain functions, 

including perception and memory. It is often used 

for neuronal changes examination after stroke, 

trauma or drug administration 

 

Single-Neuron Recording Isolated spike potentials of single 

neurons, recorded with 

microelectrodes implanted into 

the nervous tissue 

Memory consolidation, fear and social behavior, 

high-level perception, navigation, perception of 

specific concepts, high-level cognitive control, 

motor planning 
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Functional Magnetic Resonance Imaging (fMRI) Neural activity by changes in 

blood oxygenation (blood flow) 

during cognitive tasks 

Value perception, conflict resolution, fear, reward 

processing, risk perception, prediction, decision 

making, self-reflection, disgust, anger, memory and 

emotions. Analysis of social perceptions such as 

trust, envy, cooperation, and reciprocity 

   
Positron Emission Tomography (PET) Metabolic activity representing 

neurochemical changes by means 

of radioactive tracer isotopes 

Humans' brain patterns that occur over a long period 

of time 

      
 

Adapted from Cerf et al., 2015; Criado et al., 2008; Dimoka et al., 2012; Harris et al., 2018; Lim, 2018; 

Venkatraman et al., 2015 

 

 
Table 2. Quality criteria for manual article screening (Loureiro, Guerreiro, & Tussyadiah, 2021, p. 922; 

Macpherson & Holt, 2007) 

 

Elements 0: Absence 1: Low Level 2: Medium Level 3: High Level Not Applicable 

1. Directly related 

to the objective of 

the research 

There is not enough 

information to 

evaluate this 

criterion 

Not related Somehow related Totally related Not Applicable 

2. Theory 

robustness 

There is not enough 

information to 

evaluate this 

criterion 

Weak 

development 

of literature 

Superficial 

development of 

theories and 

constructs within 

existing literature 

Robust use of 

theory 

Not Applicable 

3. Congruence of 

theory, 

methodology and 

findings 

There is not enough 

information to 

evaluate this 

criterion 

Incomplete 

data and not 

related to 

theory 

Data somehow 

related to the 

arguments 

Strong link 

between the 

arguments 

presented and data 

Not Applicable 

4. Contributions to 

theory and/or 

practice 

There is not enough 

information to 

evaluate this 

criterion 

Makes a low 

contribution 

Makes a medium 

contribution 

Makes a high 

contribution  

Not Applicable 
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Table 3. Top 36 most frequent stemmed terms 

 

Nr. Term Frequency 
 

Nr. Term Frequency 

1 studi 12,731 
 

19 time 6,425 

2 advertis 12,454 
 

20 respons 6,422 

3 brand 12,164 
 

21 data 5,710 

4 particip 11,111 
 

22 signific 5,696 

5 attent 10,732 
 

23 market 5,504 

6 effect 10,560 
 

24 experi 5,454 

7 use 10,321 
 

25 brain 5,426 

8 product 9,790 
 

26 present 5,209 

9 research 9,688 
 

27 model 5,139 

10 consum 9,410 
 

28 posit 4,922 

11 differ 9,030 
 

29 subject 4,504 

12 process 8,743 
 

30 relat 4,494 

13 activ 8,305 
 

31 behavior 4,443 

14 measur 8,172 
 

32 imag 4,434 

15 inform 7,662 
 

33 show 4,296 

16 result 7,431 
 

34 condit 4,282 A
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17 emot 6,811 
 

35 test 4,037 

18 visual 6,451 
 

36 stimuli 3,903 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Table 4. Ranking of journals by number of articles (excluding those with 2 or fewer articles) 

 

Journal 
Number of 

Articles 

5-Year Impact 

Factor 

SJR Best 

Quartile 
H index 

Journal of Marketing Research 19 5.678 Q1 141 

Journal of Advertising Research 14 2.709 Q1 71 

Computers in Human Behavior 11 4.417 Q1 123 

Journal of Neuroscience, Psychology, and Economics 11 1.265 Q1 19 

Journal of Advertising 10 3.846 Q1 85 

Frontiers in Psychology 10 2.749 Q1 66 

International Journal of Advertising 8 2.475 Q1 35 

Social Cognitive and Affective Neuroscience 7 4.941 Q1 79 

Journal of Consumer Psychology 7 4.427 Q1 84 A
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Journal of Neuroscience 6 6.517 Q1 409 

NeuroImage 6 7.079 Q1 307 

Journal of Product and Brand Management 6 N/A Q1 64 

Frontiers in Human Neuroscience 6 4.022 Q1 73 

NeuroReport 6 1.493 Q3 176 

Journal of Business Research 6 3.689 Q1 144 

Journal of Consumer Marketing 6 N/A Q1 79 

Frontiers in Behavioral Neuroscience 5 3.553 Q1 50 

Journal of Retailing and Consumer Services 5 N/A Q1 57 

Journal of Consumer Behaviour 5 2.270 Q2 28 

Neuroscience Letters 5 2.124 Q2 153 

Journal of Brand Management 5 N/A Q2 33 

Psychology and Marketing 5 2.631 Q1 90 

European Journal of Marketing 5 2.545 Q1 71 

Appetite 5 3.691 Q1 110 

Journal of the Academy of Marketing Science 4 9.810 Q1 139 

Journal of Marketing 4 9.592 Q1 208 

Frontiers in Neuroscience 4 4.294 Q1 58 

Qualitative Market Research 4 N/A Q3 42 

Journal of Interactive Marketing 4 9.472 Q1 82 

Journal of Economic Psychology 4 2.197 Q1 77 

Body Image 3 3.534 Q1 62 

Marketing Science 3 3.918 Q1 108 

Cerebral Cortex 3 6.800 Q1 216 

Communication Research 3 4.024 Q1 84 

Cogent Psychology 3 N/A Q3 5 

Comunicar 3 3.285 Q1 20 

Journal of Marketing Management 3 N/A Q1 41 

Consumption Markets and Culture 3 2.197 Q1 19 

Marketing Letters 3 2.080 Q1 55 

International Journal of Psychophysiology 3 3.311 Q2 106 

Neuropsychological Trends 3 N/A Q4 4 

Journal of Consumer Research 3 6.022 Q1 146 

Psychology and Marketing 3 2.631 Q1 90 

Applied Cognitive Psychology 3 1.988 Q1 81 

Social Neuroscience 3 3.182 Q1 53 
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Table 5. The 23 topics and the most frequent terms in each topic 

 

Topic 
Nr. 

Articles 
1st Term 2nd Term 3rd Term 4th Term 5th Term 

1 - Consumer Neuroscience 21 research consum neurosci studi brain 

2 - Brand Memory 10 brand memori process attent inform 

3 - Willingness to Buy 34 product consum choic price inform 

4 - Hedonic vs. Utilitarian Products 30 activ brain brand studi cortex 

5 - Visual and Neural Cognition for Memory Detection 15 memori use imag face perform 

6 - Models of Data Processing 8 model refer data size featur 

7 - Emotional Responses to Advertisements 20 messag arous measur respons particip 

8 - Advertising Effectiveness 23 advertis effect commerci attitud brand 

9 - Neural Activity in Behavioral Research 13 food use activ behavior neural 

10 - Reliability of Eye-Tracking Data 25 eye fixat search user use 

11 - Visual Attention 23 attent fixat visual gaze text 

12 - Experiment Manipulation 12 particip imag use behavior studi 

13 - Online Advertising 21 banner anim effect game user 

14 - Ethical Concerns in Neuromarketing 51 market research neuromarket brain custom 

15 - Semiotics 22 condit particip effect stimuli present 

16 - Safety Measurements 29 particip studi risk children group 

17 - Neural Response to Reward 20 activ subject choic price trial 

18 - Measuring Emotional vs. Cognitive Appraisal 24 emot measur facial express use 

19 - Visual Design Effects 19 visual attent design effect complex 

20 - Social Comparison 13 social women polit negat model 

21 - TV Commercials Stimuli 26 eeg activ commerci subject differ 

22 - Individual Interaction in Structured Environment 10 focus system work goal individu 

23 - (-) 0 studi differ particip process effect 
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Table 6. Relevant topics: yearly frequency evolution 

 

Topic # 

1
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9
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0
0
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2
0
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2
 

2
0

0
3
 

2
0

0
4
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0
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5
 

2
0

0
6
 

2
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7
 

2
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0
8
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0
9
 

2
0

1
0
 

2
0

1
1
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0

1
2
 

2
0

1
3
 

2
0

1
4
 

2
0

1
5
 

2
0

1
6
 

2
0

1
7
 

2
0

1
8
 

1 - Consumer Neuroscience 21 
     

1 
             

1 
 

2 1 2 
  

4 6 3 1 

2 - Brand Memory 10 
          

1 1 
 

1 
 

2 
   

1 
 

1 
 

1 
   

1 1 
 

3 - Willingness to Buy 34 
                  

1 1 1 1 
 

2 3 3 7 4 9 2 

4 - Hedonic vs. Utilitarian Products 30 
                

1 1 4 1 3 4 3 3 2 4 1 2 1 
 

5 - Visual and Neural Cognition for Memory Detection 15 
                 

1 
  

1 2 3 
 

3 1 2 
 

2 
 

6 - Models of Data Processing 8 
                  

1 
 

2 
  

1 
  

1 2 
 

1 

7 - Emotional Responses to Advertisements 20 1 
  

1 1 
       

1 
     

1 
 

2 
 

2 1 1 2 2 2 3 
 

8 - Advertising Effectiveness 23 
 
1 

     
1 

  
2 

        
2 

 
1 

 
1 2 2 1 5 5 

 
9 - Neural Activity in Behavioral Research 13 

                      
1 

  
3 5 2 1 1 

10 - Reliability of Eye-Tracking Data 25 
        

1 
    

1 1 
   

2 
  

1 6 1 2 2 1 4 3 
 

11 - Visual Attention 23 
                  

1 1 1 
 

3 
 

2 2 5 3 4 1 

12 - Experiment Manipulation 12 
      

1 
               

1 1 1 1 1 4 1 1 

13 - Online Advertising 21 
              

1 1 
    

1 1 1 3 2 2 4 2 3 
 

14 - Ethical Concerns in Neuromarketing 51 
                

1 3 5 1 1 
 

8 7 8 3 5 3 6 
 

15 - Semiotics 22 
                  

2 1 
 

2 1 3 1 
 

4 6 2 
 

16 - Safety Measurements 29 
       

1 
 

3 
   

1 
    

2 
  

1 3 1 2 2 3 7 3 
 

17 - Neural Response to Reward 20 
               

1 1 1 3 2 
  

1 3 1 
 

2 1 3 1 

18 - Measuring Emotional vs. Cognitive Appraisal 24 
                  

2 
 

1 1 
 

1 1 
 

3 6 7 2 

19 - Visual Design Effects 19 
               

1 
 

1 
  

1 1 1 2 2 4 1 1 3 1 

20 - Social Comparison 13 
  

1 
                  

2 
  

2 3 1 2 2 
 

21 - TV Commercials Stimuli 26 
     

2 
         

1 
   

1 
 

5 1 1 
 

2 4 2 7 
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22 - Individual Interaction in Structured Environment 10 
      

1 
        

2 1 
  

1 1 
  

1 
 

1 
 

1 1 
 

23 - (-) 0 
                              

 

 

 

 

 

 

 

 
 

Table 7. The core 3 articles from topic 1 to 12  
 

Topic Authors Journal Year 
Posterior  

Probability 

1 Hubert M. Journal of Economic Psychology 2010 .772 

Plassmann H., Venkatraman V., Huettel S., et al. Journal of Marketing Research 2015 .604 

Rimkute J., Moraes C., Ferreira C. International Journal of Consumer Studies 2016 .529 

2 Pieters R., Warlop L., Wedel M. Management Science 2002 .661 

Wedel M., Pieters R. Marketing Science 2000 .636 

Shang Q., Pei G., Dai S., et al. Frontiers in Neuroscience 2017 .489 

3 Rihn A.L., Yue C. Agribusiness 2016 .66 

Waechter S., Sütterlin B., Siegrist M. Journal of Consumer Policy 2017 .628 

Liu C.-W., Hsieh A.-Y., Lo S.-K., et al. Computers in Human Behavior 2017 .626 

4 Schaefer M., Rotte M. NeuroReport 2007 .868 

Schaefer M., Berens H., Heinze H.-J., et al. NeuroImage 2006 .829 

Schaefer M., Rotte M. Brain Research 2007 .824 A
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5 Uncapher M.R., Tyler Boyd-Meredith J., Chow T.E., et al. Journal of Neuroscience 2015 .878 

Jiang J., Summerfield C., Egner T. Journal of Neuroscience 2013 .777 

Harding G., Bloj M. Journal of Vision 2010 .637 

6 Brocher A., Chiriacescu S.I., von Heusinger K. Discourse Processes 2016 .831 

Zhang J., Wedel M., Pieters R. Journal of Marketing Research 2009 .654 

Yang L., Toubia O., De Jong M.G. Journal of Marketing Research 2015 .55 

7 Leshner G., Bolls P., Thomas E. Health Communication 2009 .766 

Lee M.J., Shin M. Journal of Psychology: Interdisciplinary and Applied 2011 .73 

Yegiyan N.S. Journal of Media Psychology 2015 .707 

8 Grigaliunaite V., Pileliene L. Scientific Annals of Economics and Business 2016 .704 

Russell C.A., Russell D., Morales A., et al. Journal of Advertising Research 2017 .646 

Boerman S.C., Van Reijmersdal E.A., Neijens P.C. Journal of Advertising 2015 .593 

9 Falk E.B., Berkman E.T., Whalen D., et al. Health Psychology 2011 .71 

Cerf M., Greenleaf E., Meyvis T., et al. Journal of Marketing Research 2015 .506 

Falk E.B., O'Donnell M.B., Tompson S., et al. Social Cognitive and Affective Neuroscience 2016 .505 

10 Niehorster D.C., Cornelissen T.H.W., Holmqvist K., et al. Behavior Research Methods 2017 .912 

Domachowski A., Griesbaum J., Heuwing B. Proceedings of the Association for Information Science and Technology 2016 .743 

Lam, S. Y., Chau, A. W.-L., & Wong, T. J. Journal of Interactive Marketing 2007 .718 

11 Li Q., Huang Z.J., Christianson K. Tourism Management 2016 .648 

Hutton S.B., Nolte S. Applied Cognitive Psychology 2011 .533 

Smit E., Boerman S., Meurs L. Journal of Advertising Research 2015 .522 

12 Hansen K.A., Hillenbrand S.F., Ungerleider L.G. Frontiers in Neuroscience 2011 .717 

Starcke K., Wiesen C., Trotzke P., et al. Frontiers in Psychology 2016 .552 

Hüsser A., Wirth W. Journal of Financial Services Marketing 2014 .514 

Table 8. The core 3 articles from topic 13 to 23 

Topic Authors Journal Year 
Posterior  

Probability 

13 Li K., Huang G., Bente G. Computers in Human Behavior 2016 .818 

Jeong E., Bohil C., Biocca F. Journal of Advertising 2011 .645 

Hamborg K.-C., Bruns M., Ollermann F., et al. Computers in Human Behavior 2012 .629 

14 Krausová A. Lawyer Quarterly 2017 .776 

Trocchia P.J., Ainscough T.L. International Journal of Retail and Distribution Management 2006 .756 

Nijboer F., Clausen J., Allison B.Z., et al. Neuroethics 2013 .749 

15 Mulders I., Szendroi K. Frontiers in Psychology 2016 .769 A
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Thomas A., Hammer A., Beibst G., et al. BMC Neuroscience 2013 .671 

Fudali-Czyz A., Ratomska M., Cudo A., et al. Neuroscience Letters 2016 .641 

16 Seneviratne D., Molesworth B.R.C. Safety Science 2015 .696 

Dukic T., Ahlstrom C., Patten C., et al. Traffic Injury Prevention 2013 .664 

Cavalari R.N.S., Romanczyk R.G. Journal of Behavioral Decision Making 2015 .657 

17 Bray S., Rangel A., Shimojo S., et al. Journal of Neuroscience 2008 .702 

Scult M.A., Knodt A.R., Hanson J.L., et al. Social Neuroscience 2017 .649 

Staudinger M.R., Erk S., Walter H. Cerebral Cortex 2011 .62 

18 Bellman S. Australasian Marketing Journal 2007 .608 

Lewinski P. Journal of Neuroscience, Psychology, and Economics 2015 .575 

Karim A.A., Lützenkirchen B., Khedr E., et al. Frontiers in Psychology 2017 .572 

19 Orth U.R., Crouch R.C. Journal of Retailing 2014 .707 

Husić-Mehmedović M., Omeragić I., Batagelj Z., et al. Journal of Business Research 2017 .596 

Kahn B.E. Journal of Retailing 2017 .54 

20 Mischner I.H.S., van Schie H.T., Engels R.C.M.E. Body Image 2013 .804 

Bury B., Tiggemann M., Slater A. Body Image 2016 .594 

Bury B., Tiggemann M., Slater A. Body Image 2014 .588 

21 Vecchiato G., Astolfi L., Fallani F.D.V., et al. Brain Topography 2010 .882 

Vecchiato G., De Vico Fallani F., Astolfi L., et al. Journal of Neuroscience Methods 2010 .761 

De Vico Fallani F., Astolfi L., Cincotti F., et al. Clinical Neurophysiology 2008 .755 

22 D'Aquili E.G. Zygon® 1985 .584 

Gillingwater D., Gillingwater T.H. International Journal of Business Science and Applied Management 2009 .505 

McKhann G.M. Technology in Society 2004 .448 

23 Kilboume W.E., Painton S., Ridley D. Journal of Advertising 1985 .063 

Golin E., Lyerly S.B. Journal of Applied Psychology 1950 .059 

Fletcher J.E. Psychophysiology 1971 .057 
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Table 9. Top 10 articles (ordered by average citation score per year) 
Rank 

Position 
Author Journal TC CY ACy 

1 Szabo, and Webster (2021) Journal of Business Ethics 22 0 22.0 

2 Niehorster, Cornelissen, Holmqvist et al. (2018) Behavior Research Methods 63 3 21.0 

3 
Muñoz-Leiva, Hernández-Méndez, and Gómez-

Carmona D. (2019) 
Physiology and Behavior 41 2 20.5 

4 Meyerding, and Mehlhose (2020) Journal of Business Research 20 1 20.0 

5 Kahn (2017) Journal of Retailing 77 4 19.3 

6 Lee, Choi, Han et al. (2020) Journal of Business Research 18 1 18.0 

7 Machín, Curutchet, Gugliucci et al. (2020) Appetite 18 1 18.0 

8 Calogiuri, Litleskare, Fagerheim et al. (2018) Frontiers in Psychology 53 3 17.7 

9 Lim (2018) Journal of Business Research 52 3 17.3 

10 van Reijmersdal, Rozendaal, Hudders et al. (2020) Journal of Interactive Marketing 17 1 17.0 

 

TC = Total Citations; CY = Citable Years; ACy = Average Citations per Year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 10. Research Questions in Consumer Neuroscience 

Future Research Avenues Dimensions Research Questions 

Green Marketing / Sustainability Consumer Behavior  How will green labelling influence visual attention? 

  

 What emotional responses may arise in case of sustainable 

versus non-sustainable brands (e.g., vegetarian leather vs. real 

leather products)? A
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   Are eco-friendly products more memorable than non-eco? 

  

 Are ads with sustainable practices more appealing than regular 

ads? 

 Do anti-consumption ads generate less arousal than traditional 

commercial ads?  

 Luxury Marketing 
 Which emotions do sustainable luxury advertising stimulate in 

individuals? 

  

 How will luxury brands’ advertisements for sustainable 

products (e.g., vegetarian leather products by fashion 

designers) impact brand awareness and engagement? 

 
New Technology 

 Which neuroscientific methods can convey effective messages 

regarding sustainability? 

New Technology Developments Blockchain 
 How can neuroscience be used to assess the blockchain 

technology impact on perceived trust in retail? 

 

 

 How is blockchain affecting consumer brand attention, brand 

engagement and influencing purchasing intentions? 

 How will blockchain impact perceived risk and anonymity in 

financial contexts, whether through SCR or EEG 

measurement? 

 Artificial Intelligence (AI) 
 How does AI affect online shopping experience, using 

biometrics data? 

  
 How can neuroscience measure perceived cybersecurity risks 

with AI? 

  
 Is advertising through AI devices creating greater brand 

memory and attention than through traditional media? 

   Will we ever be able to measure emotions in AI devices? 

 Metaverse 
 How will brand engagement evolve within metaverse 

environment? 

  
 Will advertising within metaverse context trigger different 

brain responses from those from other social media? 

  
 How can eye-tracking devices be used to optimize social 

media interaction with metaverse technology? 

 Virtual Worlds 
 Will the lower physical presence in shops (higher immersive 

scenarios) cause lower levels of attention and engagement?  

  
 Will many-to-many group events improve direct attention and 

engagement?  

  

 Will virtual venues, such as music concerts, ease the 

relationship with the artists, and hence increase the level of 

emotions? 

 Neuroscientific Tools 
 Can mobile devices enabling eye-tracking via front-facing 

camera accurately measure visual attention? 

  

 Will eye-trackers on virtual reality glasses bring more insights 

to consumer neuroscience due to their portability and real life 

application? 

  
 Will facial coding softwares accurately measure other than 

basic emotions? 

Privacy and Ethical Concerns  
 Will privacy and anonymity concerns be a major obstacle for 

consumer neuroscience evolution? 

   How far can subliminal marketing go? 

  
 What shall remain as private data regarding data obtained 

through neuroscientific tools?  

   Will blockchain technology impact the definition of private A
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data in consumer neuroscience? 
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Figures 

Figure 1. Most common neuroscientific methods 
 

 
 

Adapted from (Lim, 2018b) 
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Figure 2. Process to identify articles for the final dataset 
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Figure 3. Text mining process, partially based on the framework of Guerreiro et al. (2016), and Moher, Liberati, 

Tetzlaff, Altman, and The PRISMA Group, (2009)  
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Figure 4. Number of topics estimation  
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Figure 5. Word Cloud of the most frequent stemmed terms 
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Figure 6. Number of Articles per Period 


