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Abstract: The correlation and power distribution of intercore crosstalk (ICXT) field components of
weakly coupled multicore fibers (WC-MCFs) are important properties that determine the statistics of
the ICXT and ultimately impact the performance of WC-MCF optical communication systems. Using
intensive numerical simulation of the coupled mode equations describing ICXT of a single-mode WC-
MCF with intracore birefringence and linear propagation, we assess the mean, correlation, and power
distribution of the four ICXT field components of unmodulated polarization-coupled homogeneous
and quasi-homogeneous WC-MCFs with a single interfering core in a wide range of birefringence
conditions and power distribution among the field components at the interfering core input. It is
shown that, for homogeneous and quasi-homogeneous WC-MCFs, zero mean uncorrelated ICXT
field components with similar power levels are observed for birefringence correlation length and
birefringence beat length in the ranges of [0.5 m, 10 m] and [0.1 m, 10 m], respectively, regardless of
the distribution of power between the four field components at the interfering core input.

Keywords: birefringence beat length; birefringence correlation length; intercore crosstalk; coupled-
mode equations; multicore fiber; polarization-coupled fiber; simulation; weakly coupled

1. Introduction

Intercore crosstalk (ICXT) is one of the most important physical impairments of
weakly coupled multicore fibers (WC-MCFs). The ICXT can limit the use of WC-MCFs in
modern optical communication systems (OCSs) by imposing restrictions to the transmission
distance [1], core count [2], and use of higher order modulation formats [3]. Nevertheless,
WC-MCFs have already been proven as a potential solution to improving the capacity of
next-generation OCSs using space division multiplexing [4,5] by increasing their capacities
by one order of magnitude comparatively to OCSs using singlecore fibers [5]. In fact,
very recently, experiments replicating real-use environments [6,7] and a field-deployed
testbed [8] were used to prove the effective potential of WC-MCFs.

In order to devise mitigating strategies for the effects of ICXT on the performance of
WC-MCF systems, several works have proposed ICXT models based on coupled-mode
theory and coupled-power theory to evaluate the mean ICXT power and other stochastic
parameters related to ICXT [9–19]. Relying on those models, the impact of the ICXT on the
performance of different types of OCSs were assessed [20–22]. However, although those
models have considered effects such as fiber bending, twist, and structure fluctuations
in the accumulation of ICXT along the WC-MCF, the impact of birefringence on ICXT
accumulation has been much less considered.

WC-MCFs can be classified as follows [23]: (i) polarization-coupled fibers, for which
random polarization effects dominate intercore coupling; (ii) scalar-coupled fibers, for
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which random structural fiber fluctuations effects dominate intercore coupling; and (iii)
mixed-coupled fibers, where both effects, random polarization and random structure
fiber fluctuations, are important. Up to now, the majority of studies have considered
scalar-coupled WC-MCFs and only a few studies have considered birefringence effects in
WC-MCFs [23–26].

In fact, only very recently, it was shown that random polarization-mode coupling
due to intracore birefringence can play a crucial role in explaining the ICXT accumulation
in polarization-coupled and mixed-coupled WC-MCF [23] and is closely related to the
polarization-mode dispersion [26].

The stochastic properties of ICXT power fluctuations have been broadly studied
for scalar-coupled WC-MCFs, both theoretically and experimentally. Several studies
have considered and others have shown that, for unmodulated homogeneous and quasi-
homogeneous WC-MCFs with a single interfering core and multiple interfering cores,
under quite general conditions, the four ICXT field components at the WC-MCF output are
uncorrelated gaussian components with zero mean and balanced power [11,19,27]. Hence,
the ICXT power fluctuations can be modelled by a chi-square

(
χ2) distribution with four

degrees of freedom [11,19,27].
For polarization-coupled WC-MCFs, a preliminary study of the probability density

function (PDF) of the ICXT power fluctuations has been presented [23] where a χ2 distri-
bution with four degrees of freedom has been shown using numerical simulation for a
homogeneous WC-MCF and two pairs of values of birefringence correlation length and
birefringence beat length. This shows that, for polarization-coupled WC-MCFs, at least
for some specific conditions, the four ICXT field components are zero mean uncorrelated
gaussian-distributed. In this context, it is relevant to assess when the mean, the corre-
lation, and the power distribution of the ICXT field components hold those properties
under quite general practical conditions of birefringence in polarization-coupled homo-
geneous and quasi-homogeneous WC-MCFs. This allows us to conclude the validity of
modelling the ICXT power fluctuations by a χ2 distribution with four degrees of freedom
in polarization-coupled WC-MCFs.

In this article, the mean, correlation, and power distribution of the ICXT field com-
ponents in unmodulated polarization-coupled single-mode WC-MCFs are studied by
intensive numerical simulation, considering linear propagation and stochastic intracore
birefringence effects along a quite large range of birefringence conditions in homogeneous
and quasi-homogeneous WC-MCFs. We show that, for both homogeneous and quasi-
homogeneous WC-MCFs, the four ICXT field components are zero mean and uncorrelated
and have similar power levels for birefringence correlation length and birefringence beat
length in the ranges of [0.5 m, 10 m] and [0.1 m, 10 m], respectively.

2. ICXT Model and Computation of Mean ICXT Power in Single-Mode WC-MCFs

This section presents the model used to obtain by numerical simulation the ICXT field
of a single-mode WC-MCF considering intracore birefringence and linear propagation.
In order to focus the analysis on the statistical properties of the ICXT field generated by
each interfering core of a WC-MCF, we consider the interference between two cores only,
designated within the paper, generically, by m (interfering core) and n (interfered core).

Figure 1 shows a schematic illustration of the two-core WC-MCF cross section rep-
resenting the interfering core m (blue) with radius am, the interfered core n (red) with
radius an, the corresponding core pitch Λmn, and the cladding of the MCF with diameter
dc. The usual range of values for the WC-MCF size parameters are the following: (i) core
radius [3.8µm, 4.7µm] [17,20,28,29]; (ii) core pith [30µm, 45µm] [8,17,20,28–30]; and (iii)
core cladding diameter [125µm, 260µm] [5] (p. 22), [8,20,25,29–32].
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Figure 1. Schematic illustration of a two-core MCF cross section and the cartesian coordinates: core
m (interfering core) with radius am and core n (interfered core) with radius an, the corresponding
core pitch Λmn, and the cladding of the MCF with diameter dc.

2.1. Evolution of Interfering and Interfered Fields in a Single-Mode WC-MCF

The coupled-mode equations (CME) used to model the crosstalk between cores m
and n of a single-mode WC-MCF assuming intracore birefringence and linear propagation
along the longitudinal coordinate of the MCF, z, with the propagation constants perturbed
by fiber bending and twisting is given by [23]

dEn,x(z)
dz

= −β′c,n(z) · En,x(z)− 
βn,1(z)

2
· En,x(z)− 

βn,2(z)
2

· En,y(z)−

− κ′nm(z) · Em,x(z) (1a)

dEn,y(z)
dz

= −β′c,n(z) · En,y(z)− 
βn,2(z)

2
· En,x(z) + 

βn,1(z)
2

· En,y(z)−

− κ′nm(z) · Em,y(z) (1b)

dEm,x(z)
dz

= −β′c,m(z) · Em,x(z)− 
βm,1(z)

2
· Em,x(z)− 

βm,2(z)
2

· Em,y(z)−

− κ′mn(z) · En,x(z) (1c)

dEm,y(z)
dz

= −β′c,m(z) · Em,y(z)− 
βm,2(z)

2
· Em,x(z) + 

βm,1(z)
2

· Em,y(z)−

− κ′mn(z) · En,y(z), (1d)

where Em,p(z)
(
En,p(z)

)
with p∈{x, y} is the continuous-wave (CW) polarized fields in

core m (n) along the direction p, and =
√
−1 and κ′nm(z) = κ′mn(z) =

[
κmn(z) + κnm(z)

]
/2

with κnm(z) (κmn(z)) are the intercore mode-coupling coefficients from core m (n) to core n
(m). The average of κmn(z) and κnm(z) is considered in Equation (1) in order to guarantee
power conservation at the MCF output [12]. In the following, the index p denotes the
polarized field directions x and y, i.e., p∈{x, y}. For homogeneous MCFs, κnm(z) = κmn(z),
and for heterogeneous MCFs, κnm(z) 6= κmn(z); for homogeneous and heterogeneous
MCFs, κ′nm(z) = κ′mn(z). In Equation (1), β′c,m(z) and β′c,n(z) denote the longitudinal
variation of the propagation constants of cores m and n, respectively, which accounts for
the fluctuations of the cores effective indexes as well as for the effects of fiber bending and
twist. They can be written as [33]

β′c,m(z) = βc,m + βb,m(z) ; β′c,n(z) = βc,n + βb,n(z) , (2)
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where βc,m = k0 · n(int)
eff,m and βc,n = k0 · n(int)

eff,n, with n(int)
eff,m and n(int)

eff,n being the intrinsic effective
refractive index of cores m and n, respectively, i.e., the effective refractive index of the cores
not perturbed by bend, twist, or any structure fluctuation along the MCF, and k0 = 2π/λ,
where λ is the wavelength. βb,m(z) and βb,n(z) are the perturbations of the propagation
constants induced by bending and twist at the coordinate z of cores m and n, respectively.
It should be emphasized that n(int)

eff,m and n(int)
eff,n are the effective refractive indexes for the

fundamental (single) modes propagating through cores m and n, respectively.
The birefringence in cores m and n is modeled by two triplets, (βm,1(z), βm,2(z),

βm,3(z)) and (βn,1(z), βn,2(z), βn,3(z)), respectively [23,34]. It is commonly assumed that,
in telecommunication fibers, the circular birefrigence is negligible, i.e., βn,3(z) = 0 ([35],
p. 247) and hence, the random modulus model (RMM) with linear birefringence is only
adopted in Equation (1) [23,36]. In this case, the first and second components of the birefrin-
gence triplets, βm,1(z) and βm,2(z), and βn,1(z) and βn,2(z), respectively, are modeled by
independent Ornstein–Uhlenbeck random processes while the third components, βm,3(z)
and βn,3(z) are set to zero. In the following, for the sake of notation simplicity, we indicate
shortly, βm,1(z) and βm,2(z) as βm,(1,2)(z), and βn,1(z) and βn,2(z) as βn,(1,2)(z). We use this
short index notation for other parameters within this article. These random processes are
usually characterized by their correlation lengths and beat lengths. In the RMM, the two
components of the birefringence, βn,(1,2)(z) (βm,(1,2)(z)), are solutions of the four Langevin
equations given by

dβn,(1,2)(z)
dz

= −ρn · βn,(1,2)(z) + σn · ηn,(1,2)(z) (3a)

dβm,(1,2)(z)
dz

= −ρm · βm,(1,2)(z) + σm · ηm,(1,2)(z), (3b)

where ηn,(1,2)(z) and ηm,(1,2)(z) are four independent white gaussian noise sources with
zero mean and unitary power spectral density [23,37,38]. Parameters ρn and σn (ρm and
σm) define the statistical properties of the birefringence in core n (core m). In particular,
ρn = 1/LC,n (ρm = 1/LC,m) with LC,n (LC,m) as the birefringence correlation length, and
σn = 2π

√
ρn/LB,n (σm = 2π

√
ρm/LB,m) with LB,n (LB,m) as the correlation beat length. The

random processes βn,1(z) and βn,2(z) (βm,1(z) and βm,2(z)) are zero mean Gaussian sta-
tionary processes with variances given by σ2

n/(2ρn)
(
σ2

m/(2ρm)
)
, and their autocorrelation

functions are given by [23,36]

Rβn,(1,2)
(z) =

1
2

·
(

2π

LB,n

)2
· exp

(
− |z|

LC,n

)
; Rβm,(1,2)

(z) =
1
2

·
(

2π

LB,m

)2
· exp

(
− |z|

LC,m

)
. (4)

In the following, we assume that the birefringence vector follows the same statistics in

all cores, with LB
4
=LB,n =LB,m, LC

4
=LC,n =LC,m andRβ(z)

4
= Rβn,(1,2)

(z)=Rβm,(1,2)
(z).

The power spectral densities of the exponential autocorrelation functionsRβn,(1,2)
(z)

and Rβm,(1,2)
(z), represented by Sβn,(1,2)

(Υ) and Sβm,(1,2)
(Υ), respectively, have a Lorentzian

shape given by

Sβn,(1,2)
(Υ) = Sβm,(1,2)

(Υ) =

(
2π

LB

)2
·

LC

1 + L2
C · Υ2

, (5)

where the Fourier transform operator F
{

·
}

involving the pair of variables z F−→Υ, de-
fined as

G(Υ) = F{g(z)} =
+∞∫
−∞

g(z) · e− Υ · zdz , (6)

has been applied to expressions (4) to obtain expression (5).
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Defining θm(z) and θn(z) as the accumulated phase due to propagation from the MCF
input up to coordinate z in cores m and n, respectively, given by θm(z) =

∫ z
0 β′c,m(z′)dz′ and

θn(z) =
∫ z

0 β′c,n(z′)dz′, defining

An,p(z) = eθn(z) · En,p(z) ; Am,p(z) = eθm(z) · Em,p(z) , (7)

and replacing (7) in (1) results in the following CMEs:

dAn,x(z)
dz

= −
βn,1(z)

2
An,x(z)− 

βn,2(z)
2

An,y(z)−

− κ′nm(z) ·e−
[
θm(z)−θn(z)

]
· fnm,x(z)· Am,x(z) (8a)

dAn,y(z)
dz

= −
βn,2(z)

2
An,x(z) + 

βn,1(z)
2

An,y(z)−

− κ′nm(z) ·e−
[
θm(z)−θn(z)

]
· fnm,y(z)· Am,y(z) (8b)

dAm,x(z)
dz

= −
βm,1(z)

2
Am,x(z)− 

βm,2(z)
2

Am,y(z)−

− κ′mn(z) ·e−
[
θn(z)−θm(z)

]
· fmn,x(z)· An,x(z) (8c)

dAm,y(z)
dz

= −
βm,2(z)

2
Am,x(z) + 

βm,1(z)
2

Am,y(z)−

− κ′mn(z) ·e−
[
θn(z)−θm(z)

]
· fmn,y(z)· An,y(z) (8d)

In the CMEs (8), the terms fnm,p(z) and fmn,p(z) are four random processes introduced
to model the phase fluctuations induced locally by the random structure fluctuations
along the MCF on the contributions to the field of cores n and m, respectively. These
random processes are usually characterized by their correlation lengths. We assume that
the processes fnm,p(z) and fmn,p(z) are independent. The influence of this assumption
on the ICXT statistics is expected to be reduced. This statement is supported by the fact
that, when the birefringence effects can be neglected and the depletion of the interfering
field is very low, only the random process that models the phase fluctuation induced on
the interfered core affects the ICXT field [18]. Additionally, very small differences in the
mean ICXT power estimates obtained by numerical simulation results were observed when
independent or equal random processes are considered.

Koshiba et al. analyzed the effects of correlation length of the random process that
models the phase fluctuation on the mean ICXT power when that random process includes
only the random effect of structure fluctuation and does not include that of macrobend
and twist, which are considered deterministic [12,13]. They investigated different types
of autocorrelation function of the random process that models the phase fluctuation and
found that the exponential autocorrelation function given by

Rf (z) = exp
(
− |z|/lc

)
(9)

is adequate to estimate the mean ICXT power, where lc is the correlation length of the ran-
dom process introduced to model the phase fluctuations induced by the random structural
fluctuations of the MCF [12,13,33]. In the following, we consider that the random pro-
cesses fnm,p(z) and fmn,p(z) follow the same statistics, with their autocorrelation functions
holdingRfnm,p(z) = Rfmn,p(z) = Rf (z). The power spectral density corresponding to the
exponential autocorrelation function has a Lorentzian shape, and it is given by

Sfnm,p(Υ) = Sfmn,p(Υ) =
2lc

1 + l2
c · Υ2 (10)

which is obtained by applying the Fourier transform operator defined as (6) to expression (9).
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2.2. Computation of the Mean ICXT Power in a WC-MCF

We define the normalized ICXT power, XT, as the ratio between the power at the
output of the interfered core n and the power at the input of the interfering core m (with no
power launched in core n), i.e.,

XT =

∣∣An(L)
∣∣2∣∣Am(0)
∣∣2 , (11)

where L is the MCF length. The mean of XT is denoted by
〈

XT
〉
, where

〈
·
〉

is the statistical
mean operator. In the following, we refer to

〈
XT
〉

as the mean ICXT power.
The field in the two directions, x and y, at the interfering core input is described as

Am,x(0) = Am,x,I(0) + Am,x,Q(0) and Am,y(0) = Am,y,I(0) + Am,y,Q(0), where Am,x,I(0),
Am,y,I(0) and Am,x,Q(0), Am,y,Q(0) are the corresponding in-phase (I) and in-quadrature
(Q) components. In the following, the index q denotes the quadrature components of the
field in direction p, i.e., q∈{I, Q}. The power distribution at the input of the interfering
core m between the two directions x and y, and the two quadrature components, I and Q, is
controlled by two parameters, ζx,y and ζ I,Q: (i) ζx,y ∈ [0, 1] controls the power distribution
between the two directions x and y, and (ii) ζ I,Q ∈ [0, 1] controls the power distribution
between the I and Q components (assumed the same in both polarization directions).
Therefore, the distribution of the field at the input of core m, Am(0), between the two
directions x and y can be written as

Am,x(0) =
{(

ζ I,Q · ζx,y
)0.5

+ 
[(

1− ζ I,Q
)

· ζx,y
]0.5
}

· Am(0) (12a)

Am,y(0) =
{

ζ I,Q ·
(
1− ζx,y

)0.5
+ 
[(

1− ζ I,Q
)

·
(
1− ζx,y

)]0.5
}

· Am(0) . (12b)

The ICXT field in the two directions at the interfered core output is described as
An,x(L) = An,x,I(L) + An,x,Q(L) and An,y(L) = An,y,I(L) + An,y,Q(L). The mean ICXT
power can be written as〈

XT
〉
=
〈

XTx,I
〉
+
〈

XTx,Q
〉
+
〈

XTy,I
〉
+
〈

XTy,Q
〉

, (13)

where XTp,q is the ICXT power component that describes the normalized portion of the
crosstalk power at the output of the interfered core n in the q component of the p direction
of the field, A2

n,p,q(L), with the mean of the ICXT power component given by

〈
XTp,q

〉
=

〈
A2

n,p,q(L)∣∣Am(0)
∣∣2
〉

. (14)

WC-MCFs can be classified in terms of the dominant crosstalk mechanism as fol-
lows [23]: (i) polarization-coupled fibers, for which Re

{
R2

β(z)
}

is much narrower than
Rf (z), where Re{ · } denotes the real part operator; (ii) scalar-coupled fibers, for which

Re
{
R2

β(z)
}

is much wider thanRf (z); and (iii) mixed-coupled fibers, for which Re
{
R2

β(z)
}

andRf (z) are similar widths.
The expressions were derived to assess the mean ICXT power at a generic propagation

distance, z, for the following regimes [23]: (i) birefringence correlation length much lower
than the birefringence beat length (LC � LB); (ii) birefringence correlation length compara-
ble with the birefringence beat length (LC ≈ LB); and (iii) birefringence correlation length
much larger than the birefringence beat length (LC � LB). These are general expressions
that can be particularized for polarization-coupled, scalar-coupled, and mixed-coupled
fibers. In this article, we consider polarization-coupled WC-MCFs, imposing lc � LB, LC.
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3. Description of the Numerical Simulator and Assessment of the Number of Samples
Required to Obtain Stabilized Estimates of the Mean ICXT Power

The objectives of this section are the following: (i) to describe the implementation of the
numerical simulator and to discriminate the range of values considered for its parameters,
and (ii) to assess the number of samples necessary to obtain stabilized estimates of the
mean ICXT power and its four components using the simulator.

3.1. Brief Description about the Simulator Implementation

Four independent random processes βn,(1,2)(z) and βm,(1,2)(z) with exponential au-
tocorrelation functions given by expressions (4) are generated by solving the stochastic
differential Equation (3) using the numerical method proposed in Reference [39], which is a
third-order Runge–Kutta method adapted to solve this type of stochastic differential equa-
tions. The statistical accuracy of the simulated random processes βn,(1,2)(z) and βm,(1,2)(z)
was confirmed by comparing their autocorrelation and power spectral density functions
obtained by simulation with the theoretical expressions (4) and (5), respectively.

Four independent random processes fnm,p(z) and fmn,p(z) with exponential autocor-
relation functions given by expression (9) are also considered. As those random processes
model the phase fluctuations induced by the random structure fluctuations [12,33], the
random processes fnm,p(z) and fmn,p(z) can be written as fnm,p(z) = exp

[
 · wm,p(z)

]
and

fmn,p(z) = exp
[
 · wn,p(z)

]
, where wm,p(z) and wn,p(z) are four independent Wiener pro-

cesses that model the phase fluctuations induced by the random structure fluctuations. In
order to obtain the exponential autocorrelation function with correlation length lc, the four
Wiener processes are generated by the numerical integration of zero mean white noise with
power spectral density of 2/lc [40] (pp. 71–74). The statistical accuracy of the simulated
random processes fnm,p(z) and fmn,p(z) was confirmed by comparing their autocorrela-
tion and power spectral density functions obtained by simulation with the theoretical
expressions (9) and (10), respectively.

In the numerical simulation, a fifth-order Runge–Kutta method is used to solve the
CMEs (8). Two highlights should be mentioned. (i) The step size ∆z used to solve numeri-
cally Equation (8) should be judiciously selected in order to simulate both the structure fluc-
tuations and birefringence effects rigorously. On one hand, it should hold ∆z� 1/|∆βc,mn|,
with ∆βc,mn = βc,m − βc,n, since for correlation lengths of the random structural fluctu-
ations of the order of 1 mm or higher as usually found in WC-MCFs [13,15,29,33] and
non-homogeneous WC-MCFs, the faster variation of the right-hand sides of CMEs (1)
results from the complex exponentials of the difference of phases θm and θn, which is
imposed by ∆βc,mn. On the other hand, ∆z� LC and ∆z�

√
2LB/(6π) should also hold,

simultaneously, to rigorously simulate the birefringence effects. (ii) In order to be used
in the numerical solving of CMEs (1), samples of four independent random processes
βn,(1,2)(z) and βm,(1,2)(z) and four independent Wiener processes wm,p(z) and wn,p(z) with
adequate step sizes in z have to be generated.

The mean ICXT power estimated by numerical simulation was obtained consider-
ing two situations: polarization-coupled homogeneous

(
∆βc,mn = 0 rad · m−1) and quasi-

homogeneous
(
∆βc,mn = −701 rad · m−1) WC-MCF with length of L = 100 m. ∆βc,mn is

adjusted by setting adequately the intrinsic effective refractive index of the core n, n(int)
eff,n.

Pairs for the birefringence correlation length and the birefringence beat length (LC, LB)
have been tested in the ranges of 0.5 m 6 LC 6 10 m and 0.1 m 6 LB 6 10 m, respectively.
These ranges have been settled in order to include the set of values found typical for LC
and LB in singlecore telecommunication fibers [37,41,42] (p. 6), [35] (pp. 251, 261, 267, 269).
To the best of authors’ knowledge, measured values of the birefringence correlation length
and birefringence beat length have not been reported yet for WC-MCFs.

According to the ranges considered for ∆βc,mn, LC and LB, ∆z in the range of 10−5 − 10−4 m
was used in all simulations, averaging over 200 MCF realizations, with each realization corre-
sponding to different samples of the eight noise random processes βn,(1,2)(z) and βm,(1,2)(z),
and wn,p(z) and wm,p(z).
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Table 1 shows the parameters kept constant in the numerical results. We stress that
we considered lc = 106 m and that the bending radius and twisting period were adjusted
so that the bending and twisting effects on the ICXT field can be neglected.

Table 1. Single-mode WC-MCF parameters kept constant in numerical results.

Parameter Symbol Value

Wavelength λ 1550 nm
Intrinsic effective refractive index of core m n(int)

eff,m 1.4418 [16]
Core pitch Λmn 30 µm [16]

Cartesian coordinates of core m (xm, ym) (−Λmn/2, 0)
Cartesian coordinates of core n (xn, yn) (Λmn/2, 0)

MCF length L 100 m

The parameters κ′mn and κ′nm were adjusted to κ′mn = κ′nm = 4.5× 10−5 m−1 and κ′mn =
κ′nm = 4.5× 10−2 m−1, according to the homogeneous or quasi-homogeneous regimes,
respectively, in order to ensure a mean ICXT power range of about [−90 dB,−50 dB] in all
situations tested.

In order to ensure acceptable computation times to estimate the statistical parameters
of the ICXT field components through numerical simulation, the MCF length considered in
the simulation study is L = 100 m. In fact, to generate βn,(1,2)(z) and βm,(1,2)(z) by solving
the stochastic differential Equation (3), to propagate the random signal through the MCF
solving the CMEs (8), and to obtain the ICXT power given by (11), a computational time
of about 15 min per MCF realization is necessary. As 200 MCF realizations are required
to obtain a confident estimate of the mean ICXT, the previous process must be repeated
200 hundreds of times for each (LB, LC) pair, leading to a total time of about 50 h per pair.
These computational times are reached, running the simulations in a PC having a CPU
Intel Core I9 10900KF with a clock speed of 5.3 GHz, a memory cache of 20 MB, and a RAM
of 64 GB. These computational times increase proportionally to the MCF length. Therefore,
in practical terms, acceptable computational times are hardly compatible to MCF lengths
longer than 100 m.

3.2. Dependence of Estimates of Mean ICXT Power on the Number of Samples

Extended simulation tests were performed in order to assess the number of aver-
aging samples necessary to stabilize the mean ICXT power estimator given by (13). A
wide range of situations, considering 13 different pairs of birefringence correlation length
and birefringence beat length, (LC, LB), in the ranges indicated in Section 3.1, both for
homogeneous

(
∆βc,mn = 0 rad · m−1) and quasi-homogeneous

(
∆βc,mn = −701 rad · m−1)

single-mode WC-MCFs have been tested. For each pair (LC, LB), different power distribu-
tions between the two directions x and y, and I and Q components (assumed the same in
both polarization directions) of the interfering core (core m) have been tested by assuming
different pairs

(
ζx,y, ζ I,Q

)
, namely, (0, 0), (0, 0.5), (0, 1), (0.5, 0), (0.5, 0.5), (0.5, 1), (1, 0),

(1, 0.5), and (1, 1).
Figure 2 shows two paradigmatic examples among the universe of situations tested,

illustrating the mean ICXT power estimator given by (13) in dB, i.e., 10 · log10
(〈

XT
〉)

, as a
function of the number of samples, as well as each of the four components of Equation (13),〈

XTp,q
〉

also in dB, i.e., 10 · log10
(〈

XTp,q
〉)

: (i) Figure 2a considers a homogeneous WC-
MCF

(
∆βc,mn = 0 rad · m−1) with LC = 10 m, LB = 1 m, ζx,y = 0.5 and ζ I,Q = 0.5, and

(ii) Figure 2b considers a quasi-homogeneous WC-MCF
(
∆βc,mn = −701 rad · m−1) with

LC = 1 m, LB = 1 m, ζx,y = 0.5, and ζ I,Q = 1.
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(a)

(b)

Figure 2. Mean ICXT power in dB at the interfered core output given by (13) and corresponding
parcels given by (14) as a function of the number of averaging samples for (a) homogeneous single-
mode WC-MCF

(
∆βc,mn = 0 rad · m−1) with LC = 10 m, LB = 1 m, ζx,y = 0.5, and ζ I,Q = 0.5 and

(b) quasi-homogeneous single-mode WC-MCF
(
∆βc,mn = −701 rad · m−1) with LC = 1 m, LB = 1 m,

ζx,y = 0.5, and ζ I,Q = 1. Continuous line:
〈

XT
〉
; mark (+):

〈
XTx,I

〉
; mark (×):

〈
XTx,Q

〉
; mark (•):〈

XTy,I
〉
; and mark (�):

〈
XTy,Q

〉
.

Figure 2 shows that the fluctuation of the mean ICXT power estimates occurring for
200 averaging samples is very low and, consequently, the stabilization achieved can be
considered adequate. Figure 2 shows also a quasi-uniform distribution between the four
components of the mean ICXT power at the interfered core output. Moreover, differences
of about 6 dB between the mean ICXT power of each component and the total mean ICXT
power are observed, which are in accordance with Equation (13). The fluctuations observed
for 200 averaging samples are attributed to the inherent randomness of the estimate of the
mean from a finite number of samples.

In the universe of situations tested, the level of fluctuations of the estimate of the mean
ICXT power observed with an increase in the number of averaging samples is similar to the
one shown in Figure 2. Therefore, all situations tested revealed that 200 averaging samples
are adequate to ensure the stabilization of the estimators of mean ICXT power obtained
by simulation.

To validate the numerical simulator, several situations were tested to assess the mean
ICXT power as a function of LC for different LB, namely, 1 m and 10 m, both for ho-
mogeneous

(
∆βc,mn = 0 rad · m−1) and quasi-homogeneous

(
∆βc,mn = −701 rad · m−1)

polarization-coupled WC-MCF. LC in the range indicated in Section 3.1 was considered.
Excellent agreement between simulation estimates and analytical results obtained using
the expressions proposed in [23] was achieved in all situations tested.
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4. Parameters Used to Characterize the Statistical Properties of the ICXT
Field Components

We use the following three parameters to quantify the mean deviation from 0; the
level of correlation; and the power unbalancing of the ICXT field components, An,p,q(L):

(i) The normalized mean of the fields components at the WC-MCF output defined by

An,p,q(L) =

〈
An,p,q(L)

〉
σAn

, (15)

and σAn
given by

σAn
=

[ 〈[
An,x,I(L)−

〈
An,x,I(L)

〉]2〉
+
〈[

An,x,Q(L)−
〈

An,x,Q(L)
〉]2〉

+

〈[
An,y,I(L)−

〈
An,y,I(L)

〉]2〉
+
〈[

An,y,Q(L)−
〈

An,y,Q(L)
〉]2〉]0.5

,
(16)

with −∞ ≤ An,p,q(L) ≤ +∞;
(ii) The correlation coefficients of the ICXT field components defined as [43], pp. 153–154.

Cp1,q1,p2,q2 =

〈
An,p1,q1(L) · An,p2,q2(L)

〉
−
〈

An,p1,q1(L)
〉

·
〈

An,p2,q2(L)
〉〈[

An,p1,q1(L)−
〈

An,p1,q1(L)
〉]2〉0.5

·
〈[

An,p2,q2(L)−
〈

An,p2,q2(L)
〉]2〉0.5 , (17)

with p1, p2 ∈ {x, y} and q1, q2 ∈ {I, Q} excluding the situations with (p1 = p2 ∧ q1 = q2).
Cp1,q1,p2,q2 takes on values in the range −1 ≤ Cp1,q1,p2,q2 ≤ 1, with Cp1,q1,p2,q2 = 0 cor-
responding to uncorrelated components and with Cp1,q1,p2,q2 = −1 and Cp1,q1,p2,q2 = 1
corresponding to fully correlated components.

(iii) The unbalancing parameter defined in percentage as

U 4= maxp,q

{∣∣∣∣∣4
〈

XTp,q
〉〈

XT
〉 − 1

∣∣∣∣∣
}
× 100% , (18)

with
〈

XTp,q
〉

defined as (14),
〈

XT
〉

defined as (11), and max
{

·
}

defines the maximum of
the four values between braces. This parameter assesses the unbalance in the mean power
of the four ICXT field components at the WC-MCF output (in the two directions x and y,
and in the two quadrature components I and Q). From Equations (13) and (18), we can
easily infer the range for U as 0% ≤ U ≤ 300%: (i) when the mean ICXT power is uniformly
distributed among the two directions x and y and the two quadrature components I and
Q,
〈

XTp,q
〉
=
〈

XT
〉
/4, resulting in U = 0%; (ii) on the other hand, when the mean

ICXT power is entirely in one of the two directions x or y and one of the two quadrature
components I or Q, the maximum of the four

〈
XTp,q

〉
terms between braces is equal to〈

XT
〉
, resulting in U = 300%.

5. Numerical Results

The objective of this section is, using the simulator developed in Section 3.1, to
assess some of the most important statistical properties of the four ICXT field components
An,p,q(L), namely the means, correlations, and unbalancing power between them. Those
properties are assessed for a wide range of situations, namely different (LC, LB) pairs
in the ranges indicated in Section 3.1 and different pairs of

(
ζx,y, ζ I,Q

)
in the range of

0 ≤ ζx,y ≤ 1 and 0 ≤ ζ I,Q ≤ 1, both for homogeneous
(
∆βc,mn = 0 rad · m−1) and quasi-

homogeneous
(
∆βc,mn = −701 rad · m−1) single-mode WC-MCF. More than 200 different

situations are tested.
In the following two subsections, we present some of the most representative sim-

ulation results achieved considering LC = 10 m and LB = 10 m (LC ≈ LB), LC = 1 m
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and LB = 10 m (LC � LB), and LC = 10 m and LB = 0.1 m (LC � LB) for homogeneous(
∆βc,mn = 0 rad · m−1) and quasi-homogeneous

(
∆βc,mn = −701 rad · m−1) single-mode

WC-MCF.

5.1. Results for Single-Mode Homogeneous WC-MCF

Figure 3 shows the simulation results of the normalized mean of the An,x,I(L) field
component given by (15) (Figure 3a), the correlation coefficient between the field com-
ponents An,x,I(L) and An,y,Q(L) given by (17) (Figure 3b), and the mean ICXT power
of the term An,x,I(L) given by (14) (in dB) (Figure 3c) for a homogeneous WC-MCF(
∆βc,mn = 0 rad · m−1) with LC = 10 m and LB = 10 m (regime LC ≈ LB).

(a) (b)

(c)
Figure 3. (a) Normalized mean of the I component of the ICXT field in the x direction at the interfered
core output; (b) correlation coefficient between the I component of the ICXT field in the x direction
and the Q component of the ICXT field in the y direction at the interfered core output; and (c) mean
power of the I component of the ICXT field in the x direction at the interfered core output (in dB) for
homogeneous WC-MCF

(
∆βc,mn = 0 rad · m−1) with LC = 10 m and LB = 10 m (regime LC ≈ LB).

Figure 3a shows that the normalized mean of An,x,I(L) is considerably small in the
entire range of power distribution at the interfering core input. Figure 3b shows that a
very low correlation between An,x,I(L) and An,y,Q(L) is observed regardless of the power
distribution at the interfering core input. Figure 3c shows that the mean ICXT power of the
term An,x,I(L) has small variations (lower than 1.5 dB) with the power distribution at the
interfering core input. Similar observations hold for the other ICXT field components.

Figure 4 shows the simulation results for the normalized mean of the An,y,I(L) field
component (Figure 4a), the correlation coefficient between the field components An,y,I(L)
and An,y,Q(L) (Figure 4b), and the mean ICXT power of the term An,y,I(L) in dB (Figure 4c)
with LC = 1 m and LB = 10 m (regime LC � LB).
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(a) (b)

(c)
Figure 4. (a) Normalized mean of the I component of the ICXT field in the y direction at the interfered
core output; (b) correlation coefficient between the I component of the ICXT field in the y direction
and the Q component of the ICXT field in the y direction at the interfered core output; and (c) mean
power of the I component of the ICXT field in the y direction at the interfered core output (in dB) for
homogeneous WC-MCF

(
∆βc,mn = 0 rad · m−1) with LC = 1 m and LB = 10 m (regime LC � LB).

Figure 4a shows that the normalized mean of An,y,I(L) is considerably small in the
entire range of power distribution at the interfering core input. Figure 4b shows also that a
very low correlation between An,y,I(L) and An,y,Q(L) is observed regardless of the power
distribution at the interfering core input. Figure 4c shows that the mean ICXT power of
the term An,y,I(L) has small variations (lower than 1 dB) with the power distribution at the
interfering core input. Similar observations hold for the other ICXT field components.

In order to analyze the impact of LB reduction on the variation in the mean, correlation,
and mean power of ICXT field components, we maintain LC = 10 m and reduce the beat
length to LB = 0.1 m. Figure 5 shows the simulation results of the normalized mean of
the An,x,I(L) field component (Figure 5a), the correlation coefficient between the field
components An,x,I(L) and An,y,I(L) (Figure 5b), and the mean ICXT power of An,y,Q(L)
in dB (Figure 5c) with LC = 10 m and LB = 0.1 m (regime LC � LB). Figure 5a shows
that the normalized mean of An,x,I(L) is considerably small in the whole range of power
distribution at the interfering core input. Figure 5b shows a very low correlation between
An,x,I(L) and An,y,I(L) regardless of the power distribution at the interfering core input.
Figure 5c shows that the mean ICXT power of the term An,y,Q(L) has small variations
(lower than 0.7 dB) with the power distribution at the interfering core input. Similar
observations hold for the other ICXT field components.
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(a) (b)

(c)
Figure 5. (a) Normalized mean of the I component of the ICXT field in the x direction at the interfered
core output; (b) correlation coefficient between the I component of the ICXT field in the x direction
and the I component of the ICXT field in the y direction at the interfered core output; and (c) mean
power of the Q component of the ICXT field in the y direction at the interfered core output (in dB) for
homogeneous WC-MCF

(
∆βc,mn = 0 rad · m−1) with LC = 10 m and LB = 0.1 m (regime LC � LB).

In order to analyze the dependence of the power unbalance of the four ICXT field
components, An,p,q(L), for homogeneous WC-MCF

(
∆βc,mn = 0 rad · m−1), on the power

distribution at the interfering core input assigned to one of the two directions x or y and
one of the two quadrature components I or Q, Figure 6 shows the unbalancing parameter
U for the three previous pairs of values (LB, LC) and ∆βc,mn = 0 rad · m−1, as a function of(
ζx,y, ζ I,Q

)
in the range 0 ≤ ζx,y ≤ 1 and 0 ≤ ζ I,Q ≤ 1.

Figure 6 shows that values of the U parameter lower than 20% are achieved for all
situations tested. Such a low unbalancing level indicates that a quasi-uniform power
distribution between the four components of the ICXT field occurs for homogeneous
WC-MCF regardless of the power distribution among the four field components at the
interfering core input.
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(a) (b)

(c)
Figure 6. Unbalancing parameter for different pairs (LB, LC) and homogeneous WC-MCF(
∆βc,mn = 0 rad · m−1): (a) LB = 10 m, LC = 10 m; (b) LB = 10 m, LC = 1 m; and (c) LB = 0.1 m,

LC = 10 m.

5.2. Results for Quasi-Homogeneous Single-Mode WC-MCF

In this subsection, we carry out an analysis similar to the one performed in Section 5.1
but for quasi-homogeneous single-mode WC-MCF with ∆βc,mn = −701 rad · m−1. We
consider the three regimes: (i) LC ≈ LB, (ii) LC � LB, and (iii) LC � LB.

Particularly, for LC ≈ LB, Figure 7 shows the simulation results for the normalized
mean of the An,y,I(L) field component (Figure 7a), the correlation coefficient between the
field components An,y,I(L) and An,y,Q(L) (Figure 7b), and the mean ICXT power of the term
An,y,I(L) (in dB) (Figure 7c), assuming LC = 10 m and LB = 10 m. Similar observations to
the ones indicated in Figures 3–5 for homogeneous WC-MCF can be settled from Figure 7.
In fact, (i) Figure 7a shows that the normalized mean of An,y,I(L) is considerably small in
the entire range of power distribution at the interfering core input, (ii) Figure 7b shows
that a very low correlation between An,y,I(L) and An,y,Q(L) is observed regardless of
the power distribution at the interfering core input, and (iii) Figure 7c shows that the
mean ICXT power of the term An,y,I(L) has small variations (lower than 0.9 dB) with the
power distribution at the interfering core input. Similar conclusions holds for the other
field components.
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(a) (b)

(c)
Figure 7. (a) Normalized mean of the I component of the ICXT field in the y direction at the interfered
core output; (b) correlation coefficient between the I component of the ICXT field in the y direction
and the Q component of the ICXT field in the y direction at the interfered core output; and (c) mean
power of the I component of the ICXT field in the y direction at the interfered core output (in dB) for
quasi-homogeneous WC-MCF

(
∆βc,mn = −701 rad · m−1) with LC = 10 m and LB = 10 m (regime

LC ≈ LB).

In order to analyze the dependence of the power unbalance of the four ICXT field
components, An,p,q(L), for quasi-homogeneous WC-MCF

(
∆βc,mn = −701 rad · m−1), on

the power distribution at the interfering core input assigned to one of the two directions x
or y and one of the two quadrature components I or Q, Figure 8 shows the unbalancing
parameter U for the three previous pairs of values (LB, LC), and ∆βc,mn = −701 rad · m−1,
as a function of

(
ζx,y, ζ I,Q

)
in the range 0 ≤ ζx,y ≤ 1 and 0 ≤ ζ I,Q ≤ 1.

Figure 8 shows that values of the U parameter lower than 25% are achieved for all
situations tested. Such a low unbalancing level indicates that a quasi-uniform power
distribution between the four components of the ICXT field occurs for quasi-homogeneous
WC-MCF regardless of the power distribution among the four field components at the
interfering core input.

We emphasize that the small variations of the normalized mean results around 0
shown in Figures 3a–5a and Figure 7a would be further reduced by increasing the number
of simulated samples to a number higher than 200. The same argument holds relating
the reduction of the slight variations observed in the mean ICXT power results shown in
Figures 3c–5c and Figure 7c as well as relating the reduction of the unbalancing factors
shown in Figures 6 and 8. We attribute the nonuniformity of the power distribution
between the four components of the ICXT field and the small variations in the normalized
mean to the finite number of samples considered in the estimation of the mean power of
each ICXT field component from the numerical simulation. An increase in the number
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of simulated samples reduces the variance in the corresponding estimators. The small
variations around 0 of the correlation results shown in Figures 3b–5b and Figure 7b would
be reduced by increasing the number of simulated samples (due to the previous indicated
reason) as well as by increasing the MCF length to lengths higher than 100 m due to the
decorrelation field effect caused by the increase in the birefringence effects. These behaviors
have been observed in a few other ICXT estimates obtained from numerical simulations
with up to 500 samples and for WC-MCF lengths of up to 1000 m.

(a) (b)

(c)
Figure 8. Unbalancing parameter for different pairs (LB, LC) and quasi-homogeneous WC-MCF(
∆βc,mn = −701 rad · m−1): (a) LB = 10 m, LC = 10 m, (b) LB = 10 m, LC = 1 m, and (c) LB = 0.1 m,

LC = 10 m.

6. Conclusions

We assessed by intensive numerical simulation the mean, correlation, and power
distribution of the ICXT field components of unmodulated polarization-coupled homo-
geneous and quasi-homogeneous single-mode WC-MCFs with a single interfering core
considering three regimes: (i) LC ≈ LB, (ii) LC � LB, and (iii) LC � LB. For that, the
CME model described in Reference [23] to assess the ICXT in a single-mode WC-MCF with
intracore birefringence and linear propagation along the longitudinal coordinate of the
MCF was used.

We have found that, as it has been reported elsewhere for scalar-coupled single-mode
WC-MCFs, the normalized mean of the four ICXT field components and their correlations
are very small, with a nearly uniform distribution of the mean power between the four ICXT
field components and a very weak dependence on the power distribution of the four field
components at the interfering core input. These conclusions were drawn for homogeneous
and quasi-homogeneous single-mode WC-MCFs, with birefringence correlation length and
birefringence beat length in the ranges of [0.5 m, 10 m] and [0.1 m, 10 m], respectively.
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These results suggest that, for the range of birefringence correlation length and bire-
fringence beat length typically found in singlecore telecommunication fibers, we may
model the ICXT power fluctuations by a χ2 distribution with four degrees of freedom
in homogeneous and quasi-homogeneous polarization-coupled single-mode WC-MCFs,
regardless of the distribution of power between the four field components at the interfering
core input.
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The following abbreviations are used in this manuscript:
CME Coupled mode equations
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ICXT Intercore crosstalk
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OCS Optical communication systems
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RMM Random modulus model
WC Weakly coupled
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