
Automated Java Challenges’ Security Assessment
for Training in Industry – Preliminary Results
Luís Afonso Casqueiro #

University Institute of Lisbon, (ISCTE-IUL), ISTAR, Portugal

Tiago Espinha Gasiba #

Siemens AG, Munich, Germany

Maria Pinto-Albuquerque #

University Institute of Lisbon (ISCTE-IUL), ISTAR, Portugal

Ulrike Lechner #

Universität der Bundeswehr München, Munich, Germany

Abstract
Secure software development is a crucial topic that companies need to address to develop high-quality
software. However, it has been shown that software developers lack secure coding awareness. In
this work, we use a serious game approach that presents players with Java challenges to raise Java
programmers’ secure coding awareness. Towards this, we adapted an existing platform, embedded
in a serious game, to assess Java secure coding exercises and performed an empirical study. Our
preliminary results provide a positive indication of our solution’s viability as a means of secure
software development training. Our contribution can be used by practitioners and researchers alike
through an overview on the implementation of automatic security assessment of Java CyberSecurity
Challenges and their evaluation in an industrial context.

2012 ACM Subject Classification Security and privacy → Software security engineering; Security
and privacy → Web application security; Applied computing → Computer-assisted instruction;
Applied computing → E-learning; Applied computing → Interactive learning environments

Keywords and phrases Education, Teaching, Training, Awareness, Secure Coding, Industry, Pro-
gramming, Cybersecurity, Capture-the-Flag, Intelligent Coach

Digital Object Identifier 10.4230/OASIcs.ICPEC.2021.10

Funding Maria Pinto-Albuquerque: This work is partially financed by national funds through
FCT - Fundação para a Ciência e Tecnologia, I.P., under the projects FCT UIDB/04466/2020 and
UIDP/04466/2020. Furthermore, the first and third author thank the Instituto Universitário de
Lisboa and ISTAR, for their support.

Acknowledgements The authors would like to thank all the survey participants for taking part in
this preliminary study, and for their helpful and constructive feedback. Furthermore, the authors
would like to thank the hosting organization for enabling the study to take place.

1 Introduction

Over the last years, the number of cybersecurity incidents has been continually rising.
According to the US department of homeland security [7], the root cause of about 90%
of these incidents is due to poor software quality, which results in software vulnerabilities.
A recent large-scale study by Patel et al. [17] has shown that more than 50% of software
developers cannot identify vulnerabilities in source code. These facts pose serious issues
in the industry, especially for companies that deliver products to critical infrastructures.
Companies can use several methods to improve software quality, such as code reviews and
static application security testing (SAST). Another possibility is to address the human factor,
i.e., the software developers, through education on secure coding.

© Luís Afonso Casqueiro, Tiago Espinha Gasiba, Maria Pinto-Albuquerque, and Ulrike Lechner;
licensed under Creative Commons License CC-BY 4.0

Second International Computer Programming Education Conference (ICPEC 2021).
Editors: Pedro Rangel Henriques, Filipe Portela, Ricardo Queirós, and Alberto Simões; Article No. 10;
pp. 10:1–10:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luis_afonso_casqueiro@iscte-iul.pt
https://orcid.org/0000-0003-3636-7050
mailto:tiago.gasiba@siemens.com
https://orcid.org/0000-0003-1462-6701
mailto:maria.albuquerque@iscte-iul.pt
https://orcid.org/0000-0002-2725-7629
mailto:ulrike.lechner@unibw.de
https://orcid.org/0000-0002-4286-3184
https://doi.org/10.4230/OASIcs.ICPEC.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


10:2 Automated Security Assessment of Java CyberSecurity Challenges

In this work, we explore raising awareness on secure coding using serious games. Previous
work by Gasiba et al. [10] identifies serious games as a viable alternative to raise secure coding
awareness of software developers in the industry. However, their work does not address
Java programmers. Java is not only widely used in the industry and taught at universities,
but it is also in the top-3 of the programming languages that have the most open source
vulnerabilities [18].

In this work, we propose and implement a method to perform an automatic evaluation of
the security level of Java challenges. This process generates hints for the players when the code
contains vulnerabilities. Our platform is embedded in a serious game called CyberSecurity
Challenges [11] that has the goal of raising awareness of software developers in the industry.
This game is inspired in the capture-the-flag genre of games and includes several types of
challenges, both offensive and defensive in nature. Once a team solves one of the challenges
they receive a flag earning them a certain amount of points. In the end the team with most
points wins the Cyber Security Challenges event. No one wins if no one passes all the tests.
However, the main goal of the game is to raise awareness of secure coding, and winning the
game by collecting points serves only as an incentive for the individual players and teams to
actively participate in the game.

The designed java challenge’s artifact, in the present work, allows for a fully automatic
interaction between players through the hint system. The hints are designed to raise awareness
of the Carnegie Mellon’s Java secure coding guidelines [22]. Our research questions are:

RQ1 How to automatically assess the level of security of a player’s Java code?
RQ2 Which open-source tools can be used to assist the Java security code assessment?
RQ3 How do players perceive the platform as a means to learn Java secure coding?

The main contribution of this work is insight for practitioners and researchers who wish
to implement Java secure coding challenges with automatic hint generation. Moreover, this
work also provides a relevant method to automatically access the security levels of Java code,
a list of relevant tools and an analysis in the industry setting. Additionally, the empirical
study and preliminary results provide a further contribution to knowledge, and its raw results
are provided in Zenodo [14] to enable further research.

The present work is organized as follows; section 2 discusses previous relevant work,
section 3 describes how to perform automatic security assessment of Java challenges, and the
tools we use. In section 4, results of a preliminary study in the industry is presented, and
section 5 concludes this work.

2 Related Work

In [15], Meng et al. identified several security-related problems that Java software developers
experience when developing software. In particular, they conclude that developers do not
understand the security implications of their coding decisions. Also, developers tend to search
online forums for answers. However, Fischer et al. [9] have shown that such information
can be outdated and possibly even wrong. Oliveira et al. [16] discuss the lack of awareness
by software developers of the specification and proper usage of application programming
interfaces (API). They conclude that wrong usage of APIs can lead to security vulnerabilities.
Gasiba et al. identify that software developers in the industry lack awareness [13] of secure
coding guidelines, e.g., [22]. The result of their study is in agreement with a recent large-scale
survey, with more than 4000 software developers, by Patel et al. [17] that concludes that
more than 50% of software developers cannot identify vulnerabilities in source code.



L. A. Casqueiro, T. E. Gasiba, M. Pinto-Albuquerque, and U. Lechner 10:3

One possible way to raise awareness of secure coding is through serious games. Dörner et
al. [8] define serious games as a game that is designed with a primary goal and purpose other
than pure entertainment. Culliane et al. [6] argue that these types of games can be educational
and fun, and Sorace et al. [24] conclude that these can be an attractive approach to improve
awareness. Graziotin et al. [12] show that happy developers are better coders. Furthermore,
Gasiba et al. developed C/C++ CyberSecurity Challenges for industrial software developers
[11]. In this work, we adapted this platform to provide Java CyberSecurity Challenges.

Several serious games have been developed with success. Bakan et al. [1] provide an
overview of current research in game-based learning and teaching environments. They con-
clude that serious games can be an effective teaching tool in terms of students’ achievements
and retention. In a similar work, Cardoso et al. [2] propose to integrate a Virtual Program-
ming Lab in Moodle to provide a platform for students to edit, compile, run, debug and
evaluate programs. However, their work is performed in academia, focuses on teaching Java
programming to undergraduates, and does not focus on secure coding.

To design a serious game for secure programming in Java, which produces automatic hints,
a method to automatically evaluate a player’s code in terms of cybersecurity vulnerabilities
needs to be developed. However, to the best of our knowledge, previous literature does not
address these combined issues.

The present work uses and is embedded in a study that uses Action-Design Science
methodology by Sein et al. [21]. This research methodology addresses real-world problems in
organizations through meaningful actions which are informed by cooperation with academia.

3 Automated Security Assessment of Java Challenges

This section briefly describes the automated security assessment process, how the implemen-
tation-related security problems are addressed, and describes an empirical study performed
in the industry.

3.1 Automated Security Assessment Process

A Java challenge consists of the following phases. First, the player is presented with a
challenge (programming exercise) through a web interface containing at least one cybersecurity
vulnerability. The player’s task is to identify the vulnerability in the code and rewrite it such
that the rewritten code still implements the challenge’s required functionality. When the
player is satisfied with the rewritten code, he or she submits it to the backend. At this point,
the backend performs several analysis steps to the submitted code to automatically assess it
in terms of vulnerabilities and functionality. If the code contains no vulnerabilities and is
functionally correct, the player has won the challenge. Otherwise, the backend generates a
hint to send back to the player to help them solve the challenge. The hint’s generation is
based on the player’s code and the various analysis steps performed during code analysis.
Furthermore, the hints are implemented using a laddering technique [19, 11].

Figure 1 details the various stages undertaken during the submitted code’s automated
assessment. These stages are composed of several steps. The first stage includes two steps:
code injection and compilation. When needed, the players’ code is modified through code
injection. This step might be required to insert additional functionalities, such as new classes
into the project, through import statements without the player’s knowledge. Next, the
resulting code is compiled. If any errors are encountered, the process jumps to stage three.
In the absence of compiler errors, the process advances to stage two.

ICPEC 2021



10:4 Automated Security Assessment of Java CyberSecurity Challenges

Code
Compiler

Security
Tests

SAST 
Tools

Intelligent
Coach

Player

Unit
Testing

Stage One Stage Two

Code
Injector

Player Submits Code

Error in Stage One

Stage Three

Figure 1 Automatic Assessment Process.

There are two major possible approaches to stage two. The tools employed can either
run in parallel or sequentially. In this case we used a sequential process due to the fact that
the amount of tools used plus the correspondent execution time does not justify a parallel
approach. This means that the difference in the response time does not substantially improve
from one approach to the other.

This stage consists of code tests using three different testing methods: security tests,
static code analysis, and unit tests.

Unit testing is performed to ensure that the player’s code works according to the challenge’s
specifications. Security tests are dynamic unit tests that mimic malicious user actions and
input to exploit the exercise’s vulnerability. Static-application security testing (SAST) tools
provide a report based on analysis of the player’s code that includes code vulnerability issues.
These tools however can produce wrong evaluations of the given code.

Table 1 SAST Tools Outcomes.

Type Description
True Positive Code has a vulnerability and the tool flags it
True Negative Code doesn’t have a vulnerability, and the tool does not flag it
False Positive Code doesn’t have a vulnerability, but the tool flags it
False Negative Code has a vulnerability, and the tool doesn’t flag it

Table 1 shows the possible outcomes of using SAST tools. Of the four possibilities only
two represent the desired functionality of these tools, True Positive and True Negative. In
our work, we only consider a sub-set of the results reported by the tools, in order to minimize
the number of false positives and false negatives in our security assessment.

Table 2 summarizes the tools that we have used in this stage and their mapping to the
testing methods. These tools were selected based on the capability to answer the stage two
needs of testing. For the SAST tools we gathered industry recognized free and open-source
software and then filtered by the amount of security related errors. The JUnit tool, a
framework wildly used in industry, was implemented for unit-testing of the submitted code.
This tool ensures that the player’s code works according to the specifications and goals of the
challenge. The unit-tests will flag issues like empty class (where no security vulnerabilities
are found), giving the proper feedback to the player. JUnit is also used in security-testing of
the code. This tool provides extreme values in the functions call in order to try and trigger
any potential issue present in the program. JavaFuzzer and Spoon are other tools utilized



L. A. Casqueiro, T. E. Gasiba, M. Pinto-Albuquerque, and U. Lechner 10:5

Table 2 Analysis Tools.

Tools Unit Tests Security Tests SAST Tools
JUnit • •

JavaFuzzer •
Spoon •

Self-Developed Tools •
SonarQube •
SemGrep •
FB-Infer •
SpotBugs •

PMD •
JBMC •

for security-testing. These tools provide, among others, a series of tests that stimulate the
given code by creating random inputs in order to try and trigger potential errors in the given
program [20].

The employment of several different testing tools and methods offers a greater variety
of results. Although many times different testing tools flag the same errors, there are also
several cases where only specific tools can spot certain security vulnerabilities. This means
that the tools used can sometimes overlap but also complement each others in the results
of the analysis, leading to a more complete scrutiny of the player’s code. These tools are
used to generate security-related findings of the submitted code. The tools’ findings are
mapped to a PASSFAIL boolean value and to a specific common weakness enumeration
(CWE) [3]. The mapping to individual CWEs as well as its ranking was done according to
our experience in cybersecurity. Note that, since the user is free to change the exercise’s
code at will, potentially malicious code will be executed in stage two. Therefore, to prevent
malicious players from abusing and breaching our system (intentionally or non-intentionally),
the security tests and unit tests run in a time-limited sandbox. The time-limitation protects
against infinite loops, and the sandbox protects against remote-code execution. For more
information, we refer the reader to [11].

The last stage consists of an artificial intelligence engine that creates relevant hints for
the player if the challenge is not solved. If the challenge is solved, the last stage awards
points to the player. Hints are generated based on a CWE selected from the previous steps’
results and prior history, using a laddering technique. The selection of the CWE, which is
supplied to the laddering technique, is shown in figure 2.

In case of compiler errors, no CWE is selected, and a report is sent back to the player,
which includes the compiler error message. If the code compiles with no errors but no CWE
is reported from the tools, the algorithm checks the functional tests’ results. If all the tests
pass, the player wins the game, is given a flag in recognition, and the exercise is finished. If
at least one test fails, the player receives feedback based on the failed functional test case.
This feedback states that the desired code functionality is not respected. However, when the
code has security issues (i.e., at least one CWE is reported), the hint generator starts. The
hint-generation checks if there have been previous hints given to the player based on the prior
history. If the prior history is empty, the hint will be generated based on the highest-ranking
CWE found out of all the reported CWEs. This CWE ranking was pre-determined by us
based on our experience.

ICPEC 2021



10:6 Automated Security Assessment of Java CyberSecurity Challenges

Start

Compiler 
Errors?

Reported CWE?

Functional Tests 
Pass?

Report 
Player Errors

Functionality 
not Respected Exercise Finished

Give Flag

Previous
History?

IntCWE = CurrCWE ∩ PreCWESelectCWE = High(CurrCWE)

IntCWE
Empty?

SelectCWE = High(IntCWE)

ClimbLadder(SelectCWE)

Hint Generator

N

N

Y

Y

N

Y

N Y

Y

N

Figure 2 Intelligent Coach’s Algorithm.

Table 3 Initial Hints.

Hint Type Description

Overall Feedback Resource Leakage Found. The submitted code has some type of
resource leakage present.

Basic Hint
CWE-772 : The software does not release a resource after its
effective lifetime has ended, i.e., after the resource is no longer
needed.

First Hint You must guarantee that the stream is being closed in every
possible scenario.

However, if the prior history is not empty, the intersection between the current set
of CWE’s and the ones in the prior history is computed. If the intersection is an empty
set, the selected CWE will be computed based on the highest-ranked CWE out of all the
reported CWEs. If the intersection is not empty, the selected CWE is computed based on
the highest-ranked CWE in the intersection list.

Finally, the hint is then generated based on the selected CWE through a laddering
technique. More details on the laddering technique are given in [11, 19].

Table 3 shows the initial hints developed for the initial platform. Each time the player
submits the code the platform will release the Overall Feedback and a Hint. This feedback
message is a generalized view of the issue found. The Hint given starts with the associated
description of the reported CWE and evolves to more specific hints over time. In our instance
of the security exercise, the basic hint provides a description of the vulnerability CWE-772
[5]. In the next hint level, a directed message on how to solve the exercise if provided to the
player.

In our project, we took the decision to consider security issues with higher priority than
functional issues. This means that the generated hints are firstly concerned with security
issues and, if no security issues are present, they are concerned with code functionality.

The whole process of analysing submitted code and generating the hints, executed each
time a player submits code, usually takes no more than one or two seconds. These time
measurements where acquired using a laptop with the following specifications: 12GB of RAM
with an Intel Core i5-6200U CPU, running Linux xubuntu version 20.04.



L. A. Casqueiro, T. E. Gasiba, M. Pinto-Albuquerque, and U. Lechner 10:7

3.2 Empirical Study

We conducted an empirical study using the developed prototype to analyze how the players
feel about the platform as a cybersecurity learning system. The test was conducted from 22
to 27 February 2021 through individual online meetings, 11 in total. Each meeting lasted
30 minutes, 20 of those for the solving of the challenge and 10 for a brief interview with
the participants. Eleven persons participated in our experiment, with ages ranging from
20 to 35. Nine of the participants are working in the industry, and the remaining two were
students in the IT/software development fields. Industry participants are from Germany and
Portugal and are software developers for critical infrastructures with more than five years of
experience. The academia students were last-year undergraduates from Portugal, studying
computer science.

The players received one Java challenge with a security vulnerability to solve. The
individual meetings were carried out with each individual participant. While not embedded
in a CyberSecurity Challenges event, the present work is used to inform our approach on the
implementation of secure coding exercises for the Java programming language.

Listing 1 ResourceLeak.java.
import java.io .*;

public class ResourceLeak {
public void writeToFile (File file , String msg) throws IOException {

FileOutputStream fos = new FileOutputStream (file );
fos.write(msg. getBytes ());

}
}

Listing 1 shows the source code of the exercise presented to the participants during our
study. This code was based on the FIO04-J rule [23] of the SEI-CERT coding standards,
and contains a resource leakage vulnerability. This type of security issue arises when an
opened file handle is not closed. Although Java is a garbage-collected language, the garbage
collection mechanism does not work for file handles and database connections. Once these
resources are no longer needed they should be immediately closed. A failure to do so can
lead to resource starvation of the program or in critical cases resource exhaustion, ultimately
leading to a denial-of-service attack [4]. To solve this exercise the participants need to close
the file handle either by using a try-catch-finally Java block or by implementing a try with
Resources. In the try with Resources scenario the FB Infer tool (V1.0.0) suffers from a False
Positive that flags a resource leakage in the code. This problem can be initially addressed in
two ways. The first is to wait for the tool to receive an update that would resolve this issue.
The second, and chosen course of action, was to give the flag of the challenge on the off
chance that the players would encounter this scenario. The participants tested and solved the
Java exercise, and experimented with the platform without any restrictions. After solving the
challenge, they were asked to complete a small survey containing questions related to their
experience, and additional open discussions were held. The survey questions are detailed in
table 4.

Answers to the questions are based on a 5-point Likert scale from 1-strongly disagree
to 5-strongly agree. Answers were collected anonymously, the participants were instructed
about the goal of the research being carried, and they agreed to take part in the study.

ICPEC 2021



10:8 Automated Security Assessment of Java CyberSecurity Challenges

Table 4 Survey Questionnaire.

Identifier Question
Q.1 The error messages and hints issued by the platform are relevant to the exercise.
Q.2 I can relate the hints to the code I have written.
Q.3 The hints provided by the platform make sense to me.
Q.4 If I am given the opportunity, I would like to play more exercises.
Q.5 The hints helped me to understand the problem with the code I have written.

4 Evaluation

In this section, we present the results of our empirical study. Moreover, a critical discussion
of the results is also presented. Additionally, we discuss possible threats to the validity of
our conclusions. The raw results of our survey can be found in Zenodo [14].

4.1 Results and Discussions
The present work answers the first research question through the presented methodology
of using the CyberSecurity Challenges platform to implement Java exercises. In particular,
figure 1 shows the three-stage method that we have implemented to automatically assess
the level of security of the Java code from the players to the game. To answer the second
research question, we have evaluated a number of openly available tools. These results are
summarized in table 2. In the following, we present a discussion related to the third research
question, on how the players perceive the platform as a means to learn secure coding in the
Java programming language.

2

3

0

1

0

6

0

9

6

2

3

8

2

4

9

0% 20% 40% 60% 80% 100%

Q.5

Q.4

Q.3

Q.2

Q.1

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3 Results of Empirical Study in the Industry.

Figure 3 shows the results of our empirical study, in relation to the survey questions (see
table 4). Our preliminary results show that all participants either agreed or strongly agreed
that the platform’s hints make sense to them (Q.3) and are related to the programming
exercise (Q.1). The majority of the participants agree or strongly agree that the hints are
related to the code they wrote (Q.2), with only one participant giving a neutral answer.
More than 80% of the participants agree or strongly agree that the platform’s hints help
to understand the security issues present in the code (Q.5). About 72% of the participants
strongly agree that, given the opportunity, they would like to play additional exercises (Q.4);
however, three participants (27%) are not sure.



L. A. Casqueiro, T. E. Gasiba, M. Pinto-Albuquerque, and U. Lechner 10:9

Although Q.2, Q.4, and Q.5 show mostly positive results, one, three, and two neutral
answers were obtained for each question, respectively. Further studies are needed to under-
stand possible reasons that led the participants to give these answers. Overall, the outcome
obtained in this preliminary study, both through the survey and additional discussions,
indicates that the participants welcome the exercises. Furthermore, the hints generated by
our proposed automatic security assessment method, which uses widely available open-source
tools, received positive ratings from the participants of our study. This is in line with previous
similar studies for other programming languages, and gives the authors encouragement to
further develop the platform.

Although most participants come from the industry, we hypothesize that similar results
might be obtained for students in academia. Furthermore, we also hypothesize that the same
method can raise awareness on other coding issues, e.g., code-smells, naming conventions,
and code format.

This paper is focused on the Java programming language and the security vulnerabilities
associated with it. However, the method to automatically assess the submitted code can
be applicable and extendable to any programming language. Just, for each programming
language the set of vulnerabilities is different and thus the assessment method needs to be
updated accordingly. Although these tests are being developed for the industry, they can also
be applied in academia. The developed artifact can be incorporated in programming courses
(mainly junior-level) to teach these concepts to students, possibly leading to better prepared
and security-aware software developers. The purpose of the artifact itself can be shifted.
Instead of focusing 100% on the security part of code development, it can be enhanced to
deal with and cover other issues, e.g., code-smells or naming convention.

4.2 Threats to Validity
Eleven participants took part in our preliminary empirical study, which is in line with similar
preliminary empirical studies in industrial settings. The results were collected anonymously,
and the gathered data does not allow us to understand the difference between participants
from industry and students. Nevertheless, since the overall result is positive, we believe that
an eventual bias does not affect our conclusions. Furthermore, our results and in alignment
with previous studies. Static-application security tools are known to produce false-positives
and false-negatives. To counteract these issues, we use the following strategy: (1) our platform
filters the findings based on our tools’ experience, (2) we use additional security-tests to
cover false-negatives, and (3) we test the exercise extensively before deployment.

5 Conclusions and Further Work

Over the past decade, the number of cybersecurity incidents has been increasing. To
counteract this issue, companies can follow several strategies to reduce the number of
vulnerabilities in their products and services. These strategies aim to increase resilience
to malicious attacks. In this work, we focus on the human-factor, through awareness
training. To achieve this, we adapt and extend previous work on CyberSecurity Challenges to
automatically perform security assessment of Java challenges and generate hints for players.
This paper gives a brief overview of how this automatic assessment can be performed using
openly available tools enabling practitioners to reproduce our results. We also introduce
a hint-generation algorithm that is used to interact with the player. Finally, we perform
an empirical evaluation of our proposed method together with eleven participants. Nine
participants are working in the industry, and two are students in the software development

ICPEC 2021



10:10 Automated Security Assessment of Java CyberSecurity Challenges

field. Our preliminary results show that the participants can understand the hints generated
through our method and agree that these hints are helpful to solve the Java challenge. In
further work, the authors would like to implement additional Java challenges and perform a
detailed empirical evaluation of the artifact in an industry setting. In this future work, we
would like to understand how the hint system targeting Java challenges can be improved,
in particular addressing to which extent and which strategies can cope with the fact that
findings from static-application security testing tools can potentially contain false-positives
and false-negatives.

References
1 Uğur Bakan and Ufuk Bakan. Game-Based Learning Studies in Education Journals: A

Systematic Review of Recent Trends. Actualidades Pedagógicas, pages 119–145, July 2018.
doi:10.19052/ap.5245.

2 Marílio Cardoso, António Vieira de Castro, Álvaro Rocha, Emanuel Silva, and Jorge Mendonça.
Use of Automatic Code Assessment Tools in the Programming Teaching Process. In Ricardo
Queirós, Filipe Portela, Mário Pinto, and Alberto Simões, editors, First International Computer
Programming Education Conference (ICPEC 2020), volume 81 of OpenAccess Series in
Informatics (OASIcs), pages 4:1–4:10, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/OASIcs.ICPEC.2020.4.

3 MITRE Corporation. Common Weakness Enumeration. Online, Accessed 4 July 2019. URL:
https://cwe.mitre.org/.

4 MITRE Corporation. Common Weakness Enumeration - 404. Online, Accessed 4 July 2019.
URL: https://cwe.mitre.org/data/definitions/404.html.

5 MITRE Corporation. Common Weakness Enumeration - 772. Online, Accessed 4 July 2019.
URL: https://cwe.mitre.org/data/definitions/772.html.

6 Ian Cullinane, Catherine Huang, Thomas Sharkey, and Shamsi Moussavi. Cyber Security
Education Through Gaming Cybersecurity Games Can Be Interactive, Fun, Educational and
Engaging. J. Computing Sciences in Colleges, 30(6):75–81, June 2015.

7 Department of Homeland Security, US-CERT. Software Assurance. Online, Accessed 27
September 2020. URL: https://tinyurl.com/y6pr9v42.

8 Ralph Dörner, Stefan Göbel, Wolfgang Effelsberg, and Josef Wiemeyer. Serious Games:
Foundations, Concepts and Practice. Springer International Publishing, 1 edition, 2016.
doi:10.1007/978-3-319-40612-1.

9 Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar, Michael
Backes, and Sascha Fahl. Stack Overflow Considered Harmful? The Impact of Copy&Paste on
Android Application Security. In IEEE Symposium on Security and Privacy, pages 121–136,
San Jose, CA, USA, 2017. IEEE Computer Society. doi:10.1109/SP.2017.31.

10 Tiago Gasiba, Kristian Beckers, Santiago Suppan, and Filip Rezabek. On the requirements
for serious games geared towards software developers in the industry. In Daniela E. Damian,
Anna Perini, and Seok-Won Lee, editors, 27th IEEE International Requirements Engineering
Conference, RE 2019, Jeju Island, Korea (South), September 23-27, 2019. IEEE, 2019. URL:
https://ieeexplore.ieee.org/xpl/conhome/8910334/proceeding.

11 Tiago Gasiba, Ulrike Lechner, and Maria Pinto-Albuquerque. Sifu - a cybersecurity awareness
platform with challenge assessment and intelligent coach. In Special Issue of Cyber-Physical
System Security of the Cybersecurity Journal, Online, October 2020. SpringerOpen.

12 Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson. What happens
when software developers are (un)happy. Journal of Systems and Software, 140:32–47, June
2018. doi:10.1016/j.jss.2018.02.041.

13 Norman Hansch and Zinaida Benenson. Specifying IT Security Awareness. In 25th International
Workshop on Database and Expert Systems Applications, Munich, Germany, pages 326–330,
September 2014. doi:10.1109/DEXA.2014.71.

https://doi.org/10.19052/ap.5245
https://doi.org/10.4230/OASIcs.ICPEC.2020.4
https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/772.html
https://tinyurl.com/y6pr9v42
https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.1109/SP.2017.31
https://ieeexplore.ieee.org/xpl/conhome/8910334/proceeding
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1109/DEXA.2014.71


L. A. Casqueiro, T. E. Gasiba, M. Pinto-Albuquerque, and U. Lechner 10:11

14 Luis Afonso Casqueiro. Automated Java Challenges’ Security Assessment1for Training in
Industry – Preliminary Results. Zenodo, February 2021. . doi:10.5281/zenodo.4740829.

15 Na Meng, Stefan Nagy, Danfeng Daphne Yao, Wenjie Zhuang, and Gustavo Arango. Secure
Coding Practices in Java: Challenges and Vulnerabilities. In IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 372–383, May 2018. doi:10.1145/3180155.
3180201.

16 Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad, Donovan
Ellis, Eliany Perez, Rahul Bobhate, Lois A DeLong, Justin Cappos, and Yuriy Brun. API
Blindspots: Why Experienced Developers Write Vulnerable Code. Fourteenth Symposium
on Usable Privacy and Security (SOUPS 2018), pages 315–328, August 2018. (USENIX)
Association, Baltimore, MD, USA, ISBN: 978-1-939133-10-6. URL: https://www.usenix.org/
conference/soups2018/presentation/oliveira.

17 Suri Patel. 2019 Global Developer Report: DevSecOps Finds Security Roadblocks Divide
Teams. Online, Accessed 18 July 2020. URL: https://tinyurl.com/3z57t32d.

18 Alison DeNisco Rayome. The 3 Least Secure Programming Languages, March 2019. URL:
https://www.techrepublic.com/article/the-3-least-secure-programming-languages/.

19 Tim Rietz and Alexander Maedche. LadderBot: A Requirements Self-Elicitation System. In
2019 IEEE 27th International Requirements Engineering Conference (RE), pages 357–362.
IEEE, 2019.

20 Marc Schönefeld. Java-Security: Sicherheitslücken identifizieren und vermeiden. MITP-Verlags
GmbH & Co. KG, 2011.

21 Maung Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and Rikard Lindgren. Action
Design Research. MIS Quarterly, 35(1):37–56, March 2011. doi:10.2307/23043488.

22 Software Engineering Institute, Carnegie Mellon. SEI CERT Oracle Coding Standard for Java.
Online, Accessed 11 June 2018. URL: https://tinyurl.com/ypm4mnj8.

23 Software Engineering Institute, Carnegie Mellon. SEI CERT Oracle Coding Standard
for Java - FIO04-J. Release resources when they are no longer needed. Online, Ac-
cessed 11 June 2018. URL: https://wiki.sei.cmu.edu/confluence/display/java/FIO04-J.
+Release+resources+when+they+are+no+longer+needed.

24 Silvio Sorace, Elisabeth Quercia, Ernesto La Mattina, Charalampos Z. Patrikakis, Liz Bacon,
Georgios Loukas, and Lachlan Mackinnon. Serious Games: An Attractive Approach to Improve
Awareness, pages 1–9. Springer International Publishing, Springer Cham, 2018.

ICPEC 2021

https://doi.org/10.5281/zenodo.4740829
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3180155.3180201
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://tinyurl.com/3z57t32d
https://www.techrepublic.com/article/the-3-least-secure-programming-languages/
https://doi.org/10.2307/23043488
https://tinyurl.com/ypm4mnj8
https://wiki.sei.cmu.edu/confluence/display/java/FIO04-J.+Release+resources+when+they+are+no+longer+needed
https://wiki.sei.cmu.edu/confluence/display/java/FIO04-J.+Release+resources+when+they+are+no+longer+needed

	1 Introduction
	2 Related Work
	3 Automated Security Assessment of Java Challenges
	3.1 Automated Security Assessment Process
	3.2 Empirical Study

	4 Evaluation
	4.1 Results and Discussions
	4.2 Threats to Validity

	5 Conclusions and Further Work

