

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-02-04

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Gasiba, T., Lechner, U. & Albuquerque, M. P. (2021). CyberSecurity challenges for software developer
awareness training in industrial environments. In Ahlemann, F., Schütte, R., and Stieglitz, S. (Ed.),
Innovation through information systems. Volume II: A collection of latest research on technology
issues. Lecture Notes in Information Systems and Organisation. (pp. 370-387).: Springer.

Further information on publisher's website:
10.1007/978-3-030-86797-3_25

Publisher's copyright statement:
This is the peer reviewed version of the following article: Gasiba, T., Lechner, U. & Albuquerque, M.
P. (2021). CyberSecurity challenges for software developer awareness training in industrial
environments. In Ahlemann, F., Schütte, R., and Stieglitz, S. (Ed.), Innovation through information
systems. Volume II: A collection of latest research on technology issues. Lecture Notes in Information
Systems and Organisation. (pp. 370-387).: Springer., which has been published in final form at
https://dx.doi.org/10.1007/978-3-030-86797-3_25. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-3-030-86797-3_25

CyberSecurity Challenges for Software
Developer Awareness Training in Industrial

Environments

Tiago Gasiba1,2, Ulrike Lechner2, and Maria Pinto-Albuquerque3

1 Siemens AG, Munich, Germany
tiago.gasiba@siemens.com

2 Universität der Bundeswehr München, Munich, Germany
tiago.gasiba@unibw.de ulrike.lechner@unibw.de

3 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Lisboa, Portugal
maria.albuquerque@iscte-iul.pt

Abstract. Awareness of cybersecurity topics facilitates software devel-
opers to produce secure code. This awareness is especially important in
industrial environments for the products and services in critical infras-
tructures. In this work, we address how to raise awareness of software
developers on the topic of secure coding. We propose the ”CyberSecurity
Challenges”, a serious game designed to be used in an industrial environ-
ment and address software developers’ needs. Our work distills the expe-
rience gained in conducting these CyberSecurity Challenges in an indus-
trial setting. The main contributions are the design of the CyberSecurity
Challenges events, the analysis of the perceived benefits, and practical
advice for practitioners who wish to design or refine these games.

Keywords: Cybersecurity · Serious Games · Awareness · Industry ·
Capture-the-Flag · Education

1 Introduction

Over the last years, the number of industrial security-related incidents, e.g., re-
ported by the ICS-CERT [8], has been steadily increasing. When malicious par-
ties exploit security vulnerabilities present in products and services, the outcome
of its exploitation has serious negative consequences for society, the customers,
and the company that produced the software. Think, e.g., of critical infrastruc-
tures as the grid, transportation, or production lines: a security vulnerability
in the code may cause interruptions in service quality or cause safety issues for
society or individual customers when critical machinery fails. Several efforts can
be made to increase the level of security in critical infrastructures. These ef-
forts include, among others: analysis of threat and risks, implementing a secure
software development lifecycle process, deployment of static application security
testing tools, code reviews, and training.

This paper addresses the software vulnerabilities through awareness training
of software developers in the industry, based on a serious game: the CyberSecu-
rity Challenges (CSC). Serious Games are games that are designed for a primary

ar
X

iv
:2

10
2.

05
34

5v
1

 [
cs

.S
E

]
 1

0
Fe

b
20

21

2 T. Gasiba et al.

purpose other than pure entertainment [9]. The serious game ”CyberSecurity
Challenges” (CSC) aims at raising awareness of secure coding topics among in-
dustrial software engineers. In this game, software developers are trained to spot
security vulnerabilities in software and write secure code. i.e., code that is free
from known vulnerabilities and adheres to secure coding policies. Previous work
introduced the CyberSecurity Challenges from a theoretical point-of-view [11,16]
and focused on particular aspects [15]. The current work extends previous pub-
lications by a presentation of a unified view on the design process, tailoring to
the industry’s needs and the perceived usefulness of the CSC events. Our results
are based on data from several CSC events held in the industry from 2017 to
2020. As such, the main contributions of this work are:

– CSC Artifact: consolidated view of the design and deployment of CSCs,
based on results from thirteen events held in an industrial context, and

– CSC Evaluation: analysis of results from industry events covering the fol-
lowing aspects: adequacy of CSC as a means to raise secure coding awareness,
impact of CSC on software developers, and success factors for CSC events.

This paper aims to guide practitioners who wish to develop or refine a soft-
ware developer awareness training in an industrial context, provide a solid ref-
erence to the research community who wishes to address serious games for the
industry, and close the existing literature gap. This work is organized as follows.
In the following section, we will give a summary of what CSC games are and
describe its origin. Section 3 presents previous work related. In Section 4, the
research method and research questions are introduced. The unified view of the
CSC artifact is presented in Section 5. Section 6 presents a summary of the sur-
vey results, together with critical discussions. Finally, Section 7 concludes the
paper with an outlook of the work and next steps.

2 Cybersecurity Challeges at a glance

The CyberSecurity Challenges (CSCs) are a serious game, designed to raise
awareness for cybersecurity topics among industrial software engineers. A CSC
game consists of several challenges designed to raise awareness on secure cod-
ing guidelines and secure coding on software developers. These challenges are
oriented towards improving the defensive skills of the participants. Defensive
challenges are challenges that help the players write code that has no (known)
vulnerabilities and adheres to secure coding guidelines.

The Capture-the-Flag genre was the original inspiration for the game. Capture-
the-Flag (CTFs) are associated with offensive skills, e.g., system penetration,
and reverse engineering, and they can often last hours or even days [23]. Unlike
CTF games, which teach the participants to attack and break into systems, CSC
focus on improving skills to write and develop secure code. These games thus
have no intention to cause any harm or inspire unlawful actions. The challenges
are composed of C, C++, Java, and Web exercises. The focus on these program-
ming languages and genre inspiration is rooted in internal demand for training
and internal decisions taken in the company where CSC is developed. Thus, the

CyberSecurity Challenges for Industrial Software Developers 3

games are designed to match software developers’ interests and organizations’
needs for developer training. This interest can be motivated by several factors,
e.g., the need to show due diligence and certification purposes.

The CSC event is delivered individually (Standalone) or after a workshop on
secure coding (Workshop). In both cases, the duration of the event is designed
to fit a single working day. During the game, the participants solve secure coding
challenges related to secure coding guidelines, either individually or as part of
a team. Although the challenges can include an offensive part (e.g., on how
malicious parties exploit systems), the main focus and emphasis of the challenges
is on developing secure software, i.e., on the defensive perspective. For each solved
challenge, points are awarded, and the winner of the game is the one with the
highest amount of points. Participants to the event can have either a background
in a single programming language or be mixed, e.g., both C and Web developers.

3 Related Work

Although several methods exist to deal with software vulnerabilities, e.g., re-
quirements engineering and code reviews, we focus on awareness training for
software developers. Several previous studies indicate that software developers
lack secure programming awareness and skills [2,26,31]. In 2020, Bruce Schneier,
a well-known security researcher, and evangelist stated that less than 50% of soft-
ware developers can spot security vulnerabilities in software [29]. His comment
adds to a discussion on secure coding skills: In 2011, Xie et al. [32] did several
interviews with 15 senior professional software developers in the industry with
an average of 12 years of experience. Their study has shown a disconnect be-
tween software security concepts and their role in their jobs. Awareness training
on Information security is addressed in McIlwraith [22], which looks at employee
behavior and provides a systematic methodology and a baseline on implementing
awareness training. In their work, Stewart et al. [30] argue that communicators,
e.g., trainers, must understand the audiences’ constraints and supporting beliefs
to provide an effective awareness program.

There is a stream of literature on compliance with security policies, which
deals with employees in general and not with software developers specifically.
This stream of literature explores many reasons why people do not comply with
IT-security policies. The unified framework by Moody et al. [24] summarizes the
academic discussion on compliance with IT-security policies. Empirical findings
include that neither deterrence nor punishment such as e.g., public blame, works
to increase compliance. However, increasing IT-security awareness increases the
level of compliance [30]. In their seminal review article, Hänsch et al. [20] define
IT-security awareness in the three dimensions: Perception (knowledge of existing
software vulnerabilities), Protection (knowing the existing mechanisms - best
practices - that avoid software vulnerabilities), and Behavior (knowledge and
intention to write secure code). The concept of IT-security awareness is typically
used in IT security management contexts, and we use this concept to evaluate our
work. While these findings are for the compliance of employees with IT-security
policies and awareness of IT security, little empirical research is done on IT-

4 T. Gasiba et al.

security awareness in software development and what makes software developers
comply with security policies in software development.

Graziotin et al. [19] show that happy developers are better coders, i.e., pro-
duce higher quality code and software. Their work suggests that by keeping
developers happy, we can expect that the code they write has a better quality
and, by implication, be more secure. Davis et al. [7] show, in their construct,
that cybersecurity games have the potential to increase the overall happiness
of software developers. Their conclusions support our approach to use a serious
game approach to train software developers in secure coding. Awareness games
are a well-established instrument in information security and are discussed in de-
facto standards as the BSI Grundschutz-Katalog [5] (M 3.47, Planspiele) as one
means to raise awareness and increase the level of security. Frey et al. [10] show
both the potential impact of playing cybersecurity games on the participants and
show the importance of playing games as a means of cybersecurity awareness.
They conclude that cybersecurity games can be a useful means to build a com-
mon understanding of security issues. Rieb et al. [27] provide a review of serious
games in cybersecurity and conclude that there are many approaches. However,
only a few have an evaluation of their usefulness and are available beyond the
immediate context of a consulting or cyber-security company. The games listed
mainly address information security rather than secure coding. Documented and
evaluated games are [4] and [27].

Capture-the-flag is one particular genre of serious games in the domain of
Cybersecurity [7]. Game participants win flags when they manage to solve a task.
Forensics, cryptography, and penetration testings are skills necessary for solving
tasks and capturing flags. They are considered fun, but there are hardly any
empirical results on these games’ effects on participants’ skill levels. The present
work uses serious games to achieve the goal of raising secure coding awareness
of software developers in the industry. Previous work on selected design aspects
and a smaller empirical basis on the CSC includes [11–17].

4 Method

The design science paradigm, according to Hevner [21], Baskerville and Heje [3]
guides our research in the industry. Design and evaluation of designs in iterative
approaches are an integral part of design research: this article presents our design
after 13 CSC events and the evaluation of the design. The events took place from
2017 to 2020, with more than 200 game participants.

Table 1 summarizes the CSC events. CSC games were designed in three
design cycles: 1) Initial Design (events 1-5), 2) Refinement (events 6-9) and 3)
Sifu/Online (events 10-13). The CSC events participants were all software devel-
opers specializing in web technologies and the C/C++ programming language.
The events took place mostly in Germany but also in China and Turkey. The
players’ age ranged from 25 to 60, the background industry of the participants
was critical infrastructures, in particular, industry automation (50.85%), energy
(37.29%), and healthcare (11.86%), the overall number of years of work experi-
ence was as follows: one year (13.7%), two years (11.0%), three years (19.2%),

CyberSecurity Challenges for Industrial Software Developers 5

Table 1. Overview of Cybersecurity Challenges Events
No. Date Type Focus Where NP Data collection

1 Nov. 2017 Standalone Mixed Germany 11 SSI

2 May. 2018 Standalone Web Germany 12 SSI

3 Jul. 2018 Standalone Web Germany 6 SSI

4 Jul. 2018 Standalone Mixed Germany 30 SSI

5 Sep. 2018 Standalone Web Germany 16 SSI

6 Aug. 2019 Workshop C/C++ China 14 Survey

7 Aug. 2019 Workshop Web China 15 Survey

8 Sep. 2019 Workshop Web Germany 7 Survey

9 Oct. 2019 Workshop C/C++ Turkey 23 Survey

10 Jun. 2020 Standalone C/C++ Online 15 Survey∗

11 Jul. 2020 Standalone C/C++ Online 21 Survey∗

12 Jul. 2020 Standalone C/C++ Online 20 Survey∗

13 Jul. 2020 Standalone C/C++ Online 15 Survey∗

NP: No. of players, SSI: semi-structured interview, (*) for survey description see [15]

four years (6.8%) and five or more years (49.3%). Regarding the average num-
ber of security training over the previous five years, the results are as follows:
Germany - 3.57, China - 2.10, and Turkey 1.50.

According to the first and second design cycles, the evaluation of these CSC
events is structured according to the following research questions. For analysis
of the survey results concerning the Sifu platform, we refer the reader to [15].

RQ1: To what extent are CSC adequate to raise awareness about secure coding?
RQ2: What is the impact that CSC workshops have on the participants?
RQ3: Which factors are considered essential for a successful CSC event?

To address these research questions, the authors have conducted semi struc-
tured interviews (SSI) [1], and developed a small survey. The semi-structured
interview questions were asked to the participants, one after another in a round-
the-table. The participants’ answers were recorded on paper. The semi-structured
interviews were performed during the first design cycle and were part of the feed-
back round after the CSC event. They were based on the following questions:
a) ”what went well and you would you like to keep” and b) ”what did not go
well and would you like to change”. These questions gave a good insight and
allowed us to improve later versions of the game. They were also fundamental
for requirements elicitation (see [11]).

The survey was administered to the CSC participants, in the refinement
cycle, after completion of the event. The survey consisted of an online survey.
Participation in the SSI and the survey was opt-in. Furthermore, all participants
consented to participate in research, and the collected data was anonymized. We
have used a more formal survey methodology to evaluate the game’s usefulness
concerning the level of awareness and the skills in secure coding. Table 2 shows
the questions that were asked in the survey and the related research questions.
The survey used a five-point Likert scale of agreement with the following map-
ping: strongly disagree (1), disagree(2), neutral (3), agree (4), and strongly agree
(5). RQ1 addresses the aspect of the usefulness of the CSC artifact, and the cor-
responding survey questions are based on the three dimensions of awareness, as
defined by Hänsch et al. [20]: Perception (PE), Protection (PR) and Behavior
(BE) (cf. Sec. Related Work). The questions for RQ2 focus on clarity of the

6 T. Gasiba et al.

Table 2. Survey 1: Questions
RQ CT QID Question

RQ1

PE
By participating in this awareness training

Q1.1 I learned new techniques and principles of secure software development
Q2.1 I understand the possible consequences of a security breach

BE

Q3.1 I feel that I am prepared to handle secure coding related issues at work
Q4.1 I understand the need to have secure development life-cycle activities
Q5.1 I feel more prepared to work with static code analysis tools (e.g. SAST)
Q6.1 I know how to use the information about secure coding guidelines
Q7.1 Focusing on the challenges improves my practical secure coding skills

PR
Q8.1 I have learned about new issues that I would like to check in my own code
Q9.1 I know where I can find more information about secure coding guidelines
Q10.1 I understand the importance of secure coding guidelines

RQ2 –
Q11.1 The learning goals of the challenges were clearly explained
Q12.1 CSC games help me to understand the need to develop secure software
Q13.1 The help from the coaches was adequate

RQ3 –

Q14.1 I want to learn about new tools, even if I do not use them at work
Q15.1 I prefer to solve challenges sequentially rather, even if it takes too much time
Q16.1 Working in teams is better than working individually on the challenges
Q17.1 I like the fact that different kinds of challenges are presented
Q18.1 I prefer challenges that address the same problem from different point-of-views
Q19.1 I prefer challenges that are related with my work environment
Q20.1 I prefer challenges that are based on real-life examples
Q21.1 I prefer challenges that can be systematically solved with some tool

RQ: Research Question, CT: Construct , QID: Question Identifier, PE: Perception,
BE: Behavior, PR: Protection

description of the challenges, the coaches’ role during the game, and the gen-
eral motivation of training secure coding. These questions address the design
of CSC games and events. RQ3 questions address the challenges and their rela-
tion to software developers’ everyday work practices in the industry. The survey
questions for RQ2 and RQ3 are based on the authors’ experience in industrial
software engineering, feedback from CSC evaluations of events 1 to 5, and vari-
ous discussions with colleagues. All the collected data were processed using the
statistics package RStudio 1.2.5019. Availability of the gathered data is provided
in the same authors’ included references and on a forthcoming publication.

5 Design of the CyberSecurity Challenges

In this section, we present the design of the CyberSecurity Challenges for in-
dustrial software developers. The sub-sections provide a detailed overview of the
architecture, the schedule, and the design of challenges. The results presented
in this section distill the experience obtained through the three design cycles of
the CSC games, i.e., of the thirteen CSC events.

5.1 Architecture

Figure 1 shows the architecture of CSC infrastructure. Each participant accesses
the challenges through a computer. A server hosts the applications that run the
game logic, a ”countdown” clock, and a dashboard that records individual players
and teams’ progress. The dashboard uses the open-source CTFd [6] project. A
description of the challenges will be given in the following.

CyberSecurity Challenges for Industrial Software Developers 7

Participant
1

Internet

1:23:45

Challenges Dashboard Countdown

Server

Participant
n

Fig. 1. Architecture of CyberSecurity Challenges infrastructure

5.2 CSC Time Schedule

Table 3 shows a typical time-plan for the one-day CSC event consisting of seven
blocks: 1) welcome, 2) team building, 3) introduction, 4) main event, 5) winner
announcement, 6) feedback and 7) walk-through.

The last block, the walk-through, was not initially planned and is the direct
result of players feedback — the participants preferred to dedicate one hour of
the main event to provide final explanations and closure on selected exercises.
The authors decided to place the feedback and survey before the walk-through
to increase the chance of collecting feedback from the participants.

Table 3. Agenda for a one-day cybersecurity challenges game event

Duration What Description

10 min Welcome Welcome to participants and accessing CSC infrastructure
20 min Team building Participants select partners and build teams that will play against each

other
30 min Introduction Challenge types are presented. One challenge in each category is solved

in order to show the participants how the game works
320 min Main event Game is open and teams are free to play the game. They are responsible

for defining their own strategy for time-out (e.g. for lunch break).
10 min Winner Game is closed and teams can no longer submit points to the dashboard.

Winning team is announced. A brief review of the game-play is done
together with the participants.

30 min Feedback Participants are asked to fill out a survey about the game. Additionally,
discussions with players is held in short non-systematic interviews. Main
points of discussions is recorded for later analysis.

60 min Walk-through Participants are shown solution to the exercises they considered most
difficult. These exercises are solved together in interaction with all the
participants. Discussion on how to solve the challenge is highly encour-
aged.

The duration of similar training events ranges from several days [23] (less
common) to a single day [28] (more common). Note that the first CTF is done in
academia, while a commercial provider does the latter. Additionally, a difference
to typical Capture-the-Flag events are the two agenda items Introduction and
Walk-through.

8 T. Gasiba et al.

5.3 Defensive Challenges

The primary focus of the CSC game’s challenges are Web and C/C++. In
contrast to C/C++, for the web challenges, it was decided not to focus on a
single programming language or framework since many of these programming
languages and frameworks are in everyday use in the company where the CSC
game was developed. In this case, we chose a generic approach based on the
Open Web Application Security Project - OWASP [25]. The challenges’ design
took two approaches: 1) based on open-source components and 2) design of own
challenges. The first approach was used in the Refinement design cycle, while
the second approach in the Sifu/Online design cycle. A common approach to
the design of the challenges is given in [16]. Each challenge is presented to the
participants according to the following phases: Phase 1 - introduction, Phase
2 - challenge, and Phase 3 - conclusion. The types of challenges are: Single-
Choice Questions (SCQ), Multiple-Choice Questions (MCQ), Text-Entry Ques-
tions (TEQ), Associate-Left-Right (ALR), Code-Snippet Challenge (CsC), and
Code-Entry Challenge (CEC). Second, Phase 1 presents an introduction to the
challenge and sets up the scenario; the main part of the challenge is phase 2;
phase 3 concludes the challenge by adding additional text related to secure cod-
ing guidelines or additional questions related to phase 2.

Table 4. Open-Source Tools used for Cybersecurity Challenges
Type Project Effort Description

Web/Java Juice Shop Minimal Insecure web application for training purposes from the
OWASP project.

Web/Java Java Medium Secure coding guidelines dedicated to Java from Carnegie Mel-
lon UniversitySEI-CERT

Web Vulnerable Medium REST API containing several vulnerabilities
API

C/C++ MBE Small Vulnerable code from RPISEC course at Rensselaer Polytech-
nic Institute

C/C++ C/C++ Medium Secure coding guidelines dedicated to C/C++ from Carnegie
Mellon UniversitySEI-CERT

C/C++ Vulnerable High Vulnerable C/C++ code from NIST (Juliet Set)
code snippets

Challenges using Open-Source Components Challenges on secure cod-
ing for software developers can be implemented by using and adapting existing
open source components. Since most of the available projects focus on the of-
fensive perspective, the following adaptations are suggested: 1) include an in-
complete description on how to solve the challenge, and 2) provide follow-up
questions related to secure coding guidelines. Fig. 2-4 shows an example of a
challenge for Web developers using OWASP JuiceShop. This challenge’s learn-
ing goal is to understand what SQL injections are and how to identify an SQL
injection quickly. Phase 1 sets the stage for the challenge (Fig. 2). In Phase 2, the
player is assisted with how to find the vulnerability, through the textual descrip-
tion, as in Fig 3, or also directed by the game coaches. The last phase consists of
an additional question related to the exercise, as shown in Fig 4, which directs
the player to secure coding guidelines. Table 4 shows the open-source projects

CyberSecurity Challenges for Industrial Software Developers 9

and components in which have been used to design CSC challenges for Web
and for C/C++, along with the expected effort required to modify them. Note
that the design of these challenges is based on open source components that
include an offensive perspective. Therefore, after the components’ adaptation, it
is more natural and more accurate to describe these types of challenges as being
defensive/offensive.

User Data SQL Query

An SQL Injection happens when untrusted user data is
mixed together with trusted data (e.g. written by the
programmer). If you can manipulate the SQL query, you
can change its logic. Instead of doing what it is supposed
to do, it will do what the attacker wants to do. A typical
ways to test for an SQL injection is by trying to errors in
the backend. This can be achieved with the characters ‘
and “ , which are typical string quotes.

Introduction

Fig. 2. Web Challenge: Phase 1

1) Go to http://www.shop.net

2) Browse arround the website

3) Look for fields that an user can manipulate

4) Your goal is:

Try to cause an SQL error in the website

Hint: you might want to try special characters that can
turn an SQL query into an invalid query

Challenge

Fig. 3. Web Challenge: Phase 2

▢ IDS00-J. Prevent SQL . . .
.injection

▢ IDS14-J. Do not trust the .
. . . . contents of hidden
.form fields

▢ STR03-J. Do not encode . . .
.noncharacter data .
.as a string

The following picture shows a possible consequence of exploiting the
vulnerability you just discovered.

An attacker can read the entire
database. Assume that passwords
are stored in plain text. This can
lead to disclosure of confidential
information, and even out-of-
business.
Q: Which guidelines might have not
been followed by the programmer
when developing the website?

User Data SQL Query

Passwords

Conclusion

Fig. 4. Web Challenge: Phase 3 Fig. 5. Sifu Platform

Defensive Challenges using Sifu Platform The Sifu platform hosts code
projects containing vulnerabilities in a web application. The reason to choose a
web interface is to avoid that the players need to install any software on their
machine, which might be difficult in an industrial setting. The players’ task is
to fix the project’s source code to bring it to an acceptable solution (there-
fore focusing on the defensive perspective). An acceptable solution is a solution
where the source code is compliant to secure coding guidelines and does not
have known vulnerabilities. The Sifu platform contains two main components:
1) challenge assessment and 2) an automatic coach. The challenge assessment
component analyses the proposed solution submitted by a player and determines
if it is acceptable. Analysis is based on several tools, e.g., compiler output, static
code analysis, and dynamic code analysis. The automatic coach component is

10 T. Gasiba et al.

implemented through an artificial intelligence technique that provides hints to
the participant when the solution is not acceptable, with the intent to guide the
participant to an acceptable solution. Figure 5 shows the Sifu platform. Note
that only phase 2 is shown in the figure. The player can browse the different
files of the project. All the hints issued by the automatic coach are available on
the right-hand side. If the player experiences errors when using the platform,
these can be reported for later analysis and improvement. The Sifu platform’s
main advantage is that the participants do not need to install any software in
their machine - a browser with internet or intranet access is sufficient. However,
since untrusted and potentially malicious code will be executed in the platform
during the analysis stage, several security mechanisms need to be implemented
to guarantee that the players cannot hack it. These challenges were developed
in the Sifu/Online design cycle, and further and detailed information on the im-
plementation is available in [15]. For more information about the Sifu platform
we also refer the reader to [14].

6 Results

This section presents a quantitative analysis of the CSC artifact based on the
semi-structured interviews and online survey collected during the design cycles
Initial Design and Refinement.

6.1 Initial Design Cycle ––– CSC 1 to 5

As discussed in section 4, in this design cycle, the participants were asked to
provide feedback on what should be kept and what should be changed in the
CSC event. The participants were encouraged to discuss what they felt was
important openly. These discussions were used to inform the design of future CSC
events. In this cycle, requirements were collected on traits that serious games for
software developers in the industry should have. A summary of the findings is
as follows: 1) challenges should focus on the defensive perspective, 2) challenges
should reflect real-world examples, 3) challenges should be aligned with the work
environment, 4) careful planning in terms of duration should be performed, and
5) participants should be able to solve challenges without knowledge of extra tools.
A more in-depth analysis of the feedback and resulting requirements is available
in [11].

6.2 Artifact Refinement Cycle ––– CSC 6 to 9

Figure 6 shows the overall results of the answers to the survey. The research
questions are used to group the results. We observe an overall agreement on
all the survey questions. In particular, considering negative answers (-), neutral
answers (N) and positive answers (+), this table shows the following overall re-
sults for each research question: RQ1− = 7.89%, RQ1N = 16.13%, RQ1+ =
75.99%, RQ2− = 4.82%, RQ2N = 12.05%, RQ2+ = 83.13%, RQ3− = 4.19%,
RQ3N = 12.56%, and RQ3+ = 83.26%. These results give a good indication
that CSC games are suitable as a means to train software developers in secure
coding guidelines, as the factors on awareness (RQ1) and impact on participants

CyberSecurity Challenges for Industrial Software Developers 11

5 8 31 10

1 5 29 19

1 13 25 15

1 9 33 10

1 37 17

1 4 30 18

5 9 30 10

3 6 27 17

1 7 36 12

2 8 34 10

3 2 5 38 8

3 31 22

1 6 18 23 7

4 2 3 37 10

2 8 32 13

1 4 16 27 8

2 4 13 29 8

2 2 6 34 12

2 3 15 30 6

1 1 4 35 15

4 3 4 29 16

Q21.1 (RQ3): solvey by tool
Q20.1 (RQ3): based on real−world examples

Q19.1 (RQ3): related to work
Q18.1 (RQ3): different point−of−view

Q17.1 (RQ3): like variaty in challenges
Q16.1 (RQ3): teamwork better than individual

Q15.1 (RQ3): solve challenges sequentially
Q14.1 (RQ3): learn new tools

Q13.1 (RQ2): help from coaches adequate
Q12.1 (RQ2): need to develop secure code

Q11.1 (RQ2): gloals clearly explained

Q10.1 (RQ1): understand SDLC importance
Q9.1 (RQ1): know where to find information

Q8.1 (RQ1): learned new issues
Q7.1 (RQ1): improve coding

Q6.1 (RQ1): how to use information
Q5.1 (RQ1): prepared to analyse SCA/SAST

Q4.1 (RQ1): understand S−SDLC
Q3.1 (RQ1): prepared at work

Q2.1 (RQ1): understand consequences
Q1.1 (RQ1): learn new techniques

0 25 50 75 100
Percentage

Likert Scale

StronglyAgree

Agree

Neutral

Disagree

StronglyDisagree

Fig. 6. Evaluation of Usefulness of CSC Events 6-9

(RQ2) have high levels of agreement (i.e., higher than 75%. However, we ob-
serve the difficulty in making every participant happy, in particular, due to the
residual values on negative and neutral answers. Further analysis is required to
understand this. Based on our experience, we believe that this fact might be
correlated with the participants’ previous experience.

Table 5. Analysis of Research Questions for Survey on CSC Events 6-9
Rank 1 2 3 4 5 6 7 8 9 10

RQ1
W.Avg. 4.34 4.11 3.98 3.93 3.89 3.84 3.66 3.66 3.63 3.53
QID Q10.1 Q2.1 Q7.1 Q4.1 Q1.1 Q8.1 Q5.1 Q6.1 Q3.1 Q9.1

RQ2
W.Avg. 4.04 3.93 3.82 - - - - - - -
QID Q13.1 Q12.1 Q11.1 - - - - - - -

RQ3
W.Avg. 4.27 4.22 4.21 4.09 4.00 4.00 3.85 3.83 - -
QID Q17.1 Q20.1 Q16.1 Q14.1 Q18.1 Q19.1 Q21.1 Q15.1 - -

Table 5 shows a ranking of the different survey questions, grouped by research
question. The ranking is performed by sorting the questions based on the average
agreement value. In terms of adequacy (RQ1), and impact on the participants
(RQ2), the two highest-ranking answers are: to understand the importance of
SDLC (Q10), and understand consequences of a breach (Q2) for RQ1, and help
from coaches (Q13), and understand the need to develop secure software (Q12)
respectively. The lowest-ranked factors for RQ1 are ”find more information” (Q9)
and ”prepared to handle secure coding issues at work” (Q3). Although the rank
is low, the average agreement is positive. The surprising result obtained for Q3
is likely related to the large number of neutral answers. Further investigations
are required to determine the root cause of this observation.

The collected results for RQ3 serve to inform practitioners who wish to design
such games for an industrial context. It provides a ranked list of factors that
participants consider to have a positive impact on CSC games. The three top
factors that contribute to the success of a CSC game that should be considered
by practitioners who wish refine the CSC game are the following: different kinds

12 T. Gasiba et al.

of challenges (Q17), based on real-life examples (Q20), and participants should
work in teams rather and individually (Q16).

In terms of awareness, taking into consideration negative answers (-), neu-
tral answers (N), and positive answers (+), the perception (PE), behavior (BE),
and protection (PR) show the following results: PE− = 8.04%, PEN = 7.14%,
PE+ = 84.82%, BE− = 7.89%, BEN = 20.79%, BE+ = 71.33%, PR− = 7.78%,
PRN = 14.37%, PR+ = 77.84%. These results show similar values for the neg-
ative answers (around 8%), which might be related to the players’ background.
The highest result is related to perception, which also has the least amount of
neutral answers. While we observe strong agreement on the behavior and pro-
tection constructs (more than 70%), there are still many neutral answers. We
believe that the large amount of neutral answers is also related to player back-
ground and the fact that the challenge type is not purely defensive, i.e., it is
defensive/offensive, as discussed in section 5. The reasoning for this is based on
the better results obtained in the study of the Sifu platform (see [15]).

6.3 Sifu/Online Cycle ––– CSC 10 to 13

In this design cycle, the CSC challenges were further developed as the Sifu
platform [15]. The participants were asked to evaluate the platform through 5-
point Likert scale questions. Survey questions were based on the Awareness [20],
and Happiness [18] dimensions. The following is a summary of the results, in
terms of the three awareness dimensions: perception (PE), behavior (BE), and
protection (PR); and in terms of happiness (HP). PE− = 2.22%, PEN = 8.89%,
PE+ = 88.89%, BE− = 0.0%, BEN = 8.06%, BE+ = 91.94%, PR− = 6.67%,
PRN = 11.11%, PR+ = 82.22%, HP− = 8.22%, HPN = 10.27%, HP+ = 81.51%.
The negative results (-) correspond to strongly disagree and disagree, neutral (N)
to neutral answers, and positive results (+) correspond to agree and strongly
agree. A more in-depth analysis of these results, along with the Sifu platform’s
design, and the survey questions, can be found in [14]. The collected answers
again indicate an agreement with the awareness theory, in the following sequence:
behavior, perception, and finally, protection. Also, the participants report having
fun and being happy while playing challenges in the Sifu platform.

The Hellinger distance is used to measure the distance between two probabil-
ity mass functions (PMF). The distance between the PMF of the three awareness
constructs was computed to compare the results obtained in the second (refine-
ment) and third cycle (Sifu/Online). The obtained results are as follows (from
higher distance value to smaller distance value): behavior (d = 0.25), perception
(d = 0.10), and protection (d = 0.04). These results show that using the Sifu plat-
form results in the most significant improvement in agreement on the behavior
construct. Although both cycles indicate positive results, the participants have
a more substantial agreement that solving the Sifu platform’s challenges helps in
actual behavior (i.e., using defensive challenges), than using defensive/offensive
challenges. In terms of protection, the distance between the PMF is low (0.04),
indicating that the agreement level is similar for the protection construct for
both the defensive/offensive and the defensive challenges. These results were as
expected since the improvements to the challenges and the corresponding design

CyberSecurity Challenges for Industrial Software Developers 13

cycles performed in the Sifu platform increase the adequacy to improve software
developer awareness in terms of behavior.

6.4 Discussions

In this work, we have presented and evaluated an awareness training program
for software developers in the industry, which was designed through three design
cycles [21]. The types of CSC challenges for each design cycle were as follows:
offensive, defensive/offensive, and defensive. The initial design cycle was mostly
used for requirements elicitation to further develop and refine the CyberSecurity
Challenges for software developers in the industry. In the second design cycle,
defensive/offensive challenges were introduced. These challenges adapt existing
open-source projects to adopt a defensive perspective. Finally, in the third design
cycle, defensive challenges are introduced using the Sifu platform. Our experi-
ence has shown that software developers highly appreciate playing CSC games
based on direct feedback from participants. It was also observed that playing
CSC games can be done as either a standalone event or after a secure coding
training. Furthermore, the participants have claimed that the challenges have
helped solidify, understand, and practice secure coding in real scenarios, the
concepts discussed during training. While the challenges, as described for the
second and third design cycle, seem to address software developers and manage-
ment’s needs adequately, the third design cycle was shown to result in a higher
agreement in terms of behavior.

Participants report on the happiness and fun in participating in these events.
However, a long term study on the impact of CSC events on software quality
is not possible. The reason for this is related to the large number of factors
that hinder this study, which include, among others: job rotation, changing and
evolving IT security technologies, discovery of new attack vectors, and evolv-
ing programming languages and programming language standards. Therefore,
we need to suffice with the fact that these events are both welcome by software
developers and, with the fact that CSC has had continuous management ap-
proval throughout the years, and also the fact that it has been introduced in the
standard teaching curriculum in the company where it was developed.

While previous work such as McIlwraith [22] provides a generic approach for
awareness training, we show a method that explicitly addresses software devel-
opers in the industry and is based on a serious game inspired in the Capture-the-
Flag format. Nevertheless, some of the traits introduced by McIlwraith are also
common with our artifact, e.g., the usage of web-based media and web-based
text. While the CSC artifact was designed for Web and C/C++ challenges, we
think our approach can be generalized to other programming languages. Other
possible usages of our artifact include a refresher on previously acquired knowl-
edge, a self-evaluation tool for individuals, and a recruiting tool used by human
resources. However, further work might be required either for non-industrial
environments or participants with different backgrounds, e.g., management or
human-resources.

14 T. Gasiba et al.

6.5 Threats to Validity

There are threats to the validity of or findings - threats as they are typical or
inherent to design research. An example of these threats is the inclusion of mixed
workshops in the study, which can introduce a bias in our analysis. While the
authors cannot control the types of workshops, since they were dictated internal
demand, we think that the obtained conclusions also apply to these workshops.
First, we evaluate the impact on awareness of IT-security topics. The path from
awareness training to secure products and services is long, and other research
would be needed to evaluate whether such a game has impacted the quality
of code. Due to the large number of factors that affect code quality, this is,
in practice, however not possible. Nevertheless, awareness is a well-established
endpoint in IT security research. As in any design research, we cannot argue that
our solution is the best, and we need to suffice with the argument that our artifact
and outcome of research is successful, both in terms of developers happiness
and management approval. There are several external variables that we cannot
control in an industrial setting that can limit our evaluations’ validity. Although
we have explicitly mentioned to the participants that the survey questions refer
to the CSC event, we cannot exclude questions’ misinterpretation due to the
participants’ different cultural and language backgrounds.

Also, we cannot exclude a bias for socially desired answers and positive bias
with the game setting. However, for the validity of our findings, we refer to the
fact that all game participants were industrial software engineers, and participa-
tion in the survey was not mandatory. Our results demonstrate that these are a
viable method for awareness training on secure coding in the industry in terms
of the CSC game’s usefulness. We base this observation on the fact that it is
approved by management, has high internal demand, and is liked and enjoyed
by most participants.

7 Conclusions and Further Work

In this work, we provide an overview of the design and implementation of Cy-
berSecurity Challenges - a serious game to raise awareness on secure coding for
software developers in the industry. The CyberSecurity Challenges have been
developed following a design science research design structured in three design
cycles: Initial Design, Refinement, and Sifu/Online. The design cycles extended
from 2017 until 2020 and consisted of thirteen events where more than 200 soft-
ware developers participated. Our contribution addresses practitioners who wish
to develop or refine a software developer awareness training for the industry and
the research community by understanding the usage of serious games targeting
software developers in the industry.

This paper consists of two main parts: 1) an overview of the design of the
CyberSecurity Challenges and 2) an evaluation of the CyberSecurity Challenge
game and events, including the usefulness of CyberSecurity Challenges. In the
first part, we presented a consolidated view of CyberSecurity Challenges. This
consolidated view is the result of all the lessons learned throughout the three

CyberSecurity Challenges for Industrial Software Developers 15

design cycles. We provide an analysis and report of the main results that practi-
tioners can use to design a similar awareness training program. We also discuss
the differences and similarities to other existing awareness training programs. In
the second part, we analyze results from semi-structured interviews from the first
design cycle and a survey collected during the second design cycle. Overall, soft-
ware developers enjoy playing CyberSecurity challenges, either as a standalone
event or together with a training workshop on secure programming. Further-
more, we present results on the impact that the game has on the participants
and discuss essential factors for successful awareness training. Our positive re-
sults, continuous management endorsement, and the fact that these games have
been introduced as a standard part of the company’s teaching curricula val-
idate our design approach. Additionally, our results show that CyberSecurity
challenges are a viable approach for awareness training on secure coding.

As further steps, the authors would like to design a systematic approach
to identify topics for challenges and assessing these challenges for relevance.
Towards this, more empirical analyses are required. Thus, parallel and next steps
include an empirical study on the awareness of various secure coding topics to
tailor the challenges to different software developer groups’ needs. Also, as the
COVID-19 crises limits travel and physical presence, we will continue to enhance
the online version of the game. We also plan to enricht the scope of defensive
challenges.

Acknowledgements

The authors would like to thank the participants of the CyberSecurity Challenges
for their time and their valuable answers and comments. Also, the authors would
also like to thank Kristian Beckers and Thomas Diefenbach for their helpful,
insightful, and constructive comments and discussions.

This work is financed by portuguese national funds through FCT - Fundação
para a Ciência e Tecnologia, I.P., under the project FCT UIDB/04466/2020.
Furthermore, the third author thanks the Instituto Universitário de Lisboa and
ISTAR-IUL for their support.

References

1. Adams, W.: Conducting Semi-Structured Interviews. In: Newcomer, K., Hatry,
H., Wholey, J. (eds.) Handbook of Practical Program Evaluation, chap. 19, pp.
492–505. Wiley Online Library (2017)

2. Assal, H., Chiasson, S.: ’Think secure from the beginning’ A Survey with Software
Developers. In: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. pp. 1–13. CHI ’19, Association for Computing Machinery,
New York, NY, USA (2019)

3. Baskerville, R., Pries-Heje, J.: Explanatory design theory. Business & Information
Systems Engineering 2(5), 271–282 (2010)

4. Beckers, K., Pape, S.: A Serious Game for Eliciting Social Engineering Security
Requirements. In: 2016 IEEE 24th International Requirements Engineering Con-
ference (RE). IEEE (08 2016)

16 T. Gasiba et al.

5. Bundesamt für Sicherheit in der Informationstechnik: BSI IT-Grundschutz-
Katalog, 2016, 15. ed. (2016), https://download.gsb.bund.de/BSI/ITGSK/

IT-Grundschutz-Kataloge_2016_EL15_DE.pdf

6. Chung, K.: CTFd : The Easiest Capture The Flag Framework, https://ctfd.io/

7. Davis, A., Leek, T., Zhivich, M., Gwinnup, K., Leonard, W.: The fun and future
of CTF. 2014 USENIX Summit on Gaming, Games, and Gamification in Secu-
rity Education (3GSE 14) pp. 1–9 (2014), https://www.usenix.org/conference/
3gse14/summit-program/presentation/davis

8. Department of Homeland Security: Industrial Control Systems - Computer Emer-
gency Response Team. https://us-cert.cisa.gov/ics, accessed: 2020-08-26

9. Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J.: Serious Games: Founda-
tions, Concepts and Practice. Springer International Publishing, 1. Ed, Switzerland
(2016). https://doi.org/10.1007/978-3-319-40612-1

10. Frey, S., Rashid, A., Anthonysamy, P., Pinto-Albuquerque, M., Naqvi, S.A.: The
Good, the Bad and the Ugly: A Study of Security Decisions in a Cyber-Physical
Systems Game. IEEE Transactions on Software Engineering 45(5), 521–536 (2019)

11. Gasiba, T., Beckers, K., Suppan, S., Rezabek, F.: On the Requirements
for Serious Games Geared Towards Software Developers in the Industry.
In: Damian, D.E., Perini, A., Lee, S. (eds.) Conference on Requirements
Engineering Conference. pp. 286–296. IEEE, Jeju, South Korea (09 2019).
https://doi.org/10.1109/re.2019.00038

12. Gasiba, T., Lechner, U., Cuellar, J., Zouitni, A.: Ranking Secure Coding Guide-
lines for Software Developer Awareness Training in the Industry. In: Queirós, R.,
Portela, F., Pinto, M., Simões, A. (eds.) First International Computer Program-
ming Education Conference (ICPEC 2020). OpenAccess Series in Informatics (OA-
SIcs), vol. 81, pp. 11:1–11:11. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2020)

13. Gasiba, T., Lechner, U., Pinto-Albuquerque, M.: Awareness of Secure Coding
Guidelines in the Industry - A first data analysis. In: The 19th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications.
IEEE, Online (12 2020)

14. Gasiba, T., Lechner, U., Pinto-Albuquerque, M.: Sifu - A CyberSecurity Awareness
Platform with Challenge Assessment and Intelligent Coach. In: Special Issue on
Cyber-Physical System Security of the Cybersecurity Journal. SpringerOpen (12
2020)

15. Gasiba, T., Lechner, U., Pinto-Albuquerque, M., Porwal, A.: Cybersecurity Aware-
ness Platform with Virtual Coach and Automated Challenge Assessment. In: 6th
Workshop On The Security Of Industrial Control Systems & Of Cyber-Physical
Systems. Springer, Online (09 2020)

16. Gasiba, T., Lechner, U., Pinto-Albuquerque, M., Zouitni, A.: Design of Secure
Coding Challenges for Cybersecurity Education in the Industry. In: 13th Interna-
tional Conference on the Quality of Information and Communications Technology.
Springer, Online (09 2020)

17. Gasiba, T., Lechner, U., Rezabek, F., Pinto-Albuquerque, M.: Cybersecurity
Games for Secure Programming Education in the Industry: Gameplay Analysis.
In: Queirós, R., Portela, F., Pinto, M., Simões, A. (eds.) First International Com-
puter Programming Education Conference (ICPEC 2020). OpenAccess Series in
Informatics (OASIcs), vol. 81, pp. 10:1–10:11. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2020)

https://download.gsb.bund.de/BSI/ITGSK/IT-Grundschutz-Kataloge_2016_EL15_DE.pdf
https://download.gsb.bund.de/BSI/ITGSK/IT-Grundschutz-Kataloge_2016_EL15_DE.pdf
https://ctfd.io/
https://www.usenix.org/conference/3gse14/summit-program/presentation/davis
https://www.usenix.org/conference/3gse14/summit-program/presentation/davis
https://us-cert.cisa.gov/ics
https://doi.org/10.1007/978-3-319-40612-1
https://doi.org/10.1109/re.2019.00038

CyberSecurity Challenges for Industrial Software Developers 17

18. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. Journal of Systems and Software 140, 32–47
(2017)

19. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when
software developers are (un)happy. Journal of Systems and Software 140, 32–47
(2018)

20. Haensch, N., Benenson, Z.: Specifying IT security awareness. In: 25th
International Workshop on Database and Expert Systems Applications,
Munich, Germany. pp. 326–330. IEEE, Munich, Germany (Sep 2014).
https://doi.org/10.1109/DEXA.2014.71

21. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-
tems Research. MIS Q. 28(1) (03 2004)

22. McIlwraith, A.: Information Security and Employee Behaviour: How to Reduce
Risk Through Employee Education, Training and Awareness. Gower Publishing,
Ltd. (2006)

23. Mirkovic, J., Peterson, P.A.: Class Capture-the-Flag exercises. In: 2014 {USENIX}
Summit on Gaming, Games, and Gamification in Security Education (3GSE 14)
(2014)

24. Moody, G.D., Siponen, M., Pahnila, S.: Toward a Unified Model of Information
Security Policy Compliance. MIS quarterly 42(1), 1–50 (2018)

25. OWASP Foundation: Open Web Application Security Project, https://owasp.

org/

26. Patel, S.: 2019 Global Developer Report: DevSecOps finds security road-
blocks divide teams (July 2020), https://about.gitlab.com/blog/2019/07/15/
global-developer-report/, [Online; posted on July 15, 2019]

27. Rieb, A.: IT-Security Awareness mit Operation Digitales Chamäleon. Ph.D. thesis,
Universität der Bundeswehr München, Neubiberg (2018)

28. SANS Institute: SEC642: Advanced Web App Penetration Testing, Ethical Hack-
ing, and Exploitation Techniques, https://tinyurl.com/yytoawyn, online, Visited
Nov 2020

29. Schneier, B.: Software Developers and Security. Online (July 2020),
https://www.schneier.com/blog/archives/2019/07/software develo.html

30. Stewart, G., Lacey, D.: Death by a Thousand Facts: Criticizing the Technocratic
Approach to Information Security Awareness. Information Management & Com-
puter Security 20(1), 29–38 (2012)

31. Tahaei, M., Vaniea, K.: A Survey on Developer-Centred Security. In: 2019 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW). pp. 129–
138. IEEE (2019)

32. Xie, J., Lipford, H.R., Chu, B.: Why do Programmers Make Security Errors? 2011
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)
pp. 161–164 (09 2011). https://doi.org/10.1109/VLHCC.2011.6070393

https://doi.org/10.1109/DEXA.2014.71
https://owasp.org/
https://owasp.org/
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://about.gitlab.com/blog/2019/07/15/global-developer-report/
https://tinyurl.com/yytoawyn
https://doi.org/10.1109/VLHCC.2011.6070393

