

www.astesj.com 342

Study of latencies in ThingSpeak

Vítor Viegas*,1,2, J. M. Dias Pereira2,3, Pedro Girão2,4, Octavian Postolache2,5

1CINAV – Escola Naval, Base Naval de Lisboa, Almada, 2810-001, Portugal

2Instituto de Telecomunicações, Lisboa, 1049-001, Portugal

3ESTSetúbal/IPS, Instituto Politécnico de Setúbal, Setúbal, 2914-508, Portugal

4Instituto Superior Técnico, Universidade de Lisboa, Lisboa, 1049-001, Portugal

5ISCTE – Instituto Universitário de Lisboa, Lisboa, 1649-026, Portugal

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 12 November, 2020
Accepted: 07 January, 2021
Online: 22 January, 2021

 IoT platforms play an important role on modern measurement systems because they allow
the ingestion and processing of huge amounts of data (big data). Given the increasing use
of these platforms, it is important to characterize their performance and robustness in real
application scenarios. The paper analyzes the ThingSpeak platform by measuring the
latencies associated to data packets sent to cloud and replied back, and by checking the
consistency of the returned data. Several experiments were done considering different ways
to access the platform: REST API, MQTT API, and MQTT broker alone. For each
experiment, the methodology is explained, results are presented, and conclusions are
extracted. The REST and MQTT APIs have similar performances, with roundtrip times
between 1 s and 3 s. The MQTT broker alone is more agile, with roundtrip times below 250
ms. In all cases, the up and down links are far from being symmetric, with the uplink delay
showing higher variance than the downlink delay. The obtained results can serve as a
reference for other IoT platforms and provide guidelines for application development.

Keywords:
IoT
ThingSpeak
Latency
Delay
Measurement

1. Introduction

 Platforms for IoT (Internet of Things) have become key
components in measurement and control systems because they are
able to ingest, store and analyze huge quantities of data, on a 24/7
basis, at reasonable prices. They are hosted on the “cloud”, which
is a fancy name for data centers spread all over the world, equipped
with high bandwidth, large storage capacity, and heavy processing
power.

The term “cloud” is interesting because IoT platforms have
indeed a broader view of the physical processes, as they were
somewhere above in the sky. They have a broader view in terms of
space because they gather data from different locations, and a
broader view in terms of time because they store data persistently.
This new level of awareness has flattened the traditional five-level
automation pyramid [1] because field devices can now
communicate directly with the cloud. Intermediate levels are being

bypassed leading to an horizontal structure that is the basis of
“smart factory” and “connected manufacturing” [2], two core
concepts of “industry 4.0” [3].

Today, the cloud concentrates huge amounts of data making it
the ideal place to run large-scale data analytics. Deep leaning,
based on artificial neural networks, has benefited a lot from this
scenario because it needs lots of data (big data) to perform well.
As long as the data are good (big and diverse), deep learning is able
to find good computational models for complex processes, even
the hardest ones. With a good model in hands, new things can be
done (such as preventive maintenance, and just-in-time asset
management), and old things can be improved (such as robust
control algorithms, and automatic controller tuning). IoT platforms
play a key role in this movement because they are the “stage”
where things are happening.

IoT platforms began to be used at the top of the automation
pyramid because these levels do not need accurate timing. Typical
applications include monitoring and supervision [4]-[10], with the

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Vítor Viegas, CINAV – Escola Naval, +351210902000,
vviegas2@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 342-348 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj060139

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060139

V. Viegas et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 342-348 (2021)

www.astesj.com 343

goal of reducing or removing humans in the loop [11]. There are
also some applications for closed-loop control [12], [13], but the
constrains in terms of low-latency and real-time make harder the
penetration of IoT platforms at lower automation levels.

Whether IoT platforms are used for monitoring, supervision, or
real-time control, it is important to know how fast and reliable they
are. For that purpose, we took a well-known IoT platform – the
ThingSpeak platform [14] – and measured the time it takes to
upload a data packet and receive a reply. This so-called “roundtrip
time” is an indicator of how fast the platform is. By checking the
resemblance of both packets, outgoing and incoming, we can also
have an idea on how reliable the platform is. We chose
ThingSpeak because it is very easy to use, is open source, is free
(with some restrictions), has an active community, and provides a
comprehensive set of features, including persistent data storage,
data analytics based on MATLAB, easy access through ubiquitous
protocols, and security over SSL. For these reasons, the
ThingSpeak is one of the makers’ favorite platforms [15].

There are similar works trying to characterize experimentally
the behavior of cloud servers and IoT platforms. For example, in
[16], the author gives a tutorial on network latency measurements
using PlanetLab as testbench. He measured the roundtrip times of
mobile and non-mobile devices, connected through wireless (WiFi
and 3G) and wired (Ethernet) interfaces, while pinging five
different AWS servers spread around the world. In [17], the author
and his team studied the performance of a cloud database by
measuring the time needed to complete a writing on the database
and getting back a reaction. They used a Siemens PLC to generate
data, the IBM Cloud to store data and fire events, and an industrial
computer to catch those events, all connected through a MQTT
broker. In [18], the author measured the roundtrip time associated
to a MQTT broker when it was accessed from two different
continents (Brescia in Europe and São Paulo in South America). In
[19], the author evaluated the efficiency and roundtrip time of three
protocols commonly used in IoT, namely CoAP (constrained
application protocol), WebSockets, and MQTT (message queue
telemetry transport). In [20], the author made a quantitative
performance analysis of the CoAP and MQTT protocols over
various conditions of network capacity, packet loss probability,
and link delay. In all these works, a substantial effort was put in
characterizing experimentally the behavior of cloud services and
the protocols used to access them.

The remaining of this paper is organized as follows: section 2
gives an overview of the ThingSpeak platform; sections 3 and 4
analyze the latencies of the ThingSpeak platform when it is
accessed through two different application programming
interfaces (API); section 5 focus on the ThingSpeak MQTT broker
alone; section 6 discusses the obtained results; and section 7
extracts conclusions.

2. ThingSpeak

The ThingSpeak platform provides resources to store and
process data in the cloud. The data are accessed through two well
documented APIs: a REST API [21] that communicates over
HTTP and follows the request-response model; and a MQTT API
[22] that communicates over TCP/IP and follows the publish-
subscribe model. Both APIs support authentication through unique
read/write keys, but only the REST API supports data encryption

through HTTPS. The REST API works well for one-to-one
communications, while the MQTT API is best suited for one-to-
many communications. The ThingSpeak MQTT broker only
supports QoS = 0 (equivalent to “deliver at most once” or “fire-
and-forget”).

The ThingSpeak platform organizes information in data
channels. Each channel includes eight fields that can hold any data
type, plus three fields for location, and one field for status. Each
channel is also characterized by a unique ID, a name, and a free
description. It is not possible to access the fields individually; all
read/write operations are made at the channel level to optimize
remote calls. All incoming data receive a sequential ID and a
timestamp (with a 1 second resolution). Channels are private by
default, but they can also be made public in which case no read key
is required. Channels are provided at no charge for non-
commercial projects as long as they require no more than 8200
messages/day (~5 messages/minute).

The ThingSpeak provides the following resources to control
the dataflow:

• React: Executes an action when stored data meet a certain
condition (e.g. when a given field of a given channel crosses
a given threshold). The action can be as simple as the
execution of a script or the issue of a remote message over
HTTP.

• TimeControl: Orders the execution of an action once at a
specific time, or periodically on a regular schedule, much like
a software timer. The TimeControl supports the same actions
as the React.

• ThingHTTP: Is a remote call over HTTP, useful to
communicate with remote entities such as devices, websites,
and web services.

Figure 1: Dataflow inside the ThingSpeak platform

 The ThingSpeak platform relies on MATLAB scripts to
process stored data. Scripts can be associated to a TimeControl to
run one-time or periodically, or to a React to run whenever a given
condition is met. Scripts can use the MATLAB toolboxes listed in
[23], as long as the user logs into ThingSpeak using its MathWorks
account and is licensed to use them. This opens the door to
powerful data analytics, supported by robust and well-known
software libraries. The results can be visualized on the web,
directly from the ThingSpeak site, through ready-to-use charts.
The visualization experience can also be enriched with custom
widgets and MATLAB plots.

http://www.astesj.com/

V. Viegas et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 342-348 (2021)

www.astesj.com 344

 Figure 1 shows the dataflow through the ThingSpeak platform.
Data are ingested, stored in a database, and (optionally) analyzed
by scripts that run periodically or when a given condition is met.
Messages can be sent to third-party applications by a pre-
configured ThingHTTP, or by a pre-programmed script using
MATLAB functions. The present work focusses on measuring the
time it takes to upload data and receive a reply, assuming no
processing is made in the interim.

3. ThingSpeak accessed through the REST API

 In this section we analyze the performance of the ThingSpeak
platform when it is accessed through the REST API. We first
explain the methodology used to measure latencies and then we
present results.

3.1. Methodology

 To measure REST API latencies, we built the closed data path
shown in Figure 2, which includes the following stages (the
numbers in the list correspond to the numbers in the drawing):

1. LabVIEW application: Is a custom application that runs on
our local machine. It makes HTTP calls to the ThingSpeak
server, collects the replies, and computes the time elapsed.
Each call is a GET request that uploads an order number (n)
that is incremented to identify the request. The timestamp of
the request (tn0) is registered to serve as reference for the
roundtrip time.

2. ThingSpeak channel (name = TestChannel; ID = 515584;
access = private): The channel contains a single field (Field1)
to store the order number uploaded by the LabVIEW
application.

3. React (condition type = numeric; test frequency = on data
insertion; condition = TestChannel.Field1 ≥ 0; run = each time
the condition is met): A reaction is fired each time a positive
order number is received (which is always because n is an
unsigned integer). The reaction instructs the MATLAB script
to run (see below).

4. MATLAB script: Collects the timestamp at the ThingSpeak
server and makes an HTTP call back to the local machine. As
shown in Figure 3, the script is programmed to make a POST
request to a web service running on the same machine as the
LabVIEW application. The request sends back the order
number and the timestamp at the ThingSpeak server (τn).

5. Router: Accesses from the local machine to an external server
are inherently safe and the router forwards them transparently.
However, connections in the opposite direction are potentially
dangerous and are blocked by default. To overcome this
problem, we had to forward port 80 on the local router, so that
POST requests coming from the ThingSpeak server reach the
LabVIEW web service. In other words, we had to expose the
LabVIEW web service to the internet.

6. LabVIEW web service: Is a stateless routine that receives a
POST request, extracts the attached order number (n) and
timestamp (τn), and registers the timestamp of the reply (tn1).
The triplet (n, τn, tn1) is then sent back to the LabVIEW
application by means of a UDP socket. The web service is

hosted by the NI Application Web Server running on port 80
of the local machine.

(n, τn, tn1), adds the first timestamp
(tn0), and writes the quartet (n, tn0, τn, tn1) into the output file
for further processing.

Figure 3: MATLAB script. The reading key of the channel and the IP address of

the LabVIEW web service were erased for privacy

 The LabVIEW application and the LabVIEW web service run
both on our local machine (Intel i7-8550 CPU @ 1.80 GHz, RAM
16 GB, SSD 512 GB, NVIDIA GeForce MX150). The machine
connects to an Ethernet port of a general-purpose router (model
HS8247W from Huawei), which accesses the internet through a
fiber optic link provided by Vodafone Portugal.

The LabVIEW application uploads order umbers (n) at
multiples of 20 seconds to respect ThingSpeak free account
limitations. On the nth upload, the quartet (n, tn0, τn, tn1) is saved
on the nth line of the output file. Thus, it is possible to record the
timelines shown in Figure 4, where the τ axis represents the
timeline of the ThingSpeak server, and the t axis represents the
timeline of the local machine. Of course, the two timelines are not

http://www.astesj.com/

V. Viegas et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 342-348 (2021)

www.astesj.com 345

aligned because the clocks of the two systems are not
synchronized. Yet, we can extract the following quantities from
these timelines:

𝑅𝑅𝑅𝑅𝑛𝑛 = 𝑡𝑡𝑛𝑛1 − 𝑡𝑡𝑛𝑛0 (1)

𝑑𝑑∆𝑛𝑛= ∆𝑛𝑛+1 − ∆𝑛𝑛= (𝜏𝜏𝑛𝑛+1 − 𝜏𝜏𝑛𝑛) − �𝑡𝑡(𝑛𝑛+1)0 − 𝑡𝑡𝑛𝑛0� (2)

𝑑𝑑𝑑𝑑𝑛𝑛 = 𝛿𝛿𝑛𝑛+1 − 𝛿𝛿𝑛𝑛 = �𝑡𝑡(𝑛𝑛+1)1 − 𝑡𝑡𝑛𝑛1� − (𝜏𝜏𝑛𝑛+1 − 𝜏𝜏𝑛𝑛) (3)

(b)

Figure 5: Roundtrip times of the REST API: a) plot; b) histogram

3.2. Results

 We ran the closed loop illustrated in Figure 2 for 1080 times,
from n=0 to n=1079, waiting approximately 20 seconds on each
iteration. This number (1080) was a compromise between having
statistically relevant results and limiting the test to a reasonable

amount of time (almost six hours). Figure 5a shows the measured
roundtrip times, and Figure 5b shows the corresponding histogram.
The order number (n) was always replied correctly, which attests
the robustness of the ThingSpeak platform.

Figure 5b we see that the roundtrip time has a heavy-
tailed distribution, which is characteristic of multipath
communication mediums as the Internet. The authors in [24] report
similar results and suggest a lognormal distribution for the
experimental data. In our case, we got mode = 1,66 s and a
roundtrip time that is less than 2.9 s with a probability of 80%.

(b)

Figure 6: Difference between consecutive delays: a) uplink; b) downlink

Nevertheless, every 10 min (around 30 points) the roundtrip
time increases very sharply up to tens of seconds, suggesting that
the ThingSpeak platform stores data in temporary buffers, which,
from time to time, are flushed and processed.

 Figure 6 shows the difference between consecutive delays on
the uplink and downlink directions. The differences are positive
and negative because a higher delay on one iteration discounts on
the next iteration. As expected, the uplink delay (∆) is less stable
than the downlink delay (δ) because the upload process is more
complex than the reply (in terms of ThingSpeak internals).

If we suppose that consecutive uplink delays are statistically
independent, which makes sense because they correspond to
different iterations, then the variance of the difference (d∆ or dδ)
will be twice of the variance of the variable itself (∆ or δ).
Therefore, if we compute the variances Var(d∆) and Var(dδ) from
the data of Figure 6, and divide the result by two, we get the
variances of the delays: Var(∆) = 37.52 s2 and Var(δ) = 7.29 s2.
Applying the squared root, we get the standard deviations: σ∆ =
6.13 s and σδ = 2.70 s.

 Finally, it is very difficult to infer about the mean value of the
uplink and downlink delays because the clocks of the two systems

http://www.astesj.com/

V. Viegas et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 342-348 (2021)

www.astesj.com 346

are not synchronized and, equally important, the two links are far
from being symmetric.

4. ThingSpeak accessed through the MQTT API

 built the closed data path shown in
Figure 7, which is like that of Figure 2 with the difference that the
order numbers are uploaded through the MQTT broker. The
LabVIEW application was changed to publish order numbers (n)
using a compatible MQTT driver [25]. The quartets (n, tn0, τn, tn1)
were collected and saved into the output file as before.

(b)

Figure 8: Roundtrip times of the MQTT API: a) plot; b) histogram

 We ran the closed loop 1080 times waiting approximately 20
seconds on each iteration. Figure 8a shows the measured roundtrip
times, and Figure 8b shows the corresponding histogram. Again,
the order number (n) was always replied correctly, with no
mismatches or timeouts. From the graphs, we see that the roundtrip
time follows a lognormal distribution with mode = 1,13 s and
values below 2,8 s with a probability of 80%. We also see outliers
coming every 10 min (as we saw in the REST API), suggesting
that internal mechanisms of buffering and batch processing also
apply to the MQTT API.

 The random variables d∆ and dδ were also computed as before.
The corresponding variances were extracted and divided by two,
leading to Var (∆) = 51.53 s2 and Var (δ) = 5.99 s2. Applying the
squared root, we got the standard deviations of the uplink and
downlink delays: σ∆ = 7.18 s and σδ = 2.45 s.

5. MQTT broker alone

 To analyze the performance of the MQTT broker alone we
closed the loop without passing through the ThingSpeak server, as
shown in Figure 9. The LabVIEW application was changed to
publish order numbers (n) and subscribe the replies using the
MQTT driver previously mentioned. In this case, only the triplets
(n, tn0, tn1) were collected because the timeline of the ThingSpeak
server (τ axis) is not available.

 We ran the closed loop 1080 times waiting approximately 20
seconds on each iteration. Figure 10.a shows the measured
roundtrip times, and Figure 10.b shows the corresponding
histogram. As always, the order number (n) was always replied
correctly, with no mismatches or timeouts. From the graphs, we
see that the roundtrip time follows a lognormal distribution with
mode = 0.189 s, and values below 0,250 s with a probability of
80%. We also see that the outliers observed in the previous tests
have almost disappeared. This shows that the MQTT broker is
more expeditious than the ThingSpeak server, probably because its
buffering and processing needs are much less demanding.

6. Results and Discussions

Table 1 summarizes the latencies measured during all the
experiments. From these results we can extract the following
conclusions:

• The REST and MQTT APIs have similar performances
with a slightly advantage for the MQTT API. In both cases,
the roundtrip time was typically between 1 s and 3 s.

• The ThingSpeak server has internal mechanisms of
buffering and batch processing that, periodically, introduce
extraordinary delays. These mechanisms seem to be absent
from the MQTT broker.

• The MQTT broker is very agile in distributing publications,
with roundtrip times typically below 250 ms.

• The up and down links are far from being symmetric. The
uplink is more complex since it has a higher variance.

• The tests lasted for several hours and were made in
different days and in different times of the day, suggesting
that the behavior of the ThingSpeak platform is time
independent.

http://www.astesj.com/

V. Viegas et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 342-348 (2021)

www.astesj.com 347

A final word about robustness: the order number (n) was never
lost or corrupted, proving that the ThingSpeak is reliable, even for
free accounts.

Figure 9: Data loop through the MQTT broker only

(a)

(b)

Figure 10: Roundtrip times of the MQTT broker alone (a) plot (b) histogram

Table 1: Experimental characterization of the ThingSpeak platform

 REST
API

MQTT
API

MQTT
broker

Roundtrip time Min (s) 1.25 0.86 0.158
Mean (s) 3.28 3.27 0.243

Mode (s) 1.66 1.13 0.189
80th percentile (s) 2.90 2.80 0.250

Uplink delay Std. dev. (s) 6.13 7.18 ---
Downlink delay Std. dev (s) 2.70 2.45 ---

7. Conclusions

The paper reported the studies carried on the ThingSpeak
platform to evaluate its responsiveness and reliability. We
measured the time needed for a data packet to loop back through
the platform, and we verified if its content has been corrupted
during the trip. Tests were made for all access mediums (REST
API, MQTT API and MQTT alone) covering periods of six hours.

We saw that the REST and MQTT APIs have similar
performance with typical roundtrip times between 1s and 3s. We
observed repetitive outliers that suggest that the ThingSpeak server
has periodic mechanisms of buffering and batch processing. The
MQTT broker alone did not show such outliers and performed
significantly faster. In terms of reliability, no data was lost or
corrupted.

We hope that the obtained results can serve as a reference for
other IoT platforms and provide guidelines for application
development.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] “ANSI/ISA-95.00.03-2013 Enterprise-Control System Integration - Part 3:
Activity Models of Manufacturing Operations Management”

[2] R. Burke et al., “The smart factory - Responsive, adaptive, connected
manufacturing,” Deloitte Insights,
https://www2.deloitte.com/us/en/insights/focus/industry-4-0/smart-factory-
connected-manufacturing.html (accessed on 6 Oct. 2020).

[3] K. Schwab, “The fourth industrial revolution - What it means and how to
respond,” Foreign Affairs, 12 Dec. 2015,
https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-
revolution (accessed on 6 Oct. 2020).

[4] J. Delsing, F. Rosenqvist, O. Carlsson, A. W. Colombo and T. Bangemann,
“Migration of industrial process control systems into service oriented
architecture,” IECON 2012 - 38th Annual Conference on IEEE Industrial
Electronics Society, Montreal, QC, 2012, 5786-5792, doi:
10.1109/IECON.2012.6389039.

[5] T. Hegazy and M. Hefeeda, “Industrial automation as a cloud service,” in
IEEE Transactions on Parallel and Distributed Systems, 26(10), 2750-2763,
1 Oct. 2015, doi: 10.1109/TPDS.2014.2359894.

[6] R. Langmann and L. Meyer, “Automation services from the cloud,” 2014
11th International Conference on Remote Engineering and Virtual
Instrumentation (REV), Porto, 2014, 256-261, doi:
10.1109/REV.2014.6784271.

[7] H. Sequeira, P. Carreira, T. Goldschmidt and P. Vorst, “Energy cloud: Real-
time cloud-native energy management system to monitor and analyze energy
consumption in multiple industrial sites,” 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, London, 2014, 529-534, doi:
10.1109/UCC.2014.79.

[8] O. Givehchi, J. Jasperneite, “Industrial automation services as part of the
cloud: first experiences,” 2013 Jahreskolloquium Kommunikation in der
Automation (KommA 2013), Magdeburg, Germany, 2013.

[9] O. Givehchi, H. Trsek and J. Jasperneite, “Cloud computing for industrial
automation systems - A comprehensive overview,” 2013 IEEE 18th
Conference on Emerging Technologies & Factory Automation (ETFA),
Cagliari, 2013, 1-4, doi: 10.1109/ETFA.2013.6648080.

[10] A. Ito, T. Kohiyama, K. Sato, F. Tamura, “IoT-ready industrial controller
with enhanced data processing functions,” in Hitachi Review, 67(2), 208-
209, Feb. 2018.

[11] J. Pretlove, C. Skourup, “Human in the loop,” ABB Review 1/2007.
[12] L. Wang and A. Canedo, “Offloading industrial human-machine interaction

http://www.astesj.com/
https://www2.deloitte.com/us/en/insights/focus/industry-4-0/smart-factory-connected-manufacturing.html
https://www2.deloitte.com/us/en/insights/focus/industry-4-0/smart-factory-connected-manufacturing.html
https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution
https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution
https://doi.org/10.1109/IECON.2012.6389039
https://doi.org/10.1109/TPDS.2014.2359894
https://doi.org/10.1109/REV.2014.6784271
https://doi.org/10.1109/UCC.2014.79
https://doi.org/10.1109/ETFA.2013.6648080

V. Viegas et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 342-348 (2021)

www.astesj.com 348

tasks to mobile devices and the cloud,” Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), Barcelona, 2014,
1-4, doi: 10.1109/ETFA.2014.7005249.

[13] O. Givehchi, J. Imtiaz, H. Trsek and J. Jasperneite, “Control-as-a-service
from the cloud: A case study for using virtualized PLCs,” 2014 10th IEEE
Workshop on Factory Communication Systems (WFCS 2014), Toulouse,
2014, 1-4, doi: 10.1109/WFCS.2014.6837587.

[14] “About ThingSpeak,” https://thingspeak.com (accessed on 11 Oct. 2020).
[15] “Top IoT platforms for makers,” https://ubidots.com/blog/top-iot-platforms/

(accessed on 30 Oct. 2020).
[16] Minseok Kwon, “A tutorial on network latency and its measurements,” in

Enabling Real-Time Mobile Cloud Computing through Emerging
Technologies, IGI Global, 2015, 272-293, doi: 10.4018/978-1-4666-8662-
5.ch009.

[17] Paolo Ferrari, Emiliano Sisinni, Alessandro Depari, Alessandra Flammini,
Stefano Rinaldi, Paolo Bellagente, Marco Pasetti, “On the performance of
cloud services and databases for industrial IoT scalable applications,” in
Electronics 2020, 9(9), 1435, doi: 10.3390/electronics9091435.

[18] P. Ferrari, E. Sisinni, D. Brandão and M. Rocha, “Evaluation of
communication latency in industrial IoT applications,” 2017 IEEE
International Workshop on Measurement and Networking (M&N), Naples,
2017, pp. 1-6, doi: 10.1109/IWMN.2017.8078359.

[19] S. Mijovic, E. Shehu and C. Buratti, “Comparing application layer protocols
for the Internet of Things via experimentation,” 2016 IEEE 2nd International
Forum on Research and Technologies for Society and Industry Leveraging a
better tomorrow (RTSI), Bologna, 2016, 1-5, doi:
10.1109/RTSI.2016.7740559.

[20] M. Collina, M. Bartolucci, A. Vanelli-Coralli and G. E. Corazza, “Internet
of Things application layer protocol analysis over error and delay prone
links,” 2014 7th Advanced Satellite Multimedia Systems Conference and the
13th Signal Processing for Space Communications Workshop
(ASMS/SPSC), Livorno, 2014, 398-404, doi: 10.1109/ASMS-
SPSC.2014.6934573.

[21] “REST API,” https://www.mathworks.com/help/thingspeak/rest-api.html
(accessed on 6 Oct. 2020).

[22] “MQTT API,” https://www.mathworks.com/help/thingspeak/mqtt-api.html
(accessed on 6 Oct. 2020).

[23] “Access MATLAB Add-On Toolboxes,”
https://www.mathworks.com/help/thingspeak/matlab-toolbox-access.html
(accessed on 6 Oct. 2020).

[24] I. Antoniou, V.V. Ivanov, Valery V. Ivanov, P.V. Zrelovc, “On the log-
normal distribution of network traffic,” in Physica D: Nonlinear Phenomena,
167(1-2), 72-85, July 2002. doi: 10.1016/S0167-2789(02)00431-1.

[25] “mqtt-LabVIEW,” https://github.com/cowen71/mqtt-LabVIEW (accessed
on 8 Oct. 2020).

http://www.astesj.com/
https://doi.org/10.1109/ETFA.2014.7005249
https://doi.org/10.1109/WFCS.2014.6837587
https://thingspeak.com/
https://ubidots.com/blog/top-iot-platforms/
https://doi.org/10.4018/978-1-4666-8662-5.ch009
https://doi.org/10.4018/978-1-4666-8662-5.ch009
https://doi.org/10.3390/electronics9091435
https://doi.org/10.1109/IWMN.2017.8078359
https://doi.org/10.1109/RTSI.2016.7740559
https://doi.org/10.1109/ASMS-SPSC.2014.6934573
https://doi.org/10.1109/ASMS-SPSC.2014.6934573
https://www.mathworks.com/help/thingspeak/rest-api.html
https://www.mathworks.com/help/thingspeak/mqtt-api.html
https://www.mathworks.com/help/thingspeak/matlab-toolbox-access.html
https://doi.org/10.1016/S0167-2789(02)00431-1
https://github.com/cowen71/mqtt-LabVIEW

	1. Introduction
	2. ThingSpeak
	3. ThingSpeak accessed through the REST API
	3.1. Methodology
	3.2. Results

	4. ThingSpeak accessed through the MQTT API
	5. MQTT broker alone
	6. Results and Discussions
	7. Conclusions
	Conflict of Interest

	References

