
Javardeye: Gaze Input for Cursor Control
in a Structured Editor

André L. Santos
Instituto Universitário de Lisboa (ISCTE–IUL), ISTAR-IUL

Lisboa, Portugal
andre.santos@iscte-iul.pt

editing cursor

1. eye gaze

2. activation key

3. cursor switch

latent cursor

Figure 1: Latent Cursor: a secondary gaze-driven cursor locates the next editing point to be activated with a key.

ABSTRACT
Programmers spend a considerable time jumping through editing
positions in the source code, often requiring the use of the mouse
and/or arrow keys to position the cursor at the desired editing
position. We developed Javardeye, a prototype code editor for Java
integrated with eye tracking technology for controlling the editing
cursor. Our implementation is based on a structured editor, lever-
aging on its particular characteristics, and augmenting it with a
secondary—latent cursor—controlled by eye gaze. This paper de-
scribes the main design decisions and tradeoffs of our approach.

CCS CONCEPTS
•Human-centered computing→ Pointing; • Software and its
engineering → Integrated and visual development environ-
ments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8986-0/21/03. . . $15.00
https://doi.org/10.1145/3464432.3464435

KEYWORDS
structured editors, gaze input, navigation

ACM Reference Format:
André L. Santos. 2021. Javardeye: Gaze Input for Cursor Control in a Struc-
tured Editor. In Companion Proceedings of the 5th International Conference
on the Art, Science, and Engineering of Programming (<Programming> ’21
Companion), March 22–26, 2021, Virtual, UK. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3464432.3464435

1 INTRODUCTION
Developers have to deal with large source code files and editing
activity easily becomes tiresome. A considerable part of the time
is spent on IDE interaction [5, 8], namely on navigating, mouse
drifting, code inspection. When inspecting a part of a source code
file for modification, one has to position the cursor at the desired
location. This actionwill conventionally either involve the keyboard
or the mouse.

Anecdotical evidence suggests that experienced programmers
prefer keyboard in favor of resorting to the mouse, as the latter
requires more movement, and hence, tends to be slower for many
actions. Programmers are among the users that most intensely use
the keyboard. Anecdotal evidence from a considerable number of
posts in blogs and discussion forums, suggests that many program-
mers incur in repetitive strain injuries (RSI), affecting wrists, hands,
or shoulders. The author of this paper himself has had wrist RSI.

<Programming> 2021 Companion, Virtual, UK
Workshop PX/2130

https://doi.org/10.1145/3464432.3464435
https://doi.org/10.1145/3464432.3464435

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK André L. Santos

Arrow keys in most keyboards are usually not in the most er-
gonomic location (at bottom right, not favoring wrist health given
the necessary hand bending to reach them). On the other hand, in-
tense mouse usage also causes problems, not only in the hands and
wrists, but also in arms and shoulders. Our research aims at reduc-
ing time and physical effort for cursor positioning, when compared
to the equivalent actions using keyboard and mouse (in isolation
or in combination).

This paper presents a prototype code editor where the cursor
location is controlled through eye gaze input, using an eye-tracking
device. Our design relies on the concept of latent cursor, an ad-
ditional “shadow cursor” in the editor for the gaze location (see
Figure 1), to which the user may jump on request by pressing a
key. This a gaze-supported selection technique, following the prin-
ciple that gaze suggests and touch confirms. [12] We explain the
main challenges and limitations for achieving this goal, and we
describe the design of our prototype. We developed the prototype
on top of Javardise [10], a structured editor for Java initially devel-
oped for didactic purposes. Having an underlying structured editor
is an advantage to cursor positioning, given that code elements
are well-defined widgets (as opposed to a stream of characters), a
characteristic that facilitates locating elements.

Our main goal is to develop a technique for quickly jumping
from one part of the code to another, within the same file. With the
available technology, users most likely use arrow keys for shorter
distances, whereas for longer ones the chances of opting for the
mouse pointer are higher. Nonetheless, there are many editors with
a variety of shortcuts, as well as many types of users, with different
expertise, culture, etc. We propose to control cursor positioning
with eye gaze, allowing a user to jump to an editing location by look-
ing at it. This is a natural form of interaction, as one implicitly looks
at a destination before pointing there, indicating a hypothetical
intention of moving there.

Quick jumps may result in faster code editing. However, even
if the proposed mechanism does not result in faster code editing,
allowing fewer keystrokes or mouse manipulation should in princi-
ple contribute to a less tiresome editing activity. Hence, we consider
that apart from coding speed, reducing physical effort is also a goal
worth pursuing.

2 CHALLENGES
The design of a solution for our goals has a few challenges regarding
the gaze control modality that may hinder its effectiveness.

2.1 Midas Touch Problem
One could use eye gaze to control the mouse. However, one pitfall
with this approach is the Midas Touch problem [4], which consists
in accidental touching activity, for instance when using gaze control
for performing mouse actions (clicks or moves). This may nega-
tively affect the user experience and invalidate designs based on
eye gaze. We chose not to use the eye tracking interaction modality
to replace the mouse in any way, but rather to gather complemen-
tary information to eventually trigger interaction. Jacob et al. [3]
advocate for this strategy, as humans often perform saccades for
quick glances, and that would lead to involuntary mouse activity.

2.2 Precision of Eye Tracking Device
Code involves fine-grained editing, and often small fonts are used
in editors. Source code tokens may be as small as a single character.
This raises a concern regarding the precision of eye tracking devices.
Low accuracy of eye gaze data, forcing a user to wait more than a
fraction of a second, or that requires tricking the natural way of
looking undermines the whole experience. The precision of eye
gaze depends on the eye tracking hardware being used, as well as
on the quality of its calibration.

A user study with a diverse demographics of non-
programmers, revealed that accuracy and precision may vary sub-
stantially among subjects—up to six-fold [1]—using two of the best
eye tracking devices available (Tobii EyeX1, SMI REDn2). The study
concluded that for reaching reliable interaction for 75% of the users,
UI designs should consider targets of at least 1.9cm width and
2.35cm height (accuracy tends to be lower in the y axis). However,
more accurate users (25%) may interact well with targets as small
as 0.58 × 0.8 cm.

The font size and face that programmers use varies according to
taste and user physiology. We are not aware of a systematic survey
on the matter, but from anecdotal evidence, we find reasonable to
assume that the norm is to use a mono-spaced font face with size
ranging between 11 and 14 points. Whereas 0.58 × 0.8 cm seem
a reasonable target dimension for such font sizes, eye tracking
systems with low precision may require a larger than usual font
size for satisfactory accuracy. Apart from the size of the actual font,
line spacing might have to be tuned, especially because the y-axis
accuracy tends to be lower. [1]

3 RELATEDWORK
EyeNav [9] is a gaze-enabled IDE that mostly resembles our ap-
proach, in the sense that eye gaze is used to navigate to the editing
location. We also adopt a “look-and-click” [12] interaction tech-
nique to move the cursor. EyeNav supports selection of a range
of characters, an aspect which does not straightly apply in our
case because we are working with a structured editor. We plan to
leverage on gaze input for selecting a set of elements, but we did
not yet come up with a technique to achieve that goal, in part due
to the limitations and prototypical state of Javardise.

EyeDE [2] is also a gaze-enabled IDE, but its focus is on navi-
gation features, such as jumping to declarations, documentation
lookup, and switching between files. Their tool uses gaze input to
select an identifier, and in turn, activate the possible actions for
that same identifier through a gaze-enabled pop-up menu. Most of
the features proposed by EyeDE could be integrated with what we
propose, given that their starting point is the gaze-driven selection
of a program token. The main difference of our contribution to
EyeNav and EyeDE is that we exploit the specific characteristics of
a structured editor, which target conventional code editors holding
streams of characters. We expect to achieve more gaze accuracy
than these systems because we work with larger gaze target regions,
as explained ahead.

CodeGazer [11] follows a similar strategy to EyeDE, but relies
on a different technique for gaze-only selection called Actigaze

1www.tobiipro.com
2www.imotions.com/hardware/smi-redn-scientific

31

Javardeye: Gaze Input for Cursor Control in a Structured Editor <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

[7]. The technique relies on displaying side and upper/lower bars
with large target regions, each with a different color, which maps to
program elements (or menu options) that also become colored when
they are within gaze range. The elements are selected by gazing the
side target areas that match the colored elements. This technique is
more invasive than EyeNav, EyeDE, and ours, given that it requires
additional bars on the sides, and further interferes with the code
layout given the frequent color changes. The main advantage of
CodeGaze is that is gaze-only, rather than look-and-click.

Thomschke et al. [13] proposed to use gaze input for inter-
environment switching, rather than within a same programming
environment. The motivation for this approach are the mismatches
between the environment actually on focus and the one we aims
at interacting with, possibly leading to keyboard typing at incor-
rect and inconvenient places. The approach is based on matching
keyboard focus with the gaze input, assuming that a developer
will look to the desired region for typing. Our approach is solely
addressing intra-environment gaze-based control, but in principle
it could integrate well with such an inter-environment gaze control
given that gaze has no effect outside our editor window.

4 DESIGN
We address the previously described design challenges exploiting
the particular characteristics of the implementation of our struc-
tured editor.

4.1 Anatomy of the Structured Editor
Our prototype was built on top of a structured editor that resulted
from our previous work on Javardise. [10] The implementation
of the structured editor is based on a containment hierarchy of
widgets that hold elements of the program (tokens representing
expressions or language keywords). The editing activity consists of
typing on the text widgets, even if that is not fully realized by the
user.

As expected, the user sets the focus on these editable text widgets
using either mouse or keyboard. As with normal UI toolkits, the
widgets have well-defined boundaries that can be easily mapped to
display coordinates (see Figure 2). We rely on this aspect in order to
have more coarse-grained elements as eye gaze targets, in contrast
to single-character cursor positioning. This alleviates the accuracy
problem, given that gaze will target whole code tokens that have
larger bounds.

Another characteristic of Javardise is that editable program to-
kens (e.g., identifiers, operators) and fixed program tokens (e.g.,
brackets, semi-colons) are handled differently and may be unam-
biguously discerned (see Figure 2). If we exclude the fixed widgets,
we have fewer elements as possible gaze targets, and the target
region of the editable widgets may be expanded to overlap the fixed
widgets. Having larger target regions also mitigates the accuracy
problem.

4.2 Latent Cursor
Our proposed solution comprises a secondary “cursor”, which we
refer to as the latent cursor (recall Figure 1), in addition to the
regular editing cursor. The latent cursor is not actually a cursor
where one may start entering text straight away, but a location

 () {

 ;
}
i++

 = ;

... editable
widgets

0i

iwhile n

viewport

<

fixed
widgets

Figure 2: Javardise holds program elements in either ed-
itable or fixed widgets. The dashed regions represent the
augmented bounds of widgets that will be gaze targets for
selecting them.

that may immediately become the editing cursor. The latent cursor
moves according to the user’s eye gaze, and it comes into play when
a specific key (or combination) is pressed. This activates switching
the editing cursor to the latent cursor, whereas the new position of
the latent cursor location will go on being driven by gaze.

Wemaintain the regular editing cursorworking normally, whereas
the gaze cursor has a very lightweight distinctive appearance, in
order to be the least distractive as possible, but nevertheless, visible
(see Figure 3). We chose to have a slightly distinct text background
for marking the gaze location. However, we did not actually inves-
tigate which would be the best options in HCI terms. Nevertheless,
this aspect is suitable to be easily changed.

The position of the latent cursor may be affected by eye tracking
accuracy, and hence, it could possibly be located not at the exact
desired spot. However, as with the case that we might miss an
exact character position target with the mouse and further adjust
with keys, one can also trigger cursor switch to the latent cursor
to an approximate desired location and further adjust with arrow
keys. This is not the ideal situation, but it may still involve less
activity than manual positioning (2-3 keystrokes vs. switching to
the mouse).

4.3 Beyond the Viewport
Code files are often large, and a programmer will need to move
aroundwithin a file.We considered two eye gaze-basedmechanisms
for changing what is visible in the viewport.

In order to perform longer movements within the same file, we
provide the outline section. The latent cursor also moves to this
area, and navigation is triggered in the same way as explained.
By pressing the activation key, the viewport jumps to the selected
method, as in a regular IDE outline view.

In order to reach adjacent regions to the viewport, Javardeye
supports automatic scrolling when gazing and dwelling over the
upper and lower areas of the editing area (see Figure 3). At the
edge of the editing area the scroll moves at a single step at a time,

32

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK André L. Santos

auto-scroll up region

slow

fast

outline

latent cursor

editing cursor

fast

slow

auto-scroll down region

Figure 3: User interface of Javardeye. Dashed parts are target
regions for gaze-driven activity: method focus on the out-
line section on the left; up/down scrolling on the top/bottom
edges of the viewport.

whereas as the distance from the edge towards outside increases,
the scrolling speed also increases.

In contrast to cursor and outline jumps, scrolling does not use
an activation key, and hence, the Midas touch problem may emerge
here. However, automatic scrolling occurs without loosing the cur-
rent editing cursor position (an adaptation of the discrete scrolling
with gaze-repositioning technique [6]). Given that quick glances
will result only in small scrolling steps without loosing the cur-
sor, we speculate that it should not significantly harm the editing
experience.

4.4 Implementation
Weused an EyeTribe3 device (now discontinued) as the eye-tracking
hardware to implement the prototype. EyeTribe is launched as a
local server, to which other processes may establish connections
to receive gaze data. They provide SDKs for C, C++, and Java for
communicating with the server. Given that Javardise is built in Java,
the integration was smooth in this respect. We allow the latent
cursor to be turned on and off at any point in time. Regarding
configuration, we allow to define the key for triggering the cursor
switch and dwelling time for scrolling.

Using the available EyeTribe device of our lab, we did not manage
to have excellent calibration results. This resulted in moderate gaze
accuracy, implying that the prototype was usable only with a large

3theeyetribe.com

font (> 24 points). In principle, if using better hardware, such as
the devices manufactured by Tobii, we can manage to operate with
font sizes that are closer to normal standards. We used EyeTribe
for this first prototype merely due to practical reasons. Among the
available hardware at our research center, EyeTribe has the easiest
to integrate with Mac OS, since the available Tobii hardware did
not have out-of-the-box drivers for it.

5 CONCLUSIONS
The development of Javardeye led us to conclude that the combi-
nation of eye tracking and structured code editors has potential as
an effective multi-modal interaction technique. The main advan-
tages relate to having code elements as widgets, with well-defined
boundaries that may stretch over to non editable tokens to allow a
larger gaze target.

So far, we concentrated mostly on cursor control, but additional
gaze-based features could be developed. We did not implement any
technique for inter-file navigation, but we foresee that the tech-
niques from other works, such as navigate to definition (e.g., [2]),
could be seamlessly integrated with our technique. We are working
on a technique for using the latent cursor to form a selection in
combination with the active cursor.

Once the ability of performing selection (for copy/cut-paste) is
achieved, we should be close to a thorough gaze-based interaction
with the code editor. At that point, we plan to carry out a user study
to evaluate the usability of Javardeye.

ACKNOWLEDGEMENTS
This work was partially funded by Fundação para a Ciência e Tec-
nologia (FCT / Portugal) by the project UIDB/04466/2020. We thank
Instituto Universitário de Lisboa and ISTAR-IUL for their support,
as well as the anonymous reviewers for their valuable feedback.

REFERENCES
[1] Anna Maria Feit, Shane Williams, Arturo Toledo, Ann Paradiso, Harish Kulkarni,

Shaun Kane, and Meredith Ringel Morris. 2017. Toward Everyday Gaze Input:
Accuracy and Precision of Eye Tracking and Implications for Design. Association
for Computing Machinery, New York, NY, USA, 1118–1130. https://doi.org/10.
1145/3025453.3025599

[2] Hartmut Glücker, Felix Raab, Florian Echtler, and Christian Wolff. 2014. EyeDE:
Gaze-Enhanced Software Development Environments. In CHI ’14 Extended Ab-
stracts on Human Factors in Computing Systems (CHI EA ’14). Association for
Computing Machinery, New York, NY, USA, 1555–1560. https://doi.org/10.1145/
2559206.2581217

[3] Rob Jacob and Sophie Stellmach. 2016. What You Look at is What You Get:
Gaze-Based User Interfaces. Interactions 23, 5 (Aug. 2016), 62–65. https://doi.
org/10.1145/2978577

[4] Robert J. K. Jacob. 1990. What You Look at is What You Get: Eye Movement-Based
Interaction Techniques. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’90). Association for Computing Machinery, New
York, NY, USA, 11–18. https://doi.org/10.1145/97243.97246

[5] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. 2006. An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant Information during
Software Maintenance Tasks. IEEE Transactions on Software Engineering 32, 12
(2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[6] Manu Kumar and Terry Winograd. 2007. Gaze-enhanced scrolling techniques. In
Proceedings of the 20th Annual ACM Symposium on User Interface Software and
Technology, Newport, Rhode Island, USA, October 7-10, 2007, Chia Shen, Robert
J. K. Jacob, and Ravin Balakrishnan (Eds.). ACM, 213–216. https://doi.org/10.
1145/1294211.1294249

[7] Christof Lutteroth, Moiz Penkar, and Gerald Weber. 2015. Gaze vs. Mouse:
A Fast and Accurate Gaze-Only Click Alternative. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (UIST ’15).

33

https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1145/2559206.2581217
https://doi.org/10.1145/2559206.2581217
https://doi.org/10.1145/2978577
https://doi.org/10.1145/2978577
https://doi.org/10.1145/97243.97246
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1145/1294211.1294249
https://doi.org/10.1145/1294211.1294249

Javardeye: Gaze Input for Cursor Control in a Structured Editor <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

Association for Computing Machinery, New York, NY, USA, 385–394. https:
//doi.org/10.1145/2807442.2807461

[8] Roberto Minelli, Andrea Mocci and, and Michele Lanza. 2015. I Know What You
Did Last Summer: An Investigation of How Developers Spend Their Time. In Pro-
ceedings of the 2015 IEEE 23rd International Conference on Program Comprehension
(ICPC ’15). IEEE Press, 25–35.

[9] Stevche Radevski, Hideaki Hata, and Ken-ichi Matsumoto. 2016. EyeNav: Gaze-
Based Code Navigation. In Proceedings of the 9th Nordic Conference on Human-
Computer Interaction, Gothenburg, Sweden, October 23 - 27, 2016. ACM, 89. https:
//doi.org/10.1145/2971485.2996724

[10] André L. Santos. 2020. Javardise: A Structured Code Editor for Programming
Pedagogy in Java. In Conference Companion of the 4th International Conference on
Art, Science, and Engineering of Programming (<programming> ’20). Association
for Computing Machinery, New York, NY, USA, 120–125. https://doi.org/10.

1145/3397537.3397561
[11] Asma Shakil, Christof Lutteroth, and Gerald Weber. 2019. CodeGazer: Making

Code Navigation Easy and Natural With Gaze Input. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI ’19). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3290605.3300306

[12] Sophie Stellmach and Raimund Dachselt. 2012. Look & Touch: Gaze-Supported
Target Acquisition. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). Association for Computing Machinery, New York,
NY, USA, 2981–2990. https://doi.org/10.1145/2207676.2208709

[13] Astrid Thomschke, Daniel Stolpe, Marcel Taeumel, and Robert Hirschfeld. 2016.
Towards Gaze Control in Programming Environments. In Proceedings of the Pro-
gramming Experience 2016 (PX/16) Workshop (PX/16). Association for Computing
Machinery, New York, NY, USA, 27–32. https://doi.org/10.1145/2984380.2984384

34

https://doi.org/10.1145/2807442.2807461
https://doi.org/10.1145/2807442.2807461
https://doi.org/10.1145/2971485.2996724
https://doi.org/10.1145/2971485.2996724
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3290605.3300306
https://doi.org/10.1145/3290605.3300306
https://doi.org/10.1145/2207676.2208709
https://doi.org/10.1145/2984380.2984384

	Abstract
	1 Introduction
	2 Challenges
	2.1 Midas Touch Problem
	2.2 Precision of Eye Tracking Device

	3 Related Work
	4 Design
	4.1 Anatomy of the Structured Editor
	4.2 Latent Cursor
	4.3 Beyond the Viewport
	4.4 Implementation

	5 Conclusions
	References

