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Abstract. Code smells are considered potentially harmful to software
maintenance. Their introduction is dependent on the production of new
code or the addition of smelly code produced by another team. Code
smells survive until being refactored or the code where they stand is
removed. Under normal conditions, we expect code smells density to
be relatively stable throughout time. Anomalous (sudden) increases in
this density are expected to hurt maintenance costs and the other way
round. In the case of sudden increases, especially in pre-release tests in an
automation server pipeline, detecting those outlier situations can trigger
refactoring actions before releasing the new version.

This paper presents a longitudinal study on the sudden variations in
the introduction and removal of 18 server code smells on 8 PHP web
apps, across several years. The study regards web applications but can
be generalized to other domains, using other CS and tools. We propose
a standardized detection criterion for this kind of code smell anoma-
lies. Besides providing a retrospective view of the code smell evolution
phenomenon, our detection approach, which is particularly amenable to
graphical monitoring, can make software project managers aware of the
need for enforcing refactoring actions.

Keywords: PHP · Code smells · Web apps · Sudden variations ·
Anomaly detection · Outliers

1 Introduction

1.1 Motivation

A major manifestation of maintenance issues is the existence of code smells
[10], since they are seen as potential catalysts of software evolution costs, due
to increased defect incidence, poorer code comprehension, and longer times to
release. A code smell (CS) may be something like a long method, or many param-
eters in a method. Java desktop applications have been particularly analyzed
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regarding this aspect [21,25]. The Software Engineering community has pro-
posed several techniques and tools, both for CS detection and refactoring, but
several problems remain such as detection subjectivity [5] and, low coverage of
existing CS catalogs and programming languages [22,28].

While looking for the CS phenomenon on a quantitative basis, we should not
analyze the raw number of existing (or removed) CS, because that number will
largely depend on system size. Some measure of CS density (the number of CS
divided by a size measure) should be used instead, like for instance in [8,17].
For a reasonably large project, maintained by a large team, developing code as
usual, we expect to observe an inertia effect, i.e. that CS density is relatively
stable throughout time. However, there are moments in the history of a project
where that density may have sudden variations.

CS sudden variations are relevant to understand the story of a project, can be
used as an explanatory factor (e.g. for consequent variations in reported issues
and maintenance effort) and, justify the relevance of refactoring actions. Software
managers should: (i) be aware if CS are under control (i.e. if CS infection is not
going wild) and, if not, (ii) prioritize refactoring of detected CS. A solution to
prevent the first problem is proposed in this paper for PHP web apps. A solution
to the second can be found in [9] in the context of Java systems.

Web apps are different from desktop and mobile apps. The latter run on
the OS, while the former run both on a browser and a server, and thus have
server-side programming and client/browser-side programming, that run in two
separate environments. Thus, they encompass a heterogeneity of target plat-
forms, programming, and content formatting languages. Due to this difference
and diversity, it is necessary to perform similar and different studies (from the
applications that run directly in the OS), regarding their specificity. In the study,
we focus on web applications using the PHP programming language, currently
reported to hold 79% of the market share in that sector [27]. We considered as
many years as possible for each web app, summing up a total of 441 versions.

1.2 Research Questions

During data collection for another study [23], we noticed that sudden variations
in CS density, in both directions (steep increase or steep decrease), occur in
some versions (also called releases) of the target web apps. These anomalous
situations deserve our attention, either for recovering the story of a project or,
if used just-in-time (e.g., integrated into a pre-release tests battery), to provide
awareness to decision-makers that something unusual is taking place for good
or bad. In this paper we aim at providing an answer to the following research
questions in the context of web apps using PHP as the server language:

RQ1 – How to detect sudden variations in the evolution of code smells?
RQ2 – When are the sudden variations in changes of code smells in a new
version considered too high? or When are there too many code smells?

To answer these research questions, we perform a longitudinal study with
8 web applications and 18 server-side CS. This paper is structured as follows:
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Sect. 2 introduces the study design; Sect. 3 describes the results of data anal-
ysis, while Sect. 4 discusses the findings and identifies validity threats; Sect. 5
overviews the related work on longitudinal studies on CS and in web apps;
finally, Sect. 6 outlines the major conclusions and outlines future work.

2 Study Design

2.1 Applications Sample

The criteria for selecting the sample of PHP web apps were the following:

Inclusion criteria: code availability (open source); complete or self-
contained applications, taken from the GitHub top listings; programmed with
an object-oriented programming (OOP) style; covering a long period (at least
5 years)
Exclusion criteria: libraries; frameworks or applications used to build other
applications; web apps built using a framework.

We excluded frameworks and libraries because we want to study typical web
apps. We excluded web apps built with frameworks because we want to analyze
app code and not the framework code itself, thus aiming for comparability among
apps. Probably, apps made with frameworks would deserve a separate study.
Another reason is that we have apps with a long history, and many started when
modern frameworks were not available. Some apps that we had as candidates
failed the requisite of being OOP. PHP allows for a procedural development
paradigm, but the detected CS are OOP in nature. Table 1 shows the sample of
apps used, including some metrics.

Table 1. Characterization of the target web apps (* on last version)

Name Purpose #Versions(period) Last version LOC* #Classes*

PhpMyAdmin Database administration tool 181 (09/2008-09/2019) 4.9.1 301748 1174

DokuWiki Wiki solution 40 (07/2005-01/2019) 04-22b 271514 402

OpenCart Shopping cart solution 28 (04/2013-04/2019) 3.0.3.2 206253 955

PhpBB Forum/bulletin board solution 50 (04/2012-01/2018) 3.2.2 341159 1330

PhpPgAdmin Database administration tool 29 (02/2002-09/2019) 7.12.0 71210 54

MediaWiki Wiki solution 145 (12/2003-10/2019) 1.33.1 754941 2479

PrestaShop Shopping cart solution 74 (06/2011–08/2019) 1.7.6.1 516737 2597

Vanilla Forum/bulletin board solution 75 (06/2010–10/2019 3.3 193435 533

For each app we collected as many versions as possible. Sometimes we could
not get the whole lifecycle either because not all versions were available online
or did not match the OOP criterion in the earlier versions. The LOC (Lines Of
Code) and “number of Classes” are size metrics from the last version and were
measured by the PHPLOC tool.

https://phpqa.io/projects/phploc.html
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2.2 CS Sample

We used PHPMD , an open-source tool that detects CS in PHP. PHPMD was
the base for many other PHP CS detection tools existing today, and we can
automatize it via the command line. Although the tool supports more CS, we
chose the maximum number of highly cited ones in the literature for other lan-
guages, leaving us with the 18 CS which are briefly characterized in Table 2.
For comparability among apps, the thresholds are the same among apps, and
the default ones used in PHPMD, witch in turn came from PMD, and are gen-
erally accepted from the references in the literature [4,16]. For individual app
evaluation these could be optimized [13].

Table 2. Characterization of the target code smells

Code smell name Code smell description Threshold

CyclomaticComplexity Determined by the number of decision
points in a method plus one for the
method entry

10

NPathComplexity Number of acyclic execution paths
through that method

200

ExcessiveMethodLength (Long method) the method is doing too
much

100

ExcessiveClassLength (Long Class) class does too much 1000

ExcessiveParameterList Method with too long parameter list 10

ExcessivePublicCount A large number of public methods and
attributes declared in a class

45

TooManyFields Class with too many fields 15

TooManyMethods Class with too many methods 25

TooManyPublicMethods Class with too many public methods 10

ExcessiveClassComplexity Excessive Sum of complexities of all
methods in a class

50

NumberOfChildren Class with an excessive number of children 15

DepthOfInheritance Class with many parents 6

CouplingBetweenObjects Class with too many dependencies 13

DevelopmentCodeFragment Development Code ex: var dump(),
print r() etc.

1

UnusedPrivateField A private field is declared and/or assigned
a value, but not used

1

UnusedLocalVariable A local variable is declared and/or
assigned, but not used

1

UnusedPrivateMethod A private method is declared but is unused 1

UnusedFormalParameter Unused parameters in
methods/constructors that are not used

1

https://phpmd.org/
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2.3 Data Collection and Preparation

In the data collection and preparation phase, we downloaded the source code of
all versions of the selected web applications, in ZIP format, from GitHub, Source-
Forge, and application site (when not available), except the alpha, beta, release
candidates, and corrections for old versions. We created a database table with
the application versions, later exported to a CVS file, containing the timestamps
for each downloaded version. Using PHPMD, we extract the CS, file and line
locations, dates, and other CS indicators from every version, and store them in a
database. For the applications, we excluded some directories that were not part
of the applications (vendor, libraries, images, etc.). The data at this point was
stored by version/smell. We then exported the results to CVS format, in prepa-
ration for the data analysis phase. We used the PHPLOC tool to extract several
code metrics from the source code of each version of each app. The collected
dataset is available here, in csv format, for replication purposes.

3 Results and Data Analysis

3.1 Evolution of the Number of CS per Version

Figure 1 presents the evolution of CS by version. Software delivery occurs at
unequally spaced moments in time, that we usually call “versions”, or “releases”.
The visualization in Fig. 1 allows identifying the versions where a major refac-
toring occurred. For example, in PhpMyAdmin, from a graph of survival of code
smells not shown here (space constrictions), versions 4.6, 4.7 and 4.8 seem to
have a lot of refactoring. We drilled down this behavior in the code of ver-
sion 4.8 because a lot of smells were introduced in this version, and a lot were
removed. By code inspection we found that during that refactoring some files
changed their names, so the smell appears in another file. In other words, a
rename in a file or class causes the fake conclusion that some existing smells
were removed while new ones were created. To block this fake effect, we should
observe the evolution of the total number of occurrences for each CS, by ver-
sion. We observed these phenomena in the record of each CS, in our data. If
we observe Fig. 2, we do not understand if the smells are all new or came from
renaming operations but observing the total number of CS in Fig. 3 we have a
different perspective. We also pinpoint that for 2 of the applications, Vanilla and
MediaWiki, the number of CS increases steadily during the life of the applica-
tion. The “ExcessiveMethodLength” (aka Long Method) CS is one of the more
recurrent. However, the “complexity” smells play an important part in the total
computation, and also in some applications, the “unused” group of smells.

3.2 Anomalies in CS Evolution

During data analysis, we found versions where refactoring on file names and
location in folders occurred, but CS prevailed in a different file/folder. So, is it

https://github.com/americorio/articledata/tree/master/suddenvariations-webapps/
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Fig. 1. Evolution of the total number of each code smell by app and version
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Fig. 2. CS and KLLOC rate of change evolution

possible to check those versions for anomalies (sudden variations) in the num-
ber/intensity of CS?

In Fig. 2, we can see the relative change of CS from the previous version
(black), and the relative change in KLLOC (thousands of logical lines of code)
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from the previous version (blue/dashed). KLOC (thousands of lines of code) is a
well know measure, although here we used the logical lines of code. The relative
change in the number of CS is given by:

Δcs =
csi − csi−1

csi−1
=

csi
csi−1

− 1 (1)

where Δ is the rate of change, csi is the number of CS in the current version
and csi−1 is the number of CS in the previous version. The same is calculated
for the size, i.e. the Logical Lines of Code (LLOC).

The sudden variations occur when there is a large increase in the number of
CS and the size does not grow accordingly. It is also possible to get the version
in which a lot of CS were removed by refactoring. For comparability sake, we
use CS density or ρcs = number of CS/LLOC. We can now calculate the rate of
change of the CS density, which we calculate in the same way as referred before
for the CS number:

Δρcs =
ρcsi − ρcsi−1

ρcsi−1
=

ρcsi
ρcsi−1

− 1 (2)

where Δρcs is the rate of change of density of CS, ρcsi is the density of CS
in the current version and ρcsi−1 is the density of CS in the previous version.
Figure 3 presents the evolution of CS density, making it easy to pinpoint the
peaks, labeled according to the corresponding version.

In the graphs per application, we use lines representing thresholds, signaling
the increase of 50% and 100% and the reduction of 50% in the rate of change
in the density of CS. The thresholds can be changed according to application,
team, quality, and company, if applicable.

In Table 3 we can observe the variance of CS by KLLOC, as well as the
Cyclomatic Complexity by LLOC (aka Cyclomatic Complexity Density) from the
current and previous versions, a long used objective metric for maintainability
prediction [11].

Table 3. Metrics for the outliers

App Version Date CS LLOC CS/kLLOC var(CS/kLLOC) CC/LLOC CC/LLOC

previous

phpmyadmin 3.3.0 2010-03-07 1145 130863 8.75 0.55 0.129 0.095

phpmyadmin 3.4.0 2011-05-11 1617 57338 28.20 2.02 0.425 0.137

phpmyadmin 4.7.1 2017-05-26 948 56192 16.87 1.11 0.391 0.321

phpbb 2.0.7 2004-03-13 226 12511 18.06 4.88 0.436 0.073

phpbb 3.0.0 2007-12-12 1781 32291 55.15 1.90 0.547 0.462

phppgadmin 5.1.0 2013-04-14 402 37098 10.84 0.71 0.152 0.095

4 Discussion

4.1 Introduction

We could find CS sudden variations in 4 web apps (PhpMyAdmin, PhpBB, PhpP-
gAdmin and MediaWiki). For example, PhpMyAdmin has 3 of these anomalies,
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Fig. 3. CS density rate of change evolution

where CS rose abnormally without a correspondent rise in the app size. This
can point to problems in those versions. We also spot a decrease anomaly, in
version 4.7. By reading the code we confirmed that refactoring was then applied
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considerably, which is in line with the changes observed in Fig. 2. The other 4
apps (DokuWiki, OpenCart, PrestaShop and Vanilla) are not exactly stable but
do not have anomalies crossing the warning threshold. This somewhat simple
method to implement - measuring Δρcs - is able to detect the anomalies/sudden
variations in the CS density.

4.2 Answers to Research Questions

RQ1 – How to detect sudden variations in the evolution of code smells? - As
shown in Figs. 2 and 3 it is possible to detect these CS anomalies or peaks. We
can analyze the rate of change (current version vs previous version) on the CS
intensity alone (Eq. 1) or their relative rate of change by size (density), given
by Eq. 2, which will be a more comparable metric across versions of the same
application and even among applications.

RQ2 – When are the sudden variations of code smells in a new version considered
too high? - or When are there too many code smells? Similar to limits in control
charts, where you have limits equal to 3 times the variance, in this case we have
to define thresholds, that can be chosen among development teams. We believe
that a threshold of 50% will be sufficient to rise maintainability alerts. Knowing
that we can never remove all the CS from an application, a 50% increase would
raise a yellow flag, and a 100% increase would raise a red flag (stop immediately).
Looking at Table 3 we can see that peaks also affect the cyclomatic complexity
per LLOC, which it turn affects maintainability [11].

4.3 Applicability

Ideally, the removal of CS can be done in a “Total Quality” manner, where
the developer is responsible to avoid the introduction of CS in the code, but
often this is not possible. CS density thresholds detection can be integrated into
an automation server tool such as Jenkins , that runs a battery of tests before a
release - comparing it with the previous released version. If a threshold is reached,
the release could be put on hold for some refactoring to be performed. This would
act as a safeguard with the other tests in the test battery. Since Jenkins already
has support for PHPMD in PHP projects, it is feasible to add our approach to
the pipeline. The value of the threshold should be decided by each development
team, depending on the development circumstances and requirements.

4.4 Comparison to Other Techniques

We also tried other methods, and among them, to apply SPC (Statistical Process
Control) techniques with 2 or 3 standard deviations as limits, but we could not
get limits due to the nature of the evolution (for long periods the value of number
of CS was the same, then this value sudden increases). The main problem was
that the standard deviation is 0 or close to 0. Another problem that arises with
methods that use the average, for example [7], is that you have to know all

https://www.jenkins.io/
https://www.jenkins.io/zh/solutions/php/
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the history of the project, while in the method shown here, the computation at
each point in time is just based on data collected from the previous and current
versions.

4.5 Threats to Validity

Threats to construct validity concern the statistical relation between the theory
and the observation, in our case the measurements and treatment to the data.
We detected the CS using PHPMD, where we detected 18 smells. We could
expand this study to consider even more CS, and compare the detection with
other tools for PHP. However, some of them are based in PHPMD.

Threats to internal validity concern external factors we did not consider
that could affect the variables and the relations being investigated. We can say
that PHPMD allows to change the thresholds of the of the CS detection, but
we worked with the default values for comparing between applications. These
values can, however, be questioned for different applications.

Threats to conclusion validity concern the relation between the treatment and
the outcome. One can argue that CS are often considered by absolute number or
normalized by LOC or LLOC. However, our experiments have shown that the
normalization by LLOC describes the peaks better.

Threats to external validity concern the generalization of results. We recog-
nize that having just 8 web applications may not be enough for generalization
sake.

5 Related Work

Much literature in software evolution has been published in the last decades, but
few on web apps.

Longitudinal on CS: In [17] are described different phases in the evolution
of CS and reported that components infected with CS have a higher change
frequency. Later, [19] results indicate: CS lifespan is close to 50% of the lifespan
of the systems. In [6] it is reported that a large percentage of CS was introduced in
the creation of class/methods, but very few CS are removed. Later, [26] sustains
that most CS are introduced when artifacts are created and not because of
their evolution. In [20] the authors claim that the latest versions of the observed
application have more CS/design issues than the oldest ones. They also note
that the first version of the software is cleaner. In [8] the authors found that TD
(Technical Debt) increases for most observed systems. However, TD normalized
to the size of the system decreases over time in most systems. In [12], the authors
conclude that CS can remain in the application code for years before removal,
and CS detected and prioritized by linters, disappear from code before other CS.
Recently [7] find that the number of TD items introduced through new code is
a stable metric, although it presents some spikes; and also that the number of
commits is not strongly correlated to the number of introduced TD items.
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Non-longitudinal in Web Apps: These studies include [24], which found that
for JS applications, and for the time before a fault occurrence, files without CS
have hazard rates 65% lower than files with CS. As an extension to the previous
paper, [14] show the results: files without CS have hazard rates of at least 33%
lower than files with CS. In [2] study with PHP TD, which includes CS, they
find that, on average, the number of times that a file with high TD is modified is
1.9 times more than the number of times a file with low TD is changed. In terms
of the number of lines, the same ratio is 2.4. In [3] the authors find: complex and
large classes and methods are frequently committed in PHP files; smelly files are
more prone to change than non-smelly files. Studies in Java [18] report similar
findings to the last two studies.

Longitudinal with PHP, without CS: Studies of this type include [15], where
authors study 5 PHP web apps, and some aspects of their history, like unused
code, removal of functions, use of libraries, stability of interfaces, migration to
OOP, and complexity evolution. They found these systems undergo systematic
maintenance. Later in [1], they expanded the study to analyze 30 PHP projects
extracting their metrics, and found that not all of Lehman’s laws of software
evolution were confirmed in web applications.

Longitudinal with Fluctuations in CS: The only study we found regarding
this aspect, which indeed is the most related to our work, is an already referred
recent study [7], about the fluctuation in the evolution of technical dept (which
includes CS). Their authors propose to divide applications into stable and sensi-
tive (if they have spikes). To perform this classification, they use SMF (Software
Metrics Fluctuation), which is defined as the average deviation from successive
version pairs.

Related Work Discussion: The method described in [7] should prove effective
for detecting anomalies or outliers in a continuous growing metric, or a metric
that varies around a average value (fluctuates), with variations different from 0,
witch was not the case with CS evolution with these apps. Another difference is
that you have to known the history of the project.

6 Conclusions and Future Work

We studied the evolution and sudden variations of 18 CS in 8 widely used PHP
web apps, across many years. It is important for PHP project managers to
have an evolutionary perspective on the CS in an application, to decide on
the allocation of resources to mitigate their maintainability effects. We observed
sudden variations in CS occurrence in specific versions, whose root causes deserve
investigation and are important for project managers to understand, especially
for long-lived projects where managers’ turnover inevitably happens.

In this paper we proposed a normalized technique that is simple to imple-
ment, for detecting those sudden variations in specific versions during the evo-
lution of web apps, allowing us to unveil the CS story of a development project
and make managers aware of the need for enforcing regular refactoring practices.
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This technique can also be useful in an automation server pipeline, to add in
the quality certification before the release. Our main goal was to achieve a sim-
ple technique that prevents a given version of software to be released with an
extraordinary increase in CS, which later will be costly to maintainability. We
used web applications in our study, but we think this method can be generalized
to other domains or types of apps.

Regarding future work, we would like to increase the number of applications
and CS studied, with more computing power. The obvious way forward here, is
comparing PHP to Java since many more longitudinal studies on CS exist for
the latter.

Acknowledgments. This work was partially supported by the Portuguese Founda-
tion for Science and Technology (FCT) projects UIDB/04466/2020 e UIDP/04466/
2020.
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