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Abstract

Static aggregations of network activity can unravel attributes of the complex systems they rep-
resent. However, they fall short when the structure of the systems changes over time. In some
cases, changes are sluggish, such as in power grids, where lines enjoy a lengthy temporal per-
manence. In others, a high frequency of change is observed, such as on a network of online
messages, social contacts, pathogen transmission or ball passing in a soccer game. In these
cases, reducing what is inherently a temporal network to a static one, leads necessarily to a loss
of information, such as causal relationships, precedence or reachability rules. Temporal net-
works are thus the main subject of this thesis, centered on the study of network evolution from
the point of view of its clusters as significant meso-structures. The thesis has two interrelated
parts. In the first, theoretical challenges are addressed and original algorithms, methods and
tools are developed that can further the study of network theory. In the second, these develop-
ments are applied to the analysis of team invasion sports. A measurement of game dynamics
was created based on a temporal network representation of a match, with nodes clustered by
spatial proximity. These measurements were found to correlate with match events of known
dynamics. Moreover, they reveal unique, multi-level, aspects of the game, from the individual
players contributions, to the clusters of interacting players, to their teams and their matches,
which is useful for game analysis, training and strategy development.

Keywords: Temporal networks, Complex systems, Clustering, Team Invasion Sports,
Dynamics
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Resumo

As agregações estáticas das ligações de uma rede podem revelar atributos dos sistemas com-
plexos que representam. Todavia, são insuficientes quando a estrutura dos sistemas se altera
com o tempo. Em alguns casos, as transformações são lentas, tais como em redes de trans-
missão de eletricidade em que as linhas se mantêm inalteráveis por largos perı́odos de tempo.
Noutras, regista-se uma taxa elevada de mudança, como por exemplo numa rede de mensagens
em linha, contatos sociais, transmissão de patógenos ou passes num jogo de futebol. Nestes
casos, reduzir o que é inerentemente uma rede temporal a uma rede estática, leva a uma perda
de informação, tais como relações causais, regras de precedência ou de acessibilidade. Redes
temporais são assim o tema desta tese, centrada nos seus agrupamentos, como meso-estruturas
significantes. A tese está dividida em duas partes. Na primeira, são considerados problemas
teóricos, e são desenvolvidos algoritmos, métodos e ferramentas que avançam o estudo da teo-
ria de redes. Na segunda, estes desenvolvimentos são aplicados à análise de jogos desportivos
coletivos de invasão. Foi criada uma medida de dinâmica do jogo, baseada na representação
da partida através de uma rede temporal de nós agrupados por proximidade espacial. Os resul-
tados obtidos correlacionam-se com eventos do jogo de dinâmica conhecida. Adicionalmente,
esta medida revela aspetos únicos e multi-nı́vel da dinâmica do jogo, desde a contribuição in-
dividual do jogador, até aos agrupamentos de jogadores, da equipa e das partidas, útil para a
análise do jogo, de treino e de desenvolvimento estratégico.

Palavras-Chave: Redes Temporais, Sistemas complexos, Agrupamentos, Jogos Desportivos
Coletivos de Invasão, Dinâmica
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Chapter 1

Introduction

Even the most impassioned reductionist would agree that some systems are way too intricate and
extensive to yield to a sum-of-the-parts explanation. We are surrounded by systems, as diverse
as the human consciousness, crowd psychology, ant colonies or the financial markets, whose
behavior is impervious to detailed analysis. This is where complexity science, its theories, tools
and techniques find purpose and utility.

The conceptual space of complexity science is vast, supported by major intellectual tradi-
tions such as dynamical systems theory, systems science, complex system theory, cybernetics
and artificial intelligence. A popular map seeking to portray the history and development of
complexity sciences, including major topics, themes and notable researchers, can be found in
Castellani (2018). The academic field of network science is one of its major pillars. The reason
is that all complex systems have constituents that form a network of relationships, interactions
and dependencies, and, by using network science tools, it is sometimes possible to uncover and
understand aspects of the behavior of the underlying complex system they portray.

This thesis is an account of the study of networks in the specific context of complex systems:
in particular, the focus is on the meso-structures that emerge and evolve in temporal networks.
These meso-structures, usually referred to as communities, clusters, groups or modules, are sets
of nodes that predominantly interact among themselves. They frequently have an over-sized
impact on the system’s response, as found in examples such as innovation hubs in technological
development, or protein-protein interactions, fundamental for functional regulation.

The problem with communities

Communities are pervasive in everyday life, and no one should have any difficulty in coming
up with several examples. A family, a flock, a neighborhood, a forest, a football team, all
have community attributes. They are made up of related members. These relations can be
represented by a network of interactions. These are the traditional nodes and links of network
theory (or vertices and edges of graph theory). If examples are simple to come by, a formal and
rigorous definition is however somewhat more illusive. Intuitively and informally, communities
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can be defined as sets of nodes with a higher density of links between themselves than to nodes
in other sets. For example, in a soccer game, defenders from one team are more likely to
interact with forwards of the adversaries than to other roles of players. This is a simple enough
definition, but that hides a sea of complexity. Consider that this definition can be relaxed to
define a community as sets of nodes with a higher density of links between themselves than
to nodes in any other community, with no loss of intuitiveness, while the resulting community
structure can become quite different (Radicchi, Castellano, Cecconi, Loreto, & Paris, 2004).
On the other hand, a community may itself contain sub-communities, members that are more
interconnected than others. For instance, employees of one company are more likely to interact
with colleagues, than with employees of another company. However, within a single company
a similar occurrence can be found inter divisions, and then inter departments and so on. Where
do we make the cut?

A common way introduced in (M. E. Newman & Girvan, 2004), is to compute the differ-
ence between the fraction of the number of links that fall within the communities (or modules,
thus its name ”modularity”) and that same fraction if the network links were randomly rewired,
while keeping the node degrees unchanged. If we apply this method to all possible partitions
of the network and select the one with the highest modularity, we have likely found the opti-
mal network partition. This is however computationally intractable except for tiny networks, as
there areBn possible partitions of a network whereBn represents the Bell number of n. Several
heuristics have been proposed to address this challenge, such as simulated annealing, spectral
methods, greedy methods and many others (Blondel, Guillaume, & Lefebvre, 2008; Duch &
Arenas, 2005; Guimera & Amaral, 2005; M. Newman, 2006) with varying success. We empha-
sized ”likely”, as modularity optimization has a resolution limit, merging small communities
into larger ones, even if they are well defined, when the network is sufficiently large (Fortunato
& Barthélemy, 2007). This represents a particular challenge to community identity in temporal
networks, as a community can stop being detected, even if it has not changed, when the net-
work grows somewhere else. Other methods, unrelated to modularity optimization have been
introduced, but this is still an area of active research.

Community definition gets even harder when considering that in many empiric systems
nodes can belong to multiple communities. This has led to a specific line of research dedicated
to studying overlapping communities. A higher order of complexity is also introduced when
considering that communities change and, depending on their connection activity, a time inde-
pendent definition of community may be challenging, if not impossible. In real life, we find
communities that keep their identity even when all of its members have been replaced: consider
the supporters of a centuries old soccer club1, where their original members are long gone, but
the community of supporters is still very much active today.

1Sheffield F.C. the oldest club in existence was founded in 1857
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Community detection, identity and ground truths

These issues are of particular importance to community detection, if we assume that the com-
munity structure is somehow encoded in the network. In this thesis, we are majorly concerned
with community identity and evolution. If all we have is a record of nodes and links, and the
network is static, i.e. ”frozen in time”, detection and identification of communities are basically
synonymous. As our focus is temporal networks, we make a nuanced distinction between detec-
tion and identity. We can detect a community C1 at time t, we can detect a different community
C2 at time t+δ if its members have changed, but its identity may be kept. Think about a family
with a new born baby. This is one reason why the resolution limit discussed above can be so
damaging.

Although the ”fuzzyness” associated with the concept of community as exposed above is
a recognized difficulty, in this thesis we are not directly concerned with cluster or community
detection. Our work starts from the partitioning of a network into modules, in what is commonly
known as the ground truth of community membership.

Research questions

Encapsulating in a single sentence the multi-year effort of the research work for a doctoral
program is never easy. One easily gets lost in the meandering of threads that inescapably come
up as inherent to the actual research process. However, in the case of this thesis, the question
“How can understanding and quantifying cluster evolution in complex networks contribute to
insights into the systems they represent?” is fit for purpose.

The motivation for this research question stems, most importantly, from the recognition
that work on complex networks is a core pillar of complex systems studies, and its breadth
of potential applications is ever expanding. Most, if not all, real-life systems are systems that
evolve in time, so the field of temporal networks will not be empty of research opportunities
any time soon. Communities, as argued in the previous section, are one of the most important
substructures of networks, so covering both seemed logical and synergetic. The recognition
that, especially for higher order complex networks, there is still an extensive whitespace for
new contributions, was a complementary motivation.

From this main research question, several sub topics emerged that drove the research ac-
tivites and related publishing:

• how to create temporal datasets with known structural properties to test hypothesis? If
there is a need to test hypothesis on properties such as the degree joint probability dis-
tribution, or cyclic inter node activity, or change points in a network, sometimes empiric
data is not readily available, especially if space scanning is needed for one or several
of these properties (see (Nicosia et al., 2013) for a comprehensive discussion of unique
aspects of temporal network measures).
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• how to characterize the lifecycle of a community? how can we address the problem of
community identity, or in other words when is a community no longer recognized as its
former self?

• how to apply and validate methods against empiric complex systems?

After a critical review of some of the current knowledge about these and related topics, I
try to answer these questions in the following three chapters. These chapters were previously
published as Pereira, Lopes, and Louçã (2020, 2021); Pereira, Lopes, Louçã, Araújo, and Ramos
(2021)2.

Structure of this thesis

After this introduction, in chapter 2 we complement the “related work” sections (3.2, 4.2 and
5.2) of the three published articles, with a critical review of transversal temporal networks topics
published in the scientific literature.

This chapter is then followed by chapter 3, where we describe a system to generate tempo-
ral networks, using a multilayer formalism under user parametrization of topological features.
Although several such methods and systems exist for static networks, their number for temporal
networks is very limited and we could not find one with the flexibility and principles that we
considered important. Several challenges of developing such a system were addressed and orig-
inal solutions created. One of the key challenges was finding the minimum amount of change
that a network can experience after re-partition. This allow us to split the measurement of the
network changes into two components, first, the changes “forced” by the re-partitioning, and
second, the change emerging from additional node re-labelling. We made an initial, tentative,
exploration of these two measurements in the context of the soccer game as reported in chapter
6.

Reflecting the relative “infancy” of temporal networks studies, there are no real commonly
adopted standards to represent a temporal network in machine readable format. For Syntgen, we
opted to use GEXF, an XML based format that seems to have wide support in network analysis
tools, such as Networkx (Hagberg, Schult, & Swart, 2008) or Igraph (Csardi & Nepusz, 2006).

Chapter 4 proposes a taxonomy of community lifecycle events that goes beyond what have
been so far proposed in the network theory literature. The value of tracking the lifecycle of com-
munities or clusters is unquestionable in areas such as marketing, sociology, biology, security,
and so on, basically everywhere where communities exist. Examples are trivial. We apply the
approach we developed to an empiric network representing a soccer game, starting the applied
phase of the work described in this thesis.

In the chapter 5 we apply temporal networks to analyze a competitive field invasion team
sports, soccer, represented as a multislice hypergraph. We used information theoretic constructs

2These chapters may include minor textual and format adaptations to the published articles, for proper integra-
tion into the style and contents of this thesis.
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introduced in chapter 3 to measure the game dynamics and found strong correlation with nota-
tional metadata. This approach is sufficiently generic to extend to other complex systems with
temporal attributes, where a distance metric between layered observations of cluster labeled
nodes can be a revealing measure.

We conclude in chapter 6, discussing limitations of our work, possible ways of addressing
them, and follow-on, future work, inspired by the research accounted in here.

Terminology

Finally, a word about terminology. Graphs and networks are related but not necessary synony-
mous. We define networks as a representation of a complex system using graphs. However,
terminology from graphs and networks are frequently switched, and we may not be totally free
from indulging in this practice, even though we are very much aware that it does not help re-
ducing the “semantic fog” that afflicts network theory. The fact that this is usually the case in
emerging sciences, should not give us pause. In the meantime, although we strive to be con-
textually appropriate, we may lapse to use the entries in the following tuples interchangeably:
(link, edge), (vertex, node), (graph, network, and their derived compounds), (cluster, module,
community), and (clustering, partition, node labeling).
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Chapter 2

Temporal networks in the scholarly
literature

The study of graphs and networks has come a long way since the very first paper published by
Leonard Euler on the Seven Bridges of Königsberg in 1736. Major contributions were proposed
in the mid 20th century in the work of Paul Erdös and Alfréd Rényi. These authors introduced
the classic Erdös-Rényi model of network generation (Erdös & Rényi, 1960), where nodes are
randomly attached according to a given probability p, departing from the regular lattice-like
model of the traditional graph theory. Attributes of the networks built with this generative
model were extensively studied, and it soon became apparent that most empiric systems did
not conform to the emerging topologies that they exhibit. New contributions, such as the fa-
mous “Small world” model of Watts and Strogatz (1998), where, starting from a regular lattice,
nodes are rewired with probability p, or the “preferential attachment” model (Barabási & Albert,
1999), where new nodes are wired to existing nodes with a probability that is a function of their
degree, generate networks that better reflect some of the attributes seen on real life systems.

In spite of their recognized usefulness, the static networks these models generate, cannot di-
rectly capture properties of complex systems that change with time. For this, we need temporal
networks1. An example of the limitations is the transitivity property, that does not generalize
from static to temporal networks. In a static network if node A is connected to B that is con-
nected to C, then there is a path, albeit indirect, from A to C. In a temporal network, there
may exist a link from A to B and from B to C but if the link B,C precedes and never co-
exists with A,B, then there is no path from A to C. This is a direct consequence of the fact
that constituents are not necessarily persistent in a temporal network, and that their lifespan can
vary. The micro-level elements, nodes and edges, can appear, disappear and reappear, impacting
the overall network and its meso-structures, such as communities. Their lifespan can go from
instantaneous to permanent. For instance, in e-mail networks the link can be considered imme-
diate. In a phone network, calls have usually a short duration. In social networks friendships

1Temporal networks are also referred to as evolving, dynamic or time-varying, by many authors.
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are protracted. In the other extreme, in an urban mass rapid transit (MRT) infrastructure, new
links and nodes emerge slowly and usually become persistent or long-lived.

Several new formalisms have been introduced in response to the need of modeling real-
world phenomena and systems that cannot be adequately described by a single static network,
with the branch of multilayer networks becoming increasingly popular. Multilayer networks
encompass subcategories such as multislice, multiplex or networks of networks. We have found
the terminology for these higher-order formalisms inconsistent and sometimes contradictory
and standardized naming conventions lacking (an attempt at standardizing constructs and their
terminology related to these higher order networks can be found in (Kivelä et al., 2014)).

Network dynamics and dynamics on networks

For clarity, when studying temporal networks our focus was network dynamics (or dynam-
ics of networks, as referred to by some authors) and not necessarily in dynamics on networks
(Mukherjee, Choudhury, Peruani, Ganguly, & Mitra, 2013). Using the MRT as illustration, we
can have a static network of stations (nodes) and tracks (links) over which a dynamic process of
people movement takes place. Percolation and spreading phenomena, such as information dif-
fusion or epidemics are similar examples of dynamic processes that can be studied over a static
network. In the subject networks of this thesis the actual structure evolves over time. Some
authors consider that a temporal network “moves information about when things happen from
the dynamical system to the network, the underlying structure on which the dynamics happen”
(Holme & Saramäki, 2012, p.99), we however keep on seeing this as two independent pro-
cesses: the fact that the network itself experiences dynamical topological processes (the MRT
adds new and decommissions old stations and lines) does not preclude the existence of another
dynamical process on top of the temporal network. We can illustrate this assertion with the
simple example of pathogen transmission on a temporal network representation that encodes
physical contacts. If A,B precedes B,C, and A infects B, the possibility of transmission to C
is not guaranteed. At the network level, there is indeed a path from A to C, but at the dynamical
system level running on the network (the disease spread) it depends on whether B is still infec-
tious when its link to C emerges. In summary, contagion is dependent on the dynamical system
on the network, and only subsequently on the network dynamics. Another example could be
the network representation of a chemical reaction, where there must be coexistence of some
reactants for the reaction to proceed.

When searching the scholarly literature for network dynamics, one comes across many writ-
ings on network evolution (Vázquez, 2003); (Dorogovtsev & Mendes, 2002); (M. Newman,
2018, p.434); (Leskovec, Kleinberg, & Faloutsos, 2007); (Barabasi, 2016, Chapter 6); (Barabási
& Albert, 1999); (Jeong, Néda, & Barabási, 2003). Their focus is, in fact, on network forma-
tion and their emerging properties, covering models such as Price’s preferential attachment,
Barabási-Albert model, Bianconi-Barabási model, Watts-Strogatz model, and others.
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Here, we are not addressing the inquiry of evolving networks as a mean of studying the
processes that lead to their “final” observed state, that is, we are not trying to inquire about the
process of topology emergence, but rather observe, classify, and explore changes in networks,
as they occur, especially clustering changes.

Temporal network definitions and representations

Within the disparity of terminology, sometimes concepts and constructs can become fuzzy. This
is certainly the case with temporal networks. We don’t recognize temporal networks as a topo-
logical formalism, such as a bipartite graph, an hypergraph or a multiplex network. This differ-
ence goes beyond the commonplace definition of a network as a graph based representation of
a complex system. In practice many topological formalisms can be used to represent a temporal
network. In (Kivelä et al., 2014, p.206), authors identify 26 different types of networks found
in the literature, many of which could be used to represent a temporal network. Tellingly none
of these types is a “temporal network”. We consider that the “temporal” in “temporal network”
refers, first and foremost, to a property of complex systems that suffer evolution over time and
not necessarily to any specific network or graph framework.

That is not to say, that temporal networks do not require appropriate formalisms for rep-
resentation. They can be represented by a multilayer network with every layer corresponding
to a timed observation of the network. These are usually aggregated observations over a time
interval (∆t), and as such are a discretization of what are typically continuous phenomena. This
introduces error, that can be minimized by reducing ∆t, which increases layers sparsity and car-
dinality. This is represented in figure 2.1 where a stream of instantaneous links, such as instant
messages, e-mails, financial payments and others, is sampled at varying time intervals. In the
limit, when ∆t → 0, we recover a continuous domain, albeit with only simultaneous edges per
layer. Determining the appropriate time interval is problem domain dependent (Latapy, Viard,
& Magnien, 2018, p.19). In this formalism, directed edges couple adjacent layers, conditioned
by the arrow of time, linking the same node and signaling node survival. Inter-layer links only
connect the same node. Some authors classify this as multiplex networks (Gómez et al., 2013).
Others, make a distinction, based on the property that the inter-layer links are node-aligned and
ordinal, which is not a general requirement for a multiplex network. For instance the author in
(Bianconi, 2018, p.80), call this type of formalism a multi-slice network. In reality a multiplex
network is no more than a multigraph with colored edges, where the color describes a given
interaction property, such as the role of a social agent, or the medium of a communication, or
the vehicle type in a transportation network. Each color in the space of colors is a layer and
nodes can connect across layers, and have no inherent order, they can be purely categorical. In
this case, they do not need to abide by the adjacency or directional property, potentially creating
a clique of a given node occurrence across multiple layers, signaling identity but not lifespan.
Other authors still, defend that a temporal network may require a non-multiplex multilayer rep-
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Figure 2.1. In this example, a temporal network with 10 nodes is discretized into a multi-layer, time
sliced network at different resolutions (5∆t and 10∆t). The inter layer arcs, represented in gray (for
readability, only included for nodes “a” and “i”), denote that the layers are node aligned. Extending the
sampling intervals increases the loss of temporal information. This loss hits a maximum when collapsing
the link set into a static network, erasing all temporal information.

resentation (De Domenico et al., 2013, p.4), that is, connections may exist between different
nodes in different layers, for instance to represent causal, time-mediated relationships.

Multi-layer networks can be extended by so-called aspects (Kivelä et al., 2014; Pilosof,
Porter, Pascual, & Kéfi, 2017, p.208), further contextualizing the space of relations between
nodes, that is, one aspect could be the time of an interaction, another aspect the medium, and
so on. Aspects differ from layers in that they refer to the same event/interaction. They can be
viewed as different attributes of a single link.

Many of these representations extended the graph adjacency matrix to a tensor, where the
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toolkit of tensor decomposition has been used to reveal many properties of the represented
networks (Kolda & Bader, 2009; Martin & Porter, 2012), albeit at a cost of forcing two of
the tensor dimensions to have the same size as the number of nodes that will ever exist in the
network, i.e. padding the tensor with null degree nodes. One, however has to be careful, as in
this case a null degree node is not the same as an isolated node, and some metrics may need
to be adjusted. Additional aspects are represented by additional tensor dimensions, although
it is possible to reduce dimensions, flattening the tensor, potentially all the way down to a 2D
matrix, called a supra-adjacency matrix (Cozzo, Ferraz de Arruda, Rodrigues, & Moreno, 2018;
De Domenico et al., 2013; Kivelä et al., 2014; Solé-Ribalta et al., 2013), by expanding nodes
accounting for their presence in aspects and layers.

Real-time streaming data and change points

Temporal networks built out and processed in real time from streaming data, suggest a different
type of formalism, as the total number nodes is usually unknown. A time series of contacts or
adjacency lists may be a more suitable representation.

While previously mentioned representations of a temporal network are information preserv-
ing down to their time resolution, it is possible, to create other types that sacrifice some of
the (hopefully less relevant) information to reduce the space complexity of perfect memory.
The author in (Holme, 2015, p.7-9) introduces several different approaches, such as using link-
weighted graphs, with weights counting edge occurrences, Markov process transition matrices,
or concurrency graphs.

A typical problem facing complex systems researchers is the detection of change points in
temporal networks. For streaming (or longitudinal) data, authors in (McCulloh & Carley, 2011)
propose a method for change detection based on statistical process control using control chart
schemes that signal change. They found the cumulative sum control chart (Page, 1954) to be
effective against one simulated and three empiric networks.

Authors in (Peel & Clauset, 2015) generalize the hierarchical random graph model, basically
a non-binary tree dendogram, specifying edge probability at multiple levels, and use it to define
a distribution over networks. After fitting edge probabilities for the network in question, change
points are detected when a threshold conditioning false positive rate is exceed over a given time
window. They apply this technique to synthetic data and to two empiric networks, the MIT
Reality Mining proximity network and the Enron e-mail network, and find good correlation
with known external events.

Authors in (Darst et al., 2016) propose a method to compute timescales, that is periods of
time when a system is relatively stable, by using the Jaccard Index, a similarity measure, to
compare successive periods, increasing the number of observations until the index tendency
turns negative. The intuition is that when computing the ratio between the intersection and the
union of the set of events of a previously identified period and a set of successive later events,
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it is likely that initially the index will grow as the probability of finding events in this set that
have already been observed is high, but it will get to a point where new unobserved events will
outweigh those, inverting the index tendency. At this point a new period can begin. This could
be useful for aggregating observations of a network when a time sliced representation is sought.
Similarly to the previous reference, the authors test their approach against empirical networks
(Enron e-mail database, MIT Reality Mining, twitter dataset of tweets with a common hashtag),
for which external events are known, and find strong correlations.

Applications of temporal network theory

Temporal networks have found applications in multiple domains. In this thesis, we studied team
invasion sports, and a comprehensive discussion of related prior work is included in section 5.2
of the article that makes up the chapter 5. Here we mention some other instances where temporal
networks have been of use.

In many articles, original contributions to temporal network theory are exemplified through
their application to network representations of complex systems. Some of these systems have
publicly available datasets, which contributes to their popularity. Cases in point are the Enron
accounting scandal e-mail database (Cohen, 2015) and the MIT reality mining proximity net-
work, a social network of mobile phone bluetooth traced contacts (Eagle & Pentland, 2006).
Examples of articles using these datasets to validate and exemplify proposed methods of analy-
sis were referenced in the previous section (Darst et al., 2016; Peel & Clauset, 2015). Citation
networks extracted from repositories such as the Web of Science are also popular. Citation net-
works have been shown to exhibit preferential attachment properties (M. E. Newman, 2009). In
(Medo, Cimini, & Gualdi, 2011) authors use citation data from the American Physical Society
to propose a network generation model that combines heterogeneity and temporal decay into
the node fitness of the preferential attachment model, two properties that have previously been
shown in citation networks, but in isolation (Bianconi & Barabási, 2001).

Other articles are more of an applied nature, using publicly2 or privately available datasets.
An example can be found in (Génois & Barrat, 2018), where authors question the usage of
co-location records, automatically and wirelessly captured, as a proxy for face-to-face contacts.
They used several datasets, collected in facilities of health providers, in schools and in confer-
ence settings, and find that some features of the underlying system can indeed be recovered,
when comparing a down-sampling of the co-presence records to the ground truth of physical
social contacts, independently observed. They then apply it to the identification of containment
strategies of epidemic processes, deriving guidelines for the usage of automated collection of

2Other public network repositories that store empiric temporal networks are available from Stanford University
(https://snap.stanford.edu/data/), that includes mostly data from digital social networks, and from a collaboration
of the ISI Foundation – Turin, Italy, the CNRS – Centre de Physique Théorique – Marseille, France, and Bitman-
ufactory, Cambridge - UK (http://http://www.sociopatterns.org/) where multiple datasets can be found containing
real life networks of co-location of humans and of other animals captured by a sensing platform.
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co-location events in these contexts. Another example, but involving the tracking of enclosed
Baboons (Gelardi, Godard, Paleressompoulle, Claidiere, & Barrat, 2020), finds similar results,
which opens the possibility of deployment of the sensing platform and of the temporal network
methods of analysis to wild animal populations, otherwise difficult, costly and cumbersome.

Using citations and co-authorships from the arXiv repository, authors in (Amblard, Casteigts,
Flocchini, Quattrociocchi, & Santoro, 2011) show the advantage of using temporal networks in
detecting structural changes and evolution of the underlying networks, and how co-authorship
and citations co-evolve.

Other publications on temporal networks

Figure 2.2. Higher order networks have become a popular topic in recent decades. Source:
books.google.com/ngrams, for years 1960-2019

Although temporal networks are a very trendy topic (see figure 2.2), it is still a small pro-
portion of the scholarly corpora of network theory. Books on general network theory rarely
devote more than a few lines or pages to the topic of temporal networks (Barabasi, 2016; Bi-
agini et al., 2019; Latora, Nicosia, & Russo, 2017; Lewis, 2009; Menczer, Fortunato, & Davis,
2020; M. Newman, 2018). Dorogovtsev and Mendes (2002) covers evolving networks but from
a generative perspective, i.e. growth and structure. Most of the scientific literature on temporal
and multilayer networks is found in journals and in edited books. Of the non-edited books,
the reader is referred to Bianconi (2018), a textbook fully dedicated to multilayer networks
covering formalisms, measures and dynamics, and to Cozzo et al. (2018) a book dedicated to
multiplex networks, discussing the mathematical constructs that are foundational for high order
complex network analysis. Specific to temporal networks, P. Holme and J. Saramäki edited two
books (Holme & Saramäki, 2013, 2019) providing multiple authors perspectives about the the-
ory and applications of temporal networks, many of which have been cited in this thesis. These
two authors also published extensive articles covering the state of the art on temporal networks
(Holme, 2015; Holme & Saramäki, 2012).
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Research gaps and concluding remarks

As mentioned in chapter 1, the literature review included in this chapter is complementary to
those included in chapter 3, 4 and 5 and does not explore in detail the specific topics that those
chapters address. In particular, in section 3.2 we review the literature on synthetic network gen-
erators, their applications and the theoretical aspects that they invite. In section 4.2 we discuss
the contemporary scientific understanding of community lifecycle and previous proposals for
their determination, and finally in section 5.2, we review the literature focused on the applica-
tion of network theory to sports science, especially to team invasion sports.

Here, we limited our inquiry to critically investigate and pinpoint challenges related to tem-
poral network theory constructs. We found gaps on collective acceptance of what some of these
constructs are, and this has guided us when introducing formalisms in subsequent chapters. It is
clear to us that the field of representing time evolving complex systems as temporal networks,
be they a social enterprise, a biological ecosystem, the emergence of phenotypes in an organ-
ism, or the 90 min of a soccer match, is far from exhausted, and is open to multiple threads of
research. We hope to have contributed to a journey that, in the time scale of scientific pursuit,
is just beginning.
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Chapter 3

Syntgen: a system to generate temporal
networks with user-specified topology

The following section was previously published in (Pereira et al., 2020). A researcher wanting
to study network communities and their lifecycle faces the challenge of obtaining appropriate
samples that conform to specifications appropriate for his research questions. As an example, if
he wants to study how joint degree distribution influences the emergence of community struc-
ture, he needs samples with controlled joint degree distributions. The same can be said for other
attributes, such as density, size, path length, clustering coefficient, vertex eccentricity, modular-
ity and so on. As discussed previously, community detection methods with absolute accuracy
do not in general exist, thus, he is also faced with the problem of establishing a ground truth of
community membership. The availability and ease of acquisition of time stamped representa-
tions of empiric networks, with known ground truth, have recently improved, but our researcher
is still faced with significant challenges to control for meaningful variables.

The need to address these challenges, was the reason why, creating a synthetic genera-
tor under user-specified parameters, was the first step in the doctoral project that this thesis
documents. A few approaches have been previously proposed to generate synthetic temporal
networks that conform to static topological specifications while in general adopting an ad hoc
approach to temporal evolution. We believed there was still a need for a principled synthetic
network generator that conforms to problem domain topological specifications from a static as
well as temporal perspective. In Syntgen we built such a system. The unique attributes of this
system include accepting arbitrary node degree and cluster size distributions and temporal evo-
lution under user control, while supporting tunable joint distribution and temporal correlation
of node degrees. Several theoretical contributions were developed, including the analysis of
conditions for graphic sequences of inter- and intra-cluster node degrees and cluster sizes, and
the development of a heuristic to search for the cluster membership of nodes that minimizes
change when evolving the network under constrained stochastic conditions. The system and
its contributions were later used to classify community events, and study soccer, as an empiric
system that can be represented by a temporal network of evolving clusters.
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3.1 Introduction

Networks are all around us: computer, telecommunication, biological and social systems are
just a few examples of systems of entities that interact and relate to one another in some speci-
fiable way, producing identifiable phenomena. Graph theory, which had its origins in the 18th
century when Leonard Euler published his ”Seven Bridges of Königsberg” problem and its neg-
ative solution (Euler, 1736), is the basis of the field of study that has become network science.
Network science is concerned with understanding networked systems, describing their micro,
meso and macro scale attributes and helping us predict their behavior. Many networks exhibit
groups of nodes that are more closely interconnected amongst themselves than with the rest of
the network. These groups, referred to as clusters in graph theory or communities in network
science, are usually of particular interest to network researchers. They may have an over-sized
impact on the network behavior and their identification is often highly useful.

From its origin in graph theory, network science has focused on static networks, that is,
networks ”frozen in time” with link permanence. However, real world systems are rarely static:
links on webpages are added and removed everyday in the world wide web, amino acid inter-
action for protein folding occurs over time, friendships are created, age, wither and renew. This
realization led to major efforts to extend existing science into temporal networks, with several
authors proposing approaches that embed time specific attributes. Communities are no excep-
tion, and several constructs have been proposed to characterize the way a community develops
over time. Although some of these constructs are problematic since they cannot be derived
solely from the network structure, they serve as a base that allow us to build a commonly ac-
cepted vocabulary that helps advance this field of study.

Time stamped data of empiric systems with known ground truth about communities does
not abound. As extensively discussed elsewhere (M. E. Newman, 2004) even the concept of
community membership is not without its challenges. This makes it more difficult to test sys-
tems that effectively recover community node membership over time. Having a system that
generates a temporal network under user specified topology, with known ground truth, can help
alleviate these challenges. Syntgen1, as described in this chapter, is such a system.

Syntgen intent is to generate temporal networks that exhibit attributes observed in empir-
ical networks. These attributes include the temporal degree correlation and the joint degree
distribution. Temporal degree correlation can be seen in social networks where some nodes
have continuous high popularity or, in communication networks, where nodes having periodic
activity are common. The joint degree distribution expresses the probability of node links as a
function of their degrees, leading to varying levels of assortative mixing as seen in many real
life networks.

The input required by Syntgen at each time step is a multiset of community sizes and a
bijection of two n-tuples representing sequences of total and intra-community node degrees.

1code available at https://github.com/ramadap/Syntgen
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Optionally the user can specify preferences for joint node degree distributions, temporal node
degree correlation and a set of nodes to be eliminated at each time transition.

We developed a method which Syntgen uses to test if user specifications are graphic (Be-
hzad & Chartrand, 1967) and, if successful, generate a compliant temporal network. The user
does not specify node membership or links, these are generated by the system. As there is ran-
domness in the process of network construction, both on node community membership as well
as in the network wiring, the same specifications will not typically generate the same network.
However, they should asymptotically converge to the same average topology.

The user can loosely control the dynamics of the network by changing its input at chosen
time steps, with new nodes created and others killed to satisfy input specifications. Changing
correlation and joint distribution parameters will also impact the wiring of the network.

We provide example sequence generators that sample power laws, exponential and binomial
distributions, all of which have been found in empirical networks (M. E. J. Newman, Strogatz,
& Watts, 2000). These generators include parameters that specify community maximum and
minimum size, maximum and minimum node degree, distribution rate parameters and a ratio
(r) of intra to total degree, which can be fixed or Bernoulli distributed with P = r. The user
can use or adapt these generators or provide their own. Obviously, although the system will
assign nodes to communities, these are only meaningful if the ratio of intra links to total links is
sufficiently high. This ratio varies depending on the network structure and on the cardinalities
of the communities. Larger communities are less stringent with their requirements. A thorough
discussion can be found in (Fortunato & Hric, 2016, p.11).

With this input, Syntgen outputs a temporal network with known ground truth of its com-
munity structure for every time interval. To minimize network changes beyond those specified
by the user, Syntgen tries to determine the node community membership across time steps that
results in the shortest shared information distance between clusterings. An exact solution is
intractable, and we develop an appropriate heuristic.

Our system works for simple networks. Syntgen generates temporal networks with no self
loops or multi-links, non weighted and undirected, with no community membership overlap,
with no isolated nodes, in snapshot mode. A new instance is generated at each time step and
the overall temporal network is the sequence of generated snapshots. It would be possible to
extend this model to a truly continuous streaming network, although a principled approach for
node and edge activation would need to be devised to enforce node degree and community size
affinities.

We believe Syntgen, as a temporal synthetic network generator, is unique in creating net-
works with arbitrary community sizes and node degree distributions and providing ways to
control node joint degree distribution and node degree temporal correlation.

In the remainder of this document we review in section 3.2 other work related to the function
and objective of our system. In section 3.3 we start by describing the general flow of the system,
its modules and functionality, followed in section 3.3.2 by a detailed description of the approach
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Figure 3.1. Time consecutive slices of a dynamic network as generated by Syntgen
This example is color coded according to community and has ≈ 200 nodes, 10 − 9 communities, with
multiple community events. A full description can be found in section 3.3.2.5.

we took to generate a network snapshot respecting the user topology. How we aim to reduce
spurious noise when evolving the communities at every timestep is covered in section 3.3.3, and
we conclude with 3 additional sections covering experiments, conclusion and future work.

A note on terminology conventions: In this subject area a vast array of terms are used
to describe very similar concepts, like communities vs clusters, or partitions vs clusterings.
Throughout this document, we adopt the following terminology and symbol conventions:

• ”Community” refers to groups of nodes more tightly connected amongst themselves than
to the rest of the network (in lieu of terms like cluster, or partition)

• ”Clustering” refers to the splitting of a network into communities (in lieu of partition).
See formal definition in 3.1.

• ”Temporal” is an attribute of a network that changes over time (in lieu of dynamic or
evolving)

• ”Nodes and Links”: Links are connections between nodes at the same time step. Nodes
only exist if they connect. There are no isolated nodes in Syntgen.

• We call the movement of nodes between communities across time steps, ”Node flow”.

• We define ”graphic” as the property of sequences of community sizes and bijective node
total and intra degrees that enable their representation as a graph.

• We denote sets by an uppercase letter and individual elements by the corresponding lower
case letter, optionally subscripted for identification. Frequently used sets and variables
have their own dedicated symbol as per table 3.1.
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Table 3.1. Symbol convention
Symbol Definition
C Clustering or community set, optionally with a subscript to

indicate time step
D Degree sequence (or ordered total degree sequence, depend-

ing on context, bijection with E, optionally with a subscript
to indicate community membership).

E Intra degree sequence ( bijection with F ), optionally with a
subscript to indicate community membership.

F Inter degree sequence , with n = |D| = |E| = |F | and
fi + ei = di ∀(1 ≤ i ≤ n), optionally with a subscript to
indicate community membership.

G Network, optionally with a subscript to indicate time step
L Link set
O Kill node set (user specification)
S Multiset of community sizes
T Time step
U Flow of nodes between time steps
V Node set

3.2 Related Work

Work related to Syntgen falls into two categories:

• network science, theorems and algorithms that supported the development of our system

• prior systems that have been developed with similar or related desiderata.

In the first category we cover clustering similarity and community lifecycle events, and in the
second, benchmarks for community detection algorithms and other temporal community net-
work generators.

3.2.1 Static benchmarks for community detection algorithms

Authors in (Lancichinetti, Fortunato, & filippo Radicchi, 2008) have drawn our attention to the
fact that community detection algorithms that perform well in a given network topology may
be less accurate in a different topology. Prior to their work, algorithms for community detec-
tion were validated mostly against the Girvan-Newman benchmark (M. E. Newman & Girvan,
2004), which is based on a stochastic block model that only deviates from a typical random
Erdős–Rényi model by the introduction of a tunable parameter specifying the probabilities of
intra and inter community links, transforming the network from a pure random network to a
random network of random networks (the communities). From experience we know that empir-
ical networks do not generally follow this model. Quite often they exhibit long tail distributions
of node degrees and community sizes, as is the case of networks where new nodes link with
higher probability with existing high degree nodes (Barabasi, 2016, Chapter 3).
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The benchmark introduced in (Lancichinetti et al., 2008) generates networks with power
law distributions of community sizes and node degrees, with tunable intra/total ratio (mixing
parameter). This benchmark, commonly known by the authors initials (LFR), has been widely
accepted and used to test community detection algorithms for static networks. For instance
in (Lancichinetti & Fortunato, 2009; Yang, Algesheimer, & Tessone, 2016) a lengthy list of
algorithms tested against this benchmark can be found.

3.2.2 Comparing clusterings

A clustering, in our context, is the partition of the set V of nodes of a network into disjoint
communities, or formally

C = {c1, · · · , ck} : (ci ∩ cj = ∅ ∀ (1 ≤ i, j ≤ k ∧ i 6= j) ∧ ∪ ki=1 ci = V (3.1)

Comparing communities at successive timesteps is a key requirement to understand community
evolution. Comparing clusterings, on the other hand, is critical in our system so that, after all
the information required to construct the network at successive time steps is gathered, we can
flow nodes resulting in the closest shared information distance between clusterings. Comparing
clusterings is an open problem as there is no standard way of measuring the distance between
them. Popular methods include several variations of node counting (like the Rand Index) and
measures from information theory, like the normalized mutual information and variation of
information (VI). A good survey of different methods can be found in (Wagner & Wagner,
2007). We have selected VI, given its robustness, low computational complexity and the fact
that it is a true metric (Meilǎ, 2007).

3.2.3 Temporal community graph generators

There have been some proposals to generate synthetic temporal networks. Most of these gen-
erators have as a major goal the benchmarking of temporal community detection algorithms.
This is a purpose partially shared by our system, although we are not, in this document, directly
discussing what constitutes a temporal community. In spite of recent progresses, community
detection in temporal networks is not as mature as in static networks and much work remains to
be done. An extensive survey of current methods can be found in (Rossetti & Cazabet, 2018),
including a tree-based schema to classify them.

Syntgen can be used as a benchmark generator when control over specific network topolo-
gies and structural features are sought, such as community structure, temporal change patterns
or assortative mixing. In contrast to other systems, it currently does not support the generation
of weighted networks, directed networks or overlapping communities. It is also not the appro-
priate tool if fine control of node activity is required, such as when a need exists to control link
persistence, or to control individual community attributes. Currently, Syntgen does not support
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the explicit introduction of change points although these can be induced by varying substan-
tially its input parameters when needed. Beyond benchmarking, we see Syntgen being used
to experimentally observe network behavior and we include various examples in section 3.4.
The total flexibility to specify community size and node degree sequences makes it possible to
load data from an empiric network and analyze the results when other structural parameters are
changed.

Other published generators include (Granell, Darst, Arenas, Fortunato, & Gómez, 2015)
where the authors propose a generator for simple networks with a cyclic nature based on a
variation of the stochastic block model. In (Greene, 2010) the authors have adapted the LFR
benchmark (Lancichinetti et al., 2008), while introducing over time ad-hoc modifications to the
network. In (Rossetti, 2017) the authors propose RDyn, a system to generate temporal net-
works respecting a power-law distribution of community sizes and node degrees with tunable
clustering and injected lifecycle events that, while disrupting cluster quality, are subsequently
re-balanced through re-wiring of node links. In (Bazzi, Jeub, Arenas, Howison, & Porter, 2020)
a method is proposed that can represent time evolution as a multilayer network, where each layer
corresponds to a network observation (or summary of observations). In contrast with Syntgen,
which is a pure temporal network generator, this method can be used for non temporal aspects
where each layer corresponds to a different network aspect, such as in the case of multiplex net-
works where nodes can be part of multiple domains. Authors in (Sengupta, Hamann, & Wag-
ner, 2017) propose a benchmark generator for overlapping communities in temporal networks.
They use an extension of the LFR (Lancichinetti et al., 2008) benchmark to support overlapping
communities (Chykhradze et al., 2014) and adapt it to the temporal domain. Their method is re-
stricted to power-law distribution of community sizes and node community membership. Intra
community links are randomly generated according to some user specified probability. Tem-
poral evolution is also induced by user specified probabilities of community lifecycle events.
An obvious difference to our system is the support for overlapping communities. Other differ-
ences include an explicit injection of community events while in Syntgen community evolution
is a consequence of changes in community size and node degree sequences as time evolves.
In Syntgen community lifecycle events can be determined a-posteriori, although an axiomatic
system is required for such a task.

All of these generators have obvious affinity with Syntgen. The new contributions intro-
duced by Syntgen include:

• acceptance of granular specifications of community size and node degree sequences which
are tested for representation as a simple graph by an original method

• network temporal evolution that minimizes clustering changes

• support for joint distribution of node degrees and node degree temporal correlation
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3.3 Syntgen: Description, challenges and contributions

Syntgen is a system to create temporal networks exhibiting community structure that changes
over time. It is parametric and modular. The major modules are:

• User specifications. These fall into two separate categories: network topology and heuris-
tics execution.

• Node degree and community size sequence generators. The system includes functions
that sample parametric distributions for community size, intra and total node degree, but,
as long as they are realizable, any sequences can be provided.

• Network module. Deals with all aspects of network creation, including node to commu-
nity assignment, degree to node assignment and node to link assignment.

• Transition module. This module manages all aspects of temporal evolution, including
heuristics for node flow between timesteps and community lifecycle determination.

• Output module. This module generates all output, both textual as well as machine read-
able for further analysis. In Table 3.2 we include a summary of all information generated.

Table 3.2. Textual Output of Syntgen
Content Description

Contingency Matrix Contingency matrix of communities across time
steps

Assortativity Coefficient Joint node degree distribution
Temporal Degree Correlation Average Pearsons correlation index for the whole

network
Variation of information VI between clusterings across successive time

steps

In the remainder of this section we present the basic algorithmic logic of Syntgen in 3.3.1, the
challenges and solutions of building a static network according to user specifications in 3.3.2
and the problem of finding a node flow across time steps that maximizes clustering similarity in
3.3.3.

3.3.1 Syntgen basic logic

The general flow of Syntgen is a sequence of looping steps that produce network snapshots as
time progresses. It basically follows algorithm 1.

Syntgen requires from the user at each time step the following graph invariants and param-
eters:

• a multiset of k positive integers S = {s1, · · · , sk}, representing a sequence of community
sizes
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• a bijection of total and intra community degree sequences:

– an n-tuple of positive integers D = {d1, · · · , dn} representing a sequence of node
total degrees with n =

∑k
i=1 si ∧

∑n
i=1 di ∈ {2n : n ∈ N}

– an n-tuple of positive integers E = {e1, · · · , en} representing a sequence of node
intra-community degrees with ei ≤ di : 1 ≤ ∀i ≤ n and

∑n
i=1 ei ∈ {2n : n ∈ N}

• specifications for joint degree distribution and node degree correlation over time

• optionally, a set of nodes O to kill at a step boundary

The user can loosely control the dynamics of the network by changing S,D,E and O at each
time step boundary. Depending on the sign of

∑
St −

∑
St+1 − |O| new nodes are implicitly

born or additional nodes randomly killed. Correlation and joint distribution parameters have an
impact on the wiring of the network. As the data per timestep is gathered, Syntgen executes the
following actions:

• A bootstrap static network is built. The input elements are independent (with the excep-
tion of the number of nodes and the sum of community sizes, which must match) and it is
up to the system to assign links and nodes to communities. We provide parameter-based
examples of functions that generate sequences which have been observed in empirical net-
works (Clauset, Shalizi, & Newman, 2009; M. E. J. Newman et al., 2000; Palla, Barabási,
& Vicsek, 2007), sampled from discretized power laws, discretized exponential and bi-
nomial distributions, but the user is free to provide his own as adequate to their problem
domain.
Degree assortativity, a topology attribute that varies with the type of network (typically
assortative for social, while dissortative for biological networks (M. E. Newman, 2003)),
is also parameter driven allowing the user to request a random, weighted assortative or
weighted dissortative network.
To construct the network we use a modified version of the configuration model (Clauset,
2013) in a similar approach to what is found in a popular benchmark for community de-
tection in static networks (Lancichinetti et al., 2008), but developed independently and
extended to support joint node degree distributions as described in 3.3.2.5.
Obviously, not all input specifications are possible and we verify feasibility before gen-
erating the network. The problem of whether a given node degree distribution can be
expressed as a graph has been covered extensively in the literature (Choudum, 1986;
Erdös & Gallai, 1960; Stanton & Pinar, 2011; Tripathi, Venugopalan, & West, 2010), and
theorems, like the Erdös-Gallai condition, can be expressed as an algorithm to test graph
feasibility. However, with node degrees as tuples of inter and intra-cluster degrees, dif-
ferent conditions apply. We extended the Erdös-Gallai condition to address this problem,
developing the corresponding algorithm to halt (or request new input for) the network
generation in case input specifications are infeasible.
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• After generating the bootstrap network (T0 network) a T1 network is generated, again ac-
cording to user specifications. The user may select a different degree or community size
sequences as well as make changes to the network at the end of T0 (selecting nodes for
deletion), according to the requirements of the temporal network to be generated. An ad-
ditional parameter provides the user with the option of enforcing node degree correlation
across timesteps.
The system then tries to find the closest possible clusterings between successive timesteps.
We found the problem to be intractable and impossible to complete in a reasonable
amount of time beyond a very small number of communities. To address the inherent
complexity, we developed a heuristic based on a greedy anytime algorithm with taboo to
search for a solution in an appropriate solution subspace. The objective is to reduce the
amount of change (noise) to a minimum, reducing the necessary impact on user specifi-
cations. The solution will determine the flow of nodes between communities in timesteps
T0 and T1.

• This process is repeated for a user-specified number (n) of time steps, evolving the net-
work over a period from T0 to Tn.

• At each time step the contingency matrix of node/community evolution is produced, and,
at the end, the temporal network is created in a machine readable format for further anal-
ysis and visualization.

Algorithm 1 General flow of Syntgen. Steps 2,3,6,10 are implemented in the ”Network”
module. Build Communities assigns degrees to nodes and nodes to communities, while
Build Network does all the network wiring. Steps 7-9 are implemented in module ”Transi-
tion”. The time complexity of Syntgen is determined by the node wiring and transition phases.
A complexity analysis is provided in their corresponding sections (3.3.2.5, 3.3.3)

1: Community Size Sequence, Node Degree Sequence← Sequences from User
2: Build Communities @ Tn ← Community Size Sequence, Node Degree Sequence
3: Build Network@Tn ← Communities
4: while Remaining T imeSteps 6= 0 do
5: Community Size Sequence, Node Degree Sequence← Sequences from User
6: Build Communities @ Tn+1 ← Community Size & Node Degree Sequences
7: Network @ Tn ← user Events
8: Flow Nodes from Tn to Tn+1 ← Search Most Similar Transition
9: Build Network @ Tn+1

10: Report Data for Tn to Tn+1

11: Network @ Tn ← Network @ Tn+1

12: TimeSteps← TimeSteps− 1
13: end while
14: Output Temporal Network

Syntgen outputs textual information as the network is created overtime, including network
metrics, network events and other supporting information. Syntgen also produces the full tem-
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poral network in machine readable format that can be input directly to the Gephi (Bastian,
Heymann, & Jacomy, 2009) visualization tool.

3.3.2 Creating a static network

Creating a T0 static network involves the following steps:

• Receiving community size and node degree sequences from the user

• Testing for graphic sequences and requesting new ones if non-graphic

• Randomly assigning nodes without substitution to communities from the bijection of intra
(E) and total degrees (D) with e ∈ E : e < |c|

• Wiring nodes using a modified version of the configuration model both for intra links as
well as inter links respecting assortative specifications

3.3.2.1 Community, node sequences

Syntgen does not impose specific restrictions on the user input sequences beyond a coherent
total number of nodes, and node intra community degrees that are less or equal to their respec-
tive total degree. It follows that Syntgen does not enforce community structure per se. The
user must provide a ratio of intra to total degree that is conducive to community structure if a
clustered network is preferred.

3.3.2.2 Supplied distribution samplers

The user may opt to generate community and node sequences resorting to functionality provided
by Syntgen. There are independent and identically distributed (I.I.D) samplers of uniform,
exponential and power law distributions. All of our supplied samples of sequence generators
accept a ratio (r) of intra to total degree similar to the mixing parameter in the LFR benchmark
(Lancichinetti et al., 2008). To alleviate rounding artifacts that are more pronounced for nodes
with low degree, we employ stochastic rounding instead of rounding to the nearest integer.
The authors in (Lancichinetti et al., 2008) point out that allowing the ratio to change can lead
to communities containing nodes that have a higher inter than intra degree (due to random
fluctuations), but depending on usage, having a fixed intra to total degree ratio may be too
restrictive on the desirable network topologies. Therefore, we let the user choose between a
fixed 0 ≤ r ≤ 1 or Bernoulli distributed ratio with P = r.

Although we do not challenge if specifications as provided by the user or generated by
the supplied distribution samplers are conducive to community structure, we do test for dis-
connected components inside communities by computing the algebraic multiplicity of the zero
eigenvalue for the Laplacian of the adjacency matrix of the community. If higher than one, we
warn the user, giving the option to continue or abort the network generation.
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3.3.2.3 Testing for graphic sequences

To test if user specifications are graphic, that is, if they can be represented as a simple network,
we make use of the Erdös-Gallai condition (Erdös & Gallai, 1960) that states that a degree
sequence D is graphic if:

|D|∑
i=1

di ∈ {2n : n ∈ N} ∧
k∑
i=1

di ≤ k(k − 1) +

|D|∑
i=k+1

min(di, k) ∀ (1 ≤ k ≤ |D|) (3.2)

where d is degree and |D| the total number of nodes. We apply 3.2 to the sequence of total
degrees and then to every single community using onlyE, the nodes intra degrees. If completed
successfully, we move on to test if the inter degrees sequence F is graphic. For this we reduce
the network to a multi-graph where each community becomes a single node and the multi-links
are the aggregate inter community links of the base network. It is obvious that max(F ) ≤∑ |F |

i=1 di −max(F ) is a necessary condition for the graphic property, as otherwise there would
be not enough links to satisfy the requirements of the largest community inter degree. But it is
also not hard to see that if the total number of inter links is even, the condition above is not only
necessary but also sufficient, or formally:

|F |∑
i=1

fi ∈ {2n : n ∈ N} ∧ max(F ) ≤
|F |∑
i=1

fi −max(F ) (3.3)

To see why, consider a reduced network with 3 nodes (communities), c1, c2, c3 and their
respective inter node degree aggregation f1, f2, f3, with f1 ≥ f2 ≥ f3. If f1 = f2 + f3, the
network is obviously graphic. If f1 < f2 + f3 and if f1 ∈ {2n : n ∈ N} then (f2 ∈ {2n : n ∈
N}∧f3 ∈ {2n : n ∈ N})∨(f2 ∈ {2n+1 : n ∈ N0}∧f3 ∈ {2n+1 : n ∈ N0}) but as f1 ≥ f2 one
can always distribute links from c1 to c2 and c3 such that the remainder degrees to be satisfied
are equal. If f1 ∈ {2n + 1 : n ∈ N0} then (f2 ∈ 2n+ 1 : n ∈ N0 ∨ f3 ∈ 2n+ 1 : n ∈ N0) in
which case after one link is added between c1 and c2 or c3 we revert to the previous case.

The above is a proof for a 3 community clustering. To generalize the proof, let’s consider the
addition of a community to the reduced network resulting in the clustering C = {c1, · · · , c4},
with node degree aggregation D = {f1, · · · , f4}, and fi ≥ fi−1 : 2 < ∀i ≤ 4. If we use links
from f1 to satisfy f4, we get: f1 − f4 ≥ f2 ∨ f1 − f4 < f2. If f1 − f4 ≥ f2 we reduce to the
previous proof as f1 − f4 + f2 + f3 ∈ {2n : n ∈ N} and f1 − f4 ≤ f2 + f3 (remember that
f3 ≥ f4).

If f1 − f4 < f2 then to reduce to the previous 3-community proof we should have f2 <
f3 + (f1 − f4). This is easy to prove by contradiction as f2 > f3 + (f1 − f4) is impossible,
given that f1 > f2 would force f3 − f4 < 0 which violates the problem statement. So by
contradiction and induction we prove the condition for the graphic property of the inter links
part of the network.

In conclusion, a network with |V | nodes and |C| communities with size sequence S, each
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with a bijection of intra and inter degree sequences respectively Eci , Fci ∀i ∈ {1, · · · , |C|} is
graphic under the condition in equation 3.4.

∀i ∈ {1, · · · , |C|} :

si∑
j=1

e cij ∈ {2n : n ∈ N} ∧ (
k∑

j=1

e cij ≤ k(k − 1) +

si∑
j=k+1

min(ei, k)∀(1 ≤ k ≤ si)

∧
|V |∑
i=1

fi ∈ {2n : n ∈ N} ∧ max(F ) ≤
|V |∑
i=1

fi −max(F )

(3.4)

3.3.2.4 Node assignment

Syntgen assigns nodes to communities randomly at time step T0 from the pool of available
nodes, avoiding communities with cardinality smaller than the node intra degree. From T1

onwards nodes keep their community membership except to honour new community size se-
quences. The process of minimizing membership changes is covered in section 3.3.3. The user
can indirectly control node degree temporal correlation by influencing degree selection from the
supplied total degree sequence thru the shape parameters of a beta distribution used to sample
the ordered sequence. When α = β = 1 it reverts back to the uniform distribution.

3.3.2.5 Configuration model

In Syntgen we based the generation of networks with user specified degree distributions on a
modified version of the configuration model (CM) (Barabasi, 2016, Chapter 3). We use this
modified version to wire nodes inside communities (one community at a time, as if they were
separate networks) and to create inter community links.

The CM can create a network based on arbitrary sequences D of node degrees. To this end,
it expands the sequence into a list of (

∑
D) node ”stubs” that are randomly paired, creating

links. See figure 3.2 for an example.

Figure 3.2. Wiring the configuration model. Example of setting up a first link between node stubs for
a network with n = 10 nodes, 15 links and degree sequence D = {4, 4, 3, 3, 4, 3, 3, 2, 2, 2}. Stubs are
randomly chosen and as long as

∑n
i=1Di is even, the process always concludes, albeit with multi links

and self loops.

For our purpose, the standard CM presents two difficulties. The first is that nothing prevents
a stub from linking back to another stub belonging to the same node, or linking the same nodes
multiple times, both of which are incompatible with our aim of building a simple network with
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no self loops and no multi-links. The second is that we want to provide the user with some
capacity to control joint degree distribution, while the CM results in the following fixed joint
distribution:

pij =
kikj
S − 1

(3.5)

where kn is the number of stubs of node n and S the total number of stubs =
∑
D.

As the network grows, the probability of self-loops and multi-links decreases. This prob-
ability varies with the actual node degree distribution, but it is not unreasonable to disregard
self-loops and multi-links when building the network (see figure 3.3 for an example), consid-
ering however that, (1) stub pairing can fail before all stubs are assigned (that is, a node can
have unlinked stubs with no candidate stubs remaining), and (2) that equation 3.5 is no longer
representative of the degree joint distribution.

(a) We use a modified CM, and apply it to one community at a time for intra-community links (full
stroke linestyle) and to the whole network for inter community links (dashed linestyle)

(b) Our modified version of the CM deletes from the link candidate list all the remaining stubs of the
linking node (double stroke linestyle) (1), and all the remaining stubs of the linked node for subsequent
stubs from the same node (2)

(c) Example of the fully connected network
Figure 3.3. CM Plots of a network 3 communities (Blue, red and green), with community size sequence
{4, 4, 2} and total and intra degree sequences {4, 4, 4, 3, 3, 3, 3, 2, 2, 2}, {3, 3, 3, 2, 2, 2, 2, 1, 1, 1}.

The first problem can be circumvented by selectively rewiring nodes randomly from a pool
of candidate nodes (those that could satisfy the outstanding stubs but are otherwise taken else-
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where). As we test that the network specifications are graphic beforehand, and the rewiring
process is ergodic, this always completes successfully.

The second problem is less relevant as we aim to generate networks with tunable joint de-
gree distribution. We modified the CM so that instead of connecting stubs I.I.D. over a uniform
distribution, we connect them I.I.D. over a beta distribution from the ordered node degree se-
quence. As the probability density function (pdf) increases towards the rightmost side of the
distribution domain, correlation increases, and vice-versa. The α and β shape parameters of the
Beta distribution are specified by the user and enable flexible pdf shapes. Using these param-
eters, the user can influence the level of the network correlation, subject to structural cutoffs
(Boguñá, Pastor-Satorras, & Vespignani, 2004; M. E. Newman, 2003).

In our CM implementation we visit every other node for each node in the network. When
stub pairing fails, additional node ”visits” are required, but, as the probability of failure is
directly tied to the probability of self-loops and multi-links, and these tend to zero as the net-
work grows, using asymptotic notation we obtain a time complexity of O(|V |2), where V is
the network node set. Additionally, we may need to sort the list of candidate nodes to honor
degree correlation requests, increasing the overall complexity of this phase of the algorithm to
O(|V |3 log |V |).

3.3.3 Minimizing Shared Information Distance

Once we have constructed the network Nt at time t, injected user changes, created the network
Nt+1 (all based on user specifications), and created adjustments in communities for dead and
new nodes, so that the number of nodes across steps remains the same, all that is left is to flow
surviving nodes from one network to the next. We want to perform this node flow in such a
way that the clusterings C t and C t+1 are as similar as possible, in this way minimizing the
changes beyond the user specifications. To measure the changes, we need a way of comparing
clusterings. As mentioned previously, there are several approaches to this problem, from node
pair counting to information based distance measures.

There is no best approach as explained in (Meilǎ, 2007), and we have opted to use the
Variation of Information:

V I(X;Y ) = −
k∑
i=1

l∑
j=1

rij[log(
rij
pi

) + log(
rij
qj

)] (3.6)

where X = {x1, · · · , xk} and Y = {y1, · · · , yl} are clusterings of a given set S, with n = |S|,
and rij =

xi∩yj
n

, pi = |xi|
n

and qj = |yi|
n

. Our choice of VI is based on its algorithmic simplicity
and on the fact that it is a true metric (Kraskov, Stögbauer, Andrzejak, & Grassberger, 2005a),
respecting positivity, symmetry, and the triangle inequality.

But let’s set briefly aside the proposed method of comparing clusterings and consider the
search space of feasible node flows between Nt and Nt+1. One way of looking at the problem
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is to coalesce Nt and Nt+1 into the weighted bipartite network G(Ct, Ct+1, U), where the nodes
are the communities at successive timesteps and the U the weighted links representing the node
flows between them.

It is easy to see that the search space consists of the solutions to an under-determined
system of Diophantine equations Ax = B where A is the incidence matrix of the fully con-
nected bipartite network G = (Ct, Ct+1, L) and B is the vector {|C t

i |ki=1 ∪ |C t+1
j |lj=1}. As

rank(A) = |B| − 1, one line of matrix A and the corresponding entry of vector B can be
removed. Dimensionality can be further reduced as

∑
[x] is known, and thus one element of

x can be determined from the others. Every solution in the solution space is a vector x whose
elements are the number of nodes (u) that should be transferred from communities in Ct to
communities in Ct+1.

Formally we want to find Ct+1 s.t. min(V I(Ct, Ct+1)) with Ax = B as defined above.
In topological terms, the space of the solution is a lattice contained in an n− 1 dimensional

polytope, where n = |Ct| × |Ct+1|, bounded by n− 1 positive halfspaces (as xi ≥ 0 : ∀i), and
by |Ct|+ |Ct+1| − 1 hyperplanes defined by the equations in Ax = B. The number of solutions
is equal to the number of lattice points. Counting lattice points in such a polytope is not an easy
task (Loera, 2005) and quickly becomes intractable. Barvinok proposed an algorithm for lattice
point counting in (Barvinok & Pommersheim, 1999) that has been implemented in systems like
Latte (Baldoni et al., 2014), software that counts lattice points and performs integration inside
convex polytopes. Some experiments we ran in Latte that illustrate the size of the problem can
be seen in table 3.3.

Clustering @ T Clustering @ T+1 Number of solutions
{20, 16, 12} {24, 13, 11} 6.46000E + 03
{16, 16, 16} {16, 16, 16} 1.17810E + 04
{13, 11, 10, 10} {14, 12, 9, 9} 7.80605E + 06

{1300, 1100, 1000, 1000} {1400, 1200, 900, 900} 1.58534E + 24
{13, 11, 10, 10, 9} {14, 12, 9, 9, 9} 1.09501E + 11

{1300, 1100, 1000, 1000, 900} {1400, 1200, 900, 900, 900} 3.18145E + 41

Table 3.3. Solution space, as reported by the count function of Latte, for 6 examples of clustering pairs.
As can be seen, flowing even a small number of communities generates a search space that is for all
purposes intractable.

The solutions that are of interest to us will have a high degree of sparsity as we are looking
for similar clusterings and, intuitively (and experimentally), a high dispersion of nodes across
communities will not be conducive to similarity. Higher sparsity solutions correspond to surface
features of the polytope lattice, that is, in decreasing sparsity order: vertices, edges, ridges, cells,
facets and so on, basically the 1, · · · , n− 1 elements of an n-dimensional polytope. We based
our heuristic on this intuition, limiting our search space to the hull of the polytope (see figure
3.4) This can reduce the space significantly depending on the polytope geometry.

To scan the space we find the nullspace of A, formally ker(A) = {x ∈ Nn : Ax = 0},
where n = |Ct| × |Ct+1|, and one solution xi to Ax = B. By linearly combining xi with
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Figure 3.4. Comparing Clusterings similarity as a function of spacial location Plot of all the
16,799,002 possible solutions of flowing a clustering with community size sequence of {13, 13, 12,
10} to {15,11,11,11}. We compare similarity, as measured by the variation of information, against dis-
tance to polytope center and number of polytope surface coordinates in the solution vector. The polytope

”center” is computed as the vector
(

max(xi)×n∑f
j=1max(xj)

)f
i=1

, where the vector x is the number of nodes flow-

ing between communities (the sequence of link weights of the fully connected bi-partite network, see
section 3.3.3), n is the total number of nodes, f the number of possible flows and max (x) the maximum
number of nodes flowing between two communities. It is clearly visible that there is a strong positive
correlation between these quantities.

ker(A) we can span the set of solutions to Ax = B. Finding a single solution is trivial, all that
is needed is to flow nodes from Ct to Ct+1 until no more nodes are left in Ct. Finding an optimal
solution is, however, at least as hard as the partition problem, a well documented NP-complete
problem (Korf, 1998), that asks if a given multiset of positive integers can be split into two
subsets that sum to the same amount. We prove this by reducing the partition problem to our
problem, and by applying the method described in (Cormen, Leiserson, Rivest, & Stein, 2009,
p.1078, Lemma 34.8). It works this way: consider a general partition problem, with a multiset
M = {m1,m2 · · ·mk} with

∑k
i=1mi = n. This reduces polynomially to a problem where

a source clustering S = {s1, s2 · · · sk} has {|s1|, |s2| · · · |sk|} = M , and a target clustering
T = {t1, t2}, where |t1| = |t2| = n

2
. There is a solution where no source cluster is split in the

target clustering, that is when either si ⊆ t1 or si ⊆ t2, if and only if, there is a solution to
the partition problem. It is easy to see and prove that this condition results in the most similar
clusterings, as dispersion of nodes, from individual clusters in S across t1 and t2, increases the
variation of information.

To find a more promising starting point for our heuristic space search, we have implemented
a pool of five simple algorithms, with polynomial complexity on the number of communities,
that were experimentally best performers among themselves. They implement one-pass greedy
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heuristics with an objective function related either to sparsity or similarity. Experimentally,
although any one of the five may achieve best performance, one of them clearly outperforms
the others as the number of communities increase (see figure 3.5).

Figure 3.5. Relative performance of a pool of 5 simple algorithms to select a starting point for a
space scan All algorithms achieve top VI-based similarity in some of the 1,000 random runs, but one
(MI, based on minimizing the increment of mutual information) vastly outperforms all others as the
number of communities increases.

In our space scan heuristic, we use these solutions (or the best of them) as starting points
for our space search. These simple algorithms are single pass over the successive community
sets and run in at most |Ct| + |Ct+1| time, where C is the community set, so their asymtoptic
complexity is O(|C|) and can be ignored when compared to the algorithmic complexity of the
solution space search. This search is accomplished by an anytime algorithm that greedily scans
the solution polytope hull for the lowest VI avoiding previously visited solutions (see algorithm
2). To halt the algorithm, the user can specify thresholds for search restart after a certain number
of failed improvement trials and a certain number of failed restarts. Each search elementary
step visits two communities from two successive timestep (Ct, Ct+1), and all communities are
potentially selectable, (although in practice this rarely happens as the output from the simple
algorithms is already fairly optimized). This results in a complexity of

(|Ct|
2

)
×
(|Ct+1|

2

)
per single

search with an overall asymptotic complexity ofO(|V |4×l×g) if we consider the same number
of communities at successive time steps and where l and g are respectively the number of local
and global tries. Adding the time complexity for wiring the network (see 3.3.2.5), we get a final
complexity of O(|V |4 × l × g + |V |3 log |V |).

Searching the hull of the polytope vastly reduces the search space in most circumstances,
but, as the network grows, the probability of improving on the results from the pool of simple
algorithms decreases. For very large networks the user may select to proceed with the best
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Algorithm 2 Anytime greedy algorithm with taboo

1: currBest← min(Solution(SimpleAlgorithmPool))
2: bestV I ← V I(currBest)
3: globalTries← 0
4: visited← ∅
5: while globalTries ≤ globalTriesThreshold do
6: localTries← 0
7: globalTries← globalTries+ 1
8: while localTries ≤ localTriesThreshold do
9: localTries← localTries+ 1

10: localBest←MAXFLOAT
11: for all v = vector ∈ ker(A) do
12: n ← ((na × v + currBest ∈ solutionSpace) ∧ ((n + 1) × v + currBest /∈

solutionSpace)
13: newSol← n× v + currBest
14: if newSol /∈ visited then
15: if V I(newSol) ≤ localBest then
16: localBest← V I(newSol)
17: newSolLocal← newSol
18: end if
19: end if
20: n ← ((n × v + currBest ∈ solutionSpace) ∧ ((n − 1) × v + currBest /∈

solutionSpace)
21: newSol← n× v + currBest
22: if newSol /∈ visited then
23: if V I(newSol) ≤ localBest then
24: localBest← V I(newSol)
25: newSolLocal← newSol
26: end if
27: end if
28: end for
29: if localbest = MAXFLOAT then
30: Break Global Tries (Dead end)
31: else
32: visited← visited ∪ newSolLocal
33: if V I(newSolLocal) ≥ bestV I then
34: localTries← localTries+ 1
35: else
36: bestV I ← V I(newSolLocal)
37: currBest← newSolLocal
38: localTries← globalTries← 0
39: end if
40: end if
41: end while
42: end while
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result from the pool and forego the heuristic search for the sake of expediency.

In figure 3.6 an example of an exhaustive search of a very simple temporal network with a
total of 279 solutions can be found to illustrate the method.

Figure 3.6. Example of a heuristic search to minimize information distance. Map of a full search of
a small network transition from {10, 8, 6} to {12, 10, 2}. Note that vertex points of the solution lattice
have higher than average similarity as measured by the Rand Index.

3.4 Experiments

Syntgen can generate many variants of temporal networks with community structure respecting
user defined distributions of community sizes and node degree. In this section we present and
discuss network metrics from generated networks according to varying input parameters. Given
the time-slicing nature of Syntgen, some of the experiments highlight results from a single point
in time, with the understanding that input parameters can be changed by the user on every time
slice.
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Sample Distributions

Syntgen provides distribution samplers of node degrees and community sizes. In figure 3.7 we
can see an example of a power-law degree distribution and the effects of different rounding
approaches.

(a) Rounding to nearest integer (b) Stochastic rounding
Figure 3.7. Node degree distribution of networks generated with 100,000 nodes, mix ratio of 0.7, and
total node degree varying from 10 to 150. The artifact minimizing effect of stochastic rounding can
clearly be seen in these examples.

Mix Ratio

We studied experimentally the impact of using a fixed vs Bernoulli distributed mix ratio (µ). As
expected we did not observe significant differences between both approaches when run over 11
time steps, as can be seen on figure 3.8.

Joint Degree Distribution

As discussed in section 3.3.2.5, assortativity is tunable by the user thru the shape parameters
of the Beta distribution, affecting link generation. However, dependent on network structure, it
may be impossible to generate a network with positive correlation. In figure 3.9 we plot all links
of a network with 10,000 nodes and power-law distribution of node degrees and community size
on a two-dimensional graph showing the degrees of their connected nodes. As the network is
non directional the plots are symmetrical when reflected about the diagonal. The result of
applying shape parameters to influence correlation can be clearly seen. We confirm previous
findings, noting additionally that clustering has a strong influence on correlation behaviour,
potentially limiting the possibility of generating a positively degree correlated network.

It is intuitive that a highly assortative network increases the tendency for groups of nodes to
”clump” together, which suggests that clustering quality may be affected in highly assortative
networks even when the user specifies intra and total degree bijections that are conductive to
community structure. To validate this intuition experimentally, we built temporal networks with
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Figure 3.8. Fixed versus Bernoulli distribute mix ratio Two networks averaged over 11 time steps,
with 10,000 nodes, mix ratio µ = .7, power law distribution of community size (Kc = 1.5) and node
degree (Kn = 2.5), displaying ground truth modularity and modularity as computed by the community
multilevel algorithm (Blondel et al., 2008). Differences in modularity between experiments are negli-
gible. The differences in number of communities found between the ground truth and the community
detection algorithm can be attributed to the resolution limits of the algorithm used for detection (Fortu-
nato & Barthélemy, 2007).

the same community size and node degree sequences generated from powerlaw distributions,
at varying assortative indexes. The networks had approximately 10,000 nodes and 60 com-
munities, intra to total link ratio of 0.7 and density of 0.2% and were left to evolve over 100
time steps. Determining clustering quality is sometimes problematic (Dao et al., 2017). For
instance, in networks generated by Syntgen, all being equal except for joint degree distribution,
there should not be any difference in the ground truth clustering modularity or community con-
ductance. On the contrary, the average minimum cut and average global clustering coefficient
for all communities, and the global clustering coefficient for the whole network, are metrics that
will be affected by the network assortativity. Results can be seen in figure 3.10. The observed
reduction in the minimum cut and the increase in the clustering coefficient inside the commu-
nities, as the network becomes progressively more assortative, seems to confirm the intuition.

Temporal Correlation

We use the same technique of sampling a beta distribution to influence the evolution of node
degree. The user can change the distribution shape parameters to sustain a temporally homoge-
neous node degree, or to generate nodes that are cyclically active. Figure 3.11 shows the impact
of varying shape parameters on the temporal node degree correlation.

Syntgen does not directly provide a facility to control link persistence over time. Obviously
network metrics, such as density, have a self-evident impact on edge persistence. Other metrics
may have a less obvious influence. We experimentally tested how edge persistence varied with
degree assortativity and degree temporal correlation.

Using the same network as described above, we did not find any significant correlation be-

36



(a) Uncorrelated network (α = 1, β = 1, D = 20) (b) Assortative network (α = 21, β = 1, D = 20)

(c) Dissortative network (α = 1, β = 21, D = 20) (d) Failed assortative network (α = 21, β =
1, D = 25)

Figure 3.9. Assortative Experiments on power-law networks with 10,000 nodes, varying the average
degree from 20 to 25 and maximum degree from 100 to 500, with an average community size of ≈ 168.
Every point on the chart is a link with (x, y) coordinates representing the connecting nodes degrees. The
point size is directly proportional to the total number of links with equal coordinates. As can be seen,
as we increase the average node degree from 20 to 25 by increasing maximum node degree from 100 to
500, it is no longer possible to generate a correlated network with stated metrics even with aggressive
beta distribution shape parameters.

tween edge persistence and degree assortativity (average 5.6%, minimum 5.5%, maximum 5.7%
in an assortativity index range of [−0.67, 0.59]) with all other parameters invariant. However
node degree temporal correlation does seem to have a positive correlation with edge persis-
tence in non-assortative networks as can be seen in figure 3.12. In a highly assortative network
(0.59 assortative index) the correlation is more complex, with node persistence increasing as the
network moves away from non temporally correlated node degrees which we believe warrants
further study.
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Figure 3.10. Minimum cut and global clustering coefficient as a function of the network assorta-
tivity index Average, maximum and minimum of the averages of 100 observations of the evolution of 5
networks under varying assortativity indexes.

Figure 3.11. Temporal node degree correlation as a function of the Beta Distribution shape pa-
rameters Evolution of the node degree Pearson’s correlation at 11 successive time steps for different
specifications of the Beta distribution shape parameters.

Sample Network

Currently Syntgen outputs machine readable networks in CSV format adequate for loading into
Gephi (Bastian et al., 2009). In figure 3.13 an example of a Syntgen generated temporal network
with lifecycle events can be seen. A simple analysis of the transition from T2 to T3 can be found
in table 3.4. The events were categorized as a function of the Jaccard Index (Jaccard, 1912)
between communities, based on an external threshold to indicate community continuation.

38



Figure 3.12. Edge persistence as a function of node degree temporal correlation on non-assortative
and highly assortative networks Average, maximum and minimum of averages of 100 observation of
the evolution of 5 networks under varying node degree temporal correlation.

3.5 Remarks, Discussion and Conclusion

Syntgen is a network generator with constraints. Links between nodes are created I.I.D. over
explicit and implicit user specifications. Although a single instance may deviate from the re-
quired specifications, the average of a set of generations will converge asymptotically to those
specifications.

When using the supplied distribution samplers for node degree and community size, the size
of the network has an impact on how closely specifications can be followed. For example, a
network with a low average number of communities, will have community size distributions
that are likely not recognizable when compared to parameter derived expectations.

It is also of note that, although Syntgen proceeds basically I.I.D. when wiring the net-
work, every time a ”dead-end” is encountered on graphic specifications, the affected process
is restarted after re-wiring adjustments. For instance, if, while generating intra links inside a
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(a) Network at time T2 with 10 communities, numerically and color
identified.

(b) Network at time T3 with 9 communities with merge and split
events.

Figure 3.13. Nodes marked ”X” are examples of nodes to be killed across the transition to T3. Nodes
with a spiral are example of nodes that changed communities, and nodes marked ”B” are examples of
new born nodes. Community 8 split from T2 to T3 into community 12 and split-merged with community
5 to community 11.

community, a node exhausts its list of candidate nodes before satisfying its degree, other es-
tablished links will be broken so that the process can proceed to satisfaction. This, in practice,
”breaks” the I.I.D. aspect of the system, although for most specifications the impact will be
marginal depending on the density of the communities and of the network.
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Community Event @ end of time T2
3 Continues shrinking in 3
10 Continues shrinking in 10
2 Continues shrinking in 2
6 Continues growing in 6
9 Continues growing in 9
8 Split into [12, 11]
8 Merged Into 11
1 Continues shrinking in 1
4 Continues growing in 4
5 Continues in 5
7 Merged Into 11

Community Event @ beginning of time T3
12 from Split 8
2 Continued shrinking from 2
3 Continued shrinking from 2
10 Continued shrinking from 10
9 Continued growing from 9
6 Continued growing from 8
1 Continued shrinking from 1
4 Continued growing from 4
5 Continued from 5
11 from Split 8
11 Merged from [8, 7]

Table 3.4. Community events on time step transition
Note community 8 as it splits into 12 and merges into 11 continuing in both communities

Joint degree distribution specifications and node affinity over time is influenced by user
parameters, but is also restricted by network wiring requirements and structural cutoffs (Doro-
govtsev & Mendes, 2002). This is the reason why it is not possible to directly specify node joint
degrees or temporal correlation.

The ratio of intra to total node degree has a direct impact on the clustering modularity at
any given time. The only node information kept by Syntgen is the intra-community and inter-
community node degree that the user provides, and its linked nodes and community member-
ship, generated by Syntgen. If specifications are not conducive to a clustered network, commu-
nity membership will not be recovered from the network structure.

In fact, modularity is affected not only by the above ratio, but also by assortativity specifica-
tions. In a highly correlated network it is possible that the clustering generated by Syntgen does
not exhibit maximum modularity, which can be verified experimentally. The intuition is that, as
nodes exhibit connection preferences, communities within communities may appear, resulting
in improved modularity with a larger number of communities.

The main aim of Syntgen is to provide researchers in network science a tool flexible enough
to generate temporal networks that approximates the topology observed in empirical networks.
Syntgen can help where real data is not easily accessible, but whose structure and topology
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is known. In the process of building Syntgen, we developed a method to determine if intra
and inter node degree and community size sequences are graphic, and a heuristic to find the
node flow that results in the closest clusterings at successive time steps, given a network and a
community size sequence.

We plan to use the developed search heuristic to determine change points in temporal net-
works with community structure. The intuition is that change points are correlated with a peak
in community activity which would be detected as an increase in the dissimilarity gap between
successive snapshots of the network. The gap to the (near) optimal flow would be a proxy of
intensive change.

Other extensions to our work include the usage of Syntgen to evaluate community detection
algorithms on temporal networks and analysing syntgen capabilities to reproduce empirical
systems.
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Chapter 4

Community identity in a temporal
network: A taxonomy proposal

The following section was previously published in (Pereira, Lopes, & Louçã, 2021). There we
proposed a classification of lifetime events communities can undergo. In networks that evolve
over time, communities can shed and acquire new nodes. This generates new constructs and
raises the question of community identity, and of the characterization of the events that define
their lifecycle. Although researchers have devoted efforts to address some of these questions, we
believe that a formalized classification and a principled method to identify community events is
still lacking. In that article we proposed such a classification in the form of a robust taxonomy,
supported by a similarity metric, based on the Jaccard index but adjusted to chance, and a set of
rules that unequivocally can track a community journey from ”cradle to grave”.

Synthetic networks generated by Syntgen as well as empiric networks were used to test
and validate the classification and associated methods. Syntgen code functionality was further
expanded with a back-end that analyzed and returned the communities evolution resulting from
networks generated by the user seed specifications.

Finally, the community identity method was applied to a match of the game of soccer, where
communities were defined as sets of interacting players. Their evolution was tracked and a
statistical analysis of their lifecycle events was carried out. This initiated the transition from the
more theoretically grounded topics of this thesis to real life applications over complex systems.

4.1 Introduction

Identity preservation is a general problem of any complex, time evolving system. The Ship of
Theseus paradox is one of its most famous illustrations, arching back to the Greek mythology.
Theseus, an Athenian hero, returns to Athens in glory after defeating the Minotaur on the island
of Crete. In his honor, the ship in which he sailed is kept in a museum, where, due to the ravages
of time, its original parts are substituted as they rot. Eventually all end up being replaced. Can

43



we still consider that this is the same ship Theseus sailed on? If not, when did it stop being so?
This thought experiment has been discussed by many philosophers, spanning millennia, from
Heraclitus to John Locke (Gordon-Roth, 2019).

If we consider what constitutes a network community and how it evolves in a temporal
network, we are faced with a similar problem. Can a community that shares no nodes with one
previously observed, be the same community? If not, and assuming granular step changes, it
must have lost its identity at some stage. A fundamental issue thus becomes what criteria to use
to make that determination.

To clarify, here we are not talking about absolute identity, or what Leibniz called ”The
Identity of Indiscernibles” (Loemker, 1969). That is, x and y are identical, if and only if for
every attribute A, its existence in x implies its existence in y, or formally ∀A(A ∈ x ↔ A ∈
y)→ x = y. Under this definition, those ships are absolutely discernible. We are really talking
about relative identity, the same that allows us to identify an adult as a child of yore, or a soccer
club as the same club with a totally different roster of players and technical staff years later. This
may appear as a simple semantic question, but it is in fact an important distinction, especially
when it comes to two aspects of communities in temporal networks: their detection and their
identification. In this thesis we are especially concerned with the latter, and how it relates to a
lifecycle of events that group together a set of detected communities under the same (relative)
identity.

In static networks the identity of a community can be described as a surjection from the
node set to the community set, an onto mapping establishing the node community member-
ship. As we extend our study of networks exhibiting community structure into the temporal
domain, communities are no longer static. A community that is observed at a given moment
may be different later on. Representing the ground truth of such a network as a timed-sequence
of surjections may faithfully represent the community structure overtime, but does not lead
unequivocally to the understanding of its lifecycle. For that we need an accepted taxonomy
of lifecycle events, and methods to correlate the changes in the community structure to those
events. In general, classifying events is not a solved problem and formalization is lacking. Fur-
thermore, recovering lifecycle events may not be totally possible without information not inher-
ently present in the network topology, which precludes a non-parametric solution to a problem
where network topology is the only available data. In this chapter, we present a formalized
taxonomy and propose a method to track community evolution assisted by meta information.

Communities are a challenging network construct. Although they are commonly defined
as a set of nodes that are more densely connected among themselves than to the rest of the
network, the fact is that, given a network, determining if and how many communities exist in
that network may not have a single, clear answer (Fortunato, 2010). Temporal networks usher
in an additional layer of complexity, which, nevertheless, has not deterred many authors from
trying.

Let us note that, here, we are not directly concerned about what constitutes a community,
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but how it evolves in time. In this context, a clustered network is just a set of sets.

Expanding the ground truth of community structure to include events of a temporal nature
is not a new topic. Barabási in his book Network Science (Barabási, 2015) summarizes cur-
rent consensus on what these events should be. It documents six elementary events: Growth,
Contraction, Merging, Splitting, Birth and Death.

We believe however that this consensus is problematic. For instance when defining a com-
munity split, where do you draw the line between a split and a contraction? Is losing one node,
a split? If not, how many? And how would one classify an event of a community that fully
fragments, shedding nodes to multiple communities, which in turn receive nodes from several
other communities? In our work we came to believe that topology alone cannot answer these
questions. Depending on subject domain, a community may cease to exist as a separate entity
when none of its nodes are seen after a given time T or when a given fraction of its members
disappear. Here, the network topology does not shed any light. Examples from the real world
abound, consider the minimum quorum for a shareholder assembly or the level of infestation
by an indicator species in biology. In both of these cases, external information is required to
validate the existence of a functioning community.

We also find that it is easier to reason about community events anchored on the community
and not on the event. So, for example, an event where many nodes change community mem-
bership, may result in a community fragmenting while other communities in the same network
may grow by acquiring some of its fragments.

In support of this approach we define three simple top level community events: Birth, Con-
tinuation and Death. That is, once born, a community either continues or dies. Continuation
will have different meanings depending on context. In an abstract way, however, we define it as
similarity beyond a cutoff point allowing recognition of a former community in a present one.
We propose a similarity metric based on the Jaccard index (Jaccard, 1912) to compare commu-
nities, with a parametric cutoff point dependent on subject domain. If the metric, as a distance
function, between any two communities taken from community sets at t and t + ε clears the
threshold, then the oldest continues in the most recent. Note that a community may continue in
multiple communities depending on their similarity. That multiplicity together with time orien-
tation further classifies the continuation event. For example: given two communities at time t,
cti and ctj , and two communities at time t + ε, ct+εk and ct+εl , cti can continue in ct+εk and ct+εl (a
split), while ct+εl is a continuation of cti and ctj (a merge). This simplifies the model, catering
for the complexity of the multiple types of events that can occur in the clustering of a temporal
network, defining events from a community point of view, allowing for domain specific external
input that further characterizes the community lifecycle.

In the reminder of this chapter we refer and review related work that predates our current
proposal in section 4.2. In section 4.3 we describe how we compare communities to determine
lifecycle events and their taxonomy tree. In section 4.4 we introduce the adjusted Jaccard index,
the metric we used to compute the distance between pairs of communities, and the null model
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that supports it. In section 4.5 we present the full classification methodology and procedure,
followed in section 4.6 by examples using a toy model and an empiric network. We conclude
in section 4.7 with future directions and follow-on work.

Throughout the text we use a consistent notation, using C to identify a community as a
set of nodes, and S to identify a multiset of community cardinalities. Both can optionally be
superscripted to specify a given network observation. If denoted in lowercase, they refer to a
single community that can additionally be subscripted for identification. The usage of upper and
lower case is consistently used to differentiate a collection from its elements. Other notation
will be introduced as required.

4.2 Related Work

In spite of their obvious applicability in representing time evolving complex systems, temporal
networks studies are still under represented in the overall complex network scientific produc-
tion. The subtopic of communities in networks is no exception, even though in the last decade
or so, a number of proposals have been put forward to define and detect what a community is,
in the context of an evolving network.

A simple example of community detection in a temporal network can be found in (Jdidia,
Robardet, & Fleury, 2009), where authors add inter-time edges to the network, connecting
the same and related nodes at successive moments, followed by traditional static community
detection on the resulting aggregated network. This results in a partition of the network that may
identify enduring communities, but is of limited use when examining a particular observation
of the network or to understand how a community evolves.

Static community detection is usually performed by optimizing a quality or fitness score,
such as modularity, conductance, size of compressed information flows, among many others.
Unless the community is frozen in time, changes will affect that score. Many authors extend the
fitness score to smooth community evolution(Aynaud & Guillaume, 2011), usually by establish-
ing additional objectives, such as minimizing the clustering changes across time thru measures
such as the normalized mutual information (Danon, Dı́az-Guilera, Duch, & Arenas, 2005), or
by including past, and sometimes future, network observations in the fitness scoring function.
This smoothing has the additional advantage of mitigating algorithmic artifacts, as most fitness
functions are frequently computationally complex to optimize, usually through heuristics that
are sensitive to initial conditions and computing effort.

In a temporal network, approaches to community detection usually follow one of two op-
tions: they either consider each network observation independently or directly combine multiple
observations. The way this is performed varies and authors in (Aynaud, Fleury, Guillaume, &
Wang, 2013) distinguish between:

• two-stage approaches, where detection is performed per observation complemented by
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partition matching with previously identified communities;

• evolutionary clustering, where detection over the current observation is a function of the
observed topology and of prior community structure, usually optimizing a modified qual-
ity function that dampens the influence of previous observations as they fade in time;

• and methods that couple all observations into a single network, usually by linking nodes
across observations, and perform community detection on the consolidated network.

In their survey (Rossetti & Cazabet, 2018) authors expand on this classification, creating a
hierarchy of approaches, that at the first level is similar to the one in (Aynaud et al., 2013),
defining, respectively ”Instant Optimal”, ”Temporal trade-off” and ”Cross time” approaches
but providing additional granularity by detailing subcategories for each class. A full survey
is beyond the scope or intent of this thesis. The reader is referred to (Aynaud, Guillaume,
Wang, & Fleury, n.d.; Dakiche, Benbouzid-Si Tayeb, Slimani, & Benatchba, 2019; Enugala,
Rajamani, Ali, & Kurapati, 2015; Hartmann, Kappes, & Wagner, 2016; Rossetti & Cazabet,
2018; Spiliopoulou, 2011; Xie, Kelley, & Szymanski, 2013) for more information.

Although most of these efforts concentrate on identifying temporal communities in an ab-
solute sense, in this chapter we are especially concerned with relative identity and on how
communities evolve from birth to death. From this standpoint, and in the strict context of our
taxonomy proposal, the way a community is identified is immaterial. Our proposed approach
works regardless. This does not imply that network evolution cannot contribute to community
detection, as many authors have proposed, resulting in methods and algorithms that simulta-
neously try to detect communities and classify the events they endure. We have not found,
however, any article that exclusively focus on lifecycle analysis.

To our knowledge, community events were first proposed in (Palla et al., 2007) and, since
then, there seems to be an emergent consensus around events like birth, merge, split, growth,
expansion, contraction and death. Some authors propose additional events like continuation (i.e.
no growth or expansion) and resurgence for communities that appear periodically (Rossetti &
Cazabet, 2018). A summary of these events with informal definitions can be found in (Cazabet
& Rossetti, 2019) as well as a formalism for lifecycle representation based on a directed graph
where nodes are timed community observations and edges are continuation events bridging time
gaps.

When matching communities for event determination many authors use, as we do, a set
based distance measure. The Jaccard index (Jaccard, 1912):

J(c ti , c
t+ε
j ) =

|c ti ∩ c t+εj |
|c ti ∪ c t+εj |

(4.1)

is used by authors in (Greene, 2010; Mall, Langone, & Suykens, 2015; Nguyen, Kirley, &
Garcı́a-Flores, 2012; Palla et al., 2007), even though it may be named differently in some cases.
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In (Takaffoli, Sangi, Fagnan, & Zaiane, 2010) authors use different measures depending on
event, such as the ratio of the size of the intersection to the size of the largest community, ba-
sically a measure of dilution, to determine whether a community is born or vanished, or the
relative size of the proper subset of a community in a subsequent timestep to determine con-
tinuation. In (Takaffoli, Sangi, Fagnan, & Zaı̈ane, 2011) the same authors distinguish between
communities and metacommunities, the latter being a construct to track community evolution.
In (Asur, Parthasarathy, & Ucar, 2009), continuation is predicated on set equality of commu-
nity membership at succeeding time steps, while merge and split depend on dilution of nodes
gated by individual community contribution for the event. The appearance of new communities
(which the authors name ”Form”) and disappearance (”Dissolve”) are conditioned on, respec-
tively, no prior or post observation of any of the nodes on the formed or dissolved community.
In (Hopcroft, Khan, Kulis, & Selman, 2004) authors use a measure that favors communities
similarly sized with a high ratio of common nodes:

similarity(c ti , c
t+ε
j ) = min

(
|c ti ∩ c t+εj |
|c ti |

,
|c ti ∩ c t+εj |
|c t+εj |

)
(4.2)

A different approach is taken in (Bródka, Saganowski, & Kazienko, 2013) where a method
(GED) is proposed where the measure used is the forward dilution of a community ( |c

t∩ct+ε|
|ct| )

modulated by the relative ”social position” of surviving member nodes, basically non topo-
logical information assigned to specific nodes, changing their relative weight in community
formation. An approach based on forward and reverse dilutions, but without any additional
adjustments, can be found in (Sun, Tang, Pan, & Li, 2015), where the results of applying
the dilution formulas to all community pairs at succeeding network observations are used to
build correlation matrices, that are then subject to a parametric process to determine lifecycle
events. In (Langone, Mall, & Suykens, 2015), authors classify lifecycle events using a directed
weighted network where nodes are observed communities and edges connect related commu-
nities, weighted by the fraction of surviving nodes as communities evolve. With the exception
of (Mall et al., 2015) (which we analyse further in section 4.6.2), all of the prior approaches,
including our own, identify lifecycle events depending on user specified parameters. In fact, we
believe that the definition of a community event, with exception of clear cut cases, such as, for
example, when a totally new and cohesive set of nodes appear on the network as a birth event,
requires meta information not inherent in the network topology.

Our approach is not dissimilar to the one adopted in (Greene, 2010), but with a distance
measure adjusted for chance. We also simplify the concept of community evolution, by anchor-
ing it on the community itself at a given point in time and not on the network. Like most other
approaches, ours is parametric, requiring meta information about community relative identity.
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4.3 Recovering Community Events

Clearly defining community events is useful for many reasons, such as the development and
testing of dependable temporal community detection and evolution algorithms.

Our lifecycle identification framework addresses the problems associated with the classifi-
cation of complex events when nodes exit and enter various communities as well as comprehen-
sively covering other events relevant in the various problem domains where temporal networks
play a role.

On this basis, we created a hierarchical, multi-level classification scheme, based on the
following rules:

• Once born into existence, a community either continues or dies.

• A community continues in another community if their measured similarity clears an ex-
ternally supplied cutoff. A consequence of this rule is that remains of a community that
do not reach the threshold for continuation, contribute to newly born communities or the
expansion of others or both.

• Single continuation events, that is, continuation events that involve only a pair of com-
munities, can be further subdivided into:

– Growth and contraction events with net acquisition or loss of nodes.

– Replace events when the communities keep the same cardinality, but with some of
their nodes replaced.

– Preserve events if no changes in node membership occur.

• Multiple continuation events, that is, continuation events that involve more than a pair of
communities, can be further subdivided into:

– A split, if a multiple continuation event is observed from the past.

– A merge, if a multiple continuation event is observed from the future.

• A community can die either if its nodes are no longer seen on the network (vanishes), or
it does not continue in any other community (absorved). A community can experience
loss of nodes and absorption simultaneously and the proper classification would, in our
proposal, follow the largest of the remaining and dead node set sizes.

• A community can be born from new nodes (beginning) or from fragments of other com-
munities (regenerated). Both can happen simultaneously and classification follows the
largest node set.
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Figure 4.1. Events in the lifecycle of a community in a temporal network. Classification dependent
on multiplicity of continuation events and relative set sizes

• A community can also resurge on the network, for example on cyclic events. This is
detected as a single continuation bridging a lapse of time longer than the network tempo-
ral resolution and can potentially occur on ”Begin”, ”Regenerate”, ”Grow”, ”Contract”,
”Replace”, ”Split” and ”Merge” events.

A full taxonomic tree is depicted in figure 4.1. The method for community continuation analysis
as presented in the next section abides by the above categorization.

To compare community similarity many authors use the Jaccard index (J) (Jaccard, 1912),
as previously mentioned. Authors in (Palla et al., 2007), call it the auto-correlation function and
extend it to any time delta. J varies from 0, when no nodes are common between communities,
to 1 when all nodes are shared. Intuitively, it expresses similarity between sets. However, in a
potentially constrained domain, such as in a temporal network where nodes persist across time,
its interpretation should be subject to probabilistic scrutiny. For this reason, we propose the
usage of an adjusted Jaccard index (Ĵ) to compare communities, as described in the following
section.
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4.4 Adjusted Jaccard index and null model

Figure 4.2. Performance of the Adjusted Jaccard index (Ĵ) for the null model. Cumulative distribu-
tion function of Ĵ and J . Average Ĵ compared to averaged J for pairs of communities with a positive
index for varying numbers of communities and nodes. Each line represents the average of 100 runs. As
the number of communities increase, Ĵ → J .

A random network should not exhibit community structure1. Similarly, a random redistri-
bution of community membership across the node set over t → t + ε, should result in a null
similarity index between any pair of communities ∈ Ct × Ct+ε. However, this redistribution
will result in an average positive J of all community pairs in anything but the asymptotic limit
of network size. To correct for this, we introduce an adjusted Jaccard index (Ĵ). To compute Ĵ ,
we make use of auxiliary ”null version” variables which we denote with a˘accent.

Given two multisets S t, S t+ε, with
∑
S t =

∑
S t+ε, a random assignment of nodes V 7→

C̆t+ε, subject to2:

P(v ∈ c̆t+εi ) =
st+εi∑
St+ε

(4.3)

results in an expected number of shared nodes between pairs ∈ Ct × C̆t+ε:

E(|cti ∩ c̆t+εj |) = s ti ×
s t+εj∑
S t+ε

(4.4)

1This fact is the basis of one of the most popular methods of community detection (Girvan & Newman, 2002)
2Nodes trivially appear and vanish in many temporal networks, resulting in a variable number of nodes as time

evolves. When that happens in two consecutive observations at t, t+ ε, we add an additional fictitious community
of new born nodes at time t and another community of dead nodes at time t + ε thus avoiding handling network
samples of different cardinality.
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for any community ct, and the corresponding community c̆t+ε built from the probabilistic distri-
bution of nodes onto C̆t+ε resulting from equation 4.3. Let’s notate this f∅(ct, c̆t+ε), as we will
use it to develop the adjusted Jaccard index.

Consider two communities c ti , c
t+ε
j . We propose a null model to adjust their J in such a way

that,

1. |cti ∩ ct+εj | ≤ f∅(c
t
i, c̆

t+ε
j )⇔ Ĵ = 0

2. c ti ⊆ c t+εj ∨ c t+εi ⊆ c tj ⇔ Ĵ = J

The first adjustment captures the intuition that a random distribution of nodes should not lead
to affinity between communities. The second adjustment captures the intuition that the index
should not be adjusted if the community is preserved, or if its nodes are kept together or isolated
from the rest of the network. A consequence of these adjustments is that Ĵ ∈ [0, J ].

To implement the first adjustment we compute the Jaccard index between communities
c ti , c̆

t+ε
j , under the conditions of equation 4.4, basically the ratios of the intersection with the

union of communities cti and c̆t+εj . We denote this index as J̆ :

J̆(c ti , c̆
t+ε
j ) =

s t+εj × s ti∑
S t+ε × (s t+εj + s ti )− s t+εj × s ti

(4.5)

Formula 4.6 allows us to correct the index to zero on random chance, while preserving a perfect
score of ”1” when c ti = c t+εj :

max

(
J(c ti , c

t+ε
j )− J̆(c ti , c̆

t+ε
j )

1− J̆(c ti , c̆
t+ε
j )

, 0

)
(4.6)

However, this will adjust down the index when c ti is a proper subset of c t+εj or vice-versa,
contrary to our null model design. To enforce our model, we compute the Hadamard product
(J̆ �R) where R is the ”proper subset coefficient” matrix, with elements defined as:

rij = 1−
|c ti ∩ c t+εj | − f∅(cti, c̆t+εj )

min(s ti , s
t+ε
j )− f∅(cti, c̆t+εj )

(4.7)

rij = 0 if a proper subset condition exists, increasing ∝ (min(s ti , s
t+ε
j )− |c ti ∩ c t+εj |).

The proposed adjusted index now becomes:

Ĵ(c ti , c
t+ε
j ) =

J(c ti , c
t+ε
j )− J̆(c ti , c̆

t+ε
j )×R(c ti , c

t+ε
j )

1− J̆(c ti , c̆
t+ε
j )×R(c ti , c

t+ε
j )

(4.8)

We studied empirically the behaviour of our adjusted Jaccard index. From our previous
discussion, a random distribution of nodes by communities, should, in principle, result in a null
similarity score between any pairs of communities from two succeeding network observations.
If we were to plot the cumulative distribution function (cdf ) of the average similarity index for
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samples of such a network, ideally, it should result in cdf(index ) = 1|index ∈ [0,∞], with all
observations at 0.

We tested the Jaccard index and our adjusted index on sets of random temporal network
configurations, varying the number of communities and the number of nodes. The community
cardialities were sampled from a powerlaw function with exponent γ = 2.5 for each obser-
vation, as this cardinality distribution is frequently observed in empiric networks, even though
similar results were obtained when sampling from uniform distributions. 100 observations were
made on each network. For each pair of observations the average of all positive indexes was
computed. The resulting cdf of J and Ĵ can be seen in figure 4.2. Ĵ performs much closer to
the ideal result than J when the number of communities is low. As the number of communities
and nodes grow, the differences vanish and at ≈ 100 communities and ≈ 10000 nodes, there is
practically no difference between the indexes and the null model ceases to be relevant, as both
are close to the expected cdf for random transitions.

The larger divergence from the ideal behaviour on small networks is the result of two factors.
With less nodes and less communities, the probability of spurious similarities increases as nodes
have less degrees of freedom. That is taken care by the null model. However, discretization also
plays a role as a perfect uniform distribution is not possible when moving from a continuous to
a discrete domain. After all, nodes cannot be sub-divided. This explains the deviation in the cdf

of Ĵ from the expected cfd on low community and node counts.

We also tested the indexes against highly stable networks, that is, networks where com-
munities exhibit low membership turnover (see figure 4.3a). These networks were generated
using a tool (Pereira et al., 2020) that, given a network observation and a multiset of community
cardinalities, flows the nodes across communities minimizing changes. Just as in the previous
example, community cardinalities were sampled from a power law function with γ = 2.5. To
show how close the observations were, we computed the average Normalized Mutual Infor-
mation (NMI) across network observations. In figure 4.3 we plot the average positive J , Ĵ ,
NMI and the average percentage of community pairs exhibiting a positive index, for 6 sets of
temporal networks with 50 observations and ≈ 1000 nodes, varying from 5 to 30 communities
in steps of 5. In figure 4.3a we also include the ratio of positive indexes for a frozen network
where NMI = 1. For comparison, results from a randomly evolving network can be seen under
the same conditions in figure 4.3b.

For this network size, the adjusted index reduces the number of positive scores, as a con-
sequence of the null model application. This contributes to an increased average of positive
indexes for networks with communities with low membership volatility. For random networks
the model is sufficiently robust to keep a lower averaged Ĵ .
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(a) Networks with low community volatility

(b) Networks with random communities
Figure 4.3. Performance of the Adjusted Jaccard index (Ĵ) for highly stable (a) and for random
networks (b). Averages of 50 observations for 6 sets of networks with varying number of communities
and an average of 1000 nodes. We plot positive Ĵ , J , percentage of positive Ĵ , J and NMI for each
network. As can be seen in this plot, the adjusted index detects less false positives as a result of the null
model adjustment. As expected, it also improves the average index, but only in the case of highly stable
networks

.
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4.5 Event categorization method

The adjusted Jaccard index (Ĵ) is used in the method below to determine community continu-
ation. We note, however, that the method is not dependent on this specific similarity measure.
Others, more appropriate to a given subject domain, can be used, as long as, from the contin-
gency matrix (see step 1 below), they produce a binary decision over community continuation.

The full method has the following steps:

1. A confusion (or contingency) matrix X , with size St×St+ε, is created with entries xij =

cti ∩ ct+εj

2. A Jaccard index matrix (J) is created from X and St, St+ε using equation 4.1.

3. A null Jaccard index matrix (J̆) is created from St, St+ε using equation 4.5 .

4. An adjusted Jaccard index matrix Ĵ is created from J and J̆ using equation 4.8.

5. An external threshold θ is applied as a cutoff binary filter over Ĵ resulting in a Boolean
matrix H representing a k-adic relation between communities. We call this the continua-
tion matrix.

6. The rows and columns of H are summed resulting in split and merge vectors P and M ,
respectively.

7. For every hij = 1 there is a single continuation top level event between communities cti
and ct+εj if mi = pj = 1. This top level single continuation event generates second level:

(a) grow event if sti ¡ st+εj ;

(b) contract event if sti ¿ st+εj ;

(c) preserve event if sti = st+εj ∧ ĵij = 1;

(d) or replace otherwise.

8. For every hij = 1 there is a multiple continuation top level event between communities
cti and ct+εj if (mi ∨ pj) > 1. Top level multiple continuation events generate second
level:

(a) merge events if mi > 1;

(b) split events if pj > 1.

Both are generated if (mi ∧ pj) > 1.

9. For every mi = 0, we have a birth top level event for community ct+εi . Top level birth
events generate second level:
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(a) Community events at θ = 0.6

(b) Community events at θ = 0.42

Figure 4.4. Empiric network community events as determined by J and Ĵ at (a) cutoff point
θ = 0.6 and (b) θ = 0.42. These are two observations with one second delay of all sets of players and
goals on the pitch. The cutoff point can be seen as the trade off between continuations and death and
birth events, and its value is subject domain dependent. The adjusted Jaccard index is more stringent on
selecting continuation events as it adjusts for random chance. Dashed lines and greyed out text represent
events that do not clear θ under Ĵ but do under J . Death and birth events not represented for clarity.

(a) begin events if there are more new nodes than absorbed nodes, or formally if st+εi ≥
2×

∑st+εj

j=1 xij;

(b) or regenerate events otherwise.

10. For every pi = 0, we have a death top level event for community cti. Top level death
events generate second level:

(a) vanish events if there are more dead nodes than absorved nodes, or formally if
sti ≥ 2×

∑sti
j=1 xij;

(b) or absorve events otherwise.

11. The events {”begin”, ”regenerate”, ”grow”, ”contract”, ”replace”, ”split” , ”merge”} can
be further classified with a resurge attribute as soon as a single continuation results when
applying this method to older network observations in a most recent order, i.e. between
pairs (ct−nεi , ct+εj ), where n varies from 2 to l

ε
where l, ε stand respectively for the network

longevity and temporal resolution.
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4.6 Examples

In this section we present two examples of the application of the proposed taxonomy and
method. In subsection 4.6.1, we use a toy model to illustrate the individual steps taken to
determine community lifecycle events, and, in subsection 4.6.2, we show some of the useful
information that can be extracted by the model application to an empirical temporal network
representing a soccer game, where players are nodes, and communities are sets of players in
close interaction.

4.6.1 Toy model

To illustrate the event categorization method consider two community sets Ct, Ct+ε with 5
communities each with 20 nodes (S = {205}), where the flow of nodes across t → t + ε is
given by the following confusion matrix (step 1 of section 4.5):

X =


0 0 10 0 5

2 0 0 2 2

5 0 0 5 5

10 0 10 0 0

0 20 0 0 0


This results in a simple Jaccard matrix (step 2):

J =


0 0 0.33 0 0.14

0.053 0 0 0.053 0.053

0.14 0 0 0.14 0, 14

0.33 0 0.33 0 0

0 1 0 0 0


As all communities have the same size, f∅(cti ∩ c̆t+εj ) = 4, J̆(cti ∩ c̆t+εj ) = 1

9
over a uniform

supported random distribution of nodes across communities at time t+ ε. The adjusted Jaccard
matrix then becomes (step 4):

Ĵ =


0 0 0.30 0 0.070

0 0 0 0 0

0.070 0 0 0.070 0.070

0.30 0 0.30 0 0

0 1 0 0 0


if we take, as an example, a cutoff of θ = 0.2, we get the continuation matrix (H), the split (P )
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and merge (M ) vectors (steps 5, 6):

H =


0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

0 1 0 0 0

P =


1

0

0

2

1


M =

[
1 1 2 0 0

]
Applying steps 7, 8, 9 and 10, we have continuation events between (ct1, c

t+ε
3 ), (ct4, c

t+ε
1 ),

(ct4, c
t+ε
3 ), (ct5, c

t+ε
2 ). Community ct4 suffers a split and ct+ε3 , a merge. Communities ct2, c

t
3 die,

and communities ct+ε4 , ct+ε5 are born. As s t2 = 20 and 2 ×
∑5

j=1 x2j = 12, ct2 death is a vanish
event. As |c t3| = 20 and 2×

∑5
j=1 x3j = 30, community ct3 death is a absortion event. Similarly,

applying step 9 of the above method, we can further classify ct+ε4 birth as a begin event and ct+ε5

birth as regenerate event.

4.6.2 Application to an empiric network

The taxonomy and the event categorization method can recover information from a clustered
temporal network that may not be easily apparent thru other methods. In this section, we ap-
ply it to a network resulting from sampling soccer players position on the pitch and clustering
them into sets or ”communities” by physical proximity. The clustering process is explained in
(J. Ramos, Lopes, Marques, & Araújo, 2017). The match is sampled at 10Hz, generating close
to 60,000 observations during the whole game. Several thousand unique sets of players are usu-
ally detected per match, but their distribution is far from uniform. Some occur quite frequently
while many occur very rarely (J. P. Ramos, Lopes, & Araújo, 2020). Physical proximity be-
tween players in collective ball games is a determining factor of game play and understanding
how their patterns evolve can support game strategy and training (J. Ribeiro et al., 2019). This
is where a community lifecycle analysis can be of value.

For this first example we use one single game transition to illustrate how the selection of the
cutoff and the adjusted Jaccard index influence the categorization of events, followed by show-
ing how a frequently detected set of players (2 fullbacks and a winger) emerges and changes.

In this dataset there is a maximum of 30 nodes (22 players in-game, 6 substitutes and 2
goals), numbered from 1 to 30, and a variable number of sets of nodes (communities) which are
serially numbered as they appear in the match.

The transition from second 447 to 448 of game play is shown in figure 4.4. Seen thru the
”lens” of our method we can see the events the sets of players underwent. At a cutoff θ = 0.6

(figure 4.4a), set 788 is absorved using the adjusted Jaccard index, but continues when using
the non-adjusted index. Although set 342 keeps 3

4
of set 788 players, it still does not meet the
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Figure 4.5. Event frequency distribution for set 63 composed by attacking player 4, and defensive
players 16,and 19 of opposing team. In this figure we can see that the most common formation and
separation events occur when player 19 joins or leaves the set.

59



cutoff for continuation. Conversely, set 791 does continue from 789, even though it keeps a
lower ratio of players 4

6
. This is the result of favoring the concentration of nodes in our adjusted

index.

In figure 4.4b we relax the cutoff point lowering it to a level (θ = 0.42) where clear dif-
ferences to figure 4.4a can be observed between lifecycle events. As expected there are more
continuations. As we frequently stressed, there is nothing inherent in the network that can guide
the selection of θ. It is totally dependent on subject matter expertise, in this case, how much of
a compositional change a set can endure while still expressing functional affinity. Authors in
(Mall et al., 2015) used a dynamic threshold that depends on the actual community structure at
every timestep transition: more specifically that threshold is the minimum of the set of maxi-
mum J per community of all cross-timestep community node flows, or using our continuation
matrix, it is the minimum of the maximum of the vectors P and M (step 6 of section 4.5). This
guarantees an increase of continuation events, but, in our view may distort network dynamics,
for instance at change points where plenty of communities collapse in the network.

In a second example we concentrate on a single player set. A frequently occurring set in
soccer matches is the 3 node set composed of two back defensive players and an attacking
player of the opposite team (J. Ramos et al., 2017). Set 63 (players 4, 16, 19) is such a set in the
match data we are using for this example. In figure 4.5 we show the frequency distribution with
which set 63 appears and disappears, and where from and where to it continues. Each event
is categorized by its type, and set formation. It can be seen that the most common events are
contractions and growth from a set where player 19 is absent. Less frequently, similar events
occur where player 16 is the agent of change. This distribution can inform game analysis,
tactics, training and strategy. Many other type of analysis can be performed using our method,
but here we are just concerned in exemplifying the method and taxonomy usage, as motivation
for its application in this and other domains.

4.7 Conclusion

In this chapter we presented an approach and taxonomy to categorize community events in tem-
poral networks. Temporal networks are pervasive in many domains and community structure
analysis always generates a lot of interest, given its potential applicability. Having a stan-
dardization of concepts, terminology and analytic tools cannot but help advancing this field of
study. As discussed here, the evolution of communities cannot be solely determined by changes
in their topology, but must be contextualized by domain expertise. The demise of a community
can be two very different events depending on the system they are representing. Our taxonomy
proposal is based on an adjusted Jaccard index that better reflects community lifecycle over
time, especially on small networks, such as the one used in our empiric example. However, it is
just one way of scoring community similarity, and can be replaced without compromising the
overall method and taxonomy.
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Our method works for discrete observations of the network as it evolves without the need
to set a fixed frequency. Theoretically, the observation resolution could be increased up to a
point where any new node activity would generate a new observation. In practice, to avoid
computational overhead and information overload, it would be advisable to adapt our method
to emerge only major structural events, avoiding reporting on trivial continuation events. This
is left for future work.

4.8 Supplementary Material

Code, in the Python programming language, that implements the method proposed here-in is
available at https://github.com/ramadap/Community-Lifecycle
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Chapter 5

The Soccer Game, bit by bit: An
information-theoretic analysis

The following section was previously published in (Pereira, Lopes, Louçã, Araújo, & Ramos,
2021). As a last step in the journey presented in this thesis, the contributions described previ-
ously were used to study the soccer game as a complex network system that exhibits dynamic
clustering behavior. We had access to data from a major European national football league, that
comprised players’ coordinates sampled at 10Hz. We measured the rate of positional change
based on clusters that were assembled from the relative spatial distribution of players on the
pitch. The rate itself was quantified applying the method used in Syntgen to compute differ-
ences between network partitions, understood as the set of communities observed on a sample.
We found significant correlations between measurements and key match events that are empir-
ically known to result in players jostling for position, such as when striving to get unmarked or
to mark. These events increase the amount of change between samples, while breaks in game
play have the opposite effect. Having a measurement of dynamic, structural change in soccer is
an original contribution that can complement full match statistical analysis. Another significant
benefit of this approach is its ability to hierarchically decompose measurements at multiple lev-
els, building an overall multi-layer map that provides insights into the game dynamics, from the
individual player, to the clusters of interacting players, up to the teams and their matches. This
comprehensive view of the players’ interacting behavior can be useful for training, tactics and
strategy development.

5.1 Introduction

Complex systems, with time evolving interactions among its elements, abound in the social,
biological and physical domains. In many of these systems, elements are clustered in groups
that also undergo changes with time. A temporal, clustered network can be an appropriate
representation of such a system.
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In this chapter we apply this representation to the sport of soccer. Soccer, as many other
competitive team sports, can be seen as a socio-biological complex system. The domain dy-
namics of agent behavior in these sport modalities are neither fully random nor fully designed
(J. P. Ramos et al., 2020). This contributes decisively to their complexity. Agents cooperate and
compete in clusters towards shared and conflicting goals. These clusters are frequently function-
ally bounded, such as in the group interactions of forward and defense players, or goal keepers
and strikers. It is common knowledge that self-organization in complex systems emerges from
constrained local action, so this representation appears, in principle, justified. A comprehensive
discussion of the application of complex systems theory to football can be found in (Salmon &
McLean, 2020).

The soccer match is represented in this chapter as a succession of network observations
where clusters are subsets of players, including the two football goal frames, resulting in a
network with a maximum of 24 nodes concurrently active, plus substitutes (J. Ramos et al.,
2017).

While studying a soccer match as an evolving clustered network, we start from the proposi-
tion that players’ spatial distribution is the determining variable for clustering. Not in relation
to the pitch boundary, but in relation to their teammates and adversaries. This is reasonable if
we consider that being marked or unmarked, supported or unsupported, has a major impact on
the opportunities for action that a player enjoys. The research question that this study aims to
answer is whether the changes these clusters suffer as the game evolves, promise a more faithful
indication of game dynamics when compared to traditional measurements such as the ratio of
successful passes, speed, distance covered, and others.

Intuitively, we could think that an optimal assignment of players to clusters would require
a physical distance measure, predicating link weights by player relative distance. However,
there are complicating factors to the usage of such a precise measurement, as the importance
of inter-player distance is not independent of game play (J. Ramos, Lopes, & Araújo, 2018). It
varies with pitch location, ball position, game rules, environmentals (such as playing surfaces
or weather), or the relation between time and distance in dynamic game settings. All these con-
tribute to the actual player’s instantaneous grasp of his performance environment and perception
of opportunity for action (Araújo & Davids, 2016).

This was the basis that lead us to cluster players and goals into homogeneous and disjoint
groups connected by a single link (J. Ramos et al., 2017), using the formalism of hypergraphs
(Berge, 1973). A hypergraph is characterized by having multiple nodes connected by a single
link, called a hyperedge, in contrast with a traditional graph where links have a maximum of
two endpoints. A set of nodes that share a link is called a simplex. In our particular context,
simplices are sets or clusters, and the collection of simplices observed in a single sample, a
clustering.

We use the term “clustering” to mean the set of disjoint non-empty subsets of nodes ob-
served in the network at a given point in time. Some authors call it a “partition”. These terms
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represent similar constructs, clustering being semantically associated with an emerging, bottom-
up aggregation of nodes, while partition conveys the idea of a top-down driven process. In soc-
cer there is not a single entity controlling group formation (J. Ribeiro et al., 2019), at least not
directly and in real time, so the former seems more appropriate.

In the restricted context of this chapter, simplices and clusters are synonyms, both referring
to the same construct: a group of players in articulated interaction and proximity. An example
of the clustering process is illustrated in figure 5.7, and the actual method steps in algorithm 3.
Both can be found in the appendix of this chapter.

It could be argued that discretization and assignment of nodes to a pairwise disjoint family
of sets, would lead to a distorted representation of events on the pitch. After all, players move
freely in an Euclidean space and in continuous real time, while in the proposed representation
time is discrete and players move on a lattice, understood not as a grid that spans the pitch but as
the configuration space of all possible set arrangements (Conway & Sloane, 1999; J. Johnson,
2010). Frequent observation, however, mitigates these effects. For example, peripheral players
in a simplex will more easily transfer to a different simplex and, if frequently observed, any
simplex changes will be quickly captured. Due to the high frequency characteristic of the
network (10Hz), errors will smooth out as player simplices form and dissolve, establishing a
bridge between the continuous domain of game play and the time sliced network representation
employed (J. H. Johnson, 2016).

This discretization carries with it a significant advantage. We are no longer in a continuous
domain, and the toolkit of information theory (T. J. Cover & Thomas, 2006) becomes available
to us. In a discrete domain, information can be quantified for complexity, such as in the Kol-
mogorov complexity or the Shannon entropy (Grünwald & Vitányi, 2008; Kolmogorov, 1968;
Shannon, 1948).

Similarly, two pieces of information can be compared for distance. We can determine how
far apart or how close they are by the number of units of information that are needed to find
one given the other. The pieces of information are the individual clustering samples of the
soccer match. We measure their distance using the Variation of Information, an entropic based
metric introduced by Marina Meilǎ in 2003 (Meilǎ, 2003), to compare clusterings. A detailed
description and reasons for selection can be found in section 5.3.1. It’s on this intersection of
network science and information entropy that this chapter is rooted.

In the reminder of this document, we discuss related work in section 5.2. Theoretic under-
pinnings, including major theories, concepts, key variables and the way they inform observa-
tions, correlation of VI and playing dynamics and procedures used are in section 5.3, which is
followed by a section 5.4 describing our findings. We discuss these results in section 5.5 and
we conclude with directions for future research in section 5.6.
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5.2 Related work

Using networks and entropic measures to study the soccer game is not new. In this section
we refer to prior studies that have explored these techniques and explain how they differ from
this chapter’s approach. This is not a comprehensive review or description of networks or
entropy and their use. The reader is referred to (J. Ribeiro, Silva, Duarte, Davids, & Garganta,
2017) for a summary of the implications and merits of applying network science to team sports
performance analysis, and to (M. Ribeiro et al., 2021), where a description of the extensive
variants of entropy, some of which have been used in team sports analysis, can be found.

In comprehensive reviews of the literature, such as those found in (Lord, Pyne, Welvaert,
& Mara, 2020; Sarmento et al., 2018) where authors analyze performance and general research
trends in soccer and other team invasion sports, networks are a popular topic. In (Sarmento et al.,
2018), a review fully dedicated to soccer, 11.7% of articles reviewed use networks and network
metrics as an analysis tool, and in (Lord et al., 2020), a review of the literature on performance
analysis of team invasion sports, 10.8% of the reviewed articles focusing on soccer make use
of network analysis. All of these articles use exclusively networks built out of dyadic interac-
tions between players on ball passing and crossing, sometimes incorporating spatio-temporal
metrics (Clemente, Martins, & Mendes, 2016; Cotta, Mora, Merelo, & Merelo-Molina, 2013;
Gama et al., 2014). Usually a weighted digraph is built per team, sometimes broken down to
individual attacking play (Korte, Lames, Link, & Groll, 2019), and statistics such as clustering
coefficient, network density, centrality or degree distribution are used to explain patterns of play
or performance. Spatial analysis is accomplished dividing the pitch into diverse zones, either
longitudinally or on both axis, and assigning arcs (i.e. directed links) connecting the passes’
origin and target zones. Specific attacking plays, such as those ending up in a scored goal have
also been analyzed using these techniques (Mclean, Salmon, Gorman, Stevens, & Solomon,
2018).

Entropy has been previously used to study soccer dynamics, but much less frequently than
network science. As an example, in the reviews referenced above, there are only two explicit
references to articles dealing with soccer and entropy.

In (Vilar, Araújo, Davids, & Bar-Yam, 2013) authors clustered players by their location in
seven pitch sectors, dynamically bounded by the 20 outfield players. Similarly to our approach,
this clustering is performed every 0.1s. They then computed the difference in the number of
players from each team in each of the sectors and measured the Shannon entropy of its fre-
quency for the whole match, resulting in an uncertainty measurement of local dominance. This
was used to identify correlates of performance and patterns of intra and inter team coordination,
understood as the level of sector numerical dominance that results from player interactions. Al-
though the sectors, and thus the clusters, are dynamically defined, there is a level of inflexibility
by fixing the number of clusters of players per observation. The clustering method also does not
avoid assigning players in closer interaction to separate clusters. In contrast with the entropic
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measure used in this thesis, it prevents fine grained temporal analysis, as it is frequency based.

In (Lopes & Machado, 2019) Shannon entropy (among other information theoretic mea-
sures) is used to study multiple national leagues using rounds as time units, with home and
away goals as variables. The authors found the emergence of similar entropy patterns across
seasons and across leagues.

In (Couceiro, Clemente, Martins, & Tenreiro Machado, 2014) authors quantified space cov-
erage variability of players, by discretizing the pitch area into 1 m2 cells and using the fre-
quency distribution of players over the cell map to compute its Shannon entropy. As expected
they found that midfielders exhibit a higher entropy than other players. According to the au-
thors, this result is more “assertive” than a typical heat map. Approximate entropy, a time series
analysis technique that can reveal the predictability of patterns, was also used in this chapter,
to analyze the distance covered by a defender. It was possible to categorize the respective time
series (at 1s interval) as a chaotic system, somewhere in between periodic and random.

Approximate entropy, was also used to analyze spatial statistics, such as occupied areas,
dispersion or team center of gravity in (Duarte et al., 2013). No clustering of players was
performed and time analysis was limited to 15 min segments. The same technique was also
used in (Sampaio & MaçÃs, 2012), with different spatial and dynamical properties, to study the
effect of tactical training in a group of student footballers playing small sided matches.

In (Martı́nez et al., 2020; Y. Neuman, Israeli, Vilenchik, & Cohen, 2018; J. Ribeiro et al.,
2020) we find examples of studies that use networks in conjunction with entropic measures in
match analysis. In (J. Ribeiro et al., 2020), authors used the same network formalism and repre-
sentation as used herein, and sample entropy to measure the synchronization between players,
their simplices and teams, from a time series of observed cluster phases. They observed dif-
ferent axial synchronization of player-simplex phases, on two small sided games setups with
different conditions of goals’, number, sizes and location (4 mini-goals without goalkeepers
versus 2 larger goals with goalkeepers).

(Martı́nez et al., 2020; Y. Neuman et al., 2018) are both based on pass networks. In (Y. Neu-
man et al., 2018) authors used the Tsallis entropy, a measure that generalizes the traditional
Boltzmann-Gibbs/Shannon entropy to non-extensive systems (that is, systems where sub-states
are not mutually independent), to study its correlation with team performance and season re-
sults. The analysis is performed at match level, and the authors found that, under certain
parametrization, the Tsallis entropy of a team is inversely correlated with team performance.
The opposite result is observed when considering the difference of team entropies per match.
In (Martı́nez et al., 2020) authors performed a spatial entropy analysis of pass origins at match
level, and a temporal analysis of network parameters with high correlation with the number of
passes, such as the longitudinal coordinate of center of mass of the pass network or the network
clustering coefficient, using permutation entropy on a time varying series built with a moving
window of 50 passes.

The network design approach we took for this chapter diverges substantially from a passing
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network. It is self-evident that only a player in possession of the ball can score, which is a strong
argument in favor of using passing networks for performance analysis. However, as pointed out
in (Grund, 2012), relevant interactions in a soccer game are not limited to passes. Intuitively,
the opportunity for a successful pass is perceived by the player carrying the ball, as a function
of multiple variables, in which the dynamic position of some of his teammates and adversaries
play a major role. The same can be said for the opposing team while trying to intercept or
clear a pass. As mentioned in (Hewitt, Greenham, & Norton, 2016) “Players must be able to
pass with precision while others create space around themselves to receive the pass from their
teammate”. It is dynamics like this that we try to capture by using the formalism previously
introduced. In the specific case of passes, the temporal changes in clusterings are precursors
for a passing opportunity or interception. In non formal language, we can say that in a passing
network we can find what happens, while in a polyadic network of player’s interactions, we can
explain why it happens!

There are other differences in the proposed approach that circumvent some of the chal-
lenges of passing networks. Relations in passing networks are inherently dyadic, although, as
mentioned, a player passing decisions are inherently polyadic. Passing networks are usually
a single team view, where the influence of the opposing team is usually absent. Interceptions
and clearances are ignored, although they may have a decisive impact on the game. The use of
signed networks could address some of these difficulties, but introduce theoretical challenges,
as many of the metrics of simple networks do not extend to signed networks, which is proba-
bly the reason that, to our knowledge, they have not been used for this purpose. And, finally,
compared to positioning actions, passes are relatively rare, leading to a low temporal resolu-
tion when gathering statistics. In (Yamamoto & Yokoyama, 2011), authors propose a minimum
window size of 5 min, to collect passing data. The reader is referred to (Buldú et al., 2018) for
a thorough discussion of the challenges of using passing networks.

The representational formalism used in this chapter was introduced in (J. Ramos et al.,
2018, 2017). In those articles, every match observation was partitioned into clusters of players
in proximal spatial interaction, and several variables were extracted from this representation.
Here, we extend this prior work to reveal the changes these clusters experience across time, and
explore their meaning by using an information entropic metric.

In summary, the major original contributions introduced in this chapter and detailed ahead,
are:

• Using dynamic polyadic relations between players, more faithfully representing the player
decision making process

• Measurements of cluster breakup and emergence that encompass home and away teams
and their dynamics

• Structural change measurements that can be decomposed at multiple levels
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• Change measurements without a fixed frame of reference, avoiding some of the pitfalls
of traditional measurements.

5.3 Methods

In this section we cover the theories, concepts, constructs, key variables, and the way they
inform the observations in section 5.3.1, and the procedures used to represent and analyze the
captured data from the sample set of matches in section 5.3.2.

5.3.1 Theoretical Framework and Underpinnings

Every observation of a match is a clustering of nodes, representing players and goals. Formally,
a clustering is:

C = {c1, · · · , ck} : (ci ∩ cj = ∅ ∀ (1 ≤ i, j ≤ k ∧ i 6= j)) ∧ ∪ ki=1 ci = V (5.1)

where c are the disjoint subsets, k the number of subsets, and V the set of all nodes.

There are several methods to measure the inter-distance between clusterings, with varying
properties, such as the Rand Index (Rand, 1971), Adjusted Rand Index (Hubert & Arabie, 1985),
the Normalized Mutual Information (Danon et al., 2005), the Van Dongen-Measure (Dongen,
2000) and others. A thorough discussion of the major methods can be found in (Meilǎ, 2007;
Vinh, Epps, & Bailey, 2010; Wagner & Wagner, 2007). We selected the Variation of Information
(VI ) (Meilǎ, 2007), also known as Shared Information Distance, to measure the information
distance between samples and thus evaluate the change a clustered network experiences as a
function of time. The choice of VI is justified as it is a true metric, respecting the triangle
inequality, meaning that no indirect path is shorter than a direct one. This is important in
analyzing the rate of change at multiple scales, avoiding the unreasonable possibility of having
a greater rate of change for a given time interval, when sampling the network at a lower rate.
VI also increases when fragmentation and merges occur in larger clusters, which intuitively
relates to playing dynamics, given the rise in degrees of freedom experienced in larger groups
of interacting players. Fundamentally, although in this chapter we consider VI as a proxy for
game dynamics, VI itself is not a quantification of informational meaning or semantics, but
simply, a quantification of informational variation, or as Shannon puts it “semantic aspects of
communication are irrelevant to the engineering problem” (Shannon, 1948).

In simple terms, VI , measures the amount of information required to obtain one clustering
(observation) from another. If no changes in the clusters are observed, then there is no variation
of information. As clusterings shift from one another, VI increases. This is easy to visualize
when considering the so-called confusion matrix (Stehman, 1997) between clusterings at suc-
cessive observations. This matrix describes the node spread, where each element represents the
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number of nodes moving from one cluster to another. If clusters are unchanged and keep their
node affiliation, the confusion matrix will be a monomial matrix, VI = 0 and we know exactly
where each node ends up. But as the number of non-zero entries in the confusion matrix in-
creases and their distribution tends to uniform, the uncertainty about each node destination also
increases. Consider as an example a cluster that splits in half versus another that sheds a single
node. There is a higher uncertainty about each node final destination in the former than in the
latter. VI measures this uncertainty. A practical illustration of how to compute VI can be seen
in tables 5.2 and 5.3 in the appendix.

Formally, VI is a function (see equation 3.6) that takes two clusterings as parameters and
returns the information distance between the clusterings. From this equation it is easy to see
that when the clusters in X and Y are the same, the result is zero, as rij = pi = qj . This
result expresses the fact that no information is gained or lost when going from one clustering
to the other. For empty intersections of pairwise clusters, rij = 0, and although log(0) is not
defined, applying l’Hopital rule we get a null contribution from these intersections to the overall
VI . In summary, only pairwise non-disjoint, non-identical clusters contribute to the information
distance. This contribution led us to introduce an additional construct, the simplex transition.
Simplex transitions can be statistically analyzed, and their frequency and contribution to overall
VI , can provide insights into structural change and dynamics of the match.

VI works as a distance metric for clusterings of the same set of nodes. In the model used
to represent the soccer match, the set of nodes remains constant, except on substitutions and
send-offs. However, the number of observations affected by these events are so low, that we
have ignored their contribution in the model.

Using base 2 logarithms, VI is measured in bits (or shannons) and describes the balance of
information needed to determine one clustering from another. VI is algorithmically simple (it
can be computed in O(n + kl))) and, as mentioned before, it is a true metric (Kraskov et al.,
2005a), respecting positivity, symmetry, and the triangle inequality.

Using the previous notation, for every individual player pij ∈ {xi ∩ yj} his contribution to
the overall VI is computed as:

VI pij = −rij
[log2(

rij
pi

) + log2(
rij
qj

)]

|xi ∩ yj|
(5.2)

which takes the contribution of pairwise clusters xi, yj to the overall VI , and divides it in equal
parts among all players ∈ xi ∩ yj . Note that, in the particular case of the network that we
built, all nodes/players are present in all observations and are members of one and only one
cluster in any one observation. Equation 5.2 registers the contributions of players involved in
their clusters when these change. The only exception is the case of a send-off or substitution, in
which case the player no longer contributes to the dynamics of the match.

The VI of two clusterings (X, Y ) of S can only be zero if ∀s ∈ S | s ∈ X ↔ s ∈ Y . If this
condition is not met then min(VI ) ≥ 2

n∗ (Meilǎ, 2007), where n∗ = max(k, l) still using the
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same notation. In the soccer match representation here proposed the number of nodes is fixed
at 24 (barring any red cards), and thus, n∗ = 12 and min(VI ) = 1

12
every time there are any

clustering changes. VI depends on the level of fragmentation on the pitch across observations,
which intuitively reflects the situation of players jostling for position, but cannot exceed log2(n)

(Meilǎ, 2007). These extreme values of VI are, however, just boundaries that limit minima and
maxima given any set of clusterings. In the present case, we have a minimum of 2 nodes per
cluster, which implies a maximum of 12 clusters, resulting in max(VI ) = log2(12) = 3.585,
which is attained when a clustering with a single cluster splits into 12 clusters with two nodes
each, or vice-versa. In practice, the maximum VI registered is substantially lower with typical
observed values of maxVI ≈ 1.2, corresponding to the maximum distance between clusterings
with 0.1s separation.

5.3.2 Procedures

The proposed framework was applied to the analysis of a set of 9 soccer matches from the
2010-11 season of the English Premier League. Based on an information stream collected
from realtime pitch-located raw video feed, each match is modeled as a high-resolution (10Hz)
temporal hypernetwork with simplices as clusters of players and goals parsed by proximity.
Each network is made up of up to 30 nodes (28 players and 2 football goals) of which only a
maximum of 24 are present on the pitch at any given moment (11 players from each team and
2 goals). The inclusion of goals is justified when considering that the purpose of the polyadic
formalism that we use is to capture the multiple factors that may affect a player’s decision
making process, and proximity to goals is certainly an important one. The number of simplices
is variable, dependent only on the observed map of players and goals. The method used for
clustering guarantees that a node and its closest node belong to the same simplex, or, in other
words, it guarantees that no node is closer to a node belonging to a different simplex than to
its closest node in the same simplex. This implies that the smallest simplex has a minimum of
2 nodes, i.e., there are no isolated nodes. Although there maybe occasions where a player is
side-lined, this will be an exception, as the expectation at the top-level of sports performance
is that every single player have an active role in-play, in relation to their teammates and their
opponents. Although the football goals are obviously fixed on the pitch, there is no fixed frame
of reference for the clustering process. The algorithm used for clustering is non parametric and
is explained in (J. Ramos et al., 2017).

On average, considering a match, including extra time, we observed and measured the net-
work ≈ 60,000 times. Each of these 60,000 samples is a clustering of the network.

The output of the method is a time series of VI measurements, that can be hierarchically
decomposed into separate measurements for teams, players, and simplex transitions.

At 10Hz, a significant amount of sparsity, i.e. a large amount of transitions without cluster-
ing changes, is observed. This posits the question of the ideal sampling rate (Moura et al., 2013),
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given the dynamics of a soccer game, the capturing technology and the clustering methodology.
The observed sparsity lead us to adopt a set of measures in the findings section ahead, to enhance
analysis and observability. These included:

• the usage of differentials and measuring change in bps, denoted as V̇I ;

• the use of moving averages for visualization and compatibility with the rate of change
and play of a soccer match. Results shown use 4s sample windows, except when noted;

• and, finally, we made use of cubic Hermite splines (E. Neuman, 1978) to envelope V̇I

maxima. Results use an inter pivot distance that dynamically varies up to a maximum of
80s depending on the position of the observed value in the probability density function of
V̇I (figure 5.1).

Figure 5.1. Probability Density Function (f(V̇I )) and Cumulative Distribution Function (F (V̇I )) for all
nine matches measured on a 4s moving average window. Games color coded. There is a consistency of
patterns that likely mirrors energy expenditure and management throughout the game (Osgnach, Poser,
Bernardini, Rinaldo, & Di Prampero, 2010).

5.4 Findings

In this section we present the key findings resulting from our analysis.

5.4.1 Clusterings reappear much more frequently than expected by chance

Given that the space of all clusterings is substantial, corresponding to a lattice of over 4.4×1017

points (Bell number B24), the amount of unique clusterings we can observe is just a small
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fraction of this space, gated by the total of samples collected (average 58283, σ = 1336).
Assuming a random distribution, the probability of observing the same clustering, that is the
same sets of simplices, is for all purposes nil when considering the space size (1.46 × 10−12).
Obviously the real distribution is not random and is heavily condition by its prior state. But,
when excluding consecutive observations, a significant level of clustering re-appearances still
emerges (average 6.4%, σ = 0.5%), which, intuitively, can be interpreted as the influence of
strategic design over match playing patterns (J. P. Ramos et al., 2020).

5.4.2 Different time series, similar statistics

Having analyzed nine soccer matches of the 2010-11 season of the English premier league at
10Hz, on a 40 sample moving average window (4s), we found that the average V̇I and the
standard deviation for the whole match is consistent across matches, with a total average of
0.597 bps, σ = 0.0369.

Considering that a typical player spends on average over half of his time standing or walking
and only sprints (> 8.3ms−1) 1.4% of the time (Ferro, Villacieros, Florı́a, & Graupera, 2014),
10Hz is a sampling frequency that often generates no clustering changes in consecutive samples.
In fact, in almost 80% of the network observations clusterings do not change. The standard
deviation per match has an average V̇I of 1.30 bps, with a maximum of 1.37 and a minimum of
1.25 bps across all nine matches. A full report for all matches can be found in table 5.4.

The dispersion of V̇I as measured by the coefficient of variation of all match observations
averages 218%, reflection of the high activity level of the soccer game.

We found no correlation between the time ordered sets of VI observations between the
matches we have analysed. When comparing different matches, we found consistent V̇I aver-
ages, with a coefficient of variation of the averages of ≈ 5%.

The probability density function of a match V̇I measurements is highly consistent across
matches as seen in figure 5.1. Matches exhibit similar probabilities of finding given levels of
dynamics and we did not find matches where V̇I is consistently high or consistently low. An
explanation is player’s regulation of exertion during the match to manage fatigue, particularly
at the high intensity professional matches are played (Sarmento et al., 2018). All matches come
from the official English premier league games, usually played at a similar competitive level,
so these results are not surprising, if V̇I does accurately reflecting game dynamics.

5.4.3 Time decreasing trend of VI

In 8 out of the 9 matches we examined, we observed a lower VI when comparing the second
half to the first half. Neuromuscular, biochemical and perceptual changes leading to increased
physical and mental fatigue as a match progresses has been extensively documented (Silva et
al., 2018). More specifically, indicators such as total distance with the ball, high intensity run-
ning with the ball, among other typical indicators of performance have been shown to measure
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lower on the 2nd half of a match (Rampinini, Impellizzeri, Castagna, Coutts, & Wisløff, 2009).
Adjusted tactics, resulting from increased acquaintance with competitor behavior, may be a
further compounding cause.

A reduction in physical match performance (high speed running and sprinting) has also been
reported when comparing the first 15 minutes of the first and second half (Weston et al., 2011).
In line with this report, in our sample we observed a lower VI in all matches, under the same
conditions.

However, it is important to note that in our sample the same team plays in every match. A
larger sample of matches, from a wider population, may offer more consistency to this pattern,
although these results already suggests a strong correlation between the proposed metric and
game intensity, deserving further study. The observed values of VI can be seen in table 5.1.

Table 5.1. Comparison of V̇I between 1st and 2nd half of 9 matches, and between first 15 minutes of
each half. In only one match do we observe values (shaded red) contrary to reported trends of intensity
indicators

Match 1st Half 2nd Half 15 min
1st Half

15 min
2nd Half

1 0.555 0.533 0.566 0.533
2 0.611 0.571 0.601 0.532
3 0.634 0.628 0.703 0.623
4 0.679 0.650 0.703 0.693
5 0.614 0.630 0.630 0.624
6 0.590 0.556 0.698 0.584
7 0.599 0.539 0.617 0.518
8 0.639 0.559 0.639 0.546
9 0.603 0.558 0.550 0.547

5.4.4 Notational event data correlates with VI

To validate the hypothesis that VI is a measure of game dynamics, we searched for correlations
between known moments of intensive player repositioning and surges in the information dis-
tance. Corners, being overwhelmingly defended one-to-one (Pulling, Robins, & Rixon, 2013),
result in quick player displacement and occur frequently in a match (mean 10.3, σ = 2.5, which
matches previously reported numbers (Casal, Maneiro, Ardá, Losada, & Rial, 2015)). This
justifies, in our view, the selection of corners for hypothesis validation.

We collected timed tags for corners from match commentary. These events are time tagged
down to the minute of play. To address the different resolutions scales of commentaries and
clustering samples, we computed, per match, the mean V̇I for every minute of play, and com-
pared its median with the mean for the minutes when corners were taken. Out of 93 corners,
86 had a higher VI than the median. The probability of this occurring on random chance is
1.33× 10−16.

74



Figure 5.2. Distribution of V̇I for a complete match, compared with observations during the minutes
when corners are taken, using a Gaussian kernel density estimate. There is a notable skew towards higher
V̇I observations during corners for all nine matches.

We also inspected the V̇I distribution for the whole match and compared to the same distri-
bution for all corners’ minutes. As can be seen in figure 5.2, all matches show a V̇I distribution
that is skewed higher when comparing with match averages.

These results provide compelling evidence that corners do indeed result in a marked increase
of VI . VI , as used in this study, is clearly a proxy for game dynamics, understood as a rapid
pace of inter-players relative displacement, i.e. without a fixed frame of reference. This is
notably obvious during set pieces. Corners and free kicks invariably generate a spike in VI .
Conversely, other events, like substitutions or send-offs, generate pauses that are captured by
a drop in VI . Examples can be seen in figure 5.3a and 5.3b, where V̇I is plotted for a whole
match, with vertical bars indicating the type and time of events.

5.4.5 Most simplex transitions occur only once

We also introduce the concept of a simplex transition, a tuple of simplices (cti, c
t+δ
j ) such that

(cti∩ct+δj 6= ∅)∧(cti 6= ct+δj ), that, at successive observations, involves always the same players.

Most simplex transitions occur only once during a match. However there are some that
occur with higher frequency (up to 50 times a match). These are usually symmetrical. They
may be candidates for further analysis given their relative importance. In figure 5.6 the top
contributing transitions of one match are represented, indicating their relative V̇I weight, the
nodes involved, and when during the match they occurred.

5.4.6 Player’s VI contribution for simplex transitions is related to his role

To analyse a player contribution to the overall VI , we apply equation 5.2. His individual V̇I ,
can be compared to the average V̇I per player. This may be useful to assess his activity during
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the match (figure 5.4). Beyond the trivial low VI observed for the goalkeepers, we observed
anecdotal differences between forward, midfielders and defenders consistent with literature re-
ports (Di Salvo et al., 2007).

(a) Match 1, 0-0

(b) Match 2, 2-1

Figure 5.3. Plots for two matches where green points are observations of V̇I at each sample transition,
and the colored line the respective peak envelope. V̇I seems to be heavily correlated with match events,
such as corners, where a high level of player repositioning is expected, and player substitutions, usually
associated with a trough in V̇I . It is also visible at minute 92 in 5.3a that the match virtually ”stopped”
during the send-off of two players from opposing teams.
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Figure 5.4. V̇I for a single player, in a single match, with maxima envelope. His total V̇I is compared
against the match average for the whole match on the red bar on right hand side of this plot. In this
case, a center forward player is represented, showing a lower than average V̇I , which may be expected,
because a forward is typically less active than the other players during his team defensive sub-phases of
the match.

Figure 5.5. This chart shows the top ten simplex transitions player 22 of match 1 (figure 5.3a) was
involved in, as well as their formation. His contribution to the match VI resulting from participating in
these simplex transitions, is proportionally encoded in the area of the circle: larger circle signifies higher
contributions. Each formation is coded in color and shade, with green and blue representing, respectively,
home and visitor players, and the number of shades the number of participating players in the simplex.
Each tick signals a transition and the match moment when it occurred, with a full match taking a full
circle. The lower and upper semicircles describe, respectively, the formation of the prior (source) and
immediately subsequent (destination) simplices, where the player was involved. Finally, simplices are
identified by the participating players’ numbers, with home players first, followed by visitors. Player 22
is a visiting forward, and as seen in the picture, is frequently observed alone (the single shade of blue in
the semi circles) in a simplex with opposing back player(s), a typical pattern. Transition from formation
3−22 to 3, 12−22, when home player 12 joins the simplex, has the highest accumulated VI contribution
from player 22. It occurs throughout the match but with an emphasis in the first half of the first 45 min.
Player 22 is supported by a teammate in only two transitions out of the 10 represented.

We visualize the type of transition, color coded to denote the number of home and visiting
players involved. Each simplex transition plot is scaled by overall VI contribution for that set
of transitions, and details when those transitions occurred (see figure 5.6).
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Figure 5.6. This chart uses the same symbolic elements as figure 5.5 but operates at a different level.
Each circle represents the overall contribution to the match VI of a whole transition and not just the
player’s contribution. Here we represent a match top ten transitions. The encoded information in this
and in figure 5.5 can be useful to study and train high frequency transitions that contribute significantly
to playing dynamics.

5.5 Discussion

A player’s performance is dependent on how he perceives and responds to environmental cues
that emerge from game play (Travassos, Gonçalves, Marcelino, Monteiro, & Sampaio, 2014).
These cues, such as relative positioning of teammates, of adversaries and of the goal, condition
the affordances the player has for action, while his own actions change this landscape. This
feedback loop generates a complex system that researchers have striven to describe and under-
stand. By using a temporal network of “relationships” to represent the game, we endeavor to
uncover insights otherwise missed. The correlations we observed with moments of well known
dynamics, endorse our approach. Corners are a prime example, but other events such as free
strikes close to the penalty area or interruptions, correlate as well. Other reported observations,
such as the impact of fatigue, of the halftime interval or of player role in intensity indicators,
were also consistently detected in the 9 matches we analyzed. Although, the study could benefit
from a larger sample, the evidence gathered, as shown, is certainly promising.

The proposed way of measuring the soccer game enables a multi-layer decomposition of its
dynamics from macro level (a full match) to meso (clusters of players, transitions and teams),
to micro (individual players). This enriches the information that can be extracted, helpful to
evaluate the dynamics generated by individual players, but also by sets of interacting players,
which can uncover which players’ structures are more prevalent, how they change and how they
impact the overall match dynamics. It is also possible to inspect which simplex transitions a
player is involved in, and split his contribution among simplex transitions as shown in figure
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5.5. An aggregation of all simplex transition charts provides a full view of a complete match.
As we stated in the introduction, this study is essentially descriptive in nature. This does not

mean that the measurements we presented cannot be used for performance analysis. We should
however be aware of what the authors in (David & Wilson, 2015) stated: “A greater number
of sprints by individuals in a team, amount of ball-related activities, or distance covered had
no association with the probability of winning matches”. It is true that our method avoids “un-
productive” intensity, such as sprints that do not change relative positioning, or, other technical
actions that do not increase the agency possibilities a player enjoys. However, given the impact
of fatigue, instead of using directly VI as introduced, considering its rate to player and team’s
work, could intuitively produce a more faithful predictor of performance.

5.6 Final Remarks and Future Research

The presented results endorse the status of V̇I as a measure for game dynamics. The fact that
it captures with accuracy and precision well known moments of players jostling for position,
supports this interpretation.

With error free and detailed metadata, a more accurate analysis would be possible, especially
with concurrent notation hard to capture automatically. The present work is based on prior data,
captured and clustered independently, that abstract the reality of a soccer match. Based on the
promise shown by the use of information theory and networks as analysis tools, the proposed
methods could be valuable to evaluate different approaches to data capture, such as sampling
rates, as well as different clustering methods and game representations, such as overlapping,
distance weighted networks, non-inertial frames of reference that can accommodate ancillary
factors, centroid based clustering, among many others. Extensions to multi-layer networks,
where ball action can be integrated, could provide an additional level of insights.

All this is left for future research.

Appendix

To illustrate how V̇I is computed, consider the two moments in a fictional match represented
in figure 5.7. The corresponding confusion matrix, which describes the transition of nodes
between simplices when going from moment t to t+0.9s during the match, is given in table 5.2.
Null matrix elements, as well as unchanged simplices (simplices 1, 2 and 9), do not contribute
to informational distance. The contribution of the others is computed according to equation 5.2.
The result is shown in table 5.3, where the contribution from each simplex transition can be
seen.

The end result is VI = 0.785615 or, given that we are measuring a 0.9s interval, V̇I =
0.785615

0.9
= 0.872905 bps.
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Simplex 1 2 10 11 12 13 14 15 9

1 2 0 0 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0 0

3 0 0 3 0 0 0 0 0 0

4 0 0 2 0 0 0 0 0 0

5 0 0 0 0 0 0 0 3 0

6 0 0 0 2 1 0 0 0 0

7 0 0 0 0 1 2 0 0 0

8 0 0 0 0 0 0 3 1 0

9 0 0 0 0 0 0 0 0 2
Table 5.2. Confusion matrix going from t to t+0.9s

Simplex 1 2 10 11 12 13 14 15 9

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0.092121 0 0 0 0 0 0

4 0 0 0.110161 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0.05188 0

6 0 0 0 0.048747 0.107707 0 0 0 0

7 0 0 0 0 0.107707 0.048747 0 0 0

8 0 0 0 0 0 0 0.05188 0.166667 0

9 0 0 0 0 0 0 0 0 0
Table 5.3. Computing VI

Match 1 2 3 4 5 6 7 8 9

Result 0-0 2-1 2-2 1-0 3-0 1-0 0-1 2-1 1-0

Avg 0.544 0.591 0.631 0.665 0.622 0.573 0.568 0.599 0.581
σ 1.255 1.278 1.346 1.369 1.330 1.276 1.273 1.292 1.282V̇I t
a -4.6E-4 -6.0E-4 -2.9E-4 -9.9E-4 1.4E-4 -1.2E-3 -8.7E-4 -1.3E-3 -4.7E-4

V̇I h

Avg 0.277 0.290 0.329 0.330 0.314 0.284 0.301 0.302 0.292
σ 0.702 0.691 0.774 0.756 0.746 0.696 0.739 0.717 0.711
a -6.2E-5 -4.2E-4 2.4E-4 -3.6E-4 -9.4E-5 -6.2E-4 4.4E-4 -6.3E-4 -2.9E-4

Avg 0.267 0.301 0.303 0.335 0.308 0.289 0.267 0.301 0.289
σ 0.677 0.715 0.718 0.769 0.734 0.712 0.673 0.719 0.709V̇I v
a -4.0E-4 -1.8E-4 -5.3E-4 -6.2E-4 2.4E-4 -6.2E-4 -1.3E-3 -6.6E-4 -1.8E-4

Table 5.4. Average (avg), standard deviation (σ), and linear regression slope (a) for V̇I results (Total,
Home and Visitor) for the nine matches used in this chapter
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(a) Clustering at time t

(b) Clustering at time t+0.9s
Figure 5.7. Clustering for two moments of a fictional match separated by 900ms. Cluster 1 (goal and
goalkeeper of the red team) and Cluster 9 (goal and goalkeeper of the yellow team), are not visible. The
clustering process ensures that a node and its closest neighbor are nodes of the same simplex. Home
players are numbered in red circles, visitors in yellow. Blue hexagons identify the simplices. White lines
are only used to identify simplex membership. Formation for (a) is {24, 34, 4} and for (b) is {26, 3, 4, 5},
which correspond to the row and column sums of the matrix in table 5.2.
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Algorithm 3 Clustering players and goals. This pseudo-code describes a non parametric
procedure to generate a clustering C, where P is the totally ordered set of all pairs of nodes,
sorted by distance. It guarantees that no player is closer to another player, than to the nearest
player in its own cluster.

1: C ← ∅
2: while P 6= ∅ do
3: {n1, n2} ← min(P ) . get the pair with the current shortest inter-distance
4: P ← P \ {n1, n2} . Remove it from P
5: Cf ←

⋃
C . Flatten C

6: nn ← |{n1, n2} ∩ Cf | . nn is the number of nodes from the pair in Cf
7: if nn = 0 then . If none found in Cf
8: C ← {{n1, n2}} ∪ C . Create a new cluster
9: else if nn = 1 then . If only one node found in Cf

10: nin, nnew ← n1, n2 . Assume it is n1

11: if n2 ∈ Cf then
12: nin, nnew ← nnew, nin . If not, swap
13: end if
14: c← {x : nin ∈ x : x ∈ C} . Get the cluster (c) containing nin
15: c′ ← c ∪ {nnew} . Add nnew
16: C ← (C \ c) ∪ {c′} . Update cluster in C
17: end if . if both nodes found in Cf , do nothing
18: end while
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Chapter 6

Conclusion and future work

I conclude this thesis by briefly discussing its results and the future work they prompt.

6.1 Limitations and discussion

I am of the opinion that a research work is rarely, if ever, complete, and many threads worth ex-
ploring were certainly eschewed for the sake of expediency and pragmatism during the work for
this thesis. In this section I discuss some of the alternatives we faced when developing the tem-
poral network generator, the classification of community lifecycle events, and the application
of our findings and contributions to the study of soccer.

Most of this section is dedicated to explaining the limitations of our work and the usage of
various information theoretic measures relevant to this discussion. For clarification we include a
visual interpretation of these measures in figure 6.1.1, borrowed and expanded from (T. J. Cover
& Thomas, 2006, p.22), that we will be referring to in the following subsections.

6.1.1 Measuring clustering distances

A unique attribute of Syntgen is its capability to evolve a parametric network minimizing
stochastic change. The user provides parameters for network size, clustering attributes, node
degree distributions and other parameters at every ∆t, and Syntgen generates a conforming
network that is as close as possible to previous network observations, given those parameters.
As discussed in the Syntgen article (Pereira et al., 2020), we use the variation of information1

to measure the distance between network samples, a particular case of measuring the distance
of two partitions of the same set. In a nutshell, as explained in figure 6.1.1, the variation of
information is the difference between the partitions joint entropy and their mutual information.

1Historical note: although the introduction of this measure in the clustering analysis is usually attributed to
Marina Meila’s 2002 paper “Comparing Clusterings” (Meilǎ, 2002), although unattributed, it was well known in
the information theory community as early as 1991 (T. M. Cover & Thomas, 1991, p.45-46).
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Information Theoretic Measures

Figure 6.1. Relations of information theoretic measures on clusterings, including information
entropy H(X), H(Y ), conditional entropy H(X|Y ), H(Y |X), joint entropy H(X,Y ), mutual
information I(X,Y ) and the variation of information VI (X,Y ).

The information entropy H(X), H(Y ) of two clusterings, X and Y , of a set N of
nodes, is represented by the areas of their respective blue circles. This entropy varies from
a minimum of 0 when the clustering contains a single cluster, denoting total certainty
about the location of a node, to a maximum of log |X| when all clusters in the clustering
have the same cardinality, meaning maximum uncertainty of finding the cluster of a given
node. The global maximum is log |N |, obtained when partitioning N into |N | clusters.
The conditional entropy H(X|Y ) of X given Y is represented by the area shaded by the
upward diagonals (“the waning crescent moon” ). It varies from a minimum of zero when
Y is a coarsening of X (“X would be contained in Y ”), meaning that the cluster of a
node in Y is fully determined by its position in X , to a maximum of its own entropy
when H(Y )=0. Similarly limits are found for H(Y |X) (“the waxing crescent moon”) by
swapping Y and X . The joint entropy H(X, Y ) is the area circumscribed by the solid
blue line and varies from a minimum of max (H(X), H(Y )) when one clustering is a
refinement of the other to a maximum of H(X) + H(Y ) when the joint probability of
finding a node in any given pair of clusters in X and Y is constant. Note that although
the entropy of a clustering can go up to log |N |, the global maximum of the joint entropy
is also bounded by this same limit, or in other words it is not possible to have a constant
joint probability if H(X) + H(Y ) > log |N |. The mutual information I(X, Y ) is the
crossed area delimited by the blue dashed line. It varies from 0 when the joint probability
is constant to a maximum of min (H(X), H(Y )) when one clustering is a refinement of
the other. Finally the variation of information is the sum of the areas of the “crescent
moons”, or H(X|Y ) + H(Y |X). It can vary from a minimum of 0 when the clusterings
are the same to a maximum of H(X, Y ) when the joint probability is constant. This has a
global maximum of min (log |N |, log |X|+ log |Y |).
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Currently, Syntgen always strives to minimize the variation of information, and a core contri-
bution is the analysis of the complexity of this minimization and the development of a heuristic
to address it. While the user has indirect means to introduce change points, by dropping or
creating nodes as well as change community and connectivity structure, it could be beneficial to
remove this limitation and extend the algorithm to allow an adjustable similarity when evolving
the network.

Although the general case of comparing partitions of a set was extensively studied in the the
last century (Hubert & Arabie, 1985), the emergence of community studies in networks, and
the need to benchmark community detection algorithms against a known community structure,
i.e. a ground truth, contributed to a renewed interest in this topic from the network science per-
spective, especially during the first decade of the current century. This is however by no means
a settled field, as proposals to address recognized limitations of some of the more popular mea-
sures were published in the last few years (Gates, Wood, Hetrick, & Ahn, 2019; M. E. Newman,
Cantwell, & Young, 2020). There is however an emerging consensus that a perfect measure
does not exist and the specific application domain conditions the choice of the most appropriate
one. In this sense, imposing a single method on the user is a limitation of Syntgen, that could
however, be easily overcome, by replacing the module used to measuring distances. The justi-
fication for using the variation of information was discussed in section 3.3.3, and thus we will
not repeat it here. Suffice to say that the mutual information and its variants (Kvålseth, 1987;
Strehl & Ghosh, 2003; Yao, 2003), or the adjusted mutual information (Vinh et al., 2010), or
any of the methods based on counting pairs of nodes (Fowlkes & Mallows, 1983; Hubert &
Arabie, 1985; Mirkin, 1996; Rand, 1971) could have been maximized, instead of minimizing
the variation of information.

All of the methods cited in the previous paragraph are concerned with comparing cluster-
ings of the same set of nodes, expanding on the mathematical subject of the partition of a set.
Nonetheless, real networks gain and lose nodes as part of their evolution, and this introduction
and elimination of nodes is not directly compatible with any of those methods. The information
theoretic variables described in 6.1.1 would no longer be applicable as we moved away from
partitions of a set to partitions of different sets. This is the domain of network comparison.
Broad network comparison is a whole topic onto itself, ranging from isomorphism detection
to network distance computation, and a significant volume of topical scholarly research (Tan-
tardini, Ieva, Tajoli, & Piccardi, 2019) can be found. The problem itself is ambiguous. After
all, a complex network is a multidimensional object that can be compared along a multitude
of attributes, such as meso scale structures like communities or hubs, or micro level such as
degree distributions or triads or small motifs (Wills & Meyer, 2020). Most available methods
relate to what is usually known as “unknown node-correspondences”, where node identification
is absent (Soundarajan, Eliassi-Rad, & Gallagher, 2014). This is not the case with the applica-
tion areas we envisaged. On a temporal network, nodes have persistence and their id is known.
We should also recognize that clustering comparison methods do not usually directly take into
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consideration the graph edges, although there are exceptions (Poulin & Théberge, 2020). Nev-
ertheless, the emergence of communities is a result of edge topology and thus, indirectly, edges
have an influence in clusterings similarity and distance. In contrast, network similarity methods
for known node-correspondences are usually directly based on the graphs adjacency matrices,
making direct use of the network topology.

The synthetic and empiric networks we studied have a large core of persistent nodes. Intu-
itively, this is the case with temporal networks. For example, in the hypernetworks we used to
represent the soccer game, substitutions and send-offs are the only exception to a fixed set of
nodes. In the community lifecycle classification we proposed, new nodes and vanishing nodes
are supported, but most of the events relate to dynamics within surviving nodes. In Syntgen
we provide a facility to ”kill” a percentage of nodes at any moment, if the user wants to sim-
ulate change points. To address the distance problem and apply the variation of information
without modifications, we build two extra communities on every time-mediated network pair
whose distance we want to compute. In the preceding network sample, a community of “to
be born” nodes is added comprised of the nodes of the succeeding network sample. Similarly,
a community of “dead nodes” is added in the succeeding network sample, with all the nodes
of the preceding community sample that have left the network. This changes the problem of
comparing networks to comparing partitions of a set, and the variation of information metric
can be used unimpeded. The changes in measurements that this approach introduces are intu-
itively justified: The variation of information is a local metric, i.e. changes in one cluster only
affects measurements where that cluster is involved, so the community pair (new born nodes,
dead nodes) do not contribute to the overall measurement as their joint probability is null. In-
tersections of these extra communities with other communities, may increase the variation of
information if their joint probability is not null, but distance increases more when the new born
nodes are found in a larger number of communities or likewise for dead nodes. The changes
to the measurement are canceled when all the new born nodes and the dead nodes are, respec-
tively, found in, or emanate from, single communities. This is the behavior we would expect
when measuring complexity distances, if we consider the death or the birth of a whole commu-
nity a simpler event than the death or birth of the same number of nodes respectively from or
into multiple communities. This was the motivation for the adoption of the method described in
this paragraph to compute the information distance of two clusterings of different sets of nodes.
However, this is still an open area of research, deserving further investigation, especially for
complex systems that may experience extensive sudden changes in its nodes.

6.1.2 Soft clusterings

Another decision taken when developing Syntgen was to simplify some of the attributes that
empiric networks exhibit. While we believe the results are still useful, complex systems where
elements (nodes) are members of multiple communities are common and those cannot be mod-
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eled in the system we developed. Instead of a partition or clustering we usually refer to this
arrangement as a cover or soft clustering. Syntgen supports partitions but not covers, that is,
nodes can change labellings, understood as their community affiliation, but at any point in time
they have a single label. Extending the variation of information to compute differences of soft
clusterings is trivial (Meilǎ, 2002). Consequently, Syntgen can be extended to assign to each
node a discrete probability distribution over the set of labels, potentially mutable at every ∆t,
in effect removing this restriction. Similar work has been done for other measures such as the
Mutual Information (Esquivel & Rosvall, 2012), but additional research may be needed if, on
top of supporting covers, different distance measures are also to be implemented.

6.1.3 Distance normalization

Normalization of the distance measure was also considered throughout our work. Normalized
versions of the mutual information are discussed in (Kraskov, Stögbauer, Andrzejak, & Grass-
berger, 2005b; Vinh et al., 2010), where measures of scale such asH(X, Y ), max (H(X), H(Y )),
min (H(X), H(Y )), H(X)+H(Y )

2
or
√
H(X)×H(Y ) using the notation introduced in 6.1.1, are

used for normalization. The most frequently used measure when comparing clusterings against
a known ground truth for algorithm validation, 2×I(X,Y )

H(X)+H(Y )
, was first proposed in (Kvålseth,

1987) and named in (Fred & Jain, 2003). It can be found in popular network analysis packages,
such as Networkx (Hagberg et al., 2008) or Igraph (Csardi & Nepusz, 2006). This measure is
however less tight than I(X,Y )

min (H(X),H(Y ))
.

The authors in (Kraskov et al., 2005b, p.4) also propose, without naming it, a normalization
to the variation of information, as 1− I(X,Y )

H(X,Y )
. This however presents the problem of normalizing

for the particular instantiation of both clusterings, and not to the space of possible clusterings
given a node set. As stated in 6.1.1, the joint entropy of two clusterings can grow up to log n

which may be higher than H(X, Y ) of two specific clustering instances.

It is also easy to normalize the variation of information, given that any two cluster-
ings C1 and C2 with k1 and k2 clusters can only differ up to min (log k1 + log k2, log n),
and thus a normalized version of the variation of information can be computed as
NVI (C1, C2)=

VI (C1,C2)

min (log k1+log k2,logn)
. If the cardinalities of the clusterings is to be considered a

confounding variable, but an upper bound k∗ <
√
n for the number of clusters exists, 2× log k∗

can be used as a measure of scale. As a last resort, the number of nodes in the network can also
be used, as we know that in all cases VI ≤ log n. This upper limit is however less tight. As
Meila points out (Meilǎ, 2007) this does not mean that VI depends on the number of nodes, it
just means that with more nodes, more clusterings are possible.

Although it would have been easy to normalize the variation of information, we decided
against it, as in many problem domains, such as soccer, the number of nodes is fixed, but the
distribution of the number of clusters can vary from moment to moment, and, with it, their joint
entropy. In this case the absolute value can be more revealing. On the other hand, if used to

87



benchmark community detection algorithms against a single ground truth, a normalized value
would be more adequate, but that was not our main use case. Future developments may change
this requirement, for instance, if Syntgen were to be changed to allow variable similarity when
evolving the network, a normalized measure would be easier to manipulate. Just as in the choice
of the specific distance measure, here also the problem domain must inform our decisions.

6.1.4 Adjusting for chance

Adjusting measurements for chance has been done for several measures of clustering compar-
isons (Romano, Vinh, Bailey, & Verspoor, 2016). The objective is to find a null model, that
within the constrains of the actual clusterings, measures an unbiased random structure. In sim-
pler terms, if we reshuffle a set of nodes over random clusterings we don’t usually get a null
similarity (or a maximum distance if comparing for differences). This vanishes at the asymp-
totic limit in the number of nodes, but can be significant for smaller networks. Usually the
adjustment is in the form of f(x)−E(f(x))

max (f(x))−E(f(x)) . Adjustments to chance were proposed for the
Rand Index (Hubert & Arabie, 1985) and the Mutual Information (Vinh et al., 2010). Authors
on (Vinh et al., 2010) also propose an adjusted index, which they call the adjusted information
distance, using the normalized variation of information introduced in (Kraskov et al., 2005b).
This adjustment inherits the complications referred above, and breaks the triangle inequality
and thus the metric property of the variation of information. For an alternative, more recent
approach, that nevertheless also does not retain the metric property, we refer to (M. E. Newman
et al., 2020), where a discussion of the drawbacks of the normalized mutual information (NMI)
and proposals for an adjusted metric is found.

When comparing community similarity in our proposed taxonomy, we proposed a Jaccard
Index adjusted for chance by using the expected index on a uniform random distribution of
nodes over the observed communities. This is justified by the fact that only individual clusters
are being compared, and the need to avoid the detection of artifacts of random chance as lifecy-
cle events. This is however an optional feature of our method, that the user can elect to discard.
As referred in section 4.4 this adjusted index is compared to an external supplied threshold to
guide event classification. This threshold is fixed, but there may be use cases in which this
may not be desirable. Another limitation is that our event classification is simply applied to
successive network observations, that is, it is memory-less. This may be overly simplistic, as,
depending on the underlying complex system, communities may not be continuously active.
For instance, authors in (Aynaud et al., 2013) propose what they call a dynamic Jaccard Index
for community comparison that is factored by the time distance between community observa-
tions. Adopting this or a similar approach would be trivial, but should be guided by the system
under study. More work would be needed in the context of real life systems to develop a more
flexible approach.
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6.1.5 Complex system representation

Representing a complex system as a network has only been briefly touched upon in this the-
sis. In fact, most of the work here included starts ”downstream”, without questioning how
a temporal network can be built to represent a complex system. Even on the application of
the theoretical contributions to the game of soccer, the starting point is an already formed net-
work (in this case a hypernetwork) where clusters, or simplices in hypernetwork vocabulary, are
formed by player proximity. Other representations are certainly possible, for instance adding
weights to nodes to measure the importance a player has in a simplex. We note that extending
the variation of information to handle node weights is easy to implement.

When validating the variation of information as a proxy of game dynamics, we used empiri-
cal knowledge as the “ground truth” to analyze its correlation to observed measurements. It was
assumed that the clustering process did not introduce any errors, which is obviously quite un-
likely, how marginal they may be. In many systems the ground truth may be hard to define, and
in most social system, it is rarely error-free. This complicates validation. However, if sufficient
evidence of a solid ground truth exists, an approach such as the one proposed in this thesis to
analyze the soccer game or classifying community events, can be used to validate the clustering
process used for representation. The method would involve benchmarking several clustering
processes comparing results from our proposed approaches against the ground truth. As an ex-
ample, in soccer, this could come from expert analysis denoting highly dynamic events, and the
ranking of the clustering processes guided by its correlation to the variation of information the
network exhibits. A similar exercise would be possible with community lifecycle events.

6.2 Future work

The limitations and discussion presented in section 6.1 prompt many topics for future research.
These include extending the temporal network synthetic generator to support community over-
laps, tunable temporal similarity, improving the community lifecycle event determination to
cater for use cases where a fixed threshold of community survival is too rigid and making use
of different distance measurements, including normalization and adjustment to chance.

Normalization was not important for the applications we studied, but it is certainly central to
the study of clusterings distances and similarities, and the current state of the art is still an area
of active research. As an example, as recently as last year, Mark Newman et al (M. E. Newman
et al., 2020) introduced a new measure, they named the ”reduced mutual information” and its
normalized version, in an attempt to circumvent some of the difficulties found in the traditional
mutual information based measures. It is however not a metric, as it does not obey the triangle
inequality rule, nor non-negativity. Although this last property can be useful. Using the Alice
and Bob communication archetype, when the normalized reduced mutual information turns
negative, it is advantageous for Alice to send Bob the full message instead of leveraging what
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Bob already knows about it. This is a threshold that does not exist in the standard measures. In
summary, there still seems to be “white space” to further investigate extensions to measurements
of similarity or distance of the clusterings of a network, as well as the fitness of the growing
number of measures to specific problem domains.

Using a distance measure to evaluate temporal change in clustered networks has shown
promise in the study of soccer and could certainly be extended to other complex systems that
exhibit clustering and where changes are a topic of interest or concern. For instance, a clustered
model of language could be a target for the methods we propose, in order to understand when
major changes occur and track their evolution. If change is gradual, understanding the lifecycle
of clusters, such as in the evolution of science, their branches and disciplines, could be subject of
the methods introduced in 4. This is a well covered topic and the reader is referred to (Fortunato
et al., 2018) for an article penned by some of the household names of network science.

The research into the soccer game, described in chapter 5, has a vast range of follow-on
topics deserving consideration.

“Upstream” from our work, we can identify several questions regarding the network repre-
sentation of the game as a complex system. While the existence of well defined clusters of play-
ers (defenders/midfielders, goal/goalkeeper, strikers/goals, etc) seems consensual, the actual
representation is open to debate. Some properties, like the polyadic nature of player/player/goal
interactions, do not generate much controversy, but the role of players in the clusters, the rigid
assignment of a player/goal to a single cluster at any point in time, structuring the network rep-
resentation as a sequence of timeslices instead of a stream, selecting the optimal sampling rate
of a time discrete representation, clustering criteria and many others, are all open to discussion
and research.

Within the boundaries of our work, several limitations could be addressed. For instance,
we have used the distance measure as a proxy for dynamics, and a simple mechanism to as-
sign agency to the individual players. This mechanism, which uniformly distributes the partial
VI generated by a cluster transition by the participating players, could be improved by using
node weights as discussed in the previous section, as not all players contribute equally to the
functioning of a cluster. The soccer ball is absent from the hypernetwork representation of the
game we used, and, although there are unique difficulties in directly accounting for it (how to
describe a ball in mid-air?), expanding the hypernetwork representation with an additional ball-
passing network layer, could accrue useful information revealing other aspects of game play.
Additional, time accurate, expertly vetted, notational data could be used to reveal correlations,
hitherto hidden, of game patterns with the proposed measures. Extending the analysis to a full
season, instead as of a set of matches as accounted in the work for this thesis, would provide a
seasonal view, revealing time based patterns, for both team and players.

“Downstream” from our work, an enticing prospect, as mentioned in 5.5 is to factor player’s
mechanical work into the proposed dynamics measure. Intuitively the factored measure would
potentially better correlate with a team’s performance.
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Finally, the methods, measures and procedures could be applied to other team invasion
sports as long as there are enough players to generate a sufficiently large space of viable clus-
terings. Rugby Union with 15 players per side and Australian Rules Football with 18, would
be good candidates. If the space of clusterings is small, such as on small sided soccer games,
futsal, beach soccer, or water polo, the granularity of most distance or similarity measures de-
creases, justifying introducing different representations that can more effectively increase the
measure resolution of the game dynamics.

Of the theoretical subjects we covered, one of the most intriguing aspects we came across
— but did not fully research — was the decomposition of the informational distance of two
clusterings into two summand terms that can be derived from the sizes of their clusters. This
sequence of cluster sizes of a clustering is a multiset with an underlying set and associated
element multiplicities. For instance a 10 node clustering with 3 clusters, one with 4 nodes, and
two with 3 nodes, would have its multiset conventionally represented by {4, 32}. For simplicity,
let us refer to these multisets as the function M(x), where the argument x is a clustering.
Note the difference: a clustering specifies the clusters the nodes belong to, i.e. their labels,
while the function M(x) yields the multiset of its cluster sizes. It is easy to verify that for
two clusters X, Y , where X=Y → M(X)=M(Y ), using the standard equality property of
multisets, i.e. elements must coexist in both multisets with the same multiplicity. This is the
case when two clusterings have a null informational distance as measured by the variation of
information. However, M(X) can be equal to M(Y ), even if X 6= Y . In fact VI (X, Y )

can even be maximal (log n) if H(X, Y )=H(X|Y ) + H(Y |X). Using the representation of
figure 6.1.1, H(X) andH(Y ) would be equal sized circles with a null intersection, whileX=Y

would be represented by two fully overlapping circles. From these assertions we can see that
M(X)=M(Y ) → min (VI )=0 and that M(X) 6= M(Y ) → min (VI ) > 0. Under these
conditions, min(VI ) is the first term of the variation of information, which we denote as vic.
The second term, vin, is defined as VI − vic.

Let us illustrate with the minimal example as shown in figure 6.2. Consider four clus-
terings of a network with four nodes numbered from one to four, W={{1, 2}, {3, 4}},
X={{1, 3}, {2, 4}}, Y={{1, 2}, {3}, {4}} and Z={{1, 3}, {2}, {4}}, with corresponding
multisets of cardinalities M(W )=M(X)={22}, that is with 2 clusters each of 2 nodes and
M(Y )=M(Z)={2, 12}, with one cluster of 2 nodes and two clusters of a single node. If we
examine the confusion matrices (also known as contingency tables) of W with W

([
2 0
0 2

])
, and

W with X
([

1 1
1 1

])
, we see in the first case that there is no uncertainty about the location of

nodes in clustering Y , given X , and thus VI=0. In W compared to X there is total uncertainty
about the location of nodes in clustering X , given W , and thus VI is maximal and the mutual
information (MI) is null. In this case, vic=0 and vin=VI .

Let us now compare W with Y and W with Z. Their confusion matrices are, respectively,([
2 0 0
0 1 1

])
, and

([
1 1 0
1 0 1

])
. As M(W ) 6= M(Y )=M(Z), VI cannot be null and vic > 0. In-

specting both clustering pairs it is easy to see that the pair W,Y has less uncertainty than the
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Figure 6.2. Decomposition of the variation of information into vic and vin as a function of cluster size
sequences. 4 transitions between 4 clusterings denoted as W , X , Y and Z. Each circle is a number-
identified node. The color of the circle is the node label, denoting its cluster. Clusterings W and X
have a multiset of cluster sizes of {22}, while clusterings Y and Z, {2, 12}. Uncertainty is lowest (no
uncertainty) going from W to W and VI=vic=vin=0. Uncertainty is highest when going from W to
X , with VI=2, fully accounted by vin=2. Uncertainty going from W to Y (VI=0.5 vic=0.5) is lower
than W to Z, where VI=1.5 accounted by vic=0.5 and vin=1.0. All VI units in bits.

W,Z, as all nodes in the yellow cluster of W end up in the yellow cluster of Y , while all
clusters split when going from W to Z. In fact, for a transition involving clusterings with mul-
tisets of cardinalities {22} and {2, 12}, VI (W,Y ) is the minimum, and so vic=VI (W,Y ). For
the pair W,Z, as M(Y )=M(Z), vic does not change but, having greater information distance,
vin>0=VI (W,Z)− vic.

In summary it would seem that VI is driven by two terms, one, exacted by the structure
of the clusterings, represented by their multiset of cardinalites, and another, resulting from ad-
ditional “node activity” when switching clusters. The intriguing aspect we referred to above
relates to the contextualization of these two terms in real world temporal networks and their
associated complex systems. At first glance, those terms do not appear independent, as clusters
form from edge connectivity, which is no more than node activity when establishing relations
or performing transactions. However, it is not hard to come up with examples of systems where
exogenous factors condition the emergence of edges. Spatial systems is such an example. In
social systems the likelihood of forming relationships is heavily contingent on close proximity.
In designed systems, such as human organizations it is not unusual to encounter subdivisions
that condition emergence. When we analyzed the soccer game, we found that when clusters are
assembled by physical proximity, cluster distribution is far from random. Quite the contrary,
some clusters appear much more frequently than others (J. Ramos et al., 2017). Similar phe-
nomena can be observed if we look at cluster events. In figure 4.5 an example of this distribution
can be seen for a single match, where a long tail of events can be observed, while others occur
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much more frequently. All of this suggests the influence of design on such systems, and our
research question is whether this design is predominant in the partition of the network, while
emergent behavior from autonomous node-to-node interaction, that is, that is not imposed by
the cluster size sequences, adds to the overall dynamics of the network. In the case of soccer,
we would see vic as preconceived planning, while vin player tactical initiative. This question
was not extensively studied, but seems worthy of consideration. The only analysis we did was
to compare the envelope of max vic and max vin to the same envelope when averaging over a 5s
rolling window. Under the latter conditions, average max(vic) has a much higher contribution
to total VI (figure 6.3a), however without a rolling window, the peaks are much closer together
(6.3b). If we attribute vic to strategy and game design and vin to player initiative, we could
hypothesize that these results could be justified by critical decision making of best course of
action and energy management on the part of the players. This however, needs further study

(a) 4s moving average window (b) No moving average
Figure 6.3. On a moving average with sample window of 4s, V̇I c has a ≈ 5 times heavier influence on
total V̇I than V̇I n when sampled at 10Hz (6.3a). However, when looking at individual sample maxima,
that difference almost disappears (6.3b). If we equate V̇I to energy expenditure, we can interpret this to
be due to energy management by players, being judicious about their marking and unmarking efforts.

and is left for future research. Indeed the future research that these results motivate, may not
be restricted to team invasion sports, such as soccer, but other domains where external features
may condition the cluster structure while leaving some initiative to the individual nodes.

This approach is not dependent on the concrete measure used to measure inter cluster dis-
tance or similarity. For instance the Rand index and the mutual information also guarantee
non-nullity when the multisets of cluster cardinalities differ. Adjusted to chance, however, any
of these measurements may need a different approach to compute the minimum measurement
given a pair of clusterings. Let us also recall, as proven in 3.3.3, that the problem of precisely
finding vic is intractable for anything but networks with few clusters, but for which we proposed
an approximate heuristic, easily extendable to other similarity or distance measures. The last
item that makes this research thread particular appealing (some would say, risky) is that we have
not found any references about it in the network science literature.
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Concluding remark

”If you want to have good ideas, you must have many ideas”, Linus Pauling was quoted as
saying (Crick, 1995). From the two major threads of this thesis, the theoretical developments
and their application to an empiric system, many ideas for future work strands can be spawn.
The difficulty is to learn which ones to throw away. Here I made no serious attempt at this task,
some may be fruitful, other dead ends. The ones I included are those that I believe are worth
the effort of finding out.
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pp. 159–200). New York, NY: Birkhäuser. doi: 10.1007/978-1-4614-6729-8 9

Aynaud, T., & Guillaume, J.-L. (2011). Multi-Step Community Detection and Hierar-
chical Time Segmentation in Evolving Networks. In Proc. 5th sna-kdd work. Re-
trieved from http://www.complexnetworks.fr/wp-content/uploads/2011/06/

snakdd author.pdf

Aynaud, T., Guillaume, J.-l., Wang, Q., & Fleury, E. (n.d.). Communities in evolving networks
: definitions , detections and analysis techniques. Comput. Networks.

Baldoni, V., Berline, N., De Loera, J. A., Dutra, B., Koppe, M., Moreinis, S., & Wu, J. (2014). A

User ’s Guide for LattE integrale v1.7.2. Retrieved from https://www.math.ucdavis

.edu/$\sim$latte/

Barabási, A.-L. (2015). Network Science: 9. Communities. Netw. Sci..
Barabasi, A.-L. (2016). Network Science. Cambridge University Press. Retrieved from

http://networksciencebook.com/

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science (80-.

)., 286(5439), 509–512. doi: 10.1126/science.286.5439.509
Barvinok, A., & Pommersheim, J. (1999). An algorithmic theory of lattice points in polyhedra.

New Perspect. Algebr. Comb., 38, 91–147.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for

Exploring and Manipulating Networks. Third Int. AAAI Conf. Weblogs Soc. Media, 361–
362. doi: 10.1136/qshc.2004.010033

Bazzi, M., Jeub, L. G. S., Arenas, A., Howison, S. D., & Porter, M. A. (2020). A framework

95

http://www.complexnetworks.fr/wp-content/uploads/2011/06/snakdd_author.pdf
http://www.complexnetworks.fr/wp-content/uploads/2011/06/snakdd_author.pdf
https://www.math.ucdavis.edu/$\sim $latte/
https://www.math.ucdavis.edu/$\sim $latte/
http://networksciencebook.com/


for the construction of generative models for mesoscale structure in multilayer networks.
Phys. Rev. Res., 2(2), 1–32. doi: 10.1103/physrevresearch.2.023100

Behzad, M., & Chartrand, G. (1967). No Graph is Perfect. Am. Math. Mon., 74(8), 962–963.
Berge, C. (1973). Graphs and hypergraphs. Amsterdam: North-Holland. Retrieved from

https://cds.cern.ch/record/105623

Biagini, F., Brandes, U., Dereich, S., Detering, N., Hunter, D. R., Kauermann, G., . . . Wit, E. C.
(2019). Network science (Vol. 24; F. Biagini, G. Kauermann, & T. Meyer-Brandis, Eds.)
(No. 6). Cham, Switzerland: Springer Nature Switzerland. doi: 10.1109/MNET.2010
.5634435

Bianconi, G. (2018). Multilayer networks: Structure and function. New York, NY: Oxford
University Press. doi: 10.1093/oso/9780198753919.001.0001

Bianconi, G., & Barabási, A. L. (2001). Competition and multiscaling in evolving networks.
EPL, 54(4), 436–442. doi: 10.1515/9781400841356.361

Blondel, V. D., Guillaume, J.-l., & Lefebvre, E. (2008). Fast unfolding of communities in large
networks. J. Stat. Mech. Theory Exp., P10008.
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Jdidia, M. B., Robardet, C., & Fleury, É. (2009). Communities detection and the analysis of

their dynamics in collaborative networks. Int. J. Web Based Communities, 5(2), 195–211.
doi: 10.1504/IJWBC.2009.023965
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Meilǎ, M. (2007). Comparing clusterings-an information based distance. J. Multivar. Anal.,
98(5), 873–895. doi: 10.1016/j.jmva.2006.11.013

Menczer, F., Fortunato, S., & Davis, C. A. (2020). A First Course in Network Science. doi:
10.1017/9781108653947

Mirkin, B. (1996). Mathematical Classification and Clustering. Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Moura, F. A., Martins, L. E. B., Anido, R. O., Ruffino, P. R. C., Barros, R. M., & Cunha, S. A.
(2013). A spectral analysis of team dynamics and tactics in Brazilian football. J. Sports

Sci., 31(14), 1568–1577. doi: 10.1080/02640414.2013.789920
Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., & Mitra, B. (2013). Dynamics On

and Of Complex Networks (Vol. 2). doi: 10.1007/978-0-8176-4751-3
Neuman, E. (1978). Uniform approximation by some Hermite interpolating splines. J. Comput.

Appl. Math., 4(1), 7–9. doi: 10.1016/0771-050X(78)90013-X
Neuman, Y., Israeli, N., Vilenchik, D., & Cohen, Y. (2018). The Adaptive Behavior of a Soccer

Team: An Entropy-Based Analysis. Entropy, 20(10), 1–12. doi: 10.3390/e20100758
Newman, M. (2006). Modularity and community structure in networks. PNAS, 103(23), 8577–

8582. doi: 10.1017/nws.2015.20

102

https://stat.uw.edu/sites/default/files/files/reports/2002/tr418.pdf
https://stat.uw.edu/sites/default/files/files/reports/2002/tr418.pdf


Newman, M. (2018). Networks (2nd ed.). Oxford University Press.
Newman, M. E. (2003). Mixing patterns in networks. Phys. Rev. E - Stat. Physics, Plasmas,

Fluids, Relat. Interdiscip. Top., 67(2), 13. doi: 10.1103/PhysRevE.67.026126
Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Phys.

Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 69(6), 5. doi: 10.1103/
PhysRevE.69.066133

Newman, M. E. (2009). The first-mover advantage in scientific publication. Epl, 86(6). doi:
10.1209/0295-5075/86/68001

Newman, M. E., Cantwell, G. T., & Young, J. G. (2020). Improved mutual information measure
for clustering, classification, and community detection. Phys. Rev. E, 101(4), 1–11. doi:
10.1103/PhysRevE.101.042304

Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks.
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., 69(2 2), 1–15. doi: 10.1103/PhysRevE
.69.026113

Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2000). Random graphs with arbitrary degree
distributions and their applications. arXiv. doi: 10.1103/PhysRevE.64.026118

Nguyen, M. V., Kirley, M., & Garcı́a-Flores, R. (2012). Community evolution in a scientific
collaboration network. 2012 IEEE Congr. Evol. Comput. CEC 2012, 10–15. doi: 10.1109/
CEC.2012.6256434

Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., & Latora, V. (2013). Graph metrics
for temporal networks. Underst. Complex Syst., 15–40. doi: 10.1007/978-3-642-36461
-7-2

Osgnach, C., Poser, S., Bernardini, R., Rinaldo, R., & Di Prampero, P. E. (2010). Energy cost
and metabolic power in elite soccer: A new match analysis approach. Med. Sci. Sports

Exerc., 42(1), 170–178. doi: 10.1249/MSS.0b013e3181ae5cfd
Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1-2), 100–115.
Palla, G., Barabási, A.-L., & Vicsek, T. (2007). Quantifying social group evolution. Nature,

446(7136), 664–667. doi: 10.1038/nature05670
Peel, L., & Clauset, A. (2015). Detecting Change Points in the Large-Scale Structure of Evolv-

ing Networks. In Proc. twenty-ninth aaai conf. artif. intell. (pp. 2914–2920). Association
for the Advancement of Artificial Intelligence.
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