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Bubble universes and traversable wormholes in general relativity can be realized as the two sides
of the same concept. To exemplify it, we find, display, and study in a unified manner a Minkowski-
Minkowski closed universe and a Minkowski-Minkowski traversable wormhole. By joining two 3-
dimensional flat balls along a thin shell two-sphere of matter, i.e., a spherical domain wall, into a
single spacetime one gets a Minkowski-Minkowski static closed universe, i.e., a bubble universe. By
joining two 3-dimensional complements of flat balls along a thin shell two-sphere of matter, i.e.,
a spherical throat, into a single spacetime one gets a Minkowski-Minkowski static open universe
which is a traversable wormhole. Thus, Minkowski-Minkowski bubble universes and wormholes can
be seen as complementary to each other. It is also striking that these two spacetimes, the Minkowski-
Minkowski bubble universe and the Minkowski-Minkowski traversable wormhole, have resemblances
with two well-known static universes of general relativity. The Minkowski-Minkowski static closed
universe, i.e., the Minkowski-Minkowski bubble universe, resembles in many aspects the Einstein
universe, i.e., a static closed spherical universe homogeneously filled with dust matter and with a cos-
mological constant. The Minkowski-Minkowski static open universe, i.e., the Minkowski-Minkowski
traversable wormhole, resembles the Friedmann static universe, i.e., a static open hyperbolic universe
homogeneously filled with negative energy density dust and with a negative cosmological, which is
a universe with two disjoint branes, or branches, and can be considered a failed wormhole. In this
light, the Einstein static closed universe and the Friedmann static open universe should also be seen
as the two sides of the same concept, i.e., they are complementary to each other. The scheme is
completed by performing a linear stability analysis for the Minkowski-Minkowski bubble universe
and the Minkowski-Minkowski traversable wormhole and also by comparing it to the stability of
the Einstein static universe and the Friedmann static universe, respectively. This complementarity
between bubble universes and traversable wormholes, that exists for these instances of static space-
times, can be can carried out for dynamical spacetimes, indicating that such a complementarity is
quite general. The overall study suggests that bubble universes and traversable wormholes can be
seen as coming out of the same concept, and thus, if one type of solution exists the other should
also exist.
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I. INTRODUCTION

A. Minkowski-Minkowski bubble universe and Minkowski-Minkowski traversable wormhole

General relativity is an excellent theory to study universe solutions and wormhole solutions from which bubble
universes and traversable wormholes can arise as complementary to each other. To see this, one can attempt to
find within the theory Minkowski-Minkowski bubble universes and Minkowski-Minkowski traversable wormholes and
study their properties. One picks up a Minkowski spacetime and at constant time cuts a ball in it, to obtain two
spaces, namely, a 3-dimensional ball with a flat inside, and an infinite extended 3-dimensional flat space with a hole,
which is the complement of the ball. Then one picks up another Minkowski spacetime and do the same, to get a
second ball and a second infinite extended flat space with a hole. If one joins the two 3-dimensional balls along a
2-sphere, a shell containing matter, one obtains a single 3-space that including time makes altogether a static closed
universe. If one joins the two complements, i.e., the two infinite extended 3-dimensional flat spaces with a hole in
each, along a 2-sphere, a shell containing matter, one obtains a different single 3-space that including time makes
altogether another universe, which is a traversable wormhole. Thus, one has a closed universe, which can be viewed
as a bubble universe, and its complement, an open universe, which is a traversable wormhole. To implement the idea
of a Minkowski-Minkowski closed universe, i.e., a bubble universe, and a Minkowski-Minkowski open universe, i.e., a
traversable wormhole, one uses the equations of general relativity together with the appropriate thin shell formalism
[1]. When one has a thin shell in an ambient spacetime, the normal vector field to the shell is an important quantity
that provides a way to determine how the thin shell curves in that space, i.e., allows to determine the extrinsic
curvature of the shell, which in addition to the induced metric, is the other quantity that completely characterize the
embedded surface layer. These quantities play a pivotal part in the junction formalism. Indeed, to find all possible
shell solutions in an ambient spacetime one has to understand the fact that the normal to a shell can have two relative
directions, such that, for static spherically symmetric spacetimes, the normal to the shell may point towards or away
from the center of the coordinates. For intance, in an ambient Minkowski-Schwarzschild spacetime, more precisely,
for a shell with a Minkowski interior with a center and a Schwarzschild exterior, usually called a fundamental shell, if
the normal points to increasing coordinate radius r in the exterior, one has a star shell, i.e., a shell that represents a
star. In the same ambient Minkowski-Schwarzschild spacetime, if the normal points to decreasing coordinate radius
r one has a tension shell black hole, i.e., a shell supported by tension that is in the other side of the Kruskal-Szekeres
diagram as was noted by Katz and Lynden-Bell [2]. This can also be performed in an ambient Minkowski-Reissner-
Nordström spacetime, yielding, instead of two fundamental electrically charged shell spacetimes, a bewildering variety
of fourteen fundamental electrically charged shell spacetimes with different global spacetime structures [3]. Here, in
place of using an ambient Minkowski-Schwarzschild or an ambient Minkowski-Reissner-Nordström we use an ambient
Minkowski-Minkowski spacetime.

One possibility for a Minkowski-Minkowski spacetime is for a shell with a Minkowski interior with a center, i.e., a
fundamental shell, such that the normal to the shell points towards decreasing radius r in the Minkowski exterior.
One then finds the Minkowski-Minkowski closed universe, made of two 3-dimensional flat balls, or sheets, that are
joined at some domain wall, i.e., a 2-sphere shell with matter, to make a Minkowski-Minkowski bubble universe. Note
that for a shell with a Minkowski interior with a center such that the normal to the shell points towards increasing
radius r in the Minkowski exterior yields the trivial global Minkowski spacetime with a zero shell.

There is yet another possibility for a Minkowski-Minkowski spacetime, different from the fundamental shell. It
comes from an exotic shell, i.e., a shell attached to a Minkowski open interior, noting that interior is just a name
since it could as well be called exterior. For a shell with a Minkowski open interior, when the normal to the shell
points towards increasing r in the Minkowski exterior, one finds the Minkowski-Minkowski open universe, made of two
3-dimensional flat open infinite sheets that are joined at some 2-sphere with matter, to make a Minkowski-Minkowski
traversable wormhole. Note that for a shell with a Minkowski open interior such that the normal to the shell points
towards decreasing radius r in the Minkowski exterior yields the trivial global Minkowski spacetime with a zero shell.

Universes and wormholes are usually envisaged as distinct objects. The two Minkowski-Minkowski spacetimes
demonstrate that they can be seen as complementary to each other, i.e., they are two sides of the same concept.
The concept, i.e., a collection of two Minkowski spacetimes together, yields on one side a closed universe, i.e., a
bubble universe, and on the other side an open universe which is a traversable wormhole. Surely, the collection of two
Minkowski spacetimes can also lead to two separate Minkowski spacetimes, but this is the trivial case and needs not
be considered.
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B. Einstein static closed spherical universe and Friedmann static open hyperbolic universe

There are two paradigmatic static homogeneous universes in general relativity: the static closed spherical universe
and the static open hyperbolic universe, with two separated branes or branches. To implement the idea of static
uniform universes, one uses general relativity itself, i.e., Einstein equation modified to include a cosmological constant.
From the staticity condition one imposes that neither the geometry nor the matter depend on time and from the
homogeneous condition one imposes that the energy-density is a constant in space.

This implementation, that the Universe, in particular a static universe, could be described within general relativity,
was put forward by Einstein. In devising a way to realize Mach’s principle, a new interaction, namely, a cosmological
constant with repulsion features, was postulated. General relativity with this new cosmological interaction is indeed
the first modified theory of gravitation. This repulsive cosmological term, that counterbalances the self gravitational
force due to the energy density of the matter supposed pressureless, was then used to find a unique static solution for
the Universe which was also assumed to be closed, finite, and spheric [4]. In the limiting case that the universe would
be spatially flat, the Einstein universe disappeared in a Minkowski empty universe. The enforcing of Mach’s principle
in this way proved to be a dead end as exemplified by the de Sitter universe with no matter and only a cosmological
constant [5], but the static closed universe of Einstein was of great impact as it indeed started the concept of universes.
For instance, dynamic closed universes within general relativity, like the Friedmann [6] and Lemâıtre [7] expanding
universes, came out of Einstein’s static one, which in turn, due to its instability and propensity to grow, continued to
be studied as a progenitor of expanding closed universes [8–13].

Remarkably, Friedmann in his second paper on universes and cosmology proposed to start with an open static
hyperbolic universe, as to exhaust the possible static pressureless universes [14]. In the process, a cosmological
constant, now with attraction features, was again introduced to counterbalance the self gravitational repulsive force
due to a matter energy density necessarily negative. In the limiting case the universe would be spatially flat, the
Friedmann universe disappeared in a Minkowski empty universe. The Friedmann static universe can be seen as an
anti-Einstein universe and it inaugurated the concept of open universes. Indeed, it was used by Friedmann in [14] to
continue the analysis into dynamic open hyperbolic universes and it was developed by Harrison [15] who, among many
other universes, also studied its stability. Now, the Friedmann static universe, being hyperbolic, has two branches, or
branes, which fail to communicate to each other by an infinitesimal separation. This means that it can be considered
a wormhole, actually, a failed wormhole. It is not traversable but almost and it can be thought as an embryo of a
wormhole.

The Einstein static closed universe and the Friedmann static open universe can be seen as complementary, i.e.,
they are two sides of the same concept. The concept here is the constant spatial curvature of the spacetime, one
side gives positive spatial curvature, i.e., the Einstein universe, the other side gives negative spatial curvature, i.e.,
the Friedmann static universe. The trivial case here would also be two zero curvature spacetimes, i.e., two separate
Minkowski spacetimes, and needs not be considered.

C. Bubble universes and traversable wormholes

Bubble universes and traversable wormholes have been proposed as structures that might arise if appropriate
physical conditions are available. Indeed, the Universe in its early phases, of which the inflationary period is an
example, filled with scalar and gauge fields, may have produced domain walls, cosmic strings, and monopoles, which
can still exist as frozen topological remains of the symmetry breaking phase transition of that early era. In this
connection, a setting allowed by the prevailing physical conditions of that early inflationary era, or even of an epoch
before it, is that bubble universes might have unfolded within the Universe and also, conceivably, systems such as
traversable wormholes might have materialized to connect distant parts of the Universe or distinct universes. In
addition, a possibility also permitted by the laws of physics, is that bubble universes and traversable wormholes might
be constructed if sufficient technology is available. General relativity is an excellent theory to study universe solutions
and wormhole solutions from which bubble universes and traversable wormholes can emerge as complementary to
each other, and so they can be seen as duals of each other, leading to a better understanding of both.

A bubble universe, a universe within the Universe, is a complete solution of the Einstein’s equations. Bubble
universes, together with baby universes, are universes in themselves, somehow attached to our one. They made their
appearance in the physics of false vacuum decay within dynamic bubbles [16]. Its interest and uses within the inflation
theory was seen in [17]. The idea of bubble universes taking off out from our Universe was developed in [18], general
relativistic dynamic bubble universe solutions with matter were proposed in [19], several possible universe decays
and corresponding expanding or contracting domain walls were thoroughly analyzed in [20], interesting scenarios with
bubbles with different gravitational constants were proposed in [21], their intrinsic stability has not been analyzed, see
however [22], and bubble universe astrophysical connections to black holes and their formation were studied in [23, 24].
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A traversable wormhole, joining two otherwise distinct universes through two mouths and a throat, is also a
complete solution of the Einstein’s equations. A wormhole is a concept with a history of its own that in a sense
was initiated by Einstein in the celebrated Einstein-Rosen bridge [25]. The concept had further developments related
to the quantization of the spacetime geometry [26], and it was essential to understand the maximal extension of
the Schwarzschild spacetime, now seen as a white hole being converted to a black hole through a nontraversable
wormhole connecting two separated asymptotically flat spacetimes [27], which in turn gave rise to the notion of
multiply connected spacetimes [28]. Wormholes, in particular traversable wormholes, abound in general relativity
and in gravitational theories. Traversable wormhole solutions were found first in [29, 30], were placed in a proper
framework in [31], were studied as inflating solutions in [32], were proposed in an exercise as a junction of two
Minkowski spacetimes in a remarkable encyclopedic and also didactic book exclusively dedicated to them [33], had
their matter energy conditions and their connection to the flare-out condition for the geometry described for generic
dynamic solutions in [34], were built from vacuum stress-energy tensors in [35], were studied with the aim of calculating
the ground state energy of a scalar field on the throat of two asymptotically Minkowski spacetime regions [36], were
embedded in a cosmological constant setting in [37], had the energy conditions at the wormhole’s throat generically
reassessed in [38], were analyzed in relation to their shadows and quasinormal modes in [39], had collisions between
their own mouths studied in [40], had a stability analysis performed in [41–43], see also [33], and had their possible
connection to astrophysics being proposed in [44–46].

The bubble universe and traversable wormhole solutions just mentioned are only a few of the vast number of all the
many interesting solutions found in the literature, and it is not our intention to proceed with an analysis of so vast a
camp. Usually, bubble universes appear in dynamic contexts, whereas traversable wormholes are generically realized
in static backgrounds, but of course they can both be static or dynamic. Bubble universes and traversable wormholes
can appear as duals of each other, a possibility of when quantum gravity dominated or was still nonnegligible, bubble
universes and traversable wormholes would form alike out of the spacetime foam, and would stay stable or metastable
structures well into the classical regime. We stick to general relativity and to the two static Minkowski-Minkowski
spacetimes and the two static homogeneous universes of Einstein and Friedmann. With these four spacetimes it is
possible to have two levels of comparison. On a first level of comparison, on the one hand, one can compare the
two Minkowski-Minkowski spacetimes between themselves by investigating their similarities, and on the other hand,
one can also attempt to compare the two static, homogenewous, presureless spacetimes of general relativity with
cosmological constant between themselves. On a second level of comparison, the two Minkowski-Minkowski spacetimes
are put face to face with the two static spacetimes of Einstein and Friedmann. Let us be specific. When performing
the first level comparison between the two Minkowski-Minkowski spacetimes, i.e., the Minkowski-Minkowski bubble
universe and the Minkowski-Minkowski traversable wormhole, one should take some steps, namely, one has to reveal
in a unified manner the two possible nontrivial cases in a Minkowski-Minkowski spacetime, or more concretely, one
has to find the fundamental shell spacetime, which is a closed bubble universe, and find also the exotic shell spacetime,
which is an open traversable wormhole universe. In doing so, one classifies and analyzes the possible junctions of
Minkowski spacetimes through a static, timelike, thin matter shell, which are the two nontrivial cases just mentioned,
the trivial one being the no shell pure Minkowski spacetime. A linear stability study of these spacetimes completes
the comparison. Through this example, bubble universes and traversable wormholes can now be understood in a
unified light, in the sense that the Minkowski-Minkowski bubble universe and the Minkowski-Minkowski traversable
wormhole are two sides of the same concept, in which instance, if one exists it makes a case to the existence of the
other. When performing the first level comparison between the two static, homogenewous, presureless spacetimes
with cosmological constant, i.e., the Einstein closed universe and the Friedmann open universe, one should take
some steps, namely, one has to reveal in a unified manner these two possible nontrivial cases, and display them in
a new light. A linear stability study of these spacetimes completes the analysis. In this new light, the Einstein
and Friedmann static universes can be compared, they are seen anew as a bubble universe and a failed wormhole,
respectively. On the second level of comparison, the two Minkowski-Minkowski spacetimes are put face to face with
the two static homogeneous spacetimes, to find that the Minkowski-Minkowski closed universe, a bubble universe,
goes along with the Einstein closed universe, which can then be seen then as a bubble universe, and the Minkowski-
Minkowski open universe, a traversable wormhole, goes along with the Friedmann open universe, which is a failed
wormhole. This comparison shows some striking resemblances between those spacetimes on several grounds. In this
sense, the Einstein and Friedmann static universes are really seen anew as a bubble universe and a failed wormhole,
respectively, and also they are an example that bubble universes and traversable wormholes can be perceived in a
unified light. The complementarity, or duality, between general relativistic bubble universes and traversable wormholes
exists for these examples of static spacetimes. One can carry out this idea for dynamical spacetimes and show that the
complementarity, or duality, considered here is quite generic. Moreover, following this rationale, if one finds inflating
bubble universe solutions, one should be able to find the corresponding inflating wormhole solutions, and vice versa,
so that, for instance, a given solution already found in one of the sides could help in looking for the complementary
solution in the other side.
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The paper is organized as follows. In Sec. II, we formalize in a unified way the two possible junctions of two identical
Minkowski spacetime regions and we perform a linearized stability analysis of the Minkowski-Minkowski universes.
We then build in detail the Minkowski-Minkowski static closed universe, i.e., a bubble universe, and the Minkowski-
Minkowski static open universe, i.e., the Minkowski-Minkowski static traversable wormhole. In Sec. III, we formalize
in a unified way the two possible static homogeneous universes and we display a linearized stability analysis of them.
We then display in detail the Einstein static spherical closed universe and we compare explicitly the Minkowski-
Minkowski static closed universe, i.e., the Minkowski-Minkowski bubble universe, with the Einstein static spherical
closed universe, and display the Friedmann static hyperbolic open universe, i.e., the failed wormhole, and compare
explicitly the Minkowski-Minkowski static open universe, i.e., the Minkowski-Minkowski static traversable wormhole,
with the Friedmann failed wormhole. In Sec. IV we conclude. Throughout the paper we work in geometrized units
system where the constant of gravitation G and the speed of light c are set to one, G = 1 and c = 1, and use the
metric signature (− + ++).

II. MINKOWSKI-MINKOWSKI CLOSED UNIVERSE AND MINKOWSKI-MINKOWSKI OPEN
UNIVERSE

A. Minkowski-Minkowski universes: Formal solutions and stability

1. Solutions

The Einstein field equations

Gαβ = 8πTαβ , (1)

where Gαβ = Rαβ − 1
2 gαβR is the Einstein tensor, Rαβ and R are the Ricci tensor and Ricci scalar, respectively, gαβ

is the metric tensor, Tαβ is the stress-energy tensor, and Greek indices run from 0 to 3 with 0 representing a time
component and 1, 2, and 3 representing space components. One wants to join consistently two solutions of Einstein
field equations and the Israel formalism provides the method needed to make the junction between two different
general relativistic spacetime regions [1]. Consider then two spacetime manifolds with boundary, one is Mi with
metric gi and the other is Me with metric ge. The spacetimes (Mi, gi) and (Me, ge) are solutions of the theory of
general relativity and are to be glued together at a common boundary, forming a new spacetime M. In brief, M
is partitioned by an hypersurface S into two regions, the regions Mi and Me. The formalism applies directly to a
hypersurface S that can be either timelike or spacelike, the extension to the case of a null boundary hypersurface can
also be done with care.

We assume that it is possible to formally define a common coordinate system {xα} on both sides of the hypersurface
S. We also admit the existence of a normal vector field n, well defined on both sides of S, which is orthogonal to the
matching hypersurface at each point. We choose n to point from Mi to Me and, without loss of generality, nαnα = ε,
where nα are the components of n in the coordinate system {xα} and ε is +1 or −1 depending on n being spacelike
or timelike, respectively. The null case has ε = 0 and it would have to be treated separately which we do not do here.
For a timelike normal vector field n one has that the corresponding hypersurface S is spacelike, and for a spacelike
n one has that the corresponding hypersurface S is timelike. Then, assuming {ya} to represent a local coordinate
system on S, the normal vector field n must be orthogonal at each point to the tangent vectors to the hypersurface
S, ea ≡ ∂

∂ya , such that eα
a nα = 0, with eα

a ≡ ∂xα

∂ya . The induced metric on S as seen from each region Mi and Me,
is hi ab = gi αβeα

a eβ
b , he ab = ge αβeα

a eβ
b , respectively, where gi αβ and ge αβ are the components of the metrics gi and ge

in the coordinate system {xα}. Notice that, in general, the induced metric on S by each metric gi and ge may not
coincide, hence we use the notation hi ab and he ab to refer to the metric induced by the spacetime structure of Mi
or Me, respectively. The extrinsic curvature Ki ab or Ke ab of the hypersurface S, as an embedded manifold in Mi
or Me, respectively, is defined as Ki ab = eα

a eβ
b ∇i αnβ , Ke ab = eα

a eβ
b ∇e αnβ , where ∇i and ∇e represent the covariant

derivatives with respect to gi or ge. Their traces are Ki = hab
i Ki ab, and Ke = hab

e Ki ab, respectively.
Now, we need to give the conditions under which the matching of the two spacetimes Mi and Me form a valid

solution of the Einstein field equations, Eq. (1). Following the Israel formalism, to join the two spacetimes Mi and
Me at S, such that the union of gi and ge forms a valid solution to the Einstein field equations (1), two junction
conditions must be verified at the matching surface S: (i) The induced metric hab as seen from each region Mi and
Me, must be the same, i.e.,

[hab] = 0 . (2)
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(ii) If the extrinsic curvature Kab is not the same on both sides of the boundary S, then a thin shell is present at S
with stress-energy tensor Sab given by

− ε

8π
([Kab] − hab [K]) = Sab , (3)

where [Kab] represents the difference of Kab as seen from each sub-manifold at S, i.e., [Kab] ≡ Ke ab|S − Ki ab|S , and
similarly for [K], and we use the notation Ki ab ≡ Kab (Mi) and Ke ab ≡ Kab (Me) to refer to Kab defined in Mi or
Me, respectively, and similarly for K.

The Minkowski spacetime with line element ds2 = −dt2 + dr2 + r2dΩ2, where t and r are the time and radial
coordinates, and dΩ2 ≡ dθ2 + sin2 θdφ2, with θ and φ being the angular coordinates, is a solution of Einstein
equations, see Eq. (1), in fact the simplest solution. We assume now that the interior and exterior spacetime have
Minkowski line elements, and find and analyze all possible junctions of two Minkowski spacetimes through a static,
thin matter shell. Using the Israel formalism, we consider two spacetimes, Mi and Me, each endowed with the
Minkowski metric tensor field glued together at a common hypersurface, S. To apply the formalism, we will have to
find the induced metric and extrinsic curvature induced on an embedded hypersurface of each spacetime, Mi or Me.
We will start by making the analysis in the interior spacetime, Mi, and extend the results to the exterior spacetime,
Me.

The interior Minkowski spacetime, Mi, is characterized by the following line element, in spacetime spherical coor-
dinates,

ds2
i = −dt2

i + dr2
i + r2

i dΩ2 , (4)

where ti and ri are the time and radial coordinates, respectively, measured by a free-falling observer in Mi, and
again dΩ2 ≡ dθ2 + sin2 θdφ2, with θ and φ being the angular coordinates. On the one hand, for the solution itself
we are interested in studying the case where the hypersurface S is timelike and static, i.e., static as seen from an
observer free falling in the interior Minkowski spacetime. On the other hand for the stability analysis that we will
take we have to allow for the hypersurface to be dynamical, so we compute the induced metric and extrinsic curvature
of S allowing for a dynamical shell and when needed we take the static solution. In the study of the properties of
the matter shell at S, we will then restrict the setup to the static case. Since we assume the hypersurface to be
timelike, it is convenient to choose the coordinates on S to be {ya} = (τ, θ, φ), where τ is the proper time measured
by an observer comoving with S. In this coordinate system, it follows that eτ ≡ u, where u is the 4-velocity of an
observer comoving with the shell. The hypersurface S, as seen from the interior Mi spacetime, is parameterized
by τ , such that the surface’s radial coordinate is described by a function Ri = Ri (τ). Then, the 4-velocity ui,
where the subscript i is not an index and as before denotes interior, as seen from the interior spacetime is given by
ui =

(
dti
dτ , Ṙi, 0, 0

)
, where overdot represents the derivative with respect to the proper time, i.e., Ṙi ≡ dRi

dτ . Since S

is a timelike hypersurface, it must verify ui αuα
i = −1, therefore we find ui =

(√
1 + Ṙ2

i , Ṙi, 0, 0
)

, where we chose
dti
dτ > 0 as we assume ui to point to the future. The expression for the 4-velocity of an observer comoving with S
and the condition eα

a nα = 0 allow us to find the components of the normal vector field to S, n, as seen from the

interior spacetime Mi, ni = ξi

(
Ṙi,

√
1 + Ṙ2

i , 0, 0
)

, where ξi is a normalization factor. Using nαnα = ε, Eq. (4), and

the condition that the normal vector field ni is spacelike, yields ξi = ±1. Now, defining ∇iri as the gradient of ri,
the choice ξi = +1 or ξi = −1 represents whether the inner product gi (ni, ∇iri) > 0 or gi (ni, ∇iri) < 0, respectively.
Under the Israel formalism both values for ξi are possible and we shall consider both cases. Using the induced metric

equation, hi ab = gi αβeα
a eβ

b , and ui =
(√

1 + Ṙ2
i , Ṙi, 0, 0

)
, we find that the induced metric on S by the spacetime

Mi, is such that the line element can be written as ds2
∣∣
Si

= −dτ2 + R2
i dΩ2. Gathering these results, we can compute

the components of the extrinsic curvature of S as seen from Mi, K i
ab. In the case where the matching surface S is

timelike and spherically symmetric, the non-null components of the extrinsic curvature are given by, dropping here
the superscript i to not overcrowd the notation, Kττ = −aαnα, Kθθ = ∇θnθ, Kφφ = ∇φnφ, where aα ≡ uβ∇βuα

represents the components of the 4-acceleration of an observer comoving with S. Taking into account Eq. (4) and

ui =
(√

1 + Ṙ2
i , Ṙi, 0, 0

)
, we find that the non-trivial components of the exterior curvature as seen from the interior

Minkowski spacetime are given by Ki
τ

τ = ξi
R̈i√
1+Ṙ2

i
, and Ki

θ
θ = Ki

φ
φ = ξi

√
1+Ṙ2

i
Ri

, where the induced metric hab
i

associated with the hypersurface line element was used to raise the indices. Since we assume the shell to be static,
one has Ṙi = 0: So in this static case, in brief, one has, that the 4-velocity ui and the normal ni are ui = (1, 0, 0, 0)



7

and ni = ξi (0, 1, 0, 0), the line element on the shell is

ds2∣∣
Si

= −dτ2 + R2
i dΩ2 , (5)

and the extrinsic curvature is given by

Ki
τ

τ = 0 , Ki
θ

θ = Ki
φ

φ = ξi

Ri
. (6)

Under the Israel formalism both values for ξi are possible and we shall consider both cases.
The exterior Minkowski spacetime, Me, is characterized by the following line element, in spacetime spherical

coordinates,

ds2
e = −dt2

e + dr2
e + r2

e dΩ2 , (7)

where te and re are the time and radial coordinates, respectively, measured by a free-falling observer in Me, and again
dΩ2 ≡ dθ2 + sin2 θdφ2, with θ and φ being the angular coordinates. Since the setup is the same as the one for the
interior we will sketch the calculations briefly in order to be complete. For a timelike hypersurface it is convenient to
choose the coordinates on S to be {ya} = (τ, θ, φ), where τ is the proper time measured by an observer comoving with
S. In this coordinate system, it follows that the 4-velocity u of an observer comoving with the shell is given by eτ ≡ u.
The hypersurface S, as seen from the exterior Me spacetime, is parameterized by τ , such that the surface’s radial
coordinate is described by a function Re = Re (τ). Then, ue =

(
dte
dτ , Ṙe, 0, 0

)
, where the subscript e is not an index

and as before denotes exterior, and Ṙe ≡ dRe
dτ . Since S is timelike, one has ue αuα

e = −1, so ue =
(√

1 + Ṙ2
e , Ṙe, 0, 0

)
,

where we chose dte
dτ > 0 as we assume ue to point to the future. From eα

a nα = 0, one finds the components of the

normal vector field to S, n, as seen from the exterior spacetime, namely ne = ξe

(
Ṙe,

√
1 + Ṙ2

e , 0, 0
)

, where ξe is

a normalization factor. Using nαnα = 1 and Eq. (7), yields ξe = ±1. Defining ∇ere as the gradient of re, the
choice ξe = +1 or ξe = −1 represents whether the inner product ge (ne, ∇ere) > 0 or ge (ne, ∇ere) < 0, respectively.

Usingthe induced metric equation, he ab = ge αβeα
a eβ

b , and ue =
(√

1 + Ṙ2
e , Ṙe, 0, 0

)
, we find that the induced metric

on S by the spacetime Me, is such that the line element can be written as ds2
∣∣
Se

= −dτ2 + R2
edΩ2. The non-

null components of the extrinsic curvature are here given by, dropping here the superscript e to not overcrowd
the notation, Kττ = −aαnα, Kθθ = ∇θnθ, Kφφ = ∇φnφ, where aα ≡ uβ∇βuα represents the components of the 4-

acceleration of an observer comoving with S. Taking into account Eq. (7) and ue =
(√

1 + Ṙ2
e , Ṙe, 0, 0

)
the non-trivial

components of the exterior curvature as seen from the exterior Minkowski spacetime are given by Ke
τ

τ = ξe
R̈e√
1+Ṙ2

e
,

and Ke
θ

θ = Ke
φ

φ = ξe

√
1+Ṙ2

e
Re

, where the induced metric hab
e associated with the hypersurface line element was used

to raise the indices. Since we assume the shell to be static, one has Ṙe = 0. So in this case one has that the 4-velocity
ue and the normal ne are ue = (1, 0, 0, 0) and ne = ξe (0, 1, 0, 0), the line element on the shell is

ds2∣∣
Se

= −dτ2 + R2
edΩ2 , (8)

and the extrinsic curvature is given by

Ke
τ

τ = 0 , Ke
θ

θ = Ke
φ

φ = ξe

Re
. (9)

Both values for ξe are possible and we shall consider both cases.
To complete the solution we have find the properties of the matter at the thin shell. Indeed, having found previously

the necessary expressions at the hypersurface S as seen from the Mi and Me spacetimes, we can now use the Israel
formalism to glue together the two spacetimes. Imposing the first junction condition, Eq. (2), and using Eqs. (5) and
(8) for the induced metrics, we find that the radial coordinate of S as seen from the interior and exterior spacetimes,
Ri and Re, respectively, must be the same, Ri = Re. We then denote by R the value of the radial coordinate of S as
seen from both spacetimes,

R ≡ Ri = Re . (10)
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We also assume that the stress-energy tensor Sab of the thin shell on S, can be cast in a perfect fluid form Sab = σuaub+
p (hab + uaub), where σ is the energy per unit area, p is the tangential pressure of the fluid, hab is the induced metric
on S, and ua is the fluid’s 3-velocity on S. Using the appropriate equations we find Sτ

τ = −σ, and Sθ
θ = Sφ

φ = p.
Having found previously the expressions for the extrinsic curvature of the hypersurface S as seen from the Mi and
Me spacetimes, and knowing that the stress-energy tensor of the shell is that of a perfect fluid, we can now impose the
second junction condition, Eq. (3). Applying it to our spherically symmetric problem gives that the only nontrivial
components of the stress-energy tensor Sa

b are given by Sτ
τ = 1

4π

[
Kθ

θ

]
, and Sθ

θ = Sφ
φ = 1

8π [Kτ
τ ] + 1

4π

[
Kθ

θ

]
.

Using then for the interior, Ki
τ

τ = ξi
R̈√

1+Ṙ2
, Ki

θ
θ = Ki

φ
φ = ξi

√
1+Ṙ2

R , and for the exterior, Ke
τ

τ = ξe
R̈√

1+Ṙ2
, and

Ke
θ

θ = Ke
φ

φ = ξe

√
1+Ṙ2

R , we find σ = (ξi − ξe)
√

1+Ṙ2

4πR and p = − (ξi − ξe) RR̈+Ṙ2+1
8πR

√
1+Ṙ2

. From these two equations we

derive the following conservation law for the shell σ̇ + 2Ṙ
R (σ + p) = 0. For a static shell, the time derivatives are zero

and so, using directly if one wishes Eqs. (6) and (9),

σ = (ξi − ξe) 1
4πR

, (11)

p = − (ξi − ξe) 1
8πR

. (12)

From Eqs. (11) and (12) we derive

σ + 2p = 0 . (13)

The matter of the thin shell obeys necessarily this equation of state, namely, p = − 1
2 σ, for a Minkowski-Minkowski

static spacetime. From Eqs. (11) and (12), we see that for ξi = ξe, and so 1
2 (ξi − ξe) = 0 we get the trivial case, σ = 0

and p = 0. For ξi = 1 and ξe = −1, and so 1
2 (ξi − ξe) = 1, we get σ = 1

2πR and p = − 1
4πR . For ξi = −1 and ξe = 1,

and so 1
2 (ξi − ξe) = −1, we get σ = − 1

2πR and p = 1
4πR . All cases obey Eq. (13), i.e., the relation between the surface

energy density σ and the surface pressure p is independent of ξi or ξe. Besides the trivial case, i.e., the Minkowski
universe which has 1

2 (ξi − ξe) = 0, there are two possible universes at this juncture, the Minkowski-Minkowski static
closed universe which has 1

2 (ξi −ξe) = 1, and the Minkowski-Minkowski static open universe which has 1
2 (ξi −ξe) = −1.

2. Linearized stability analysis for Minkowski-Minkowski universes

An important question regarding the Minkowski-Minkowski static universe solutions, i.e., the Minkowski-Minkowski
closed and open universes, is if these are stable under perturbations. Here we will discuss the linear stability of the
Minkowski-Minkowski solutions that we have found by analyzing the equation of motion of the shell near the static
configuration.

To study the linear stability of the Minkowski-Minkowski static universe solution we have to find the evolution
equation for the shell radius R and analyze the behavior of these solutions as we perturb the spacetime. The analysis
can be done in a unified way by making use of the parameter 1

2 (ξi − ξe). The equation of motion of the thin shell

previously found, namely, σ = (ξi − ξe)
√

1+Ṙ2

4πR , can be inverted and put in the form

Ṙ2 + V (R) = 0 , (14)

where a dot means derivative with respect to time t, and the potential V (R) is given by

V (R) = 1 −
(

4πRσ

ξi − ξe

)2
. (15)

A thin matter shell is stable if and only if the potential V (R) at the shell’s position is at a local minimum, i.e., if
V ′(R) = 0 and V ′′(R) ≥ 0, with the equality providing the marginal neutral case and where a prime denotes the
derivative with respect to R. Thus, we have to calculate the matter properties and its derivatives. All these properties
are functions of the shell radius R, namely, σ = σ(R), p = p(R), σ′ = σ′(R), and p′ = p′(R). To find an expression for
σ′(R), we consider the conservation law for the shell already found, namely, σ̇ + 2Ṙ

R (σ + p) = 0, i.e., σ̇ = − 2Ṙ
R (σ + p).

Using the inverse function theorem, we have σ′ = σ̇
Ṙ

, and so

σ′ = −2 (σ + p)
R

. (16)
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We have also to analyze the derivatives of the potential at the static configuration. From Eq. (15) we get V ′(R) =
− 32π2Rσ

(ξi−ξe)2 (σ + Rσ′). Taking another derivative we get V ′′(R) = 32π2

(ξi−ξe)2 [(σ + Rσ′) (σ + 2p) + Rσ (σ′ + 2p′)]. Now, if
we introduce Eq. (16) into V ′(R), we have V ′(R) = 32π2Rσ

(ξi−ξe)2 (σ + p). To analyze V ′′(R) we have to find an expression
for p′(R). We assume that the thin matter shell is composed of cold matter such that it verifies a generic equation
of state of the form p = p (σ). Then, we can define the parameter η (σ) = ∂p

∂σ such that, p′ = ησ′. Hence, using
σ′ + 2p′ = σ′ (1 + 2η) and Eq. (16) we can write V ′′(R) as V ′′(R) = − 32π2

(ξi−ξe)2

[
2σ (σ + p) (1 + 2η) + (σ + 2p)2

]
. In

brief, the derivatives of the potential V (R) are

V ′(R) = 32π2Rσ

(ξi − ξe)2 (σ + p) , (17)

and

V ′′(R) = − 32π2

(ξi − ξe)2

[
2σ (σ + p) (1 + 2η) + (σ + 2p)2

]
. (18)

where η (σ) = ∂p
∂σ .

We now linearize the equation of motion for the shell given by Eq. (14) around a static solution. Defining R0 as
the circumferential radius of the static thin shell and assuming the potential V to be a differentiable function at R0,
we can expand the potential given in Eq. (15) around R0 as

V (R) = V (R0) + V ′(R0) (R − R0) + 1
2V ′′(R0) (R − R0)2

, (19)

plus higher order terms of O
[
(R − R0)3

]
. A thin matter shell with radius R0 is stable or neutrally stable if and only

if the potential V (R) satisfies V ′(R0) = 0 and V ′′(R0) ≥ 0. For a shell with radius R0 the static solutions found
in the previous section are characterized generically by the following expressions, σ = ξi−ξe

4πR0
and p = − ξi−ξe

8πR0
, see

Eqs. (11) and (12), where ξi ̸= ξe for the nontrivial solutions. Substituting Eq. (11) into Eq. (15) we find V (R0) = 0,
as expected. Substituting Eqs. (11) and (12) into Eq. (17) and evaluating it at the static solution we find V ′(R0) = 0.
Evaluating V ′′(R) at the static solution, R = R0, and using again Eqs. (11) and (11), we find V ′′(R0) = 0. In brief,

V ′(R0) = 0 , (20)

and

V ′′(R0) = 0 . (21)

Moreover, all higher order derivatives of the potential go to zero at R0 for the static solutions.
Gathering these calculations, we conclude that, besides the trivial case, i.e., the Minkowski universe which has

1
2 (ξi − ξe) = 0 and is trivially neutraly stable, there is the Minkowski-Minkowski static closed universe which has
1
2 (ξi − ξe) = 1 and is nontrivially neutraly stable, and the Minkowski-Minkowski static open universe which has
1
2 (ξi − ξe) = −1 and is also nontrivially neutraly stable. This neutral stability means that if we slightly displace the
thin shell, it will simply stay at the new radius. This confirms our expectation, as the interior and exterior spacetimes
are both described by the Minkowski, i.e., flat, solution.

B. Minkowski-Minkowski universes: Geometry and physics

1. Minkowski-Minkowski static closed universe: A bubble universe

Here we display a Minkowski-Minkowski static closed universe as a solution of general relativity. We rely on the
results presented above. We assume that the Minkowski line element is valid for a region, which we call interior Mi, up
to a radius R, i.e., 0 ≤ ri ≤ R, where ri denotes the interior radial coordinate. We join this region to another region,
which we call exterior Me, where the exterior radial coordinate is denoted by re. The junction is done at a common
hypersurface S with circumferential radius ri = re = R. Thus, the whole spacetime is composed by the two regions
plus the common hypersurface, which is a domain wall, i.e., a thin shell. The common hypersurface S is assumed to
be static. Assuming the existence of a vector field n, normal, at each point, to the common hypersurface S, we have
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found that the solution depends on the orientation of this normal field n. For each region, Mi and Me, the orientation
of the normal is encoded in a single parameter, namely, one for the interior, ξi, and one for the exterior, ξe. In both
cases, ξi and ξe can have values +1 or −1. The value +1 indicates that the normal points in the direction of increasing
radial coordinate and the value −1 indicates that the normal points in the direction of decreasing radial coordinate.
The solutions with ξi = ξe are trivial as the resulting spacetime is simply the full Minkowski flat universe. Here we
consider the first non-trivial solution, i.e., ξi = +1 and ξe = −1. This static solution represents the case where the
normal vector field n points in the direction of increasing radial coordinate as seen from the interior spacetime Mi and
points in the direction of decreasing radial coordinate as seen from the exterior spacetime Me. Since n is assumed to
point from Mi to Me this implies that in the exterior region one also has 0 ≤ re ≤ R. Thus, this solution is composed
by two spatially compact Minkowski spacetime regions glued together at the common boundary S. This solution
then represents a Riemann flat spacetime everywhere except at S. Overall it is a static closed Minkowski-Minkowski
universe, for which the line element can be written as, see also Eqs. (4) and (7),

ds2 = −dt2 + dr2
i + r2

i dΩ2, 0 ≤ ri ≤ R , ds2 = −dt2 + dr2
e + r2

e dΩ2, 0 ≤ re ≤ R . (22)

Now we turn to the properties of the matter at the domain wall, or shell, at S. In this case, putting ξi = +1 and
ξe = −1 into Eqs. (11) and (12), the energy density σ and the tangential pressure p at the domain wall are given by

σ = 1
2πR

, (23)

p = − 1
4πR

. (24)

This solution is then characterized by the presence of a surface layer in the form of a domain wall at radius R,
separating two Minkowski halves. The thin domain wall is composed of a perfect fluid with positive energy density
and is supported by tension such that it obeys the equation of state σ + 2p = 0. Moreover, from Eqs. (23) and (24),
we find that the following inequalities are verified: σ ≥ 0, σ + p ≥ 0, σ + 2p ≥ 0 and σ ≥ |p|, therefore, the matter at
the domain wall verifies the null, weak, strong, and dominant pointwise energy conditions. Since the effective mass
m can be defined by the quantity σ + 2p and this latter is zero, one has m = 0. So the domain wall yields no total
mass m as it should to have Minkowski spacetime on both sides of the domain wall. The volume of this universe is
V = 8π

3 R3.
The spatial structure and the causal structure are also important to analyze. A time slice t = constant of the

spacetime gives that the 3-space is a highly squashed 3-sphere, i.e., it is made of two copies of two plane 3-balls joined
at a 2-sphere. To see this one makes an embedding. The embedding of this 3-space can be easily done in 4-dimensional
Euclidean space R4. In Fig. 1 we show an embedding diagram of a θ = π

2 slice of the static Minkowski-Minkowski
closed universe in a 3-dimensional Euclidean space, displaying clearly the squashed character of the 3-sphere. One
can also make appropriate identifications between points in the interior and exterior spherical pieces to turn the space
into a projective space. The causal structure of the resulting spacetime can be shown in a Carter-Penrose diagram, as
in Fig. 2. We use the hash symbol # to represent the connected sum of the spacetime manifold in order to conserve
the conformal structure in the Carter-Penrose diagram of the total spacetime. We see that it represents a universe
in which the spatial sections are highly squashed 3-spheres, i.e., two copies of two plane 3-balls joined at a 2-sphere,
such that if we include time the total spacetime is a squashed 3-cylinder, the time line times the squashed 3-sphere.
A timelike geodesic, or a free-falling particle, initially moving along the radial coordinate towards increasing values
of it in one half of the spacetime, would reach the domain wall at r = R at some point, and then continue until it
reaches the center of coordinates at the other half where it would continue its trajectory into the antipode point of
the wall, and so on.
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Figure 1. Embedding diagram of a t = constant and θ = π
2 slice of the Minkowski-Minkowski static closed universe in

3-dimensional Euclidean space. The interior coordinate is in the range 0 ≤ ri ≤ R, the exterior coordinate is in the range
0 ≤ ri ≤ R, the radius of the domain wall, or shell, is R, and the borders of the circumferences should be identified.

Figure 2. Carter-Penrose diagram of the Minkowski-Minkowski static closed universe. The hash symbol # represents the
connected sum of the spacetime manifold. The symbols i− and i+ represent past and future causal infinity, respectively.

The Minkowski-Minkowski static closed universe is marginally stable. Indeed, one has from Eq. (21) that V ′′(R0) =
0. The solution is in neutral equilibrium, meaning that for a slight displacement the thin shell stays at the new radius.
This result confirms the expectations. as the interior and exterior spacetimes are both described by a Minkowski, i.e.,
flat, solution.

This Minkowski-Minkowski static closed universe is a bubble universe which is summarized in Eqs. (22)-(24) and in
Figs. 1 and 2. Moreover, a fundamental shell is defined as a shell with Minkowski interior with a center and one of the
three basic exterior spacetimes, Minkowski, Schwarzschild, and Reissner-Nordström. Thus the Minkowski-Minkowski
static closed universe we just found completes the search of all the fundamental shells in the three basic ambient
spacetimes, namely, Minkowski-Minkowski, Minkowski-Schwarzschild, and Minkowski-Reissner-Nordström, the latter
two having been found previously.

The Minkowski-Minkowski static closed universe is a representative of the set of closed universes. It can be compared
with other such closed universes. This will be done later.

2. Minkowski-Minkowski static open universe: A traversable wormhole

Here we display a Minkowski-Minkowski static open universe as a solution of general relativity. We rely on the
previous results. We assume that the Minkowski line element is valid for a region, which we call interior Mi, that
goes from spatial infinity to a radius R, i.e., R ≤ ri < ∞, where ri denotes the interior radial coordinate. We join
this region to another region, which we call exterior Me, where the exterior radial coordinate is denoted by re. The
junction is done at a common hypersurface S with circumferential radius ri = re = R. Thus, the whole spacetime is
composed by the two regions plus the common hypersurface, which is a thin shell. The common hypersurface S is
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assumed to be static. Assuming the existence of a vector field n, normal, at each point, to the common hypersurface
S, we have found that the solution depends on the orientation of this normal field n. For each region, Mi and Me, the
orientation of the normal is encoded in a single parameter, namely, one for the interior, ξi, and one for the exterior,
ξe. In both cases, ξi and ξe can have values +1 or −1. The value +1 indicates that the normal points in the direction
of increasing radial coordinate and the value −1 indicates that the normal points in the direction of decreasing radial
coordinate. The solutions with ξi = ξe are trivial as the resulting spacetime is simply the full Minkowski flat universe.
Here, we consider the second non-trivial solution, i.e., ξi = −1 and ξe = +1. This static solution represents the
case where the normal vector field n points in the direction of decreasing radial coordinate as seen from the interior
spacetime Mi and points in the direction of increasing radial coordinate as seen from the exterior spacetime Me.
Since n is assumed to point from Mi to Me this implies that in the exterior region one also has R ≤ re < ∞.
Thus, this solution is composed by two spatially open Minkowski spacetime regions glued together at the common
boundary S. This solution then represents a Riemann flat spacetime everywhere except at S. Overall it is a static
closed Minkowski-Minkowski universe, for which the line element can be written as, see also Eqs. (4) and (7),

ds2 = −dt2 + dr2
i + r2

i dΩ2, R ≤ ri < ∞ , ds2 = −dt2 + dr2
e + r2

e dΩ2, R ≤ re < ∞ . (25)

Now we turn to the properties of the matter shell at S. In this case, putting ξi = −1 and ξe = +1 into Eqs. (11)
and (12), the energy density σ and the tangential pressure p at the thin shell are given by

σ = − 1
2πR

, (26)

p = 1
4πR

. (27)

This solution is then characterized by the presence of a surface layer or thin shell at radius R, separating two Minkowski
open halves. The thin matter shell is composed of a perfect fluid with negative energy density and is supported by
pressure such that it obeys the equation of state σ + 2p = 0. Moreover, from Eqs. (26) and (27), we find that the
following inequalities are verified: σ ≤ 0, σ + p ≤ 0, σ + 2p ≤ 0 and σ ≤ |p|, therefore, the matter shell violates
the null, weak, strong and dominant pointwise energy conditions, as it could be expected from imposing the flare-out
condition for a traversable wormhole. Since the effective mass m can be defined by σ + 2p and this latter is zero, one
has m = 0. So the shell yields no total mass m as it should to have Minkowski spacetime on both sides of the shell.
The volume of this spacetime, in its simplest personification, i.e., without making identifications for r, is infinite.

The spatial structure and the causal structure are also important to analyze. A time slice t = constant of the
spacetime gives that the 3-space is a universe in which the spatial sections are two copies of the complements of
two plane 3-balls joined at a 2-sphere, the throat, yielding a non-simply-connected open universe, more precisely,
a traversable wormhole. To see this one makes an embedding. The embedding of this 3-space can be easily done
in 4-dimensional Euclidean space R4. In Fig. 3 we show an embedding diagram of a constant θ = π

2 slice of the
static Minkowski-Minkowski open universe, or traversable wormhole. One can also make appropriate identifications
of the two open sheets, and turn the space into, e.g., a flat 3-torus, in which case the space is closed. The causal
structure of the resulting spacetime can be shown in a Carter-Penrose diagram, as in Fig. 4. We use the hash symbol
# to represent the connected sum of the spacetime manifolds in order to conserve the conformal structure in the
Carter-Penrose diagram of the total spacetime. We see that it represents a universe in which the spatial sections are
two copies of the complements of two plane 3-balls joined at a 2-sphere, the throat, yielding a traversable wormhole,
such that if we include time, the total spacetime has the topology R × Σ, where Σ is a 3-manifold with nontrivial
topology, whose boundary ∂Σ ∼ S2. A causal geodesic, or a free-falling particle, initially moving in the direction of
decreasing radial coordinate in one half of the spacetime, would reach the shell at r = R and then continue until it
reaches infinity at the other sheet of the wormhole.
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Figure 3. Embedding diagram of a t = constant and θ = π
2 slice of the Minkowski-Minkowski static open universe, or

traversable wormhole, in 3-dimensional Euclidean space. The interior coordinate is R ≤ ri < ∞, the exterior coordinate is
R ≤ re < ∞, the radius of the shell is R, and the borders of the circumferences should be identified.

Figure 4. Carter-Penrose diagram of the Minkowski-Minkowski static open universe, or traversable wormhole. The hash
symbol # represents the connected sum of the spacetime manifold. The symbols i−, i0, and i+ represent past timelike infinity,
spatial infinity, and future timelike infinity, respectively, and the symbols I − and I +, represent past and future null infinity,
respectively.

The Minkowski-Minkowski static open universe, i.e., the Minkowski-Minkowski traversable wormhole, is marginally
stable. Indeed, one has from Eq. (21) that V ′′(R0) = 0. The solution is in neutral equilibrium, meaning that for a
slight displacement the thin shell stays at the new radius. This result confirms the expectations, as the interior and
exterior spacetimes are both described by a Minkowski, i.e., flat, solution.

This Minkowski-Minkowski static open universe is a traversable wormhole which is summarized in Eqs. (25)-(27)
and in Figs. 3 and 4. This open universe is an exotic shell spacetime rather than a fundamental shell spacetime, as its
interior does not contain a center or origin, instead the interior opens up to infinity. This further possibility for a shell
spacetime, i.e., that its interior opens up to infinity, implies that the spacetime is a traversable wormhole spacetime,
and thus the matter properties of the shell must be exotic since they necessarily violate the energy conditions. The
study of the Minkowski-Minkowski open spacetime, or traversable wormhole, introduces the prospect of analyzing
all possible exotic shells, i.e., shells for which the Minkowski interior has no center, in the other two basic ambient
spacetimes, namely, Schwarzschild and Reissner-Nordström spacetimes.

The Minkowski-Minkowski static open universe is a representative of the set of traversable wormholes. It can be
compared with other such open universes and traversable wormholes. This will be done later.
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C. Minkowski-Minkowski universes: One concept with two sides

The two, close and open, Minkowski-Minkowski spacetimes demonstrate the idea that they can be seen as comple-
mentary to each other, i.e., they are two sides of the same concept. The concept, i.e., a collection of two Minkowski
spacetimes together, that when cut into spherical regions yield on one side a closed universe, a bubble universe, and
on the other side an open universe which is a traversable wormhole. The formalism presented in analyzing the two
Minkowski-Minkowski universes is well suited to show this point. Indeed, from an algebraic point of view, one side is
given by 1

2 (ξi −ξe) = 1, the other side is given by 1
2 (ξi −ξe) = −1, where ξi and ξe are the characteristics of the interior

and exterior normals to the shell, respectively. This algebraic side appears clearly in the evaluation of the matter
properties as displayed in Eqs. (11) and (12). More formally, to implement the idea of a Minkowski-Minkowski closed
universe, i.e., a bubble universe, and a Minkowski-Minkowski open universe, i.e., a traversable wormhole, one uses the
equations of general relativity together with the appropriate thin shell formalism. For a shell with a Minkowski inte-
rior with a center, when the normal to the shell in the exterior region points towards decreasing r, i.e., 1

2 (ξi − ξe) = 1,
one finds the Minkowski-Minkowski closed universe, made of two 3-dimensional flat balls, or sheets, that are joined at
some domain wall, i.e., a 2-sphere shell with matter, to make a Minkowski-Minkowski bubble universe. For a shell with
a Minkowski open interior, when the normal to the shell points towards increasing r in the Minkowski exterior, i.e.,
1
2 (ξi −ξe) = −1, one finds the Minkowski-Minkowski open universe, made of two 3-dimensional flat open infinite sheets
that are joined at some throat, to make a Minkowski-Minkowski traversable wormhole. From a matter point of view
the two universes show a form of complementarity, as for 1

2 (ξi − ξe) = 1 the matter obeys the energy conditions while
for 1

2 (ξi − ξe) = −1 the matter violates the energy conditions. From a geometrical point of view, the two sides of the
concept appear when one picks up a Minkowski spacetime and at constant time cuts a ball in it, to obtain two spaces,
namely, a 3-dimensional ball with a flat inside, and an infinite extended 3-dimensional flat space with a hole, which is
the complement of the ball. Then one picks up another Minkowski spacetime and do the same, to get a second ball
and a second infinite extended flat space with a hole. One side is given if one joins the two 3-dimensional balls along
a 2-sphere, a shell containing matter, to obtain a single 3-space that including time makes altogether a static closed
Minkowski-Minkowski universe, a bubble universe. The other side is given if one joins the two complements, i.e., the
two infinite extended 3-dimensional flat spaces with a hole in each, along a 2-sphere, a shell containing matter, to
obtain a different single 3-space that including time makes altogether another Minkowski-Minkowski universe, which
is a traversable wormhole. Comparison of Fig. 1 with Fig. 3 for a spatial geometrical representation of the bubble
universe and the traversable wormhole, respectively, displays the complementarity of the two spaces clearly, which
can be further strengthened with the comparison of the spacetime drawings in the form of Carter-Penrose diagrams,
given in Fig. 2 and in Fig. 4, respectively. From a stability point of view it is also interesting that both spacetimes
are marginally stable, showing thus here some form of neutral complementarity.

So, that the two Minkowski-Minkowski spacetimes demonstrate that they can be seen as complementary to each
other, i.e., they are two sides of the same concept, is clear. It can be raised the point that the bubble universe
has matter that obeys the energy conditions, whereas the traversable wormhole has matter that does not obey those
conditions. This is obviously true, but there is no real problem with it. In an early era of the Universe, when quantum
gravity dominates, there is really no obeyance to the classical energy conditions and the closed and open universes,
created as bubble universes with domain walls and traversable wormholes with throats out of the spacetime foam
must coexist together. Some kind of inflation would grow these objects to macroscopic dimensions turning them into
new structures inhabiting the Universe itself, showing that bubble universes and traversable wormholes are distinct
but connected objects, some obeying the energy conditions and others not.

III. EINSTEIN STATIC CLOSED UNIVERSE AND FRIEDMANN STATIC HYPERBOLIC OPEN
UNIVERSE

A. Einstein and Friedmann static universes: Formal solutions and stability

1. Solutions

Two paradigmatic solutions of the theory of general relativity for static universes are the Einstein and the hyperbolic
Friedmann spacetimes. These two solutions have various resemblances with the open and closed Minkowski-Minkowski
universes studied in the previous section, and we will present them in a form suited for comparing their properties.
Consider then the Einstein field equations with a non-vanishing cosmological constant Λ,

Gαβ + Λgαβ = 8πTαβ , (28)
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where Gαβ = Rαβ − 1
2 gαβR is the Einstein tensor, Rαβ and R are the Ricci tensor and Ricci scalar, respectively, gαβ

is the spacetime metric, and Tαβ is the stress-energy tensor.
One assumes a static, homogeneous and isotropic spacetime and, in addition, one supposes that Tαβ corresponds to

that of a perfect fluid with energy density ρ and vanishing pressure p, i.e., a dust-like fluid. With these assumptions,
the solution of the field equations (28) in spacetime spherical coordinates (t, r, θ, φ) is given by the line element

ds2 = −dt2 + dr2 + R2
[

1√
k

sin
(√

k
r

R

)]2
dΩ2 , (29)

where t is the time coordinate, r is the radial coordinate, dΩ2 ≡ dθ2 + sin2 θdφ2, with θ and φ being the spherical
angular coordinates, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, R is a positive constant scale factor representing a characteristic
radius of the universe, and k is related with the Ricci curvature scalar by R = 6k

R2 and may take the values k = 1, 0, −1.
Furthermore, the field equations (28) also give expressions for the energy density of the fluid and for the cosmological
constant, namely,

ρ = k

4πR2 , (30)

Λ = k

R2 , (31)

and p = 0. From Eqs. (30) and (31) one finds that

ρ − Λ
4π

= 0 , (32)

and so Λ counteracts the gravitational pulling effects of ρ. Noticing that the term Λgαβ can be thought as a perfect fluid
contribution to the stress-energy tensor with energy density ρ̄ = Λ

8π and pressure p̄ = − Λ
8π , this static homogeneous

universe solution can then be seen as a solution of a two fluid system, one fluid with energy density ρ = Λ
4π and

pressure p = 0, and the other fluid, a vacuum fluid, with energy density ρ̄ = Λ
8π and pressure p̄ = − Λ

8π , such that
ρ + ρ̄ + 3p̄ = 0. Besides the trivial case, i.e., the Minkowski universe which has k = 0, there are two possible universes
at this juncture, the Einstein static closed universe which has k = 1, and the Friedmann static open universe which
has k = −1.

2. Linearized stability analysis for Einstein and Friedmann static universes

An important question regarding the static homogeneous universes, i.e., the Einstein and hyperbolic Friedmann
static universes, is if these are stable under perturbations. Here we will discuss the linear stability of these cosmological
solutions by analyzing the equation of motion of the universe near the static configuration. The result for the Einstein
universe is well known, whereas the stability of the static hyperbolic Friedmann universe appears to be less known.

To study the linear stability of the static Einstein and Friedmann universes we have to find the evolution equation
for the scalar factor R and analyze the behavior of these solutions as we perturb the spacetime. The analysis can
be done in a unified way by making use of the parameter k. From the general relativity field equations we find the
Friedmann equation, namely,

Ṙ2 + V (R) = 0 , (33)

where we have introduced the potential

V (R) = k − 8πρ + Λ
3 R2 , (34)

and the scale factor R is now a function of the time coordinate t, R = R(t), and a dot represents derivative with
respect to it, and again k represents the sectional curvature of constant time slices, such that k = +1 for the closed
universe, k = 0 for the flat universe, and k = −1 for the open universe. Note anew that a universe is stable if, and
only if, the potential V (R) is at a local minimum, i.e., if V ′(R) = 0 and V ′′(R) ≥ 0, with the equality providing the
marginal neutral case, where a prime denotes the derivative with respect to R. Thus, we have to calculate the matter
properties and its derivatives. All these properties are functions of the shell radius R, namely, ρ = ρ(R), p = p(R),
ρ′ = ρ′(R), p′ = p′(R), and the radius itself is a function of time R(t). The conservation equation, which can be taken
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from the field equations, is ρ̇ + 3Ṙ
R ρ = 0, so that the equation for ρ′, where prime denotes the derivative with respect

to R, is

ρ′ = −3 ρ

R
. (35)

We have now to analyze the derivatives of the potential V (R) given in Eq. (34) at the static configuration. From
Eq. (34) we get V ′(R) = − 1

3 (8πρ′) R2 − 2
3 (8πρ + Λ) R, where we assume that Λ is a constant. Taking the derivative

of it we get V ′′(R) = − 1
3 (8πρ′′) R2 − 4

3 (8πρ′) R − 2
3 (8πρ + Λ). Now, if we introduce Eq. (35) into V ′(R) we obtain

V ′(R) = 2
3 (4πρ − Λ) R. Simplifying also V ′′(R) we obtain V ′′(R) = − 2

3 (8πρ + Λ). In brief, the derivatives of the
potential V (R) are

V ′(R) = 2
3 (4πρ − Λ) R , (36)

and

V ′′(R) = −2
3 (8πρ + Λ) , (37)

where we assume that p = 0 throughout, i.e., the cold generic equation p = p(ρ) is the trivial one, so here η (ρ) ≡ ∂p
∂ρ

is zero: η (ρ) = 0.
Following the usual reasoning, we linearize Eq. (33) around a static solution. Defining R0 as the radius of the static

universe and assuming the potential V to be a differentiable function at R0, we can expand the potential (34) around
R0 as

V (R) = V (R0) + V ′(R0) (R − R0) + 1
2V ′′(R0) (R − R0)2

, (38)

plus higher order terms of O
[
(R − R0)3

]
. Now, a universe with radius R0 is stable if, and only if, the potential, V (R),

is at a local minimum, i.e., if V ′(R0) = 0 and V ′′(R0) ≥ 0, with the equality providing the marginal neutral case. The
static solutions found in the previous sections are characterized by the following expressions for the energy density
and the cosmological constant of the fluid, ρ = k

4πR2
0

and Λ = k
R2

0
, see Eqs. (30) and (31), with the fluid pressure p

being zero, p = 0. Then putting Eq. (30) into Eq. (34) we find V (R0) = 0, as expected. Substituting it into Eq. (36)
and evaluating at the static solution we find V ′(R0) = 0. Evaluating V ′′(R) at the static solution, R = R0, we find
V ′′(R0) = − 2k

R2
0
. In brief, defining R0 as the value of the scale factor of the static Einstein and hyperbolic Friedmann

universes, expanding the potential V (R) around R0, Eq. (38), we find that

V ′(R0) = 0 , (39)

and

V ′′(R0) = − 2k

R2
0

. (40)

Gathering these calculations, we conclude that, besides the trivial case, i.e., the Minkowski universe which has k = 0
and is trivially neutraly stable, there is the Einstein static closed universe which has k = 1 and so is unstable, and the
Friedmann static open universe which has k = −1 and so is stable. The instability of the k = 1 Einstein static closed
universe means that if we slightly displace the scale radius R towards larger or smaller values, the universe will expand
in the former displacement or collapse in the latter displacement, and the stability of the k = −1 Friedmann static
closed universe means that if we slightly displace the scale radius R towards larger or smaller values, the universe will
get back to the initial value R.

B. Einstein and Friedmann static universes: Geometry and physics

1. Einstein static closed universe

The Einstein universe is a solution of the general theory of relativity for a dust source with energy density ρ,
pressure p equal to zero, a positive cosmological constant Λ, and positive curvature, k = 1. In spacetime spherical
coordinates (t, r, θ, φ) it is characterized by the line element given in Eq. (29) with k = 1, i.e.,

ds2 = −dt2 + dr2 + R2 sin2
( r

R

)
dΩ2 , (41)
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where t is the time coordinate, r is the radial coordinate with 0 ≤ r ≤ π R, and dΩ2 ≡ dθ2 + sin2 θdφ2, with θ and φ
being the spherical angular coordinates, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. In addition, R is a positive scale factor which
here is a constant, and which gives the characteristic radius of the universe. The Ricci scalar for the Einstein universe
is given by R = 6

R2 . This solution then represents a static spacetime, a 3-dimensional sphere, and so is a closed
universe. Now we turn to the properties of the matter in the Einstein universe. Assuming a perfect fluid made of
dust, i.e., the matter has energy density ρ and pressure p = 0, the Einstein field equations with cosmological constant
Λ for the line element given in Eq. (41) yield

ρ = 1
4πR2 , (42)

Λ = 1
R2 , (43)

see Eqs. (30) and (31) with k = 1. Note that ρ − Λ
4π = 0, see Eq. (32), and so Λ being positive is repulsive everywhere

and thus assumes the function of a pressure that acts against the gravitational pull of the matter specified by ρ. This
system can be seen as a two fluid system, one fluid with energy density ρ, the other fluid, a vacuum fluid, with energy
density ρ̄ = Λ

8π and pressure p̄ = − Λ
8π , such that ρ + ρ̄ + 3p̄ = 0. All the matter energy conditions are satisfied. The

volume of this universe is V = 2π2R3 and its mass is is m = 2π2R3ρ.
The spatial and causal structure of the spacetime can also be presented. Considering a slice of constant time of

the spacetime, t = constant, we find that the 3-space is diffeomorphic to a 3-sphere. To show this, we can embed the
3-space in 4-dimensional Euclidean space, R4. Defining the Euclidean spatial coordinates (w, x, y, z) as w = R cos r

R ,
x = R sin r

R sin θ cos ϕ, y = R sin r
R sin θ sin ϕ, and z = R sin r

R cos θ, the line element of the embedded surface is given
by ds2 = dw2 + dx2 + dy2 + dz2, and the surface verifies the equation w2 + x2 + y2 + z2 = R2, showing that indeed it
can be regarded as a 3-sphere in R4. To visualize the embedding one makes a θ = π

2 slice, i.e., z = 0 in the Euclidean
coordinates. In Fig. 5 we show such an embedding for the static spherical Einstein universe. By making appropriate
identifications between points in the two hemispheres, the spherical space turns into a projective spherical space
also called an elliptical space. In Fig. 6 we show the causal structure of the resulting spacetime in a Carter-Penrose
diagram. The Einstein universe, a static spacetime, models a universe with spherical spatial sections such that if we
include time the total spacetime is a 3-cylinder, R×S3. A timelike geodesic, or a free-falling particle, initially moving
from r = 0 in the direction of increasing radial coordinate would reach the other pole at r = πR and then continue
until it reaches back the center of coordinates and so forth.

Figure 5. Embedding diagram of a t = constant and θ = π
2 slice of the Einstein static closed universe in 3-dimensional

Euclidean space. The radial coordinate r̄ related to the area defined by it, namely, r̄ = R sin
(

r
R

)
, is the radial coordinate used

in the diagram. This coordinate runs from 0 at one pole, to R at the equatior, and then back to 0 at the other pole, with R
being the characteristic radius of the Einstein universe.

The Einstein static closed universe is unstable. Indeed, from Eq. (40) one has that for k = 1, V ′′(R0) < 0, recovering
the well known result that the Einstein static closed universe is unstable under perturbations. This result confirms the
expectations. For the static Einstein universe a small increase in the radius of the universe means less gravitational
field due to matter and more cosmological repulsion field from Λ, so it is a runaway expanding unstable solution,
and reversing the argument for a small decrease in the radius one finds a runaway contracting unstable solution. So,
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Figure 6. Carter-Penrose diagram of the Einstein static closed universe. The vertical lines represent the two poles of the
sphere. The radial coordinate r̄ related to the area defined by it, namely, r̄ = R sin

(
r
R

)
, is the radial coordinate used in the

diagram. One pole is situated at the origin with r̄ = 0. The other pole has also r̄ = 0. The two lines denoted by R constitute
the equatior. The hash symbol # represents the connected sum of the spacetime manifold. The symbols i− and i+ represent
past and future causal infinity, respectively.

although it obeys the energy conditions and is a priori not problematic, it is unstable, giving rise to an expanding
bubble universe.

This Einstein static closed universe is well known. It was extremely important in initiating the science of cosmology.
The requirement that the boundary conditions on the gravitational field should be finite and consistent led to a closed
universe, which in turn was also relevant to make the point that general relativity could be Machian, i.e., that geometry
and inertia would arise solely from matter. The requirement that the universe should be static, as was thought at
the time, yielded a new constant to physics, the cosmological constant. The corresponding cosmological term added
to the original general theory of relativity provided in turn the first modified gravitational theory.

We can now make a comparison between the Minkowski-Minkowski static closed universe and the Einstein universe.
Although the two universes are, of course, totally distinct solutions of the general relativistic field equations, there are
differences and also striking similarities between them. In relation to the matter properties, the Minkowski-Minkowski
closed universe is highly nonuniform, it is vacuum everywhere except at a thin shell with circumferential radius R,
made of a perfect fluid with a positive energy density σ and a positive, repulsive, pressure p to hold it static against
gravitational collapse or expansion. The Einstein universe, with characteristic radius R, is uniform, permeated by
a fluid with a positive energy density ρ and a repulsive cosmological constant to hold it static against gravitational
collapse or expansion. Thus, both universes obey the energy conditions, they have positive densities and have some
form of pressure, negative tangential shell pressure in one case and positive cosmological constant pressure in the
other case, to hold them static. In relation to the geometric and causal properties, one can compare the figures
drawn, namely, a t = constant and θ = π

2 slice of the Minkowski-Minkowski closed universe and the corresponding
Carter-Penrose diagram shown in Figs. 1 and 2, respectively, and a t = constant and θ = π

2 slice of the Einstein closed
universe and the corresponding Carter-Penrose diagram shown in Figs. 5 and 6. The comparison leads to the conclusion
that the two universes have an evident similar causal structure. The Minkowski-Minkowski closed universe models a
universe with squashed spherical spatial sections such that the total spacetime is a squashed 4-cylinder with R × S3,
with the possibility of further identifications in S3. The Einstein closed universe models a universe with spherical
spatial sections such that the total spacetime is a 4-cylinder R × S3, with the possibility of further identifications
in S3. Both universes have thus spherical spatial topology and similar causal structures. The Minkowski-Minkowski
closed universe is the result of compressing, in a sense, the evenly distributed matter of the Einstein universe into a
thin shell leaving the rest of the spacetime empty. The Minkowski-Minkowski closed universe is stable, marginally,
and the Einstein closed universe is unstable, so, since there are no topological obstructions, a possible endpoint of the
Einstein closed universe, if perturbed at constant universe radius, could be the Minkowski-Minkowski closed universe.



19

2. Friedmann static hyperbolic open universe: A failed wormhole

The Friedmann static universe is a solution of the general theory of relativity for a dust source with negative energy
density ρ, pressure p equal to zero, a negative cosmological constant Λ, and negative curvature k = −1. In spacetime
hyperspherical coordinates (t, r, θ, φ) it is characterized by the line element given in Eq. (29) with k = −1, i.e.,

ds2 = −dt2 + dr2 + R2 sinh2
( r

R

)
dΩ2 , (44)

where t is the time coordinate, r is the radial coordinate with 0 ≤ r < ∞, and dΩ2 ≡ dθ2 + sin2 θdφ2, with θ and
φ being the spherical angular coordinates, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. In addition, R is a positive scale factor
which here is a constant, and which gives the characteristic radius of the universe. The Ricci scalar for the Friedmann
universe is given by R = − 6

R2 , so the Friedmann universe is a negative constant curvature spacetime. Clearly it is
a static hyperbolic spacetime, and so an open universe. Now we turn to the properties of the matter in the static
Friedmann universe. Assuming a perfect fluid made of dust, i.e., the matter has energy density ρ and pressure p = 0,
the Einstein field equations with negative cosmological constant Λ for the line element given in Eq. (44) yield

ρ = − 1
4πR2 , (45)

Λ = − 1
R2 , (46)

see Eqs. (30) and (31) with k = −1. Note that ρ − Λ
4π = 0, see Eq. (32), and so Λ being negative is attractive

everywhere, and thus assumes the function of a tension that acts against the gravitational push of the matter specified
by a negative energy density ρ. This system can be seen as a two fluid system, one fluid with negative energy densityρ,
the other fluid, a vacuum fluid, with negative energy density ρ̄ = Λ

8π and tension p̄ = − Λ
8π such that ρ + ρ̄ + 3p̄ = 0.

The matter energy conditions are violated. The volume of this hyperbolic universe, in its open form, is V = ∞ and
its mass is also infinite.

Figure 7. Embedding diagram of a t = constant and θ = π
2 slice of the Friedmann static open universe in 3-dimensional

Minkowski space. The radial coordinate r̄ related to the area defined by it, namely, r̄ = R sinh
(

r
R

)
, is the radial coordinate

used in the diagram. This coordinate runs from 0 at one pole, to infinity, passing through R a some point, and the same at the
other pole, it runs from 0, to infinity, passing through R a some point, with R being the characteristic radius of the Friedmann
static universe. The poles are at the origin which is common to both branches, sheets, or branes of the spacetime, although
this cannot be seen explicit in the embedding. The branches are separated, and the solution is a failed wormhole. Indeed, there
are two disconnected spacetimes almost connected at r̄ = 0.

The spatial and causal structure of the spacetime can also be presented. Considering a time slice t = constant
of the spacetime gives two copies of the hyperbolic 3-space. To see this, one makes an embedding. The hyperbolic
3-space cannot be embedded in the 4-dimensional Euclidean space, but it can be embedded to an open region of the
4 dimensional Minkowski spacetime. Defining the Minkowski coordinates (w, x, y, z), where w is a time coordinate
and (x, y, z) are spatial coordinates, as w = R cosh r

R , x = R sinh r
R sin θ cos ϕ, y = R sinh r

R sin θ sin ϕ, and z =
R sinh r

R cos θ, the line element of the embedded surface is given by ds2 = −dw2 + dx2 + dy2 + dz2, and the surface
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verifies the equation w2 − x2 − y2 − z2 = R2. So the surface, which represents a time slice of the Friedmann static
universe, is in fact given by two copies of a 3-dimensional hyperboloid. To visualize the embedding, one makes a
θ = π

2 slice, i.e., z = 0 in the Minkowski coordinates. In Fig. 7 we show an embedding for the static hyperbolic open
Friedmann universe. Clearly there are two sheets, i.e., the universe has two branes, the two copies of the Friedmann
static universe. Notice that we opted to map the two asymptotic flat regions to open sets of the future and past
light cones to show both regions, although one should bear in mind that, first, this has no physical relevance as both
regions are equivalent and, second, this has no relation with time reversal. Moreover, admitting it might not be
clear from the embedding diagram, the vertices of the hyperbolas are identified as the same point hence, the static
hyperbolic Friedmann universe can also be seen as a model of a failed wormhole where two asymptotic flat regions
have a common point with circumferential radius R sinh r

R = 0, i.e., r = 0, so that the wormhole’s throat is a point,
a zero measure set. Since the two hyperboloid branes are independent there is indeed no wormhole, it is a failed
wormhole. By making appropriate identifications each of the two open infinite sheets turns into some closed 3-space,
in which case the volume of such a universe would be finite. In Fig. 8 we show the causal structure of the resulting
spacetime in a Carter-Penrose diagram. We use the hash symbol # to represent the connected sum of the spacetime
manifolds in order to conserve the conformal structure in the Carter-Penrose diagram of the total spacetime. We
see that it represents a universe in which the spatial sections are two copies of a 3-hyperboloid. The Friedmann
hyperbolic universe is a spacetime composed of time times hyperbolic 3-space, actually two copies of it. A geodesic,
or a free-falling particle, initially moving in the upper brane in the direction of decreasing radial coordinate would
reach r = 0 and would continue until it reaches infinity, without interacting with a mirror geodesic, or a mirror
free-falling particle, initially moving in the lower brane in the direction of decreasing radial coordinate reaching the
same r = 0 and continuing until it reaches the infinity of its own brane.

Figure 8. Carter-Penrose diagram of the Friedmann static open universe. The vertical lines represent the poles of each
hyperboloid branch, r̄ = 0, where r̄ is the radial coordinate related to the area defined by it, namely, r̄ = R sinh

(
r
R

)
. There

is no hash symbol # here because the two spacetimes are disconnected, no geodesic can pass from one spacetime to the other.
The symbols i−, i0, and i+ represent past timelike infinity, spatial infinity, and future timelike infinity, respectively, and the
symbols I − and I +, represent past and future null infinity, respectively. The timelike line R is drawn to call attention that
the Friedmann static open universe has a characteristic intrinsic radius.

The Friedmann static open universe is stable. Indeed, from Eq. (40) one has that for k = −1, V ′′(R0) > 0. This
result confirms the expectations. For the static Friedmann universe, a small increase in the radius of the universe
means less gravitational field due to matter with negative energy density, so less repulsion, and more cosmological
tension field from Λ, so the universe oscillates around the original radius in a stable situation.

This open static universe proposed by Friedmann came after a suggestion by Fock, and was worked out by Friedmann
before introducing, in the same paper, the new expanding time-dependent hyperbolic solutions. Friedmann’s main
motivation for presenting it was that the solution represented the other side of Einstein’s static universe, the two
solutions, Einstein’s and Friedmann’s, are indeed complementary to each other. It is a much forgotten universe.
Since this static solution has a negative energy density and a negative cosmological constant, and violates all energy
conditions, it seemed a physically inadmissible strange universe that could hardly captured any attention. This
prejudice against solutions that violate the energy conditions came to an end when traversable wormholes, systems
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that violate several energy conditions, jumped into the limelight. We see here that the Friedmann static universe is
a wormhole, albeit a failed one. Moreover, although the solution does not obey the energy conditions, Friedmann’s
static universe is interestingly stable. Thus, Friedmann had a prescient foresight in contemplating working out in
detail the mathematics of this static solution.

We can now make a comparison between the Minkowski-Minkowski static open universe, or traversable wormhole,
and the Friedmann static hyperbolic universe, or failed wormhole. Although the two universes are, of course, totally
distinct solutions of the general relativistic field equations, there are both differences and similarities between them,
although the smiliarites here are not so compelling. In relation to the matter properties, the Minkowski-Minkowski
open universe, i.e., the traversable wormhole universe, is highly nonuniform, it is vacuum everywhere except at a thin
shell throat with circumferential radius R, made of a perfect fluid with a negative energy density σ and a positive
pressure p to hold it static. The Friedmann static open universe with characteristic radius R is uniform, permeated
by a fluid with a repulsive negative energy density ρ and a negative, attractive, cosmological constant Λ to hold it
static. Thus, both spacetimes violate the energy condition, they have negative energy densities and have some form
of pressure, positive tangential shell pressure in one case and negative cosmological constant pressure in the other
case, to hold them static. In relation to the geometric and causal properties, one can compare the figures drawn,
namely, a t = constant and θ = π

2 slice of the Minkowski-Minkowski open universe, or traversable wormhole, and the
corresponding Carter-Penrose diagram, shown in Figs. 3 and 4, respectively, and a t = constant and θ = π

2 slice of the
Friedmann open universe, or failed wormhole, and the corresponding Carter-Penrose diagram shown in Figs. 7 and 8.
The comparison leads to the conclusion that the two universes have some similarities. Both universes for large radii
have two distinct open sheets, although the circumferential radius in the Minkowski-Minkowski open universe is finite
not zero, and so composes a traversable wormhole, whereas in the Friedmann static open universe the circumferential
radius goes to zero, and the wormhole fails to happen. The bare geometrical structure of the two universes is different,
the Minkowski-Minkowski open universe has geometry R × Σ, where Σ is a 3-space with nontrivial topology, and the
Friedmann static open universe has geometry R×H3, with negative curvature in the two copies of the spatial sections.
The Minkowski-Minkowski open universe could be thought of as being the result of compressing, in a sense, the evenly
distributed matter of the Friedmann static universe into a thin shell at some throat radius leaving the rest of the
spacetime empty. The Minkowski-Minkowski open universe is stable, marginally, and the Friedmann open universe
is stable. But here there are topological obstructions, one universe is connected, although not simply connected, the
other universe is disconected, it has two separate branches, and so one cannot pass from one universe to the other
without changing the topology.

C. Einstein and Friedmann static universes: One concept with two sides

The Einstein and Friedmann static universes can be seen as complementary to each other, i.e., they are two sides
of the same concept. The concept, i.e., a collection of static constant curvature homogeneous universes, yields on one
side of the concept a closed universe, a bubble universe, and on the other side of the concept an open universe which
is a failed wormhole. The formalism presented in analyzing the two universes is well suited to show this point. From
an algebraic point of view, one side of the concept is given by k = 1, the other side is given by k = −1, where k is a
characteristic that gives how space curves, positively in one case, negatively in the other, respectively. This algebraic
side appears clearly in the evaluation of the matter properties as displayed in Eqs. (30) and (31). More formally, to
implement the idea of a closed universe, i.e., a bubble universe, and an open universe, i.e., a failed wormhole, one
uses the equations of general relativity. For one universe one picks up k = 1, a 3-dimensional sphere. For the other
universe one picks up k = −1, a 3-dimensional hyperboloyd. From a matter point of view the two universes show a
form of complementarity, as for k = 1 the matter obeys the energy conditions while for k = −1 the matter violates
the energy conditions. From a geometrical point of view, the two sides of the concept appear when one picks up a
manifold spacetime and at constant time imposes a space with constant curvature. One side is for positive curvature,
a bubble universe, the other side for negative curvature, a failed wormhole. Comparison of Fig. 5 with Fig. 7 for a
spatial geometrical representation of the bubble universe and the traversable wormhole, respectively, displays some
complementarity of the two spaces, which can be further strengthened with the comparison of the spacetime drawings
in the form of Carter-Penrose diagrams, given in Fig. 6 and in Fig. 8, respectively. From a stability point of view we
have seen that one universe is stable and the other unstable, showing thus some form of complementarity.

So, that the two spacetimes, Einstein and Friedmann, demonstrate that they can be seen as complementary to
each other, i.e., they are two sides of the same concept, is clear. It can be raised that the bubble universe has matter
that obeys the energy conditions, whereas the failed wormhole has matter that does not obey. This is true, but again
there is no real problem. In an early era of the Universe, when quantum gravity dominates, there is no necessity of
obeyance to the classical energy conditions and the closed and open universes, created as bubble universes and failed
wormholes. out of the spacetime foam they must coexist together. Some kind of inflation would grow these objects to
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macroscopic dimensions, making bubble universes and traversable wormholes distinct, but connected, objects, some
obeying the energy conditions and being unstable, like the Eisntein universe, others not obeying the energy conditions
but being stable, like the Friedmann static universe.

IV. CONCLUSIONS: BUBBLE UNIVERSES AND TRAVERSABLE WORMHOLES, TWO SIDES OF
ONE CONCEPT

We have analyzed the possible universes that can be built from a junction of two Minkowski spacetimes through a
static, timelike thin matter shell. Taking aside the trivial Minkowski flat universe with no shell, there are two such
universes. One is a static closed universe with a spherical thin shell with positive energy density and negative pressure
that joins two Minkowski balls, i.e., it is the Minkowski-Minkowski closed universe, a bubble universe. The other
universe is a static open universe with a spherical thin shell with negative energy density and positive pressure that
joins two Minkowski asymptotic sheets, it is the Minkowski-Minkowski open universe, or traversable wormhole. We
have seen that they can be seen as complementary to each other. More specifically, they are two sides of one concept,
the concept being the collection of nontrivial Minkowski-Minkovski spacetimes, with one side given by 1

2 (ξi − ξe) = 1,
the other side given by 1

2 (ξi − ξe) = −1, where ξi and ξe characterize the relative direction of the interior and exterior
normals to the shell, respectively.

We have analyzed the possible universes that can be built from static homegeneous pressurless matter with a
cosmological constant. There are two such universes. One is the static closed Einstein spherical universe. The other is
the static open Friedmann hyperbolic universe. We have seen that they can be seen as complementary to each other,
and, indeed, the idea of the construction of the static open universe by Friedmann was to find the complement to the
Einstein universe. More specifically, they are two sides of one concept, the concept being the collection of constant
curvature pressureless universes, with one side given by positive curvature, k = 1, the other side given by negative
curvature, k = −1.

We have also seen that the Minkowski-Minkowski closed universe, a bubble universe that has positive energy
density and pressure on the matching domain wall and thus being normal matter obeying the energy conditions, has
resemblances with the static closed Einstein universe containing homogeneous normal matter with positive energy
density, zero pressure, and positive cosmological constant, and thus also obeying the energy conditions, and that
the static open Minkowski-Minkowski universe, a traversable wormhole that has negative energy density and positive
pressure on the matching throat and thus being exotic matter violating the energy conditions, has resemblances
with the static open Friedmann universe, a failed wormhole, containing homogeneous exotic matter with negative
energy density, zero pressure, and negative cosmological constant, and thus also violating the energy conditions. The
Minkowski-Minkowski universes both are linearly stable, marginally, and the Einstein and Friedmann static universes
are linearly unstable and stable, respectively. One could think of the Minkowski-Minkowski universes as being a limit
of the homogeneous universes when all the matter of the thin shell is spread evenly throughout the universes, or vice
versa, in which case the homogeneous universes being a limit of the Minkowski-Minkowski universes when all the
matter of the homogeneous universes is put somehow into thin shells. For the Einstein universe this would be possible
classically, within general relativity, as the two universes have the same topology, and so, for constant universe radius,
the Minkowski-Minkowski closed universe could be the end point of the Einstein universe. For the Friedmann static
universe this could not be realized within general relativity, as the two universes have different topologies and so there
is no way of changing classically, and so continuously, from one into the other, although quantum jumps of one to the
other geometry might be conceivably possible.

The existence of universes and wormholes within the Universe is a tantalizing possibility allowed by the laws of
physics. Indeed, in a early cosmic era when primordial scalar and gauge fields are dominant and symmetry breaking
phase transitions naturally arise, universes may occur as bubbles within the Universe, and likewise, wormholes can
exist in the form of traversable shortcuts for distant parts of the Universe or can even connect what would be distinct
universes. Bubble universes and traversable wormholes are distinct objects. Normally, bubble universes are found
as dynamic solutions, whereas, typically, traversable wormholes are studied as static structures, but of course they
can both be static or dynamic. We have analyzed two static cases, the two Minkowski-Minkowski spacetimes and
the two static homogeneous universes, and found that these spacetimes demonstrate, in the way of example, indeed
two coupled examples that reinforce each other, that bubble universes and traversable wormholes can be seen as
complementary to each other, i.e., they are two sides of some same concept. Dynamical cases where bubble universes
and traversable wormhole are complementary to each other can also be found and studied. It is plausible that in a
quantum gravity scenario or in a scenario in which quantum gravity is weak but nonnegligible, both bubble universes
and traversable wormholes are dynamically created alike, being as well two sides of the same concept. In addition,
using this duality, one can infer that, arbitrarily advanced civilizations, with arbitrarily advanced technology to deal in
pratical terms with spacetime features, if they can build bubble universes, they can also build traversable wormholes,
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and conversely, if they are apt to build traversable wormholes, as has been often suggested, they should be apt to
build bubble universes.
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