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Resumo

As redes ópticas dinâmicas serão cruciais nas comunicações ópticas globais nos próximos

5-10 anos. Os principais impulsionadores deste dinamismo são os serviços on-demand,

suportados por aplicações como computação em nuvem e computação em grelha, con-

duzindo à necessidade de uma infraestrutura de rede cada vez mais dinâmica. Ferramen-

tas de planeamento de rede eficientes, que lidam com os problemas de encaminhamento e

atribuição de comprimentos de onda serão de extrema relevância neste cenário dinâmico.

Neste trabalho foi desenvolvido um simulador para o planeamento de redes ópticas

dinâmicas, e várias redes reais foram testadas, como a National Science Foundation Net-

work, a British Telecom, a US Backbone Network e também redes bidirecionais em anel.

Neste simulador, implementa-se um algoritmo de coloração de grafos denominado algo-

ritmo Small-Bucket, que permite a ocorrência de recolorações de nós. Este algoritmo é

comparado com o algoritmo First-fit, em termos de probabilidade de bloqueio, número de

recolorações, número de cores usadas e tempo de simulação.

Conclui-se que o algoritmo Small-Bucket produz menores probabilidades de bloqueio

do que as obtidas com o algoritmo First-fit. No entanto, para atingir essas baixas proba-

bilidades de bloqueio, o algoritmo Small-Bucket faz uso de um maior número de compri-

mentos de onda e recolorações.

Palavras-chave: Algoritmo Small-Bucket, Coloração de Grafos, Encaminhamento e

Atribuição de Comprimentos de Onda, Redes Ópticas Dinâmicas.
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Abstract

Dynamic optical networks will be crucial in global optical communications in the next

5-10 years. On-demand services, fuelled by applications such as cloud computing and grid

computing, are the main drivers for the availability of an increasingly dynamic network

infrastructure. Efficient network planning tools that deal with Routing and Wavelength

Assignment problems are of paramount relevance in this dynamic scenario.

In this work, a simulator for planning dynamic optical networks was developed, and

several real networks were tested, such as National Science Foundation Network, British

Telecom, US Backbone Network, and also bidirectional ring networks. In this simulator,

we have implemented a graph coloring wavelength assignment algorithm named Small-

Bucket algorithm that allows recoloring to occur. A comparison performance with the

First-fit algorithm is performed in terms of the blocking probability, number of recolorings,

number of colors used and simulation time.

It is concluded that the Small-Bucket algorithm originates lower blocking probabilities

than the ones obtained with the First-fit algorithm. However, to reach these low blocking

probabilities, the Small-Bucket algorithm makes use of a larger number of wavelengths

and recolorings.

Keywords: Dynamic Optical Networks, Graph Coloring, Routing and Wavelength

Assignment, Small-Bucket algorithm.

vii





Contents

Acknowledgment iii

Resumo v

Abstract vii

List of Figures xi

List of Tables xv

List of Acronyms xvii

List of Symbols xix

Chapter 1. Introduction 1

1.1. Motivation and Background 1

1.2. Objectives 2

1.3. Dissertation Organization 2

1.4. Main Contributions 3

Chapter 2. Fundamental Concepts in Dynamic Optical Networks 5

2.1. Introduction 5

2.2. Motivation for Dynamic Optical Networks 5

2.2.1. Dynamic Optical Network Applications 6

2.2.2. Dynamic Optical Network Architectures 6

2.3. Basic Concepts of Optical Network Planning 7

2.4. Routing in Static Optical Networks 10

2.4.1. Fixed-Routing 10

2.4.2. Alternative-Path Routing 12

2.5. Routing in Dynamic Optical Networks 12

2.5.1. Adaptative Routing 12

2.5.2. Fixed-Alternate Routing 13

2.6. WA in Static Optical Networks 13

2.6.1. First-fit Algorithm 13

2.6.2. Most-used Algorithm 13

2.6.3. Random Algorithm 14

2.6.4. Graph Coloring Algorithms 14

2.7. WA in Dynamic Optical Networks 16

ix



2.7.1. Online Graph Coloring 16

2.7.2. First-fit, Most-used and Random Algorithms 17

2.7.3. Dynamic Graph Coloring 18

2.8. Conclusions 19

Chapter 3. Implementation of a RWA Planning Tool for Dynamic Traffic 21

3.1. Introduction 21

3.2. M/M/c/c System 21

3.2.1. Simulation Model for a M/M/c/c System 21

3.2.2. Results and Discussion 24

3.3. Network with Dynamic Traffic 26

3.3.1. Simulation Model for a Network with Dynamic Traffic 26

3.3.2. Analytical Formalism based on the Reduced Load Approximation 28

3.3.3. Simulation Validation and Results 31

3.4. Conclusions 41

Chapter 4. Implementation of a Dynamic Graph Coloring Algorithm for Wavelength

Assignment 43

4.1. Introduction 43

4.2. Small-Bucket Algorithm 43

4.3. Simulation Model of the Small-Bucket Algorithm 47

4.4. Graphical User Interface for the Implemented Simulator 49

4.5. Small-Bucket Algorithm Results and Discussion for the 16-node Ring

Network 50

4.5.1. Blocking Probability and Simulation Time 50

4.5.2. Total Number of Colors Used and Number of Recolorings per Update 52

4.6. Small-Bucket Algorithm Results and Discussion for the 8-node Ring Network 58

4.6.1. Blocking Probability and Simulation Time 58

4.6.2. Total Number of Colors Used and Number of Recolorings 59

4.7. Small-Bucket Algorithm Results and Discussion for the UBN Network 61

4.7.1. Blocking Probability and Simulation Time 62

4.7.2. Total Number of Colors Used and Number of Recolorings 62

4.8. Conclusions 65

Chapter 5. Conclusions and Future Work 67

5.1. Conclusions 67

5.2. Future Work 68

References 69

Appendix A. Pseudocodes of the Implemented Algorithms 71

Appendix B. Network Topologies 77

x



List of Figures

2.1 Graph of the Network - representation of the network. 8

2.2 Example of optical paths. 8

2.3 Application of Dijkstra’s algorithm. 11

2.4 Yens K-Shortest Path - example of application. 12

2.5 First-fit, Most-used and Random application example. 14

2.6 Graph of the physical topology (left) and of the optical paths (right). 15

2.7 Coloring of graph G(W, P). 16

2.8 Ring network graph with 5 nodes used to exemplify First-fit, Most-used and

Random in dynamic optical networks. 17

3.1 Example of a M/M/1/1 system simulation. 22

3.2 Flowchart of the M/M/1/1 system simulation. 23

3.3 Blocking probability as a function of the offered traffic. 24

3.4 Blocking probabilities as a function of the offered traffic for a M/M/5/5 system. 25

3.5 Variation of the blocking probability for 2.6 E of offered traffic, leading a

blocking probability of 7.73× 10−2 and simulation times. 26

3.6 Flowchart of the simulator for planning of a network with dynamic traffic and

corresponding blocking probability assessment. 27

3.7 4-link star network with paths per node and circuits per link. 30

3.8 Blocking probability of an optical pah as a function of the average offered load. 31

3.9 Bi-directional WDM ring network with 16 nodes. 32

3.10Blocking probability as a function of the offered load per node for a bidirecctional

16-node ring network with 48, 56 and 64 wavelengths. 33

3.11 Simulated network offered load as a function of the number of blocked traffic

demands for different theoretical network offered loads. 34

3.12 Blocking probability as a function of the simulated blocked traffic demands, for

a bidirecctional 16-node ring network with Nc = 48. 35

3.13 Bi-directional WDM ring network with 8 nodes. 36

3.14 Blocking probability as a function of the offered load per node, for a 8-node ring

network with 40 wavelengths. 36

3.15 14-node NSFNET network. 38

xi



3.16 Blocking probability as a function of the average load offered per node, for a

NSFNET 14 network with 40 wavelengths. 38

3.17 The BT 22 node network. 39

3.18 Blocking probability as a function of the average load offered per node, for

the BT 22 nodes network with 40 wavelengths. The corresponding simulation

computational times are also presented. 40

3.19 Blocking probability as a function of the lower average load offered per node, for

the BT 22 nodes network with 40 wavelengths. 41

4.1 Theoretical maximum number of colors used by the Small-Bucket algorithm

as a function of the number of levels with the number of colors per bucket as a

parameter, considering (A) N = 20, (B) N = 50, (C) N = 100 and (D) N = 400. 44

4.2 Small-Bucket algorithm - buckets initialization layout. 45

4.3 Small-Bucket algorithm example: insertion of vertices for N = 20 possible

optical paths, considering the 10 first traffic demands. 46

4.4 Flowchart of the simulator for WA using Small-Bucket. 48

4.5 GUI of the simulator. 49

4.6 Blocking probability as a function of the average offered load per node for a

bidirecctional 16-node ring network with C = 48, 56 and 64 colors per bucket

considering the Small-Bucket as WA algorithm. The First-fit is also represented

for comparison purposes. 50

4.7 Blocking probability as a function of the average offered load per node, with

the maximum number of colors per bucket in the Small-Bucket algorithm as a

parameter, considering the 16-node ring network. 51

4.8 Blocking probability as a function of the average offered load per node, with the

number of levels in the Small-Bucket algorithm as a parameter, considering the

16-node ring network. 52

4.9 Simulated number of recolorings as a function of the number of traffic demands

and average offered load per node for the 16-node ring network with d = 5. 54

4.10 Simulated number of colors used as a function of the simulated traffic demands

and average offered load per node for the 16-node ring network with d = 5. 56

4.11 Simulated number of colors used as a function of the simulated traffic demands

and average offered load per node for the 16-node ring network with d = 5 and

Anode = 1.1 E. 57

4.12 Blocking probability as a function of the average offered load per node for a

bidirecctional 8-node ring network with C = 48, 56 and 64 colors per bucket

considering the Small-Bucket as WA algorithm. 58

xii



4.13 Simulated number of recolorings as a function of the simulated traffic demands

and average offered load per node for the 8-node ring network with d = 4. 59

4.14 Total number of colors used as a function of the simulated traffic demands and

average offered load per node for the 8-node ring network with d = 4. 61

4.15 Blocking probability as a function of the average offered load per node for

the UBN network with C = 48, 56 and 64 colors per bucket considering the

Small-Bucket as WA algorithm. 62

4.16 Simulated number of recolorings as a function of the simulated traffic demands

and average offered load per node for the UBN network with d = 6. 63

4.17 Total number of colors used as a function of the simulated traffic demands and

average offered load per node for the UBN network with d = 6. 64

A.1 Fixed-Alternate Routing - Pseudocode. 71

A.2 First-fit algorithm - Pseudocode. 72

A.3 Most-used algorithm - Pseudocode. 73

A.4 Greedy graph coloring strategy - Pseudocode. 73

A.5 Random algorithm - Pseudocode. 74

B.1 Ring network with 5 nodes. 77

B.2 Ring network with 10 nodes. 77

B.3 COST-239 network. 78

xiii





List of Tables

2.1 Future Edge Cloud requirements and characteristics. 7

2.2 Results of the WA algorithms - Static Optical Network. 14

2.3 Distribution of wavelengths - Greedy algorithm. 16

2.4 Distribution of wavelengths - Traditional algorithms. 18

3.1 Simulated path blocking probability, for a 4-link star network, 7 circuits, 8 E and

blim = 1000. 29

3.2 System features and parameters of the 16-node ring network [5]. 32

3.3 System features and parameters of the 8-node ring network [6]. 35

3.4 System features and parameters of the NSFNET network [6]. 37

3.5 System features and parameters of the BT 22 nodes network [16]. 39

4.1 Variables considered in the Small-Bucket algorithm. 45

4.2 Description of the menus considered in the GUI. 49

4.3 Recolorings per update for the 16-node ring network. 53

A.1 Total number of assigned wavelengths obtained by First-fit, Most-used, Random

and Greedy algorithms for the NSFNET-14, Ring-5 nodes, Ring-10 nodes and

COST-239 networks. 75

xv





List of Acronyms

BT British Telecom

CDC Colorless Directionless Contentionless

EASDC European Aeronautical and Space Defense Company

FAR Fixed-Alternate Routing

GUI Graphical User Interface

IoT Internet of Things

LSP Label Switched Path

NSFNET National Science Foundation Network

OSPF Open Shortest Path First

OSPF-TE Open Shortest Path First - Traffic Engineering

OXC Optical Cross-Connect

PCE Path Computation Element

PLR Packet Loss Ratio

ROADM Reconfigurable Optical Add-Drop Multiplexer

RWA Routing and Wavelength Assignment

SaaS Software-as-a-Service

TCP Transmission Control Protocol

ToRs Top of Racks

UBN US Backbone Network

WA Wavelength Assignment

WDM Wavelength-Division Multiplexing

xvii





List of Symbols

A Traffic intensity offered to a link in the optical network

Anetwork Offered network load

Anode Offered traffic per node

Apath Traffic per path

als Traffic per optical path

B Blocking probability for point-to-point links

bd Number of blocked traffic demands

bl Blocking probability of a link l

blim Maximum number of blocked traffic demands in Monte-Carlo simulation

BP Blocking probability of a traffic demand

Bs Blocking probability of the path s

c Number of parallel circuits and maximum size of the system M/M/c/c

C Maximum number of colors per bucket used in Small-Bucket algorithm

d Number of levels used in Small-Bucket algorithm

E Set of edges that form a graph G

ERx Relative error of a simulated blocking probability

ex Edge number x of the graph G

G Graph of tested network

g Adjacency matrix of the graph G

iat Time between arrivals characterized by a negative exponential variable

M Markovian process

Nc Number of circuits/wavelengths per link

Nd Number of simulated traffic demands

Nnodes Number of network nodes

NR Number of vertices during last RESET in Small-Bucket algorithm

p Number of paths per node

Rs Set of links in the path s

s Number of buckets per level used in Small-Bucket algorithm

st Duration of each traffic demand

T (GbE) Traffic matrix of the graph G in GbE units

tarrivalt Arrival of traffic demand at instant t

Tsim Simulation time, from the arrival of the first demand until the arrival

of the last traffic demand

V Set of vertices that form a graph G

xix



vy Vertice number y of the graph G

λ Arrival rate of traffic demands

λx Assigned wavelength number x

µ Service rate of traffic demands

xx



CHAPTER 1

Introduction

1.1. Motivation and Background

Nowadays, optical transport networks are usually quasi-static, in the sense that connec-

tions often remain in service for a long period of time [1]. Nevertheless, with the need for

on-demand services, fuelled by applications such as cloud computing and grid computing,

together with the availability of an increasingly dynamic network infrastructure, it is ex-

pected that todays’ quasi-static optical networks turn into dynamic optical networks in

the next 5-10 years [1].

In the optical network layer, routing and wavelength assignment (RWA) are fundamen-

tal functions to transport data in an efficient way. In particular, for static optical networks,

several wavelength assignment (WA) algorithms have been used along the years, such as

the First-fit, Most-used, and Random [1]. These algorithms were initially designed for

dynamic networks. Before using these algorithms some kind of sorting strategy must be

applied [1]. Graph coloring techniques have also been used for WA in static networks.

These techniques aim at coloring the vertices of the network path graph, so that two adja-

cent vertices have different colors. An example of such algorithms is the Greedy algorithm

[1].

Regarding, dynamic optical networks, the heuristics used for WA in static networks

can also be used, but in this case, the sorting strategy is not necessary. In a dynamic

environment, every time a traffic demand arrives, a new wavelength must be found for

routing the respective demand, without changing the wavelengths already in use in the

network. This scenario can lead to a high blocking probability, when innumerous almost

simultaneous traffic demands arrive, and the network reaches its peak traffic load. In

this case of network congestion, the network can be alleviated by letting wavelength

reconfigurations to occur [2], in order to reduce the blocking probability.

To the best of our knowledge, graph coloring techniques for WA in optical dynamic

networks have not been studied yet. A simple graph coloring WA algorithm for this sce-

nario could be based on running the Greedy algorithm every time a new traffic demand

arrives, which implies that all the vertices should be recolored. Another algorithm ex-

ample is using a technique that just colors the demand that has arrived, which would be

equivalent to the First-fit algorithm. In this work, we implement and analyze a graph

coloring algorithm for the dynamic scenario that does not requires the recoloring of all

the vertices. This algorithm is named Small-Bucket algorithm and was initially proposed

in [3]. In the Small-Bucket algorithm, the traffic demands are distributed into a set of

buckets, each bucket with its own set of wavelengths (colors). A comparison with the
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First-fit algorithm is performed, in terms of the number of wavelengths used, blocking

probability and simulation time.

1.2. Objectives

The main objectives of this dissertation are:

(1) Study some of the RWA algorithms for dynamic optical networks. In particular,

for the WA problem, graph coloring techniques will be studied, such as the Small-

Bucket algorithm [3];

(2) Implementation using the Matlab simulator of the RWA algorithms studied in

first step;

(3) Evaluation, through simulation, of the blocking probability of a traffic demand

for various networks topologies;

(4) Performance comparison between the Small-Bucket graph coloring algorithm

used for the WA problem with the First-fit algorithm, in terms of blocking prob-

ability, simulation time, number of recolorings and number colors used.

1.3. Dissertation Organization

This dissertation is organised in five chapters as described in the following:

Chapter 1 presents the background and motivation of this work, as well as the iden-

tification of its main objectives. It also shows how this dissertation is organised and the

main contributions of this work.

Chapter 2 focuses on the main concepts concerning the area of dynamic optical net-

works. Network topologies and elements, definition of adjacency and traffic matrices of

the network are presented. Some basic concepts regarding the RWA problem are presented

and the RWA algorithms studied in this work are described with detail.

Chapter 3 presents the planning tool developed to study dynamic optical networks,

resorts to a flowchart for its explanation and shows some examples. The developed Matlab

simulator is found in the repository of this dissertation [4]. The routing algorithm studied

and implemented in this chapter is the Fixed-Alternate Routing (FAR). The implemented

WA algorithms are the First-fit, Most-used, Random and the Greedy graph coloring

algorithm, considering different network topologies. After their software implementation,

a study is carried out to evaluate the performance of these WA algorithms in terms of the

blocking probability and simulation time. The implementation of the several algorithms

is validated by comparison with other works [5], [6]. An analytical formalism based on

the reduced load approximation is also used to validate our simulator in a simple network

scenario.

In Chapter 4, the Small-Bucket algorithm is studied as a graph coloring technique, for

WA. After explaining the Small-Bucket algorithm, supported by examples and a flowchart,

its performance study is carried out by comparison with the First-fit algorithm, in terms of

blocking probability, simulation time, numbers of colors used and number of recolorings.

This study is performed for various network topologies, such as US Backbone Network
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(UBN) and ring networks with 8 and 16 nodes, and considering several values of the traffic

load.

Finally, Chapter 5 summarizes the main conclusions of this work and outlines some

proposals for future work.

1.4. Main Contributions

The main contributions of this dissertation are:

• An analytical formalism based on the reduced load approximation was imple-

mented to validate our simulator in a simple network scenario;

• Implementation of two Graph Coloring algorithms, Greedy and Small-Bucket,

and also of traditional algorithms, such as First-fit, Most-used and Random, for

WA in dynamic optical networks;

• Performance study of the Small-Bucket algorithm in terms of blocking probability

of a traffic demand, simulation time, number of colors used and recolorings, for

several real network topologies and comparison with the First-fit algorithm;

• The Small-Bucket algorithm leads to better results in terms of blocking proba-

bility, assuming C = Nc, but require fast tunable transceivers, which can bring

out technological problems, besides cost and management issues.
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CHAPTER 2

Fundamental Concepts in Dynamic Optical Networks

2.1. Introduction

This chapter covers the basic concepts of dynamic optical networks, including motivations,

topologies, architectures and optical planning algorithms. In section 2.2, the motivations

for dynamic optical networks are described, and the main applications and architectures

are presented. In section 2.3, the most basic concepts of optical network planning will

be described, such as the concepts of graph, optical links, traffic demands, optical paths,

adjacency matrix and traffic matrix. In the last sections of this chapter, the main ob-

jective of this dissertation, RWA, will be discussed. Some of the algorithms will be later

implemented and validated in simulation. In section 2.4 it is presented the main routing

algorithms in static optical networks, namely Fixed-Routing and Alternative-Path Rout-

ing. In section 2.5 it is discusses the main routing algorithms in dynamic optical networks,

namely Adaptive Routing and Fixed-Alternate Routing. At the end of the chapter, the

WA algorithms are presented. In the WA algorithms, the focus goes to First-fit, Most-

used, Random adapted to dynamic networks and to Graph Coloring techniques (Greedy,

Small-Bucket and Big-Bucket algorithms).

2.2. Motivation for Dynamic Optical Networks

Graph coloring techniques for network planning of dynamic optical networks have not yet

been studied and applied [1]. Most optical networks are considered quasi-static, since the

duration of the optical connections, which represent reserved paths to carry traffic de-

mands, generally remain active for a long time period, while in dynamic optical networks,

it is expected that this duration would be in the order of a few milliseconds/seconds [1].

According to the work [1], within 5 to 10 years, it is expected that quasi-static optical

networks will become dynamic optical networks. This transformation is due to the need

to support new technologies, like 5G and cloud services (e.g. video).

Dynamic networks will be a reality in the near future because there are services that

require these characteristics and also because there is already technology capable of im-

plementing this networks, such as Colorless Directionless Contentionless (CDC) Recon-

figurable Optical Add-Drop Multiplexer (ROADM) and tunable transponders. ROADMs

were an important development, avoiding manual interventions on the network nodes. In

dynamic optical networks, whose services require more variable optical connections it is

necessary to reduce manual intervention in the network to a minimum. It can thus be

said that optical transport networks are becoming increasingly configurable, in which the

provisioning process is initiated. Thus, these configurable networks take advantage of
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network elements, such as ROADMs, which can be remotely reconfigured to operate any

wavelength and also of adjustable transponders, which can be adjusted to transmit/receive

any of the supported wavelength with various modulations formats and bit rates.

2.2.1. Dynamic Optical Network Applications

The growing increase of 5G and cloud services fosters the gradual transition to dynamic

networks [1]. Example of cloud services are cloud computing and grid computing applica-

tions. Nowadays, cloud computing is performed more closely to the costumers, creating

the called Edge Cloud architecture concept that is transforming the telecommunications

landscape from a user-to-user or user-to-object, to an object-to-object communication

paradigm. In this kind of communications the exchange of data is for a very short time

(sub-second), which required a highly dynamic network [7].

In cloud computing, service provider data center resources are used in a large scale for

tasks such as application storage, backup, storage, content delivery and web storage [8].

Grid computing corresponds to a computer network, in which the resources of each

computer, such as processing, memory and data storage, are shared with other comput-

ers in the system. This type of computing is used in companies to improve operational

efficiency, increase employee productivity, accelerate business processes, improve redun-

dancy and resilience [8]. One of the application examples is the European Aeronautical

and Space Defense Company (EASDC), whose challenge corresponds to the construction

of an on-demand computing model for the simulation tools used by engineers, in order

to reduce the analysis time. The dynamic network is a very attractive solution, since the

time for setting up an optical connection must be in the order of milliseconds to meet

human tolerance, in iterative applications.

2.2.2. Dynamic Optical Network Architectures

According to [1], there are four types of dynamic optical network architectures: central-

ized; distributed; combination of the previous two; Edge Cloud network [7].

In The Edge Cloud network, distributed data centers are important points of the

architecture. Edge Cloud emerged as an evolution of the Central Cloud network, due to

the long propagation time in the optical fronthaul connection, between antennas and the

respective data center. This architecture offers the opportunity to support low latency and

multiple traffic demands. With this architecture it was possible to develop new services

such as the Internet of Things (IoT), communication between static objects (for example,

sensors) and even develop support for 5G applications. With these applications, supported

in increasingly dynamic networks, any object can request a service with any other object,

to potentially exchange data for a short time. This communication pattern increases

the volatility of time dependence on traffic between data centers. New optical network

architectures should provide a packet loss ratio (PLR) below than 10−10. Protocols such

as the Transmission Control Protocol (TCP) can be used to comply with the ideal PLR.

Table 2.1 shows the main requirements of this architecture, whose values are estimates,
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since the exact values depend on the application. Most optical networks, current and

future, do not allow compliance with the requirements of Table 2.1, because they still

depend on technologies that use infrastructures unable to support dynamic traffic.

Table 2.1. Future Edge Cloud requirements and characteristics.

End-to-end service turn-up time < 1ms
End-to-end latency (excluding propagation) 10− 100µs

End-to-end jitter < 1µs
End-to-end Packet loss rate << 10−10

Number of machines in each edge cloud 200
Typical end-to-end propagation distance 1− 50km

To establish the connection, the originating node uses signaling along the calculated

path. An example of a centralized architecture is the Software Defined Networking archi-

tecture. The Centralized Architecture is characterized by the existence of a single point in

the network, where the routing and resource allocation functions are performed. A very

important aspect in this model corresponds to the concept of Path Computation Element

(PCE), a computing platform responsible for the routing. In this architecture, a request

for an optical path to a destination node is made by the originating node to the PCE and

the PCE responds with the necessary path and resources. To establish the connection,

the originating node uses signaling along the calculated path. In Distributed Architec-

ture, each node calculates the path to the destination without consulting external entities.

In order for the nodes to obtain necessary information for the routing, the nodes must

have, among other information, data related to the network topology, disseminating this

information through, for example, the OSPF-TE protocol. An example of a distributed

architecture is the Generalized Multiprotocol Label Switching architecture

The main advantages of the centralized architecture are: avoiding the containment

of resources during the configuration phase of the optical connection, implementing the

processing and memory resources in a single element. The disadvantages of the centralized

architecture correspond to the fact that the PCE can be overwhelmed with new requests

and the high security risk. From the point of view of distributed architecture, the main

advantage is the very fast configuration time and the disadvantages correspond to the

need for predominant processing resources, the loss of optimization in the calculation of

paths and the amount of resource contention.

2.3. Basic Concepts of Optical Network Planning

The planning of optical networks involves different problems such as the definition of the

location of the nodes and the design of the physical topology, the routing of traffic and

dimensioning the capacity of the connections, the wavelength assignment, the aggregation

of traffic and, also, the protection and restoration. An optical network is commonly

described by a graph G = (V,E ). Each undirected edge represents a pair of point-to-

point unidirectional fiber optical connections, connecting a pair of nodes. The set V
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represents the set of vertices or nodes of the network (switches, routers or ROADMs),

while the set E represents the set of edges of the network (optical fibers). The graph on

the right side of Figure 2.1 shows a simple example of the representation of the optical

network in a graph.

Figure 2.1. Graph of the Network - representation of the network.

The terminology in the context of the planning of optical networks should also be

defined. It is important to describe the concept of optical link, which means a physical

connection between two adjacent nodes. As example in Fig. 2.2, a possible optical link

between two nodes is e7, which links the vertices v1 and v3. One of the main concepts in

the process of RWA corresponds to the concept of optical path, which is a sequence of

links between a source node (s) and a termination node (t).

Figure 2.2. Example of optical paths.

The set of services carried by the optical network is called traffic and an individual

traffic demand between two nodes is represented in the form of a traffic demand, cor-

responding to a logical connection. This traffic demand gives rise to the reservation of

an optical path, called a connection. These services carried on the optical network are

conditioned by the type of physical topology of the network, which can be of different

types, e.g. mesh; ring; star; bus; tree. The network physical topology, allows specifying

the interconnection strategy between the nodes. Another way to represent the physical

topology of an optical network is through the adjacency matrix. Considering N, number

of nodes in a network, the dimension of the adjacency matrix (g) is N×N. The adjacency
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matrix specifies the links between every node of the network. If there is a link between

i and j, then gij=1, otherwise, gij=0. Taking into account the graph of Figure 2.1, the

adjacency matrix corresponds to the following matrix

g =



0 1 1 1 1 1

1 0 1 0 0 0

1 1 0 1 0 0

1 0 1 0 1 0

1 0 0 1 0 1

1 0 0 0 1 0


. (2.1)

While the physical topology specificates the interconnection strategy between the

nodes, the logical topology allows to specify how the information flows through the net-

work. Traffic can be described by the number of traffic demands or by the logical connec-

tions. Taking as an example, the network described in Fig. 2.1, the blue arrows of the

graph of Fig. 2.2 can be used as a logical topology. The logical topology of an optical

network can be represented by a matrix, called the demand matrix. The dimension of

the demand matrix (d) is N×N. The demand matrix allows to specify whether there is a

traffic demand between two nodes, i and j. If there is a traffic demand between i and j,

then dij=1, otherwise, dij=0. Taking into account the graph of Fig. 2.2, the corresponding

demand matrix is given by

d =



0 1 0 0 1 1

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

1 0 0 1 0 1

1 0 1 0 1 0


. (2.2)

It is also possible describe the volume of traffic over a period of time between all nodes

in the topology, using a traffic matrix. In transport networks, traffic units correspond to

the various types of client signals, such as E3, STM-1, 10 GbE, 100 GbE and Fiber

Channel (FC) which must be converted into appropriate traffic units to be used in the

transport network. By reusing the network graph, in Figure 2.1, it is possible to describe

the volume of traffic between the network nodes in traffic units as represented in Figure

2.2. Taking into account Figure 2.2, the traffic matrix, which describes the volume of

traffic, in GbE units, over a period of time between all nodes, can be represented as

T(GbE) =



0 40 0 0 120 80

40 0 0 0 0 0

0 0 0 0 0 40

0 0 0 0 80 0

120 0 0 80 0 120

80 0 40 0 120 0


. (2.3)
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2.4. Routing in Static Optical Networks

The RWA problem consists of two sub-problems: routing and wavelengths assignment.

The complexity of this problem is due to the calculation of the path for a traffic demand,

continuity and distinct wavelength properties. The same wavelength must be assigned

to all connections that form the optical path. Two optical paths must not have the

same wavelength on the same link. For static optical networks, RWA algorithms are

characterized by: calculation of physical paths for each pair of nodes; organization of the

various paths previously calculated in a list; sorting all wavelengths in the list; search for

the ideal path and wavelength for the selected optical path.

The optical paths can be determinated using both centralized and distributed archi-

tecture. In both cases, the routing algorithms that are used to calculate the paths can

be: Fixed-Routing (e.g. Dijkstra) and Alternative-Path Routing (e.g. Yens k-shortest)

[1]. Exists several network metrics to evaluate the cost of a connection, such as the path

length, delay, delay variation and loss probability. Most static or dynamic routing algo-

rithms generally optimize a link metric, using some variant of the shortest path algorithms,

such as Dijkstra’s algorithm. Routing algorithms can be classified as online/offline, taking

into account the way in which the paths are calculated. In situations where paths are

calculated before the optical network goes into operation, the routing algorithm can be

classified as offline. In the other scenario, in which the paths are calculated after the

network goes into operation, the routing algorithm can be classified as online.

2.4.1. Fixed-Routing

In this type of routing algorithm, a single optical path is calculated for a given traffic

demand. An example of a Fixed-Routing algorithm corresponds to the Dijkstra algorithm.

Dijkstra allows obtaining the shortest path in a directed or non-directed graph with non-

negative weight edges. Dijkstra’s algorithm analyzes the entire graph in order to find

the shortest path between the origin node and all other nodes. The shortest distance

currently known from each node to the origin node is tracked and this value is updated if

a shorter path is determined. When calculating the shortest path between the originating

node and another node, that node is marked as ”visited” and added to the set S (resolved

nodes). This procedure is repeated until all nodes in the graph have been added to set

S. An example of the application of Dijkstra’s algorithm to find shorter paths in a graph

(directed or not) without negative weight edges is shown in the Figure 2.3, considering

node C as the destination node.
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Figure 2.3. Application of Dijkstra’s algorithm.
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2.4.2. Alternative-Path Routing

In this type of routing algorithm, several alternative optical paths are calculated for

a traffic demand. An example of a Alternative-Path routing algorithm corresponds to

the Yens K-Shortest algorithm. The Yens K-Shortest Path algorithm is identical to the

Shortest Path algorithm, but with the difference that K shortest paths are calculated.

It uses the Dijkstra algorithm to calculate the shortest paths. The Dijkstra algorithm is

applied initially to find the optical path with the lowest cost and, subsequently, to each

removal of optical connections between each pair of nodes that form the initial optical

path. Then, an application example, based on the demonstrations of [1] will be presented.

Figure 2.4. Yens K-Shortest Path - example of application.

In this example, the Yens K-Shortest Path algorithm is applied to obtain the 2 shortest

paths between H and C. The steps followed are:

• apply Dijkstra’s algorithm to obtain the lowest cost path between H and C ;

• 1st optical path calculated: HFEC (Cost = 5);

• remove the HF optical link and apply Dijkstra’s algorithm;

• 2nd optical path calculated: HGEC (Cost = 7).

This type of routing is based on the existence of alternative paths between two nodes.

Before adding a traffic demand to the network, a set of K possible paths for that traffic de-

mand is generated. After the arrival of a traffic demand, with a specific origin/destination,

one of the paths of the set previously selected is selected to be used.

2.5. Routing in Dynamic Optical Networks

For dynamic environments, whose optical connections are started/finished quite frequently,

it would be expected that the routing algorithms of the Adaptative Routing type would

be the most efficient, but the latency produced due to the constant need to execute the

optical path calculation algorithm takes researchers to look for solutions adapted from

Alternative-Path Routing algorithms, to perform routing in dynamic optical networks.

2.5.1. Adaptative Routing

In this type of routing algorithm, the paths between the nodes of the network are cal-

culated after the network starts operating. Taking into account the volatile nature of
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dynamic optical networks, one would expect that this would be the best method of calcu-

lating the path, however due to the high delay produced, due to the need to execute the

optical path calculation algorithm for multiple traffic demands, this solution is not very

effective in planning, whose main objective is to reduce the latency of services. In con-

junction with the current state of the optical network, several metrics can be considered

to calculate optical paths, such as cost, traffic on the most loaded connection, the number

of hops, the distance of the path, the protection and the signal-to-noise ratio of the path.

2.5.2. Fixed-Alternate Routing

Fixed-Alternate Routing (FAR) strategies can be adapted for dynamic optical networks:

before the network goes into operation, the shortest optical paths between any pair of

nodes will be calculated. When assigning optical paths for traffic demands, the optical

paths determined before the network goes into operation, which are in the best conditions,

are used. That is, instead of calculating the shortest path each time a traffic demand

arrives, the paths are already pre-calculated and the optical path in better conditions is

used.

2.6. WA in Static Optical Networks

The general objective of RWA in static networks is to transport traffic using the smallest

number of wavelengths. Each traffic demand must have an optical path (R) and wave-

length (WA), in order to be transported in the optical network. In static optical networks,

in the process of WA, traffic demands must first be ordered, according to methods such

as shortest path first, longest path first or random, and subsequently is applied an algo-

rithm (e.g. First-fit, Most-used or Random) or graph coloring techniques for WA. A very

important aspect common to all WA algorithms is the fact that two optical paths with

common optical links cannot have the same assigned wavelength.

2.6.1. First-fit Algorithm

In this WA algorithm, all available wavelengths are indexed and the available wavelength

with the lowest index is chosen. The algorithms for indexing wavelengths can be, for

example, shortest path first, whose traffic demands with the lowest cost on the path

appear first in the list, longest path first, whose traffic demands with the highest cost

appear first in the list or random ordering, where traffic demands are sorted randomly.

2.6.2. Most-used Algorithm

In this case, the sorting algorithms used to index the wavelengths are the same than

in First-fit. In this algorithm, there is a variable that stores the number of times that

each wavelength is used per link. To the wavelength that is assigned to more links is

given a higher priority and is assigned to the new path if the two conditions are met

(continuity of wavelength and distinct wavelengths). If these conditions are not met, the

next wavelength on the sorting list with more links is tried.
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2.6.3. Random Algorithm

A wavelength is randomly chosen from among all available wavelengths, and it is generally

assumed that all wavelengths have equal probability of being chosen. A chain network

with 7 nodes (0 to 6) is considered with the WA shown in Figure 2.5. Unshaded regions

indicate that wavelength is available on these links.

Figure 2.5. First-fit, Most-used and Random application example.

To establish a path between 2 and 5, there are 4 free wavelengths (λ0 to λ3). The

assigned wavelengths, according to each algorithm, follow the ideas previously described.

Table 2.2. Results of the WA algorithms - Static Optical Network.

Algorithm Chosen wavelength

First-fit λ0

Most-used λ1 or λ3

Random λ0,λ1,λ2 or λ3

2.6.4. Graph Coloring Algorithms

Graph coloring algorithms corresponds to a conventional mathematical problem that con-

sists in coloring all the nodes in a graph, so that there are no two adjacent nodes with

the same color [1]. An important point of this technique consists of passing the graph of

the physical topology of the network G(V,E) to a graph G(W,P), whose nodes/vertices

(W ) are the optical paths and P represents the set of optical links between these nodes.
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Figure 2.6. Graph of the physical topology (left) and of the optical paths
(right).

Taking into account the graphs represented in Figure 2.6, it can be written that the set

V is [A,B,C,D,E ]; the set E given by [e1,e2,e3,e4,e5,e6]; the set W given by [AE, AEC,

AED, CE, DE, AB, BCD, CD, BC ] and, finally P, the set of connections between these

nodes. The procedure to be carried out corresponds to coloring the vertices of the new

graph, which are obtained through the following procedure: 2 vertices have a link between

them if 2 nodes of each path are coincident. After constructing the graph of the optical

paths G(W,P), the ordering strategy is chosen for the coloring of the vertices. The most

used strategy for coloring is the Greedy algorithm. In Greedy algorithm, the vertices are

sorted by the vertex order (e.g. descending, ascending, random) and then each vertex is

colored in such a way that adjacent vertices can not have the same color.

The most common sorting strategy is the descending order strategy. This strategy

will be used to exemplify the graph coloring technique. Taking into account the graph in

Figure 2.6, the Table 2.3 can be constructed which, for each optical path, lists the number

of edges incident at the vertex (i.e., the vertex order) and the assigned wavelength. This

strategy consist in sorting the vertices of the graph G(W,P), starting from the first vertex

until the last vertice in order (ascending/descending), assigning them with the lowest

number color (wavelength) not yet used for a neighbor. The Greedy strategy is more

suitable for static optical networks, because it assumes that all traffic demands arrive at

the same time, being necessary to order them and then order the optical paths according

to the degree of each path. However, it can also be adapted for dynamic networks, as

at each arrival of a traffic demand, the Greedy algorithm, previously described, can be

executed without sorting by vertex order. In order to make the process of WA in dynamic

optical networks efficient, the best way to reserve a wavelength in each of the links that

form a path corresponds to assigning only the optical path, generated at the moment, a

wavelength adapted to the conditions of the network, without the need to carry out the

entire WA calculation for all previous traffic demands.
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Figure 2.7. Coloring of graph G(W, P).

Table 2.3. Distribution of wavelengths - Greedy algorithm.

Path Degree Wavelength

AEC 3 Blue, λ1

AED 3 Orange, λ2

AE 2 Green, λ3

BCD 2 Blue, λ1

BC 1 Orange, λ2

CD 1 Green, λ3

CE 1 Orange, λ2

DE 1 Blue, λ1

AB 0 Blue, λ1

2.7. WA in Dynamic Optical Networks

In [9], two categories of wavelength assignment in dynamic networks are studied: Online

Graph Coloring and Dynamic Graph Coloring.

2.7.1. Online Graph Coloring

Online Graph Coloring considers that over time, more vertices arrive at the graphG(W,P )

(calculated optical paths) and with each vertex insertion, the respective coloring of these

vertex occurs, without the need to recolor all the vertices of the graph. The goal is to

minimize the blocking probability.

One of the Online Graph Coloring algorithms corresponds to the Greedy graph coloring

strategy, for dynamic optical networks. This strategy, taking into account the dynamism

of the network, considers that the vertices are added and colored over time. The Greedy

strategy, previously studied in static environments, considers that all traffic demands

arrive at the same time and that all the vertices of optical paths are colored at the same

time. In dynamic environments, the strategy is executed to every traffic demand arrival,

allowing the coloring of just the new optical path vertex.
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2.7.2. First-fit, Most-used and Random Algorithms

The WA algorithms studied in section 2.6 show better results for static networks, whose

traffic patterns and optical connections do not vary over time. In dynamic networks,

algorithms such as First-fit, Most-used or Random, can be used for the WA. Different

methodologies can be considered to assign wavelengths, one that allows to minimize block-

ing but that increases the complexity of the solution and another that allows to minimize

the complexity of the solution, but that makes use of a larger number of wavelengths. To

minimize the number of used wavelengths and increase the complexity of the solution, a

correct strategy is to execute one of the static environment WA algorithms for all traffic

demands, after each update of the optical network. On the other hand, another strategy

corresponds to adapt the WA to the current network conditions (considered in the simula-

tor developed), that is, with each update in the network, no WA algorithm is performed,

but taking into account the algorithm strategy static (First-fit, Most-used or Random)

assign a wavelength to the incoming traffic demand, or otherwise assign a wavelength to a

traffic demand that no longer exists. This solution, minimizes the complexity of the solu-

tion, but can provide a high number of used wavelengths [9]. In order to demonstrate the

operation of each WA algorithm for dynamic optical networks, an example is presented

below, with 10 traffic demands arriving at different times. In this example, the strategy

considered corresponds to assigning a wavelength for each calculated optical path, using

the First-fit, Most-used and Random algorithms.

Example: In the example considered, the network described by the graph in Figure

2.8 will be used. At various time instants, traffic demand arrivals and respective opti-

cal routing are simulated, using the number of hops as a metric. At each time point,

in addition to the optical routing, the First-fit, Most-used and Random algorithms are

executed in order to assign wavelength to the determined path. The maximum number

of wavelengths available for assignment is 5. The results of the optical routing and WA

algorithms for the exemplified optical network are shown in Table 2.4.

Figure 2.8. Ring network graph with 5 nodes used to exemplify First-fit,
Most-used and Random in dynamic optical networks.

17



Table 2.4. Distribution of wavelengths - Traditional algorithms.

Instant Path WA - First-fit WA - Most-used WA - Random

1 0− 1 λ1 λ1 random(λ1,λ2,λ3,λ4,λ5)=λ3

2 0− 1− 2 λ2 λ2 random(λ1,λ2,λ4,λ5)=λ4

3 0− 4− 3 λ1 λ2 random(λ1,λ2,λ3,λ4,λ5)=λ2

4 0− 4 λ2 λ1 random(λ1,λ3,λ4,λ5)=λ1

5 1− 2 λ1 λ1 random(λ1,λ2,λ3,λ5)=λ5

6 1− 2− 3 λ3 λ3 random(λ1,λ2,λ3)=λ2

7 1− 0− 4 λ3 λ3 random(λ5)=λ5

8 2− 3 λ1 λ2 random(λ1,λ3,λ4,λ5)=λ1

9 2− 3− 4 λ2 λ1 random(λ3,λ4,λ5)=λ3

10 3− 4 λ3 λ3 random(λ1,λ4,λ5)=λ1

From the results, it can be concluded that the First-fit and Most-used algorithms

produce the same number of assigned wavelengths (3) to satisfy the 10 traffic demands.

The Random algorithm, due to its random choice strategy, needs more wavelengths.

2.7.3. Dynamic Graph Coloring

In this algorithms, vertices and edges may appear/disappear over time. The objective of

graph coloring techniques adapted to dynamic networks is to maintain an WA solution

in a scenario where there are demands/optical connections that require an update of the

network over time. A simplistic way is to run the best static algorithm after each new

demand [9]. On the other hand, a dynamic graph coloring algorithm allows to maintain

an intelligent data structure for the underlying problem, resulting in a lower update time

for the solution, compared to the static algorithm. Currently, there are not many studies

carried out on graph coloring in dynamic optical networks.

In [3], a study of the number of vertex recolorings that an algorithm needs to maintain

a suitable color of a graph under insertion and extraction of vertices/nodes and edges

is performed. A recoloring algorithm is an algorithm that maintains a suitable graph

coloring, even when that graph undergoes a series of updates. In algorithms of [3], it is

assumed that the exclusion of a vertex or connection never invalidates the coloring of the

graph and, therefore, the coloring techniques studied in [3] do not perform any recoloring

when vertices or connections are ended. In the considered algorithms, only the insertions

of vertices (new connections) require resorting.

The central idea of the algorithms presented in [3] corresponds to the distribution of

the vertices in a set of buckets, each with its own set of colors used for the coloring of

the vertices. The algorithms proposed in [3] are called Small-Bucket and Big-Bucket and

differ in terms of the number of buckets and in the size of each bucket. As a rule, there is a

sequence of buckets of increasing size, organized by levels and a RESET bucket. The size

of each bucket varies with the execution time of the algorithm. Initially, the size depends

on the number of vertices in the input graph and, later, it depends on the insertions and

exclusions of vertices. The general idea of the algorithms is that when certain buckets are
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full, the system is redefined to ensure acceptance of new vertices. Redefining the system

involves emptying all the buckets in RESET bucket, calculating a new color suitable for

every vertex and recalculating the bucket sizes in terms of the current number of vertices.

2.8. Conclusions

The planning of dynamic optical networks appears to support new future technologies,

such as 5G applications and cloud services. There is already technology in the market

capable of implementing this type of networks, for example CDC ROADMs and tunable

transponders. In these networks, whose services require more variable optical connections,

it is necessary to minimize manual intervention in the network. Optical transport networks

are becoming increasingly configurable, in which the provisioning process is initiated.

Thus, these configurable networks take advantage of existing technology.

The planning of dynamic optical networks is not something very discussed in articles

in the specialty, however there are some studies on routing and wavelength assignment

algorithms. In this chapter, several traffic routing algorithms were presented, both for

static and dynamic networks. In static optical networks there are two main types of rout-

ing algorithms: Fixed-Routing; Alternative-Path Routing. For dynamic optical networks,

routing algorithms can also be classified into two large groups: Adaptive Routing; Fixed-

Alternate Routing. Regarding the WA, several algorithms were also studied, namely

the First-fit, Most-used, Random, Greedy graph coloring, Small-Bucket and Big-Bucket

algorithms.

In the next chapters, some of the algorithms covered in this chapter will be imple-

mented and studied, in terms of the blocking probability of a traffic demand, simulation

time, number of colors/wavelengths used and recolorings.
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CHAPTER 3

Implementation of a RWA Planning Tool for Dynamic Traffic

3.1. Introduction

In this chapter, the Matlab simulator development is reported, which allows the imple-

mentation of some of the RWA algorithms for dynamic optical networks. The developed

simulation tool to evaluate the network blocking probability considers various network

topologies and traffic patterns and, also allows comparing the performance between dif-

ferent algorithms. Before evaluating the blocking probability, this metric is evaluated in

section 3.2, in a single point-to-point link modelled as a M/M/c/c system. The results

will be compared with the well-known Erlang-B formula, for validation purpose. Then, in

section 3.3 the simulation model for a network with dynamic traffic is explained and the

simulator is validated for various network topologies and RWA algorithms, [5] and [6].

3.2. M/M/c/c System

According to Kendall ’s notation [10], A/S/c/K/Q, A indicates the time distribution

between arrivals, S the service time distribution, c the number of parallel circuits, K (≥c)

the maximum size of the system and Q the queue discipline. The point-to-point links in

the traditional telephone network with circuit switching is an application example that

can be modelled by a M/M/c/c system, where the time distribution between arrivals

and the service time distributions follows a Markovian process. In this scenario when all

circuits are occupied and a demand arrives, that demand is blocked and the call is lost.

In this networks, traffic demands arrive according to a Poisson process with arrival rate λ

and service times exponentially distributed with parameter µ. The blocking probability

for this point-to-point links can be calculated with the Erlang-B formula [11], given by

B = E1,Nc(A) = (ANc/Nc!)/(Σ
Nc
n=0A

n/n!), (3.1)

where A = λ/µ corresponds to the intensity of traffic offered to the system expressed in

Erlang and Nc corresponds to the number of circuits.

3.2.1. Simulation Model for a M/M/c/c System

The simulation of the M/M/c/c system is done through an event-based simulation where

traffic demand arrivals are simulated following

tarrivali+1
= tarrivali + iat, (3.2)
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where iat is the time between arrivals characterized by a negative exponential random

variable

iat = −1/λ× ln(u), (3.3)

where u is a uniform random variable between 0 and 1. The duration of each traffic

demand is simulated through the service time variable

st = −1/µ× ln(u). (3.4)

The time instant corresponding to the end of the traffic demand i is estimated using

tendi = tarrivali + sti. (3.5)

In Fig. 3.1, an example of the M/M/1/1 system is presented, and 13 events are shown.

Figure 3.1. Example of a M/M/1/1 system simulation.

In this scenario, with one circuit, the system has the capacity to serve only one traffic

demand. Situations such as the arrival of traffic demands number 3 and 4, cause block-

ing of demands, because the circuit/server of the system is busy attending other traffic

demand. This situation occurs with 4 more traffic demands. The simulated blocking prob-

ability is calculated by dividing the number of blocked traffic demands by the number of

arrived traffic demands. The number of blocked traffic demands is 6 (traffic demands 3,

4, 6, 7, 10 and 11). In the example given in Fig. 3.1, the blocking probability estimated

by simulation is 6/13.

The flowchart of the simulator that allowed to obtain the results of Figure 3.1, is

described in Figure 3.2. The simulator starts by defining the physical topology of the

network and calculating the arrival time of the first traffic demand. The stopping criterion

is the number of simulated traffic demands, up to 100000 traffic demands. When the

maximum number of traffic demands is reached, the simulator calculates the blocking
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probability of the simulation and the simulation ends. While the maximum number of

traffic demands is not reached, two possible events are generated:

- traffic demand arrival (temporal instant of next arrival < temporal instant of demand

departure): if the simulator’s only circuit/server is busy with an traffic demand, it means

that the traffic demand i is blocked and the number of blocked traffic demands is increased.

If the circuit is not busy, it means that the traffic demand i is assigned the system circuit,

the number of traffic demands arrivals is increased and it is calculated the time of the

next demand arrival (tarrivali+1
) and the time of departure of the traffic demand i (tendi).

- traffic demand departure (temporal instant of next arrival > temporal instant of

demand departure): the simulator increases the number of traffic demands served and

decreases the number of traffic demands being executed.

Figure 3.2. Flowchart of the M/M/1/1 system simulation.
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3.2.2. Results and Discussion

In this sub-section, the blocking probability of a M/M/c/c system is analysed as a func-

tion of the offered traffic, for simulator validation and corresponding blocking probability

estimation. The blocking probability is obtained with an event-based simulator described

in section 3.2.1 and compared with the Erlang-B formula given by equation (3.1). To

achieve accurate blocking probability results, 1000000 traffic demands are simulated, for

M/M/5/5 system simulation, and 10000000 traffic demands for M/M/15/15 simulation.

Two examples with a different number of circuits, c = 5 and c = 15 are evaluated,

respectively, in Figures 3.3 (A) and (B) where the blocking probability is plotted as a

function of the traffic offered to the simulation, A. In Fig. 3.3 (A), due to the reduced

number of available circuits to serve the traffic offered, the blocking probability is very

high. The reference value is 1% for optical networks, so it can be said that the values in

Fig. 3.3 (A) are high. As can be observed, the simulated and the theoretical values of the

blocking probability are very similar, indicating that the simulator is well implemented

for this scenario.

(a) M/M/5/5 System. (b) M/M/15/15 System.

Figure 3.3. Blocking probability as a function of the offered traffic.

The dependence of the blocking probability as a function of the number of traffic

demands and the number of blocked traffic demands has been analyzed, in Figs. 3.4 (A)

and (B). In Fig. 3.4 (A), the theoretical values of the blocking probability obtained using

the Erlang-B formula, for the M/M/5/5 system, are represented by blue curve. The

symbols represent blocking probabilities obtained by simulation, with a variation of the

number of traffic demands. In Fig. 3.4 (B), the theoretical values are represented through

the blue curve. The symbols represent the blocking probabilities obtained by simulation

for different numbers of blocked traffic demands.

Fig. 3.4 show that by increasing the number of simulated traffic demands, or the

number of blocked traffic demands, the blocking probabilities tend to stabilize and are

more approximated to the theoretical values. Hence, it can be concluded that, to reach
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a stabilized value of the blocking probability with sufficient accuracy, for the simulation

parameters considered and for blocking probabilities between 0.01 and 0.1, it is necessary

to simulate at least 1000000 traffic demands or running the simulation until 10000 blocked

traffic demands are observed. Furthermore, from all the results presented in this section,

it can be concluded that the simulator is validated for point-to-point M/M/c/c systems.

(a) Varying the number of
simulated traffic demands.

(b) Varying the number of
simulated blocked traffic demands.

Figure 3.4. Blocking probabilities as a function of the offered traffic for
a M/M/5/5 system.

In Fig. 3.5, for a theoretical blocking probability of 7.73×10−2 in a M/M/5/5 system,

the simulation between 2 nodes is represented as a function of the number of simulated

traffic demands and of the blocked traffic demands. To achieve the theoretical blocking

probability, with a relative error of 3.75 × 10−3 using eq. (3.6), at least 100000 traffic

demands must be simulated (Fig. 3.5 (A)), which corresponds a simulation time of 4.9

seconds, using a computer with an Intel(R) Core(TM) i7-8700 CPU@3.20 GHz and 16

GB of RAM. To achieve the reference blocking probability, at least 10000 blocked traffic

demands must be simulated (Fig. 3.5 (B)), which corresponds to a simulation time of 6.4

seconds. The relative error of the blocking probability is obtained by

ERx =
x− x

x
, (3.6)

where x is the theoretical blocking probability and x is the simulated blocking probability.
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(a) Variation as a function of the
simulated traffic demands.

(b) Variation as a function of the
blocked traffic demands.

Figure 3.5. Variation of the blocking probability for 2.6 E of offered
traffic, leading a blocking probability of 7.73× 10−2 and simulation times.

3.3. Network with Dynamic Traffic

In the previous section, a point-to-point link with several circuits and dynamic traffic

has been simulated assuming a M/M/c/c model. The goal of this section is to develop

a simulator that is capable of assessing the blocking probability in a dynamic traffic

network composed by various nodes and links. In an optical network, the nodes are

typically ROADMs and the links are implemented with optical fibers, which have typically

96 available WDM channels (C-band with 50 GHz spaced channels) [1]. The blocking

probability as a function of the number of wavelengths will be assessed for various network

topologies and various RWA algorithms. In this section, the criterion for stopping the

simulation, and achieve a sufficiently accurate blocking probability is based on the number

of blocked traffic demands, similarly to what is done for estimating the bit error rate

(BER) in simulation [12]. An analytical formalism will also be introduced to validate the

developed simulator, through the calculation of the blocking probability of a path.

3.3.1. Simulation Model for a Network with Dynamic Traffic

The routing algorithm considered in the simulator corresponds to the Fixed-Alternate

Routing (FAR) algorithm. With this algorithm, the two shortest disjunct edge paths

(the main and alternative paths) are considered for each pair of nodes. These paths

are disjoint, so that, if blocking events on the two paths occur, they can be considered

independent. Protection can be associated with the FAR algorithm, as this algorithm

allows the calculation of two disjoint paths. In case of failure, the protection allows

the selection of the first shortest disjoint path. In terms of protection, two protection

architectures can be considered: 1+1 architecture and 1:1 architecture [13]. In a 1+1

architecture, a single protection path is used to protect the signal. Traffic is sent over

two parallel routes, and the destination node selects the best of the two incoming signals.
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In case of failure, the destination node changes to the alternate path [13]. In a 1:1

architecture, the signal is protected by a single protection path. When the primary path

fails, the source and destination nodes switch to the alternate path [13].

In order to explain the developed Matlab simulator, the flowchart presented in Fig.

3.6 has been conceived.

Figure 3.6. Flowchart of the simulator for planning of a network with
dynamic traffic and corresponding blocking probability assessment.
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The model used to simulate dynamic traffic in different optical network topologies

assumes that the traffic between every node pair (i.e., every source-destination pair) is

uniformly distributed, the lightpath demands that arrive at each node follow a Poisson

process with arrival rate λ and the lightpath service times are exponentially distributed

with parameter µ [11]. The network total offered load is given by A = λ/µ. At the

beginning of the simulation, the physical topology of the network is defined, as well as the

calculation of two disjoint paths between any pair of nodes. While the number of blocked

traffic demands is less than the maximum number of blocked traffic demands (blim), the

simulator generates a new event. If the maximum number of blocked traffic demands is

reached, the simulation ends, and the blocking probability is evaluated. In this network

simulation, two types of events can occur:

- the event generated is the arrival of a traffic demand. In this case, the simulator

selects the optical path with the lowest cost and checks if there is a available wavelength for

the selected path. If there is an available wavelength, the simulator assigns a wavelength

to the path using different WA algorithms adapted for dynamic optical networks, updates

the traffic matrix and calculates the arrival time of the next traffic demand (eq. 3.2) and

the current traffic demand departure time (eq. 3.5). The pseudocodes of the simulated

WA algorithms are represented in Appendix A. If there is no available wavelength for the

main optical path, the simulator tries to assign the traffic demand to the first alternative

optical path. If there is also no wavelength available for the alternative optical path, the

number of blocked traffic demands is increased.

- the generated event is a traffic demand departure. In this case, the number of traffic

demands served is increased, the traffic matrix and WA table are updated. In both events,

the simulator returns again to the verification of the number of blocked traffic demands.

3.3.2. Analytical Formalism based on the Reduced Load Approximation

In this section, an analytical formalism to access the blocking probability in a dynamic

network is used to validate the simulator in simple network scenarios, based on the reduced

load approximation [14]. This approximation assumes that blocking is independent from

link to link. The blocking probability of path s is given by

Bs = 1−
K∏
i=1

(1− bl), (3.7)

where K is the number of links of the path s and bl is the blocking probability of the link

l. The blocking probability of each link is given by the Erlang-B formula (eq. (3.1)) using

bl = E1,Nc(A), (3.8)

where Nc is the number of circuits and A is the traffic intensity offered to link l, given by

28



A =
∑

s: l∈Rs

als, (3.9)

where Rs is the set of links in the path s and als is the traffic per path, given by [14]

als = as ×
1

1− bl
×

∏
K∈Rs

(1− bK). (3.10)

Equation (3.10) assumes that the blocking probability of each link is not small and the

traffic thinning (blocking one link depends on blocking others) in other links which is

given by the term 1
1−bl

in eq. (3.10), is taken into account [14]. This approximation is

used in a simple 4-link star network (node 5 is a hub node), represented in Fig. 3.7. The

path blocking probability will be assessed analytically with eq. (3.7). It is considered,

traffic offered to the network equal to 8 E, 7 circuits (Nc = 7) and blim = 1000.

Table 3.1 represents the simulated path blocking probability, for the 4-link star network

considered in this study.

Table 3.1. Simulated path blocking probability, for a 4-link star network,
7 circuits, 8 E and blim = 1000.

Path Blocked traffic
demands

Simulated traffic
demands

Blocking probability - Bs

[3,5,4] 76 13460 5.6× 10−3

[2,5,1] 77 13458 5.7× 10−3

[4,5,1] 73 13487 5.4× 10−3

[4,5,2] 94 13508 7× 10−3

[1,5,4] 82 13338 6.1× 10−3

[1,5,2] 89 13312 6.7× 10−3

[2,5,3] 78 13560 5.8× 10−3

[3,5,1] 98 13430 7.3× 10−3

[2,5,4] 82 13363 6.1× 10−3

[1,5,3] 91 13568 6.7× 10−3

[3,5,2] 74 13283 5.6× 10−3

[4,5,3] 86 13400 6.4× 10−3

All possible paths of the network under study are shown in the first column of Table

3.1. For each path, the number of simulated traffic demands is calculated for the path

in question, and the corresponding number of blocked traffic demands. In this way, the

computation of the simulated path blocking probability is given by

Bs =
bd
Nd

, (3.11)

where bd is the number of blocked traffic demands and Nd is the number of simulated

traffic demands. In order to validate the results of the blocking probability of the paths,
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presented in Table 3.1, equation (3.7) is used to compute analytically the path blocking

probability. For the 4-link star network, it is important to represent the possible paths

per node (3), as well as the circuits per link (7). In Figure 3.7, the 3 possible paths from

node 4 to the other 3 nodes are represented.

Figure 3.7. 4-link star network with paths per node and circuits per
link.

To obtain the path blocking probability using equation (3.7), it is important to take

into account some parameters, such as the number of circuits (Nc), the offered traffic to

network (A), the offered traffic by node (Anode) and the traffic per path (Apath). The

offered traffic per node, can be given by

Anode =
A

Nnodes

, (3.12)

where Nnodes is the number of network nodes. With A = 8 E and Nnodes = 4 nodes, the

offered traffic per node is Anode = 2 E. The traffic per path, can be given by

Apath =
Anode

p
, (3.13)

where p is the number of paths per node. In this case, with Anode = 2 E and p = 3, the

traffic per path is Apath = 2
3
E. Assuming that all nodes (except the hub) send traffic to

each other and the traffic per path is uniformly distributed then the blocking probability

bl is the same for all links. In this scenario and following the reduced load approximation

formalism [14], the blocking probability of a link (b1), is given by

b1 = E1,7(Apath(1− b1)× 3) = E1,7(
2

3
(1− b1)× 3) = E1,7(2(1− b1)). (3.14)

Equation 3.14 must be solved iteratively, giving a link blocking probability of approx-

imately 3× 10−3. Therefore, the blocking probability of a path of the 4-link star network

formed by two links, is given by

30



Bs = 1− (1− b1)
2 = 6× 10−3 = 0.6%. (3.15)

In the simulation, the blocking probabilities of the paths are between 5.4× 10−3 and

7.3× 10−3, and corresponds to the average of all the probabilities presented in the fourth

column of Table 3.1, because all paths are formed by two equal links, giving 0.62%, which

is very close to the theoretical value given in equation (3.7) hence, validating the simulator

in the case of a simple network with dynamic traffic and without WA.

In order to analyze the performance of the developed simulator, in Figure 3.8 the

blocking probability as a function of the total traffic is represented, considering the sim-

ulation and the analytical expression for the 4-star network. To obtain these results,

the previous equations were considered, requiring the variation of A. With this variation

of traffic, the blocking probability of an optical link (b1) is recalculated (eq. 3.14) and,

consequently, the blocking probability of an optical path as well (eq. 3.15).

Figure 3.8. Blocking probability of an optical pah as a function of the
average offered load.

3.3.3. Simulation Validation and Results

In this sub-section, the simulator presented in section 3.3.1 will be tested and validated

for different network topologies and RWA algorithms, by comparison with literature re-

sults. The first network topology tested is a bidirectional ring network with 16 nodes [5],

represented in Figure 3.9. The simulation parameters are described in Table 3.2.
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Table 3.2. System features and parameters of the 16-node ring network
[5].

Parameter Value

Number of network nodes 16 nodes
Average offered load per node, Anode {0.8, 0.9, 1, ... , 2} E
Average offered load to network, Anetwork {96, 108, 120, ... , 240} E
Maximum number of blocked traffic de-
mands, blim

1000

Routing algorithm FAR algorithm
WA algorithm Most-used

Figure 3.9. Bi-directional WDM ring network with 16 nodes.

In [5], the routing is done with the FAR algorithm and the WA algorithm considered

is the Most-used, considering 48, 56 and 64 wavelengths in each optical link. The average

offered load per node (Anode) varies between 0.8 and 2 E, which corresponds to an offered

network load (Anetwork) that varies between 96 and 240 E, according to [15]

Anetwork =
Nnodes(Nnodes − 1)

2
× Anode, (3.16)

where Nnodes is the number of network nodes. A total mesh logical topology has been

considered. Figure 3.10 represents the blocking probability of the 16-node ring network

as a function of the average offered load per node considering 48, 56 and 64 wavelengths

(Nc) in each fiber link. The blocking probability represented in Figure 3 of [5] is also

represented for comparison purposes. For low traffic values, the blocking probability of a

traffic demand is very low, as there are a large number of available wavelengths. When

the offered traffic increases, the WA rate does not keep pace with the arrival rate of

traffic demands and, therefore, the number of blocked traffic demands increases. The
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blocking probabilities obtained by the simulator developed are in very good agreement

with the results presented in [5], indicating that the developed simulator and the blocking

probability assessment are well implemented. Furthermore, the results shown in Fig. 3.10

indicate the correctness of the Most-used algorithm implementation.

Figure 3.10. Blocking probability as a function of the offered load per
node for a bidirecctional 16-node ring network with 48, 56 and 64 wave-
lengths.

In Figure 3.10, some values of the simulation time, for different blocking probabilities,

are also presented. The simulation time is very dependent on the blocking probability and

on the maximum wavelengths per link, to be estimated. For example, to reach a blocking

probability of 10−2%, the simulation takes more than 4 days, requiring 107 simulated

traffic demands, while for a blocking probability of 1%, it takes several hours, requiring

105 traffic demands.

In order to verify that the network offered load is equal to the offered load imposed in

the simulation, the simulated network offered load is estimated by varying the number of

blocked traffic demands, using

Asimulated =
Nd

Tsim

, (3.17)

where Tsim is the simulation time, from the arrival time of the first demand until the time

of arrival of the last traffic demand. The result of this study is illustrated in Figure 3.11.
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Figure 3.11. Simulated network offered load as a function of the number
of blocked traffic demands for different theoretical network offered loads.

For each of the three theoretical network offered loads studied, ten simulation runs

have been performed for blim = 10, 100 and 1000 blocked traffic demands. The calculation

of the simulated network offered load is obtained using the average of the estimated

network offered load in each run. As can be seen from Figure 3.11, the average value

of the simulated network offered load tends more closely to the theoretical values after

1000 blocked traffic demands. By increasing the number of traffic demands, the variance

of the simulated network offered load values tends to decrease, increasing the simulation

accuracy. These results indicate the correct implementation of the dynamic network

simulation tool, because the service and arrival rates imposed as simulation parameter

have been confirmed, showing that at least 1000 blocked demands should be set as a

stopping criterion, to guarantee a reduced error in the arrival and service rates.

For 1.8 E and 1 E of offered traffic per node and 48 wavelengths per link, the depen-

dence of the blocking probability on the number of blocked traffic demands is shown in

Figure 3.12 (A) and (B), respectively. For each value of simulated traffic demands, the

average values of the blocking probabilities obtained in 10 simulation runs are represented.
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(a) Average offered traffic per node
equal to 1.8 E.

(b) Average offered traffic per node
equal to 1 E.

Figure 3.12. Blocking probability as a function of the simulated blocked
traffic demands, for a bidirecctional 16-node ring network with Nc = 48.

By analyzing Figures 3.12 (A) and (B), it can be concluded that the minimum number

of blocked traffic demands, to achieve a stabilized blocking probability, corresponds to

500 blocked traffic demands. For this reason, for all the simulations carried out, 1000

blocked traffic demands are considered as the stopping criterion. By simulating a low

number of blocked traffic demands, for lower blocking probabilities (Figure 3.12 (B)), it

is possible to reach a value close to the stabilized value of the blocking probability. On

the contrary, when it is necessary to achieve higher blocking probabilities (Figure 3.12

(A)), it is mandatory to simulate the largest possible number of blocked traffic demands,

in order to obtain accurate blocking probabilities. The time values represented under the

results, represent the average time of the 10 simulation runs.

To confirm the implementation of the Monte Carlo simulator for estimating the block-

ing probability in dynamic scenarios, for other situations studied in the literature, a

bidirectional ring network with 8 nodes, as shown in Fig. 3.13 [6], has been considered.

The system features and parameters for this case are indicated in Table 3.3.

Table 3.3. System features and parameters of the 8-node ring network
[6].

Parameter Value

Number of network nodes 8 nodes
Average offered load per node, Anode {2.8, 3.2, 3.6, 4, 4.4} E
Average offered load to network, Anetwork {80, 90, 100, 110, 120} E
Maximum number of blocked traffic demands, blim 1000
Routing algorithm FAR algorithm
Wavelengths in each optical link, Nc 40
WA algorithm First-fit, Most-used, Greedy

and Random
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Figure 3.13. Bi-directional WDM ring network with 8 nodes.

With First-fit as WA algorithm, two scenarios of network offered traffic are studied, 90

and 100 E, which correspond respectively to a simulated blocking probability of 0.73% and

2.23%. The results from [6] indicate for these two network loads, the blocking probabilities

of 0.75% and 2.5%, respectively. In addition, other offered traffic values are used to

obtain blocking probabilities, shown in Fig. 3.14 proving, once again, that by increasing

the offered traffic to the network, the blocking probability of a traffic demand tends to

increase. Once again, the simulated results are very similar with the reference results [6],

validating the dynamic network simulator and the First-fit implementation.

Figure 3.14. Blocking probability as a function of the offered load per
node, for a 8-node ring network with 40 wavelengths.

To compare the results produced by the dynamic network simulation tool, the 8-node

ring network was also studied, considering others WA algorithms, like Most-used, Greedy

and Random. From Fig. 3.14, it can be seen that Random is the least advisable WA

algorithm to apply in this network planning, because it produces the highest values of

blocking probability of a traffic demand.
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Regarding the Greedy algorithm, taking into account that the graph coloring is per-

formed in order of arrival of the traffic demands, in practice it is similar to the First-fit

algorithm, as the traffic demands are not ordered according to some strategy. The path

vertex coloring is done considering the available wavelength with the smallest index, with-

out intersecting with adjacent paths. Thus, it is expected blocking probabilities equals

to the blocking probabilities obtained by the First-fit, which is visualized in Fig. 3.14.

Regarding the Most-used algorithm and looking at Fig. 3.14, the First-fit and the Greedy

algorithm allows to minimize the blocking probability compared to Most-used, for the

highest values of average offered load per node. As happened for the 16-node ring net-

work, also for the 8-node ring network, the WA algorithm that produces the highest

blocking probability of a traffic demand corresponds to the Random algorithm.

The time value represented under the results, represents the simulation time of the

simulation, using a computer with an processor Intel(R) Core(TM) i7-8565 CPU @ 1.80

GHz and 16 GB of RAM. As can be seen in Figure 3.14, the WA algorithm that calculates

the blocking probability of a traffic demand more quickly corresponds to the Random

algorithm, because this is the simplest algorithm, with the least computational complexity.

In relation to other WA algorithms, it appears that the First-fit is the one with the

lowest simulation times, about half of the simulation times obtained by the Most-used

algorithm, because Most-used needs to account for each traffic demand arrival, the count

of the number of links per wavelength. The algorithm that presents the longest simulation

times corresponds to the Greedy graph coloring, due to high computational complexity

that it presents, recurrent of the characteristics of the algorithm presented in chapter 2.

The third network tested is a real network, known as 14-node National Science Founda-

tion Network (NSFNET) [6], represented in Fig. 3.15 and considering the system features

indicated in Table 3.4, to compare the simulated blocking probabilities with the values in

[6] for First-fit algorithm.

Table 3.4. System features and parameters of the NSFNET network [6].

Parameter Value

Number of network nodes 14 nodes
Average offered load per node, Anode {2.03, 2.09, 2.14, 2.19, 2.25, 2.31, 2.36} E
Average offered load to network,
Anetwork

{185, 190, 195, 200, 205, 210, 215} E

Maximum number of blocked traffic
demands, blim

1000

Routing algorithm FAR algorithm
Wavelengths in each optical link, Nc 40
WA algorithm First-fit, Most-used, Greedy and Random
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Figure 3.15. 14-node NSFNET network.

Fig. 3.16 represents the blocking probability of the 14-node NSFNET network as

a function of the average offered load per node in Erlang. The blocking probabilities

extracted from Figure 5 of [6], considering First-fit, are also represented for comparison

purposes. As in the simulations of the ring networks of 8 and 16 nodes, also in the

simulation of the network of 14 nodes, the simulated results of the blocking probability of

a traffic demand are very similar to the reference values [6], considering First-fit algorithm,

hence validating the simulator for a more complex real network. The Random algorithm

was also simulated for this network and as expected, the blocking probability of a traffic

demand are superior compared to First-fit, Most-used and Greedy.

Figure 3.16. Blocking probability as a function of the average load of-
fered per node, for a NSFNET 14 network with 40 wavelengths.

In each simulated blocking probability, in Fig. 3.16, the simulation time is also pre-

sented, which is dependent of the number of simulated traffic demands, that is, when
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more traffic demands are simulated, biggest is the simulation time for planning each de-

mand. As analyzed in ring networks, also for the NSFNET network, Random is the WA

algorithm with the shortest simulation times, because it is a simple algorithm, without

any kind of computational complexity. Of the remaining WA algorithms, the one that

produces the shortest simulation times is the First-fit, with the Greedy algorithm being

the most time-consuming.

Another of the real networks tested, corresponds to the British Telecom (BT) of the

United Kingdom core network with 22 nodes [16]. This network topology is represented

in Figure 3.17 and for the simulation studies performed, the system parameters indicated

in Table 3.5 are used.

Table 3.5. System features and parameters of the BT 22 nodes network
[16].

Parameter Value

Number of network nodes 22 nodes
Average offered load per node, Anode {0.6, 0.7, ..., 3} E
Average offered load to network,
Anetwork

{138.6, 161.7, ..., 693} E

Maximum number of blocked traffic de-
mands, blim

1000

Routing algorithm FAR algorithm
Wavelengths in each optical link, Nc 40
WA algorithm First-fit, Most-used, Greedy and Random

Figure 3.17. The BT 22 node network.

Fig. 3.18 represents the blocking probability of the British Telecom network obtained

by simulation as a function of the average offered load per node in Erlang.
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Figure 3.18. Blocking probability as a function of the average load of-
fered per node, for the BT 22 nodes network with 40 wavelengths. The
corresponding simulation computational times are also presented.

With the simulation of the British Telecom network with 22 nodes it is shown once

again that the Most-used algorithm tends to use a greater number of wavelengths, com-

pared to the First-fit algorithm, which leads to a slightly higher blocking probability. It

is also visible that the simulation time of the First-fit algorithm is shorter, when com-

pared to the Most-used algorithm, as it does not need to keep an account of the number

of links used per wavelength. Once again, it is verified that the Greedy graph coloring

strategy leads to blocking probabilities very similar to the ones obtained with the First-fit

algorithm. In addition, the Random algorithm is also simulated for the same network.

In this case, one wavelength is selected randomly and assigned to the lightpath. For this

network, unlike the previously simulated optical networks, the calculated blocking proba-

bility of a traffic demand, using the Random algorithm as the WA algorithm, is lower than

the blocking probability of a traffic demand considering First-fit, Most-used or Greedy

strategy of graph coloring, for blocking probabilities above 10%. Therefore, for this BT

with 22 nodes network with dynamic traffic scenario, the WA algorithm that leads to

the lowest blocking of traffic demands with a much reduced computational time is the

Random algorithm. For blocking probabilities below 10%, the performance of the various

WA algorithms is very similar. In order to analyze with more detail the performance of

the WA algorithms for lower values of traffic offered per node in the BT network, Figure

3.19 has been obtained.
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Figure 3.19. Blocking probability as a function of the lower average load
offered per node, for the BT 22 nodes network with 40 wavelengths.

From Figure 3.19, it can be seen that up to 0.9 E of traffic offered per node, the Random

algorithm produces higher blocking probabilities, compared to the other WA algorithms.

For higher values of traffic offered by nodes, above 0.9 E, as also seen in Figure 3.18, the

Random algorithm starts to bring advantages, as it leads to lower blocking probabilities

in a significantly shorter computational time.

3.4. Conclusions

With the M/M/c/c system implemented for dynamic traffic, it was possible to validate

the model through two system examples: c = 5 and 15. This validation was important

to ensure the correct implementation of the dynamic optical network. The validation was

done by comparing it with the theoretical results obtained through the Erlang-B formula.

After the validation of the network dynamism implementation, the RWA algorithms

in dynamic optical networks were implemented and validated, as well as the calculation of

the blocking probability of a traffic demand, in different network topologies. As a routing

algorithm, the FAR algorithm was implemented, which allows obtaining the two shortest

disjoint paths between any pair of nodes in the network. As WA algorithm, First-fit, Most-

used, Random and Greedy algorithms were implemented. These algorithms were used to

assign wavelengths to traffic demands, in optical networks such as 16-node ring network,

8-node ring network, NSFNET network and BT network. For the different networks, the

different WA algorithms were simulated, and the results of the blocking probability of a

traffic demand are represented in figures.

To validate the simulation of the WA algorithms, reference blocking probabilities [5]

were considered for the 16-node ring network and using the Most-used algorithm as the
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WA algorithm. A simulation of the system was performed under the same conditions as

[5], with the results obtained (blocking probabilities of a traffic demand) by the simula-

tor (Figure 3.10) being quite identical to the theoretical results. An identical validation

was also performed taking into account [6], in which the First-fit algorithm was consid-

ered. This simulation of the system was made using the conditions of [6], where it was

possible to obtain very identical results to those presented in [6]. Thus, the simulator

was validated. In general, the WA algorithms (from among the algorithms simulated in

this section) that allow lower blocking probabilities of a traffic demand correspond to

the First-fit and Greedy algorithms. Conversely, the Random algorithm calculates the

highest blocking probabilities of a traffic demand, with the Most-used algorithm in an

intermediate situation. For the BT network with 22 nodes, due to the high number of

distinct optical paths for higher traffic offered to the network, the WA algorithm that

calculates lower blocking probabilities is the Random algorithm.

In algorithms like First-fit and Greedy graph coloring, the wavelengths are indexed

and for the optical path of the traffic demand, the selection of the wavelength with the

lowest index is attempted before trying to select a wavelength with a higher index. By

assigning wavelengths in this manner, existing connections are compressed into a smaller

number of total wavelengths. Thus, it is possible to leave a greater number of wavelengths

available for other traffic demands and, consequently, minimize the blocking probability of

a traffic demand. In the Most-used algorithm, the most used wavelength in the rest of the

network is selected, trying to maximize the reuse of the wavelength in the network. For

this procedure, the algorithm requires global knowledge of the network. This algorithm,

unlike the First-fit and Greedy algorithms, does not minimize the blocking probability of

a traffic demand as it does not guarantee the maximum number of available wavelengths

for the next traffic demands.

Regarding the simulation times, obtained using an computer with an processor In-

tel(R) Core(TM) i7-8565 CPU @ 1.80 GHz and 16 GB of RAM, the WA algorithms

that have shorter simulation times are Random, due to the simplicity of the algorithm

(randomly assigned a wavelength), and First-fit, due to being assigned the wavelength

available with the lowest index. The Most-used algorithm produces simulation times ap-

proximately the double of the First-fit simulation times, because it is necessary to account

for the number of optical links, the number of distinct assigned wavelength, which is very

time-consuming. The algorithm that produces the longest simulation times corresponds

to the Greedy graph coloring strategy, because it is a conventional mathematical problem

that consists of coloring all the nodes of a graph so that there are no two adjacent nodes

with the same color/wavelength whenever an update occurs on the network. The high

time consumption is due to the basic idea of the algorithm, which consists in passing

the graph of the physical topology of the network G(V,E) to a graph of G(W,P ), whose

nodes are the optical paths.
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CHAPTER 4

Implementation of a Dynamic Graph Coloring Algorithm for

Wavelength Assignment

4.1. Introduction

In this chapter, the dynamic graph coloring algorithm presented in section 2.7.3, the

Small-Bucket algorithm, is studied for WA in the context of planning dynamic optical

network. In section 4.2, the Small-Bucket is explained and a small example of how it

works is discussed. In section 4.3, the simulation model for the Small-Bucket is presented

through a flowchart. In section 4.4, the graphical user interface developed for the simulator

is explained. In sections 4.5, 4.6 and 4.7, the Small-Bucket algorithm is studied for WA in

three different network topologies, 16 and 8-node ring and US Backbone Network (UBN).

The blocking probability, number of recolorings, number of colors used and simulation

times are assessed and compared for the referred topologies. Moreover, these results are

compared with those of the First-fit. Finally, in section 4.8, the conclusions are presented.

4.2. Small-Bucket Algorithm

The Small-Bucket algorithm is a graph coloring algorithm [3] that is going to be applied

and tested in this chapter for WA in dynamic networks. In this algorithm, a number of

buckets is used and inside each bucket, several traffic demands can be accommodated.

Each bucket has its own set of colors, so that two adjacent vertices do not have the same

color. As a rule, there is a sequence of buckets of increasing size, organized by d levels,

each containing s buckets, and a RESET bucket. The RESET bucket is a special bucket,

where all demands are placed whenever all the levels are unable to accommodate a new

demand. This bucket has an infinite capacity for vertices (i.e. demands), but like the

other buckets, it has a limited number of colors (C).

The idea of the algorithm corresponds to the placement of a new demand in a bucket

at level i = 0. If this is the last empty bucket at that level, placing it violates the rule

of the algorithm: per level there must be at least one empty bucket. Considering that

the level i = 0 does not have available buckets, all vertices are shifted to the first empty

bucket of the next level and then the WA using the specific color set of this new bucket is

attempted. These shifts are repeated whenever the main rule is not fulfilled, up to a limit

situation where all vertices are shifted to and recolored in the RESET bucket. When these

level changes occur, vertex recoloring must also occur. In optical networks, a recoloring

means that a wavelength reconfiguration (assign a demand to another wavelength with

laser reconfiguration) needs to be performed. The number of recolorings is an important

performance metric since it is highly related to the blocking probability. More recolorings
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mean a decrease in the blocking probability, but it also means that more colors are used.

Two limit scenarios can be considered. The first one corresponds to perform the maximum

number of recolorings i.e., N recolorings per update. This is possible if, for example, the

Greedy algorithm is used for each demand arrival. The second scenario corresponds to

perform the minimum number of recolorings, i.e., no recolorings. In this situation a new

color is assigned for each new demand and, so, the total number of colors will be increased.

The Small-Bucket algorithm just described lies between these two limiting cases. With

this algorithm there are at most d recolorings per update in average [3]. As shown in [3],

the total number of available colors is limited by the number of levels and the maximum

number of colors used by the buckets. The total number of colors used is at most [3],

Ctotal = C × d×N1/d, (4.1)

with C being the maximum number of colors per bucket and N the maximum number

of distinct vertices to color. Figure 4.1 shows the number of colors as a function of the

number of levels for C = 48, 56 and 64 considering N = 20, 50, 100 and 400.

(a) N = 20. (b) N = 50.

(c) N = 100. (d) N = 400.

Figure 4.1. Theoretical maximum number of colors used by the Small-
Bucket algorithm as a function of the number of levels with the number of
colors per bucket as a parameter, considering (A) N = 20, (B) N = 50, (C)
N = 100 and (D) N = 400.
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From Figure 4.1, it can be concluded that the minimum of the total number of colors

slightly increases from 3 to 6 levels, respectively, for N = 20 and N = 400. For high values

of d, it can be observed that for all the values of N studied the theoretical maximum

number of colors is between 1500 and 1700 for C = 64, between 1300 and 1500 for C = 56

and between 1100 and 1300 for C = 48. For low values of d, there is a huge difference in

the maximum number of colors when increasing N . In the limit, for d = 1, the number

of colors used is maximum and is given by C × N . The variables used by the algorithm

are presented in Table 4.1.

Table 4.1. Variables considered in the Small-Bucket algorithm.

Variable Designation Value

N Maximum number of vertices to color in the path graph
representing the optical network logical topology

−

NR Number of vertices during last RESET −
s Number of buckets per level ⌈N1/d

R ⌉
d Number of levels −
blim Maximum number of blocked demands 1000
i Index of selected level to check availability {0, 1, ..., d− 1}
n Index of bucket selected to check availability {0, 1, ..., s− 1}
di Level selected to check availability {d0, d1, ..., dd−1}
sn,i Bucket n of level i selected to check availability {s0,i, s1,i, ..., ss−1,i}
C Maximum number of colors per bucket −

The Small-Bucket algorithm will be described next through an example, considering

a ring with 5 nodes. In this network, it is possible to have a maximum of N = 20 distinct

paths, considering a full mesh logical topology. The number of levels considered is d = 1.

The algorithm uses ds buckets, grouped into d levels of s buckets each. All buckets at

level i (0 ≤ i < d) have capacity for si vertices. The RESET bucket has a maximum

number of colors equal to C. While running the algorithm, each level should have always

at least one empty bucket. Blue colors are used for level i = 0 and green colors are

assumed for the RESET bucket. Considering these parameters, the initialization layout

of the Small-Bucket is shown in Figure 4.2. The value on top of the buckets represents

the capacity of each bucket.

Figure 4.2. Small-Bucket algorithm - buckets initialization layout.

Figure 4.3 represents the example of the Small-Bucket algorithm for WA using the

initial configuration represented in Figure 4.2 and considering the 10 first traffic demands.
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Figure 4.3. Small-Bucket algorithm example: insertion of vertices for
N = 20 possible optical paths, considering the 10 first traffic demands.
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In the traffic demands represented in Fig. 4.3, there is a violation of the main rule in

steps 1, 2, 4 and 8. In the remaining, it is possible to place the new vertex in the first

empty bucket at level i = 0 and perform the respective coloring. In general, if the last

bucket of the last level is filled, the system is redefined, by emptying each bucket and

placing the demands in the RESET bucket, with a new coloring (steps 1, 2, 4 and 8).

Each bucket has its own set of colors, so that two adjacent vertices do not have the same

color. This idea can be verified in demand #2, in which the vertices 0-1-2 and 0-1 are

colored in the RESET bucket, with different colors. In some steps of the example, as from

step 2 to 3, there is a change in the number of buckets per level. As in the previous step,

the system has been redefined and the RESET bucket is completely filled, when demand

#3 arrives, the number of buckets in level i = 0 is recalculated, taking into account the

number of vertices in the last RESET, NR. Thus, there is the addition of one bucket in

level i = 0, in the transition of steps 2 to 3. The number of buckets at level i = 0 is also

increased from steps 4 to 5 and 8 to 9, in the example represented in Fig. 4.3.

Besides the example just described, we have also a video demonstration of how the

Small-Bucket algorithm works. The video can be found in [4] and considers a ring network

with 16 nodes. The first 42 traffic demands are analyzed in this video demonstration.

4.3. Simulation Model of the Small-Bucket Algorithm

The developed Matlab simulator for the Small-Bucket algorithm described in section 4.2,

can be explained through the flowchart presented in Fig. 4.4. Before generating the traffic

events, the algorithm is initialized:

(1) definition of the maximum number of distinct vertices (paths) to color (N);

(2) definition of the number of buckets per level (s);

(3) definition of the capacity of the buckets in each level (si);

(4) setting the number of levels (d).

The algorithm is executed while the number of blocked demands does not reach blim.

If the limit is reached, the blocking probability of a traffic demand is calculated and the

simulation ends. While the limit is not reached, traffic events are generated. In this

simulation, two types of events can occur:

- arrival of a traffic demand. The buckets of the d levels are checked, in ascending

order of n, to find the first bucket with available capacity. If the level of the selected

bucket with capacity for the vertex is level 1, the new vertex is placed in a bucket of level

1 and WA occurs, assigning the available wavelength with the lowest index (an example

of this coloring is the 3rd traffic demand arrival exemplified in Fig. 4.3). If the level of

the selected bucket with available capacity has an index greater than 1, the vertex and all

the vertices of the previous levels are moved to the selected bucket, the wavelengths are

reassigned according to the Greedy algorithm on the selected bucket. Finally, if there is

no level capable of receiving the vertex, a system RESET occurs (an example is the eighth

traffic demand arrival exemplified in Fig. 4.3). With a system RESET, all demands are
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moved and colored/recolored in the RESET bucket, the number of buckets per level (s)

is updated and the number of recolorings per update is calculated. Whenever there are

recolorings it is important to check if traffic demands are blocked. In these recolorings, if

there is no wavelength available for an already served traffic demand, that traffic demand

is blocked, which is a situation that should not happen in a real situation.

- departure of a traffic demand. The bucket where the vertex of the corresponding

path is located is searched. Once found, that path is removed from the bucket.

Figure 4.4. Flowchart of the simulator for WA using Small-Bucket.
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4.4. Graphical User Interface for the Implemented Simulator

To facilitate the usage of the simulator developed in section 4.3, a Graphical User Interface

(GUI) was developed. The GUI developed to implement the dynamic optical network

planning tool allows specifying several parameters such as the routing algorithm, the

WA algorithm, the physical network topology, traffic offered per node, service rate and

maximum number of wavelengths per link. Figure 4.5 represents a screenshot of the GUI

of the simulator, showing the WA algorithms and the possible physical network topologies

that can be chosen.

Figure 4.5. GUI of the simulator.

Table 4.2. Description of the menus considered in the GUI.

Menu Designation Description

1 Routing Selection of the simulated routing algorithm
2 Wavelength Assign-

ment
Selection of the simulated WA algorithm

3 Small-Bucket levels If the Small-Bucket algorithm is selected, this
menu should be used to select the number of levels

4 Offered load per node Selection of the average traffic offered to the net-
work by each node

5 Service rate Selection of network demand service rate
6 Wavelengths/colors Selection of the maximum number of wave-

lengths/colors for each optical link
7 Simulate and clear pa-

rameter
Button that runs the simulation and button that
allows the reset of the simulator, respectively

8 Physical network
topology

Selection of the network physical topology consid-
ered for the simulation

9 Physical topology
graph

Graphical presentation of the network considered
for the simulation

10 Simulation results Printing simulation results
11 Simulation state Describes the state of the simulation
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Table 4.2 shows the description of each program menu. With this GUI of the dynamic

optical network planning simulator, it is much easier to run all the simulations described

in this work, as well as changing other parameters not shown. To validate the analytical

formalism presented in section 3.3.2, it is necessary to select ”Analytical formalism, 4-

star” in the Wavelength Assignment menu and ”4-star” in the Physical topology menu.

4.5. Small-Bucket Algorithm Results and Discussion for the 16-node Ring

Network

In this section, the simulator presented in section 4.3 will be tested and compared with

First-fit algorithm for the 16-node ring network. In particular, the blocking probability,

the total number of colors, recolorings and the computation time will be assessed.

The simulation parameters are described in Table 3.2, but now the WA algorithm is the

Small-Bucket. The number of system levels is assumed to be d = ⌊ln(N)⌋ = ⌊ln(240)⌋ = 5,

because this number of levels gives the minimum number of colors used, as discussed in

the section 4.2 (see Figure 4.1). In the simulations carried out, the maximum number of

colors per bucket considered is C = 48, 56 and 64 colors. These values were considered

so that the maximum number of colors per bucket is equal to the maximum number of

wavelengths per link in the First-fit simulation considered in section 3.3.3.

4.5.1. Blocking Probability and Simulation Time

In this section, the blocking probability and the simulation time will be analyzed. Fig.

4.6 represents the blocking probability as a function of the average offered load per node

considering C = 48, 56 and 64 colors and d = 5. The blocking probabilities calculated

using the First-fit algorithm are also represented for comparison purposes. Furthermore,

some values of the simulation times are also represented, in Fig. 4.6.

Figure 4.6. Blocking probability as a function of the average offered
load per node for a bidirecctional 16-node ring network with C = 48, 56
and 64 colors per bucket considering the Small-Bucket as WA algorithm.
The First-fit is also represented for comparison purposes.
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As can be seen from Figure 4.6, the Small-Bucket with C colors per bucket gives a lower

blocking probability, compared to the First-fit algorithm with Nc = C. The difference

between the obtained blocking probabilities, for an average load of 2 E, is approximately

8% in favour of the Small-Bucket, due to the fact that the Small-Bucket uses a much

higher number of colors to color the vertices partitioned by s buckets. With this number

of levels, the vertices can be placed in different graph coloring subspaces, thus allowing to

minimize the blocking probability of a traffic demand. The comparisons between the First-

fit algorithm assuming Nc wavelengths per optical link and the Small-Bucket algorithm

considering C colors per bucket and a total of Ctotal colors is not completely fair, because

the Small-Bucket requires a very high number of colors, according to equation (4.1).

Figure 4.6 represents also some examples of the simulation time for different average

offered traffic per node and considering the Small-Bucket and First-fit algorithms. Com-

paring the First-fit algorithm with the Small-Bucket for the same network traffic, the

simulation time obtained is very similar. For example, when Anode = 1.4 E, the First-fit

algorithm needs a simulation time of 19 minutes, while the Small-Bucket algorithm needs

21 minutes. However, the Small-Bucket is much faster than the First-fit to achieve a tar-

get blocking probability. For example, to achieve a blocking probability of 1% for C = 56,

the Small-Bucket takes 81 minutes (Anode = 1.4 E), while the First-fit takes 256 minutes

(Anode = 1.2 E). The simulation time of the Small-Bucket algorithm is influenced by two

major events: vertex shifts between buckets (about 20% of simulation time) and WA in

a selected bucket (about 80% of simulation time).

Assuming First-fit with Nc = 48 as reference, in Fig. 4.7, the blocking probability as a

function of the offered load per node with the maximum number of colors per bucket (C =

20, 40, 45 and 48) as a parameter considering the Small-Bucket is shown. The blocking

probability obtained with the First-Fit is also represented for comparison purposes.

Figure 4.7. Blocking probability as a function of the average offered load
per node, with the maximum number of colors per bucket in the Small-
Bucket algorithm as a parameter, considering the 16-node ring network.
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The goal is to check the maximum number of colors per bucket, that produces similar

results to the ones obtained using First-fit with Nc = 48. From Fig. 4.7, it can be observed

that the maximum number of colors per bucket that produces such results, considering

the First-fit with Nc = 48 wavelengths per link, corresponds to C = 20 for high traffic

(> 1.4 E) and C = 40 for lower values of traffic (< 1.4 E).

Figure 4.8 represents the blocking probability as a function of the average offered load

per node with the number of levels d as a parameter considering C = 48. The blocking

probability obtained with the First-Fit is also represented for comparison purposes.

Figure 4.8. Blocking probability as a function of the average offered
load per node, with the number of levels in the Small-Bucket algorithm as
a parameter, considering the 16-node ring network.

From Fig.4.8, one can conclude that the number of levels practically does not influence

the blocking probability. So, it can be concluded that having more levels (e.g. d = 8)

with few buckets per level is similar to having less levels (e.g. d = 1) with more buckets

per level, in what concerns the blocking probability.

4.5.2. Total Number of Colors Used and Number of Recolorings per Update

In this subsection, the total number of used colors and the total number of recolorings

per update is studied for the 16-node ring network.

The number of recolorings per update consists of the number of wavelengths reassigned

in active traffic demands after the arrival of a new demand. Recolorings occur in the

RESET bucket and when there are level changes (vertex shifts between/within levels).

Table 4.3 represents the average number of recolorings per update as a function of the

average offered load per node, with the number of levels, d, as a parameter (d = 1, 2, 5

and 8). These average number of recolorings per update are obtained after 1000 blocked

traffic demands are reached.
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Table 4.3. Recolorings per update for the 16-node ring network.

C = 48 C = 56 C = 64

Average recolo-
rings per update
with d = 1

Anode = 1.4 E 0.26 0.16 0.15

Anode = 1.8 E 0.37 0.29 0.21

Anode = 2 E 0.39 0.30 0.24

C = 48 C = 56 C = 64

Average recolo-
rings per update
with d = 2

Anode = 1.4 E 1.34 1.32 1.32

Anode = 1.8 E 1.36 1.34 1.33

Anode = 2 E 1.37 1.36 1.34

C = 48 C = 56 C = 64

Average recolo-
rings per update
with d = 5

Anode = 1.4 E 2.94 2.73 2.64

Anode = 1.8 E 2.52 2.57 2.60

Anode = 2 E 2.77 2.33 2.56

C = 48 C = 56 C = 64

Average recolo-
rings per update
with d = 8

Anode = 1.4 E 3.01 3.08 3.10

Anode = 1.8 E 3.11 3.11 3.11

Anode = 2 E 3.14 3.14 3.14

From [3], it can be concluded that the Small-Bucket, with d > 0, maintains an ade-

quate coloration of a graph by recoloring a maximum of d vertices per update, each time

a new demand arrives. As can be seen from Table 4.3, this condition is fulfilled for all

number of levels tested. The number of recolorings per update increases with the num-

ber of levels in the system. At the lowest tested value (d = 1), the average number of

recolorings per update is around 0.3. In this situation, recolorings occur in vertex shifts

inside buckets of the same level or in RESET situations. When eigth levels are simulated,

RESETs are less frequent but recolorings occur frequently inside buckets of a particular

level, giving an average of three recolorings per update.

In Figure 4.9 (A) through (D), the behavior of the number of recolorings as a function

of the number of simulated traffic demands is studied, for d = 5 and two values of the

average offered load per node, Anode = 0.8 E and Anode = 2 E, which correspond to

Anetwork = 96 E and Anetwork = 240 E, respectively. Figure 4.9 (A) and (C) represent

simulations with C = 48, while Figure 4.9 (B) and (D) correspond to C = 20. The

average number of recolorings per update is also represented in Fig. 4.9.
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(a) Anode = 0.8 E and C = 48. (b) Anode = 0.8 E and C = 20.

(c) Anode = 2 E and C = 48. (d) Anode = 2 E and C = 20.

Figure 4.9. Simulated number of recolorings as a function of the number
of traffic demands and average offered load per node for the 16-node ring
network with d = 5.

For illustrative purposes, in Fig. 4.9 and in the following, only the first 1600 arrivals

of traffic demands are shown. In this figure, the RESET situations are highlighted, as

well as the evolution of the number of buckets s per level along the simulation, being

this number recalculated every time a RESET occurs. For example, in Fig. 4.9 (A),

the traffic demand #300 corresponds to a RESET situation. In this demand, there are

approximately 90 recolorings and the number of buckets per level, after this RESET, is

s = 3. From Fig. 4.9 (A), it can be also observed that there are 6 big RESETS, each

one corresponding to approximately 90 recolorings. A big RESET is a RESET outside

the initial phase of the system. The system has an initial phase in which the number of

buckets per level (s) increases, in order to accommodate the average traffic on the network

until a stable situation is reached, in which the number of system recolorings evolves in

a relatively regular way, and the blocking probability remains approximately constant.

Moreover, from Fig. 4.9 (A), it can be also observed that the number of recolorings
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has several floors, the highest one corresponds to the big RESETs, and the other ones

correspond to the recolorings due to vertices level shifts. For example, as already said,

the number of recolorings in a RESET bucket is approximately 90, whereas the number of

recolorings due to level changes are approximately 50, 25, 10 and 3 (not visible in Fig. 4.9

(A)), that correspond, respectively, to changes from level 3 to 4, level 2 to 3, level 1 to 2

and level 0 to 1. In the stable phase of the system, the number of buckets per level tends to

s = 3 and, consequently, the capacity of a bucket at level i is 3i vertices. Hence, after the

initial phase, the bucket capacity in each level is 1, 3, 9, 27 and 81, respectively, for level

0, 1, 2, 3 and 4. In Fig. 4.9 (A), the average number of recolorings is also represented, and

is approximately 3, after the system initial phase. This low average number of recolorings

is reached due to the high number of incoming traffic demands that are placed in the

available buckets without causing any recoloring. In the scenario analyzed in Fig. 4.9

(A), 1064 traffic demands arrivals without any recoloring are counted.

In Fig. 4.9 (C), with higher average traffic (A = 2 E), but with the same number

of colors per bucket (C = 48), the number of recolorings in the floors is larger than the

ones found in Fig. 4.9 (A). In the RESET situations outside the initial phase, there are

approximately 150 recolorings, whereas in Fig. 4.9 (A), this number is approximately

90. In situations of higher traffic, as represented in Fig. 4.9 (C), the vertex coloration

rate is much higher than the departure rate of traffic demands, leading to a high bucket

occupancy along the simulated traffic demands evolution.

In Fig. 4.9 (B) with C = 20, and the same offered load than in Fig. 4.9 (A) with

C = 48, it can be observed that the recoloring floor levels are practically of the same

magnitude in both figures, and the recolorings in the RESET bucket are also 90. This

is due to the fact that the buckets capacity, i.e. number of vertices, remains the same,

despite the decrease in the number of colors per bucket.

Fig. 4.10 shows the total number of colors used, as well as its average value, as a

function of the simulated traffic demands, for the same parameters considered in Fig. 4.9.

(a) Anode = 0.8 E and C = 48. (b) Anode = 0.8 E and C = 20.
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(c) Anode = 2 E and C = 48. (d) Anode = 2 E and C = 20.

Figure 4.10. Simulated number of colors used as a function of the sim-
ulated traffic demands and average offered load per node for the 16-node
ring network with d = 5.

In Figure 4.10, the number of colors using the First-fit with a maximum of Nc = 48

colors per bucket is also represented for comparison purposes. The RESET situations, as

well as, the number of buckets per level s, are also highlighted. As can be observed in

Figure 4.10 (A), the number of colors start to increase from 0 to 70 and then at traffic

demand #300, a RESET occurs and the total number of colors decreases to 48. This

decrease is due to the shift of all demands to the RESET bucket, which has at maximum

only C available colors to assign (in the example, C = 48). After traffic demand #300,

the total number of colors used seems to have a sawtooth behaviour due to the occurrence

of big RESETS, which means that the number of colors varies between 48 and 70, every

220 traffic demands. In this situation, the average number of total colors used by the

Small-Bucket algorithm tends to a constant value, approximately 50 colors, while the

First-fit algorithm uses only an average of 25 colors. This difference is due to the fact

that the First-fit algorithm only considers a single coloring space, while the Small-Bucket

considers different coloring spaces, represented by the buckets.

In Fig. 4.10 (C), the average offered load per node, Anode = 2 E, is greater than in Fig.

4.10 (A), where Anode = 0.8 E. The main difference between Fig. 4.10 (A) and (C), after

the algorithm initial phase, is the higher number of colors used in Fig. 4.10 (C) along the

traffic demands evolution, that leads to a higher average number of colors used. When

the traffic offered increases, the number of colors used is higher because the buckets are

filled more quickly and, as a result, more buckets and distinct colors are used.

The number of colors as a function of the traffic demands is represented in Figures

4.10 (B) and (D), for C = 20. It is observed that the average number of colors is lower

(approximately 50), and the sawtooth behavior has a more accentuated slope than in

Figures 4.10 (A) and (C), because the number of colors per bucket is smaller (C = 20)

and, in RESET situations, the lower number of used colors corresponds this value.
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From the scenarios analyzed in Figures 4.9 and 4.10 it can be concluded that the

Small-Bucket algorithm produces a large number of recolorings, that would require fast

tunable transceivers, in order to tune both the transmitter and receiver for the new

wavelength, which brings, besides technological issues related to the tuning speed, cost

and management issues, that were not relevant when the WA is performed with, for

example, the First-fit algorithm [7].

In the study performed in this section, a maximum total traffic of 240 E is used, and

assuming a typical service duration in dynamic optical networks of 500 ms [7], then the

arrival rate of demands is 192 demands/s, which gives a 2.1 ms time interval between

demands. Knowing, also, that there is on average 1 recoloring per 3 demands, then

the reconfiguration time of the lasers should be several orders of magnitude lower than

6.3 ms (the time between 3 demands) [7]. So, assuming 3 orders of magnitude lower,

a reconfiguration time of 6.3 µs should be used, which can be difficult to achieved with

current tunable transceiver technology [18]. In [18], reconfiguration times of 30 µs are

reported.

In all results presented in this subsection, it has been observed that the number of

colors and recolorings is not affected by the blocked traffic demands. This happens because

blocked demands are never placed inside the buckets.

In Fig. 4.7, the Small-Bucket algorithm gives a blocking probability similar to the

one given by the First-fit algorithm (Nc = 48) when C = 40 and Anode = 1.1 E. For this

scenario, in Fig. 4.11, the total number of colors used as a function of the simulated traffic

demands is represented.

Figure 4.11. Simulated number of colors used as a function of the sim-
ulated traffic demands and average offered load per node for the 16-node
ring network with d = 5 and Anode = 1.1 E.

With this study, it is observed that to achieve the same blocking probability, the

Small-Bucket algorithm uses on average a greater number of colors (approximately 12)

compared to the First-fit algorithm.
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4.6. Small-Bucket Algorithm Results and Discussion for the 8-node Ring

Network

In this section, the 8-node ring network topology is studied in the same way the 16-node

ring network was studied in the previous section, i.e. in terms of blocking probability,

total number of colors used, number of recolorings and simulation time, considering the

Small-Bucket algorithm. For this network, four levels are considered, i.e. d = 4, since

this number leads to the lowest possible number of colors and also to the lowest number

of recolorings, as can be seen in section 4.2.

4.6.1. Blocking Probability and Simulation Time

In this subsection, the blocking probability, as well as the simulation time, for the 8-node

ring network are computed and analyzed. Figure 4.12 represents the blocking probability

as a function of the average offered load per node considering C = 48, 56 and 64 colors

and d = 4. The blocking probabilities calculated using the First-fit are also represented

for comparison purposes. For some values of the blocking probability in Fig. 4.12 the

simulation times are also presented.

Figure 4.12. Blocking probability as a function of the average offered
load per node for a bidirecctional 8-node ring network with C = 48, 56 and
64 colors per bucket considering the Small-Bucket as WA algorithm.

As can be seen from Figure 4.12, the Small-Bucket algorithm with C colors per bucket

gives always lower blocking probability, compared to the First-fit with Nc = C. As already

pointed out in the last section, this comparison is not completely fair, because the Small-

Bucket algorithm is using a very high number of colors, when compared to the First-fit.

Comparing Fig. 4.12 with Fig. 4.6 (for the 16-node ring network), it is observed that in

the 8-node ring network, a 1% blocking probability is achieved with an average offered

traffic per node of 4 E, whereas, in the 16-node ring network, a 0.9 E per node is required

to reach the same probability, since the network dimension is larger in this last scenario.

Once again, it is observed that, for the same network traffic, the simulation times

obtained are very similar, although the Small-bucket reaches lower blocking probabilities.
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For example, to achieve a blocking probability of 1% for C = 56, the Small-Bucket takes

only 36 minutes (Anode = 6 E), while, the First-fit takes 120 minutes (Anode = 4 E).

4.6.2. Total Number of Colors Used and Number of Recolorings

In this subsection, the total number of colors and recolorings for the 8-node ring network

are analyzed. The same total offered traffic conditions used for the 16 node ring network

are going to be used for this 8 node ring network. So, the scenarios of 0.8 and 2 E traffic

per node that correspond to a total traffic of, respectively, 96 and 240 E, for the 16-node

ring network correspond to a 3.4 and 8.6 E traffic per node, for the 8-node ring network.

In Fig. 4.13 (A) through (D), the behavior of the number of recolorings as a function

of the simulated traffic demands is studied, for d = 4, Anode = 3.4 E and 8.6 E. Fig. 4.13

(A) and (C) represent simulations with C = 48, while Fig. 4.13 (B) and (D) correspond

to C = 20. The average number of recolorings is also represented in Figure 4.13.

(a) Anode = 3.4 E and C = 48. (b) Anode = 3.4 E and C = 20.

(c) Anode = 8.6 E and C = 48. (d) Anode = 8.6 E and C = 20.

Figure 4.13. Simulated number of recolorings as a function of the simu-
lated traffic demands and average offered load per node for the 8-node ring
network with d = 4.
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The analysis of Fig. 4.13 will be done by comparing its results with the ones of Fig.

4.9. Starting with Fig. 4.13 (A) and Fig. 4.9 (A), with C = 48, it can be observed

that despite the number of big RESETS remains the same, the frequency of the number

of recolorings in the lower floors increases, and the number of buckets per level (s) also

increases. For example, in Fig 4.9 (A), the second floor has 2 recolorings between big

RESETS, whereas in Fig. 4.13 (A), there are 3 recolorings. Also, the maximum number

of buckets per level is s = 3 in Fig. 4.9 (A), whereas in Fig. 4.13 (A), this number

increases to 4. These differences can be explained by noting that the higher frequency

of recolorings in the lower floors causes big RESETs, involving multiple vertices than in

Fig. 4.9 (A). These RESETs cause, as represented in Fig. 4.13 (A), the increase in the

number of buckets per level to 4. The increase in the frequency of recolorings in the lower

floors is due to the reduced number of links in each path relatively to the 16-node ring

network, which allows the reuse of a greater number of colors, because the probability of

two optical paths having links in common is lower.

Comparing Fig. 4.9 (B) with Fig. 4.13 (B), with C = 20, it can observed that the

number buckets per level remains the same, i.e., s = 3, but the number of big RESETS

increases in Fig. 4.13 (B), as well as the frequency of the number of recolorings in the

lower floors. In particular, we can observe that in Fig. 4.13 (B), there are 18 big RESETS,

whereas in Fig. 9 (B) there are only 6. This behaviour can be explained by noting that

the reduced capacity of the buckets causes a shorter time interval between recolorings in

the RESET bucket (big RESETs). When the traffic per node increases, as in Fig. 4.13

(C), there are no differences in the behavior in comparison with Fig. 4.13 (A), except for

the number of recolorings that is higher in Fig. 4.13 (C).

Fig. 4.14 shows the total number of colors used as a function of the simulated traffic

demands, for the same parameters used in Fig. 4.13. The number of colors using the

First-fit is also represented for comparison purposes with a maximum of Nc = 48 and 60

(Figs. 4.14 (A) and (C)) and Nc = 20 and 40 (Figs. 4.14 (B) and (D)) colors per bucket.

(a) Anode = 3.4 E and C = 48. (b) Anode = 3.4 E and C = 20.
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(c) Anode = 8.6 E and C = 48. (d) Anode = 8.6 E and C = 20.

Figure 4.14. Total number of colors used as a function of the simulated
traffic demands and average offered load per node for the 8-node ring net-
work with d = 4.

It can be observed that with the increase of traffic offered (Figs. 4.14 (A) and (C)), the

number of colors used also increases, because the buckets fill up more quickly. In general,

comparing with the performance of the 16-node ring network, the average number of colors

used by the Small-Bucket algorithm is similar, because the same average total network

offered load is considered. For example, for Anode = 3.4 E and C = 48, the average number

of colors used, approximately 50, is similar to the number obtained for the 16-node ring

network for the same total traffic scenario (Anetwork = 96 E).

In Fig. 4.14, the total number of colors used considering the First-fit algorithm is also

represented, for several values of Nc. It is observed in Fig. 4.14 (A) that the Small-Bucket

with C = 48 has, on average, 20 more colors than the First-fit algorithm with Nc = 48

and 60, whereas in Fig. 4.14 (C), the difference is approximately 20 colors for Nc = 60,

but increases to 30 for Nc = 48. On the other hand, the First-fit with Nc = 40 and the

Small-Bucket lead to the same average number of colors used when the Small-Bucket with

C = 20 is considered in both Fig. 4.14 (B) and (D).

In general, the difference between the number of colors used by the Small-Bucket

and First-fit algorithms is smaller for the 8-node ring network (approximately 20 colors)

compared to the difference of the number of colors observed for the 16-node ring network

(approximately 25 colors), because the reduced number of levels (8-node ring network)

implies a reduced number of buckets and buckets of lower capacity, which in practice leads

to less color usage.

4.7. Small-Bucket Algorithm Results and Discussion for the UBN Network

The UBN network topology is studied in terms of blocking probability, total number of

colors used, number of recolorings and simulation time, using the Small-Bucket algorithm

for WA. For this network, six levels are considered, i.e. d = 6.
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4.7.1. Blocking Probability and Simulation Time

In this subsection the blocking probability, as well as the simulation time, for the UBN

network are computed and analyzed. Fig. 4.15 represents the blocking probability of the

UBN network as a function of the average offered load per node considering C = 48, 56

and 64 colors in each bucket, and the Small-Bucket with d = 6 and the First-fit algorithm.

For some values of the blocking probability in Fig. 4.15, the simulation times are also

presented.

As can be seen from Figure 4.15, once again the Small-Bucket algorithm with C colors

per bucket gives a lower blocking probability, compared to the First-fit with Nc = C. Once

again, this comparison is not completely fair, because the Small-Bucket algorithm uses

a very high total number of colors according to equation (4.1), in comparison with the

First-fit. Comparing the First-fit algorithm with the Small-Bucket for the same network

traffic, the simulation times obtained are very similar.

Figure 4.15. Blocking probability as a function of the average offered
load per node for the UBN network with C = 48, 56 and 64 colors per
bucket considering the Small-Bucket as WA algorithm.

4.7.2. Total Number of Colors Used and Number of Recolorings

In this subsection the total number of colors and the number of recolorings for the UBN

network are computed and analyzed. The same total traffic offered to the 8 and 16-node

ring networks is offered to the UBN network. The scenarios of 0.8 and 2 E traffic per

node that correspond to a total traffic of, respectively, 96 and 240 E, for the 16-node ring

network correspond to a 0.35 and 0.87 E traffic per node for the UBN network. In Fig.

4.16 (A) through (D), the number of recolorings as a function of the simulated traffic

demands is studied. Fig. 4.16 (A), and (C) represent simulations with C = 48 colors,

while Fig. 4.16 (B) and (D) correspond to C = 20. The average number of recolorings is

also represented in Fig. 4.16.
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(a) Anode = 0.35 E and C = 48. (b) Anode = 0.35 E and C = 20.

(c) Anode = 0.87 E and C = 48. (d) Anode = 0.87 E and C = 20.

Figure 4.16. Simulated number of recolorings as a function of the simu-
lated traffic demands and average offered load per node for the UBN network
with d = 6.

Once again, the first 1600 demands are represented. The difference that is most

visible in Fig. 4.16 in comparison with Figs. 4.13 and 4.9 is the decrease in the number

of RESETs. RESETs are less frequent because, in this scenario, d = 6 levels are being

considered compared, for example, to the 16-node ring network where d = 5. This

additional level originates buckets with greater capacity and, thus, reduces the number

of RESETs. For example, when the number of buckets per level is s = 3, the buckets

of the last level (i = 5) have C = 48 available colors for coloring 243 possible demands

(243 = 35), whereas in the 16-node ring network, the buckets on the last level (i = 4)

have the same 48 available colors for coloring only 81 possible demands (81 = 34).

Fig. 4.17 shows the total number of colors used, as well as its average value, as a

function of the simulated traffic demands, for the same parameters used in Fig. 4.16. The

number of colors using the First-fit is also represented with a maximum of Nc = 48 and

60 (Figs. 4.17 (A) and (C)) and Nc = 20 and 40 (Figs. 4.17 (B) and (D)) colors.
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(a) Anode = 0.35 E and C = 48. (b) Anode = 0.35 E and C = 20.

(c) Anode = 0.87 E and C = 48. (d) Anode = 0.87 E and C = 20.

Figure 4.17. Total number of colors used as a function of the simulated
traffic demands and average offered load per node for the UBN network
with d = 6.

In Fig. 4.17, it is observed that with the increase of offered traffic (0.35 E to 0.87 E),

the number of colors used in the Small-Bucket also increases, because the buckets fill up

more quickly as observed in Figs. 4.14 and 4.10. In general, comparing the performance of

the Small-Bucket algorithm in the UBN network with the performance in the 16-node and

8-node ring networks, it is observed that the Small-Bucket algorithm uses a lower number

of colors. This is due to the large storage capacity of buckets of the last level (i = 5),

allowing the reuse of multiple colors. For the UBN network with d = 6, the buckets of

the last level are able to assign C = 48 colors to 35 = 243 vertices. For example, for

Anode = 0.35 E and C = 48, the average number of colors used is approximately 40 colors

whereas, under the same conditions, for both the 8 and 16-node ring networks, the average

of colors used is approximately 50.

In Fig. 4.17, the total number of colors used considering the First-fit is also represented

for various Nc. For this network and adopting the First-fit algorithm, it is observed that
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the variation of the maximum number of wavelengths per link (Nc) has no impact on the

number of colors used, except in Fig. 4.17 (D) , for Anode = 0.87 E and C = 20. This

is due to the fact that to color the 1600 traffic demands and, given the high number of

distinct optical paths, there is no need to increase the average number of colors.

4.8. Conclusions

In this chapter, the Small-Bucket algorithm was described with detail and the simulator

model was explained by resorting to a flowchart. The performance of the Small-Bucket

algorithm was assessed for two ring networks and UBN network through the blocking

probability, number of colors used, number of recolorings and simulation time. A com-

parison with the traditional First-fit algorithm was performed.

For the Small-Bucket, it is concluded, by considering the maximum number of col-

ors/wavelengths per bucket (C) equal to the maximum number of wavelengths per link

(Nc) in the First-fit, the blocking probability obtained using the Small-Bucket algorithm

is significantly lower, because the Small-Bucket uses several buckets with capacity C,

leading to a much higher average number of colors than the Nc colors of the First-fit. It

was also observed that the blocking probability of a traffic demand in the Small-Bucket

algorithm is independent of the number of levels considered.

The number of recolorings is related to the number of levels used. It has been shown

that when the number of levels is high (d = 6, for the UBN), the frequency of RESETs

occurrences is lower, because the system has a higher number of buckets and with larger

capacity. This allows the distribution of demands over more color spaces (buckets), re-

ducing the number of RESET occurrences. However, when RESETs occur, the number

of recolorings is higher because it encompasses recolorings of vertices that were placed in

buckets with increased capacity. On the other hand, for situations where the number of

levels is low (d = 4, for the 8-node ring), the RESETs frequency is higher, due to the

reduced number of buckets in the system and buckets of lower capacity.

Regarding the number of colors used, it is concluded that the number of colors used is

similar for all the networks studied, because the same values of average offered load were

chosen for all tested networks. In general, a greater number of colors is required when the

Small-Bucket is considered as the WA algorithm, to obtain similar blocking probabilities

as the ones given by the First-fit algorithm. This was observed for UBN and 16-node ring

networks and it is due to the fact that the First-fit only considers a single coloring space,

while the Small-Bucket algorithm considers different coloring spaces (buckets).

The number of recolorings computed and the number of colors used are the two major

weaknesses of the Small-Bucket algorithm application to optical networks, because to

face recolorings with a such higher number of colors, fast tunable transceivers would be

required, leading to an increase of the network cost and management. In the Small-Bucket

algorithm, a demand may not be blocked because there is a possibility of recoloring. In

First-fit there is no such possibility. The advantage of the Small-Bucket algorithm is that

it is prepared for recolorings, allowing more network dynamism.
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CHAPTER 5

Conclusions and Future Work

In this chapter, the main conclusions of this work and possible suggestions for future work

are presented.

5.1. Conclusions

This work focused on studying different graph coloring algorithms and their comparison

with traditional algorithms for solving the RWA problem in dynamic optical networks.

The goal of a dynamic RWA problem is to minimise the blocking probability of a traffic

demand.

Chapter 2 focused on the introduction of the dynamic optical networks fundamentals.

In particular, the motivation for dynamic optical networks has been presented, as well

as the basic concepts of their planning. The RWA algorithms studied and implemented

in this work were also presented: the routing algorithm Fixed-Alternate and the WA

algorithms First-fit, Most-used, Random, Greedy and Small-Bucket.

Chapter 3 starts with the analysis of the blocking probability in a point-to-point sce-

nario by using a M/M/c/c model. This model was implemented and validated for several

scenarios. Next, the blocking probability is studied in a dynamic optical network, for

several RWA algorithms. In addition, the flowchart that describes the planning tool de-

veloped in this work to simulate RWA algorithms for dynamic optical networks has been

also presented. Then, the developed simulator was tested and validated for different net-

work topologies (8 and 16-node ring networks, NSFNET and British Telecom) and RWA

algorithms (Fixed-Alternate Routing, First-fit, Most-Used, Random and Greedy) using

a Monte-Carlo simulation with dynamic arrivals and departures of traffic demands, by

comparison with literature results. The traffic simulations in the various tested networks

allowed to evaluate the different WA algorithms, in terms of the blocking probability and

simulation time. In general, the WA algorithms that produce lower blocking probabili-

ties correspond to the First-fit and Greedy algorithms, while the Most-used and Random

algorithms lead to more blocked demands. The First-fit requires a lower simulation time

to achieve a target blocking probability, while the Greedy algorithm requires more time.

Moreover, an analytical formalism based on the reduced load approximation was used to

model a simple network scenario, and its results are in very good agreement to the ones

obtained with the simulator developed.

Chapter 4 starts by explaining the Small-Bucket graph coloring technique as a WA

algorithm, and its implementation through a flowchart. The blocking probability, simula-

tion time, number of recolorings and number of colors used by the Small-Bucket algorithm
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for UBN and ring networks of 8 and 16 nodes has been assessed, and a comparison with

the First-fit algorithm has been performed.

It was observed that the Small-Bucket algorithm applied to optical networks tends to

lead to much lower blocking probabilities than the First-fit, but in contrast, it requires

more colors and recolorings. For example, for the 16-node ring network and a maximum

of 48 colors per bucket, the blocking probability for an average traffic load per node of

2 E is 10%, with an average of 75 colors used and 2.77 average recolorings per update.

The number of recolorings can be much higher than this value, especially when a RESET

occurs. Using the First-fit algorithm, the simulated blocking probability is 30% with a

total of 48 colors used. Despite the advantage of leading to lower blocking probabilities,

the Small-Bucket algorithm presents as major disadvantages the high number of colors

used and the number of required wavelength reconfigurations, which may prevent its

applicability in optical networks, but it offers greater flexibility in network planning. Due

to the high number of recolorings, this algorithm will bring more benefits when applied

to metropolitan or access networks.

5.2. Future Work

In the following, some proposals of future work are presented:

• Adapt the Small-Bucket algorithm in order to minimize the number of recolor-

ings per network update, while leading to similar target blocking probabilities.

For example, by allowing the use of the same color in different buckets, if the

corresponding lightpaths have not common links;

• Extend the network analysis to other dynamic traffic patterns, besides the uni-

form case analyzed in this work, where all the nodes offer the same average traffic

to the network. Consider, for example, a situation where two or three nodes are

responsible for generating almost all the network traffic [19];

• Detailed study of the Big-Bucket algorithm as a graph coloring technique for WA

in dynamic optical networks [3].
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APPENDIX A

Pseudocodes of the Implemented Algorithms

In the development of the dynamic optical network simulator, several routing and WA

algorithms have to be developed. This appendix presents the pseudocodes of these algo-

rithms. The algorithm considered to carry out traffic routing corresponds to the Fixed-

Alternate Routing, whose pseudocode is shown in Figure A.1. The procedure is performed

before the network goes into operation, aiming to calculate the two shortest disjoint op-

tical paths between any pair of nodes.

Figure A.1. Fixed-Alternate Routing - Pseudocode.

To solve the problem of wavelength assignment, several algorithms were implemented,

as the First-fit, Most-used, Random, Greedy graph coloring strategy and Small-Bucket. In

the First-fit algorithm, all available wavelengths are indexed and the available wavelength

with the lowest index is chosen. In the Most-used algorithm, a higher priority is given

to the wavelengths assigned to more links. The pseudocode of the First-fit algorithm is

presented in Figure A.2.
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Figure A.2. First-fit algorithm - Pseudocode.

The purpose of the developed First-fit algorithm is to calculate the wavelength, de-

signed lassigned, for the optical path, newpath. Through the assignments of previous wave-

lengths, wavtable, it is possible to apply the First-fit algorithm, with the objective that

the available wavelength with the lowest index is chosen. If the index of the chosen wave-

length is higher than Nc (maximum number of wavelengths per link), there is a block in

the WA for the newpath.

The pseudocode of the Most-used algorithm is shown in Figure A.3.
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Figure A.3. Most-used algorithm - Pseudocode.

The idea of the Most-used algorithm is identical to that of the First-fit, except that

there is a variable, ulambdas, which stores the number of times each wavelength has been

assigned per link. To the wavelength most times assigned is given a higher priority to

the next wavelength attribution, lambdaassigned. If the conditions are not met, the second

wavelength with more links assigned is attempted, and so on.

The pseudocode of the Greedy graph coloring strategy is shown in Figure A.4.

Figure A.4. Greedy graph coloring strategy - Pseudocode.
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The Greedy graph coloring strategy was implemented following [17]. In Figure A.4, the

pseudocode of the implemented algorithm is described. For the set of all vertices/paths

not initially assigned to a color (X) is assigned the set of all vertices in order of arrival

(V ). Subsequently, the set S, is the set that represents the colors associated with the

vertices of X, with maximum capacity equal to the maximum number of wavelengths per

link. Initially, this set is filled with the color S1, since there is already the first color to

be assigned to a vertex.

Then, the set of vertices of X is traversed (vi), to check if vertex vi is possible to

assign a color Sj, of the set S. If (Sj ∪vi) is an independent set, then the color Sj was not

assigned to an adjacent vertex of vi and, therefore, the color Sj is assigned to the vertex

vi. If (Sj ∪ vi) is not an independent set, then Sj has been assigned to an adjacent vertex

of vi and, therefore, a new color is attempted (the value of j is incremented). When all

the colors of S have already been tested, a new color is created and the color is assigned

to the vertex/path vi, as well as its addition to S. If the maximum dimension of the set

S is reached (wav-per-link), it means that the traffic demand is blocked.

The pseudocode of the Random algorithm is shown in Figure A.5.

Figure A.5. Random algorithm - Pseudocode.

The implementation of the Random algorithm is very similar to the implementation of

the First-fit and Most-used algorithms. Initially, the algorithm checks which wavelengths

are available to allocate to the new traffic demand (availablelambdas), bearing in mind

that traffic demands with optical links in common cannot share the same wavelength.
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At the end of the procedure, a distinct part of the First-fit and Most-used algorithms, a

wavelength is randomly selected from availablelambdas list.

In order to validate the implementation of the First-fit, Most-used, Random and

Greedy pseudocodes, for different static optical networks topologies, the total number

of assigned wavelengths obtained was calculated, for comparison with [15]. Table A.1

shows the total number of assigned wavelengths obtained by the First-fit, Most-used,

Random and Greedy algorithms, for the networks presented in Figure 3.15 (NSFNET-

14), Figure B.1 (Ring-5 nodes), Figure B.2 (Ring-10 nodes) and Figure B.3 (COST-239).

In order to validate the WA algorithms with results already known in static networks, for

the execution of each WA algorithms is passed as a function parameter, a table whose

lines represents the various possible optical paths of the network and the columns repre-

sents the distances and the wavelength assigned. In contrast to the dynamic scenario, in

a static scenario, there are several path demands to assign wavelength at the same time,

and before using any algorithm for assigning wavelengths, the traffic demands are first

ordered. In this case, before the execution of the WA algorithms, traffic demands with

the shortest path appear first in the list of assignment of wavelengths (Shortest Path First

ordering strategy).

Table A.1. Total number of assigned wavelengths obtained by First-fit,
Most-used, Random and Greedy algorithms for the NSFNET-14, Ring-5
nodes, Ring-10 nodes and COST-239 networks.

Networks First-fit Most-used Greedy Random

Ring-5 nodes 4 4 3 5
Ring-10 nodes 16 16 15 23
COST-239 8 8 8 11
NSFNET-14 16 15 14 20

With these results, the implemented code for each of the conventional WA algorithms

is validated, because the simulated and presented values in Table A.1 are very similar

to the values of [15]. From this validation, the implemented algorithms were adapted to

dynamic optical networks.
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APPENDIX B

Network Topologies

The physical topology of the networks used in Chapter 3 is the following. Note that the

nodes are numbered sequentially with no particular order.

Figure B.1. Ring network with 5 nodes.

Figure B.2. Ring network with 10 nodes.
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Figure B.3. COST-239 network.
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Abstract—Dynamic optical networks will be crucial in global
optical communications in the next 5-10 years. Efficient net-
work planning tools that deal with Routing and Wavelength
Assignment (RWA) problems are of paramount relevance in this
dynamic scenario. In this work, a simulator for planning dynamic
optical networks was developed, and several real networks
were tested. In this simulator, we have implemented a graph
coloring wavelength assignment (WA) algorithm named Small-
Buckets algorithm that allows recoloring to occur. A comparison
performance with the First-fit algorithm is performed in terms of
the blocking probability, number of recolorings, number of colors
used and simulation time. It is concluded that the Small-Buckets
algorithm originates lower blocking probabilities than the ones
obtained with the First-fit algorithm. However, to reach these low
blocking probabilities, the Small-Buckets algorithm makes use of
a larger number of wavelengths and recolorings.

Index Terms—Dynamic Optical Networks, Graph Coloring,
Routing and Wavelength Assignment, Small-Buckets algorithm

I. INTRODUCTION

Optical transport networks are usually quasi-static, in the
sense that connections often remain in service for a long
period of time [1]. Nevertheless, with the need for on-demand
services, fuelled by applications such as cloud computing
and grid computing, together with the availability of an
increasingly dynamic network infrastructure, it is expected that
today’s quasi-static optical networks turn into dynamic optical
networks in the next 5-10 years [1].

In the optical network layer, Routing and Wavelength As-
signment (RWA) are fundamental functions to transport data in
an efficient way. For dynamic optical networks, the heuristics
used for wavelength assignment (WA) in static networks,
like First-fit, Most-used and Random, can also be used but,
in this case, the sorting strategy is not necessary [2]. In a
dynamic environment, every time a traffic demand arrives, a
new wavelength must be found for routing the respective de-
mand, without changing the wavelengths already in use in the
network. This scenario can lead to a high blocking probability,
when innumerous almost simultaneous traffic demands arrive,
and the network is almost at its peak traffic load. In this case of

network congestion, the network performance can be improved
by letting wavelength reconfigurations to occur [3], in order
to reduce the blocking probability.

Graph Coloring algorithms can be applied in many different
areas, like optical networking, social networking, chemistry,
scheduling and computer networking. The problem of Graph
Coloring consists in coloring all the graph vertices with the
minimum number of colors so that no vertices connected by
an edge are given the same color [4].

To the best of our knowledge, graph coloring techniques
for WA in optical dynamic networks have not been studied
yet. A simple graph coloring WA algorithm for this scenario
could be based on running the Greedy algorithm every time a
new traffic demand arrives, which implies that all the vertices
should be recolored. Another algorithm example is using a
technique that just colors the demand that has arrived, which
would be equivalent using the First-fit algorithm. In this work,
we implement and analyze a graph coloring algorithm for the
dynamic scenario that does not require the recoloring of all the
vertices. This algorithm is named Small-Buckets algorithm and
was initially proposed in [5]. In the Small-Buckets algorithm,
the traffic demands are distributed into a set of buckets,
each bucket with its own set of wavelengths (colors). A
comparison with the First-fit algorithm is performed, in terms
of the number of wavelengths used, blocking probability and
simulation time. The number of recolorings is also studied.

The remainder of the paper is organized as follows. In Sec-
tion II, the Small-Buckets algorithm is explained. In Section
III, the developed RWA planning tool is explained and the
network topologies studied are presented. In Section IV, the
results are discussed in terms of blocking probability of a
traffic demand, number of colors used, number of recolorings
and simulation time. Also, a validation and a comparative
performance study with the First-fit algorithm is done in this
section. Finally, the conclusions are presented in Section V.



II. SMALL-BUCKETS ALGORITHM

In this section, the Small-Buckets is explained and an small
example of its operation is presented.

The Small-Buckets is a dynamic graph coloring algorithm
[5] that is applied, in this work, for WA in dynamic networks.
In this algorithm, a set of buckets is defined, where inside each
bucket, several traffic demands can be accommodated. Each
bucket has its own set of colors, so that two adjacent vertices
do not have the same color. As a rule, there is a sequence
of buckets of increasing size, organized in d levels, each
containing s buckets, and a RESET bucket. The RESET bucket
is a special bucket, where all demands are placed whenever
all the levels are unable to accommodate a new demand. This
bucket has an infinite capacity for vertices (i.e. demands), but
like the other buckets, it has a limited number of colors.

The idea of the algorithm corresponds to the placement
of a new demand in a bucket at level i = 0. If this is the
last empty bucket at that level, placing it violates the main
rule of the algorithm: per level there must be at least one
empty bucket. Considering that the level i = 0 does not
have available buckets, all vertices are shifted to the first
empty bucket of the next level and then the WA using the
specific color set of this new bucket is attempted. These
shifts are repeated whenever the main rule is not fulfilled,
up to a limit situation where all vertices are shifted to and
recolored in the RESET bucket. When these level changes
occur, vertex recoloring must also occur. In optical networks,
a recoloring means that a wavelength reconfiguration needs
to be performed. The number of recolorings is an important
performance metric since it is highly related to the blocking
probability. More recolorings mean a decrease in the blocking
probability, but it also means that more colors are used.

Whenever there are recolorings it is important to check if
traffic demands are blocked. In these recolorings, if there is no
wavelength available for an already served traffic demand, that
traffic demand is blocked, which is a situation that should not
happen in a real situation. For departures of traffic demands,
the bucket where the vertex of the corresponding path is
located is searched. Once found, that path is removed from
the bucket.

Two limit scenarios can be considered. The first one corre-
sponds to perform the maximum number of recolorings i.e.,
N recolorings per update. This is possible if, for example,
the Greedy algorithm is used for each demand arrival. The
second scenario corresponds to perform the minimum number
of recolorings, i.e., no recolorings. In this situation, a new
color is assigned for each new demand and, so, the total
number of colors increases with the number of demands. The
Small-Buckets is between these two limit scenarios.

The Small-Buckets algorithm will be described next through
an example, considering a ring topology with 5 nodes. In this
network, it is possible to have a maximum of N = 20 distinct
paths, considering a full mesh logical topology. The number
of levels considered is d = 1 since the algorithm uses d × s
buckets, grouped into d levels of s buckets each. All buckets at

level i have capacity for si vertices. The RESET bucket has a
maximum number of colors equal to C. In this example, blue
colors are used for level i = 0 and green colors are assumed
for the RESET bucket. Figure 1 represents the example of the
Small-Buckets algorithm for WA using the initial configuration
represented in the first step of Figure 1 and considering the first
ten traffic demands corresponding to the ten steps of Figure
1.

Fig. 1. Small-Buckets algorithm example considering a 5 node ring topology
with a full mesh logical topology. The first ten traffic demands are represented.

In the traffic demands represented in Fig. 1, there is a
violation of the main rule in steps 1, 2, 4 and 8. In the
remaining, it is possible to place the new vertex in the first
empty bucket at level i = 0.

In general, if the last bucket of the last level is filled, the
system is redefined, by emptying each bucket and placing the
demands in the RESET bucket, with a new coloring (steps 1,
2, 4 and 8). This idea can be verified in demand #2, in which
the vertices 0-1-2 and 0-1 are colored in the RESET bucket,
with different green colors. In some steps of the example, as
from step 2 to 3, there is a change in the number of buckets



per level. When demand #3 arrives, as the RESET bucket is
completely filled, the number of buckets in level i = 0 is
recalculated (following s = ⌈N1/d

R ⌉), taking into account the
number of vertices in this RESET (named as last RESET),
NR = 2. Thus, there is the addition of one bucket in level
i = 0, in the transition of steps 2 to 3. The number of buckets
at level i = 0 is also increased from steps 4 to 5 and 8 to 9,
in the example represented in Figure 1.

III. DEVELOPED RWA PLANNING TOOL

In this section, we explain the main building blocks of our
planning tool. We present the network topologies studied in
this work, and characterize their physical and also some of
their logical features.

Fig. 2. Blocking probability computation.

The main building blocks of our planning tool are repre-
sented in the diagram of Figure 2:

• Physical Topology: in the initial phase of the simulation,
the network physical topology is defined;

• Traffic Matrix: in dynamic networks, traffic demands
arrive over time. The arrivals and departures of traffic
demands, in the simulator, follow a Poisson distribution.
The traffic generated by the network is uniformly dis-
tributed by each node;

• Traffic Routing: to calculate the optical path between
a source and a destination node, the Fixed-Alternate
Routing algorithm is used. This algorithm allows the
calculation of the two disjoint shortest paths between any
pair of nodes in the network, before the network goes into
operation;

• WA Algorithm: after the optical path calculation for the
traffic demand, a wavelength is assigned to each path. The
WA algorithms that were implemented in this simulator
are the First-fit and Small-Buckets algorithms;

• Blocking Probability of a Traffic Demand Estimation: if
there is no available wavelength to allocate to the given
optical path, the number of blocked traffic demands is
increased. The blocking probability of a traffic demand
is obtained by dividing the number of blocked traffic
demands by the number of simulated traffic demands.

For the Small-Buckets algorithm, the algorithm is executed
while the number of blocked demands does not reach blim =
1000. If the limit is reached, the blocking probability of a
demand is calculated and the simulation ends. While the limit
is not reached, traffic arrivals and departures are generated.

IV. RESULTS AND DISCUSSION

In this section, the planning tool presented in section III
is used to assess the performance of the Small-Buckets WA
algorithm in a 16-node ring and UBN networks and also
to compare it with the common First-fit WA algorithm. In
particular, the blocking probability, the total number of colors,
recolorings and simulation time will be assessed.

Assuming Small-Buckets as WA algorithm, the number of
system levels is assumed to be d = ⌊ln(N)⌋ = ⌊ln(240)⌋ = 5
for the 16-node ring network and d = ⌊ln(N)⌋ = ⌊ln(552)⌋ =
6 for the UBN network, because this number of levels gives the
minimum number of colors used [5]. In the simulations carried
out, the maximum number of colors per bucket is considered
so that the maximum number of colors per bucket is equal
to the maximum number of wavelengths per link when the
First-fit is used instead.

A. Blocking Probability and Simulation Time

In this section, the blocking probability of the networks
and the simulation time of the algorithms will be analyzed.
Figure 3 represents the blocking probability as a function of
the average offered load per node considering C = 48, 56
and 64 colors and d = 5, for the 16-node ring network. The
blocking probabilities calculated using the First-fit algorithm
are also represented for comparison purposes. Some values of
the simulation times are also represented.

Fig. 3. Blocking probability as a function of the average offered load per node
for a bidirecctional 16-node ring network with C = 48, 56 and 64 colors per
bucket considering the Small-Buckets as WA algorithm. The First-fit is also
represented for comparison purposes.

As can be seen from Figure 3, the Small-Buckets with C
colors per bucket gives a lower blocking probability, compared



to the First-fit algorithm with Nc = C. The difference between
the obtained blocking probabilities, for an average load of
2 E, is approximately 8% in favour of the Small-Buckets,
due to the fact that the Small-Buckets uses a much higher
number of colors partitioned by s buckets to color the vertices.
Since, in this scenario, the Small-Buckets algorithm uses 5
levels, the vertices can be placed in different graph coloring
subspaces, thus allowing to minimize the blocking probability
of a traffic demand. The comparisons between the First-fit
algorithm assuming Nc wavelengths per optical link and the
Small-Buckets algorithm considering C colors per bucket and
a total of Ctotal colors are not completely fair, because the
Small-Buckets requires a very high number of colors.

Figure 3 represents also some values of the simulation time
for different average offered traffic per node and consider-
ing the Small-Buckets and First-fit algorithms. Comparing
the First-fit algorithm with the Small-Buckets for the same
network traffic, the simulation time obtained is very similar.

The blocking probability, as well as the simulation time,
for the UBN network are also analyzed. Fig. 4 represents the
blocking probability as a function of the average offered load
per node considering C = 48, 56 and 64 colors in each bucket,
and the Small-Buckets with d = 6 and the First-fit.

Fig. 4. Blocking probability as a function of the average offered load per
node for the UBN network with C = 48, 56 and 64 colors per bucket
considering the Small-Buckets as WA algorithm.

As can be seen from Fig. 4, once again the Small-Buckets
algorithm with C colors per bucket gives a lower blocking
probability, compared to the First-fit with Nc = C. Once
again, this comparison is not completely fair, because the
Small-Buckets algorithm uses a very high total number of
colors, in comparison with the First-fit. Comparing the First-fit
algorithm with the Small-Buckets for the same network traffic,
the simulation times obtained are very similar.

B. Total Number of Colors Used and Recolorings per Update

In this subsection, the number of colors and recolorings is
studied. The number of recolorings consists of the number
of wavelengths reassigned in active traffic demands after the

arrival of a new demand. Recolorings occur in the RESET
bucket and when there are level changes. Table I represent the
average number of recolorings as a function of the average
offered load per node, for the 16-node ring network with d =
5 levels. This average number of recolorings per update are
obtained after 1000 blocked traffic demands are reached.

TABLE I
AVERAGE RECOLORINGS PER UPDATE FOR d = 5.

Anode Value Value Value

1.4 E 2.94 2.73 2.64
1.8 E 2.52 2.57 2.60
2 E 2.77 2.33 2.56

From [5], it can be concluded that the Small-Buckets
maintains an adequate coloration of a graph by recoloring a
maximum of d vertices per update, each time a new demand
arrives.

In Figs. 5 and 6, the behavior of the number of recolorings
as a function of the number of simulated traffic demands
is studied, for Anode = 0.8 and 2 E, which correspond to
Anetwork = 96 and 240 E, respectively.

Fig. 5. Simulated number of recolorings as a function of the number of
traffic demands, for Anode = 0.8 E and C = 48 considering a 16-node ring
topology.

Fig. 6. Simulated number of recolorings as a function of the number of traffic
demands, for Anode = 2 E and C = 48 considering a 16-node ring topology.



For illustrative purposes, only the first 1600 arrivals of traffic
demands are shown. In these figures, the RESET situations
are highlighted, as well as the evolution of the number of
buckets s per level along the simulation, being this number
recalculated every time a RESET occurs. From Fig. 5, it
can be also observed that there are 6 big RESETS, each
one corresponding to approximately 90 recolorings. A big
RESET is a RESET outside the initial phase of the system.
The number of recolorings has several floors, the highest one
corresponds to the big RESETs, and the other ones correspond
to the recolorings due to vertices level shifts. The number of
recolorings due to level changes are approximately 50, 25, 10
and 3, that correspond, respectively, to changes from level 3 to
4, level 2 to 3, level 1 to 2 and level 0 to 1. In the stable phase
of the system, the number of buckets per level tends to s = 3
and, consequently, the capacity of a bucket at level i is 3i

vertices. In Fig. 5, the average number of recolorings is also
represented, and is approximately 3, after the system initial
phase. This low average number of recolorings is reached due
to the high number of incoming traffic demands that are placed
in the available buckets without causing any recoloring.

In Fig. 6, with higher average traffic, the number of re-
colorings in the floors is larger than the ones found in Fig.
5. In the RESET situations outside the initial phase, there are
approximately 150 recolorings, whereas in Fig. 5, this number
is 90. In situations of higher traffic, the vertex coloration rate
is much higher than the departure rate of traffic demands,
leading to a high bucket occupancy along the simulated traffic
demands evolution. With C = 20, and the same offered load
than in Fig. 5 with C = 48, it can be observed that the
recoloring floor levels are practically of the same magnitude.
This is due to the fact that the buckets capacity, i.e. number of
vertices, remains the same, despite the decrease in the number
of colors per bucket.

For the UBN network simulation, it was observed that the
main difference is the decrease in the number of RESETs.
RESETs are less frequent because, in this scenario, d = 6
levels are considered compared, for example, to the 16-node
ring network where d = 5. This additional level originates
buckets with greater capacity and, thus, reduces the number
of RESETs. For example, when the number of buckets per
level is s = 3, the buckets of the last level (i = 5) have
C = 48 available colors for coloring 243 possible demands
(243 = 35), whereas in the 16-node ring network, the buckets
on the last level (i = 4) have the same 48 available colors for
coloring only 81 possible demands (81 = 34).

Figs. 7 and 8 shows the total number of colors used, as
well as its average value, as a function of the simulated traffic
demands. The RESET situations, as well as, the number of
buckets per level s, are also highlighted. As can be observed
in Fig. 7, the number of colors starts to increase from 0 to
70 and then at traffic demand #300, a RESET occurs and the
total number of colors decreases to 48, due to the shift of
all demands to the RESET bucket, which has at maximum
only C = 48 available colors. After traffic demand #300, the
number of colors used seems to have a sawtooth behaviour

due to the occurrence of big RESETS, which means that the
number of colors varies between 48 and 70, every 220 traffic
demands. In this situation, the average number of total colors
used by the Small-Buckets algorithm tends to a constant value,
approximately 50 colors, while the First-fit algorithm uses only
an average of 25 colors. This difference is due to the fact that
the First-fit algorithm only considers a single coloring space,
while the Small-Buckets considers different coloring spaces.

Fig. 7. Simulated number of colors used as a function of the number of
traffic demands, for Anode = 0.8 E and C = 48 considering a 16-node ring
topology.

Fig. 8. Simulated number of colors used as a function of the number of
traffic demands, for Anode = 2 E and C = 48 considering a 16-node ring
topology.

In Fig. 8, the average offered load per node is greater than in
Fig. 7. The main difference between these figures is the higher
number of colors used in Fig. 8 along the traffic demands
evolution, that leads to a higher average number of colors
used. When the traffic offered increases, the number of colors
is higher because the buckets are filled more quickly and, as
result, more buckets and colors are used.

Comparing the performance of the Small-Buckets algorithm
in the UBN network with the performance in the 16-node ring
networks, it is observed that the Small-Buckets algorithm uses
a lower number of colors. This is due to the large storage
capacity of buckets of the last level (i = 5), allowing the
reuse of multiple colors. For the UBN network with d = 6,



the buckets of the last level are able to assign C = 48 colors
to 35 = 243 vertices. For example, for Anode = 0.35 E and
C = 48, the average number of colors used is approximately
40 colors whereas, under the same conditions, for the 16-node
ring networks, the average of colors used is approximately 50.

From the scenarios analyzed in this section it can be con-
cluded that the Small-Buckets algorithm produces a large num-
ber of recolorings, that would require fast tunable transceivers,
in order to tune both the transmitter and receiver for the new
wavelength, which brings, besides technological issues related
to the tuning speed, cost and management issues, that were
not relevant when the WA is performed with, for example,
the First-fit algorithm [7]. In [8], reconfiguration times of 30
µs are reported, which would probably not be enough for our
scenario.

In Fig. 3, the Small-Buckets algorithm gives a blocking
probability similar to the one given by the First-fit algorithm
(Nc = 48) when C = 40 and Anode = 1.1 E. For this scenario,
in Fig. 9, the total number of colors used as a function of the
simulated traffic demands is represented.

Fig. 9. Simulated number of colors used as a function of the simulated traffic
demands and average offered load per node for the 16-node ring network with
d = 5 and Anode = 1.1 E.

With this study, it is observed that to achieve the same
blocking probability, the Small-Bucket algorithm uses on av-
erage a greater number of colors (approximately 12) compared
to the First-fit algorithm.

V. CONCLUSIONS

In this work, the Small-Buckets algorithm was described
with detail. The performance of this algorithm was assessed
for the 16-node ring network through the blocking probability,
number of colors used, recolorings and simulation time. A
comparison with the First-fit algorithm was performed.

For the Small-Buckets, it is concluded, by considering the
maximum number of colors/wavelengths per bucket (C) equal
to the maximum number of wavelengths per link (Nc) in the
First-fit, the blocking probability obtained using the Small-
Buckets algorithm is significantly lower, because the Small-
Buckets uses several buckets with capacity C, leading to a
much higher average number of colors. It was also observed

that the blocking probability of a traffic demand in the Small-
Buckets algorithm is independent of the number of levels
considered. In general, a greater number of colors is required
when the Small-Buckets is considered as WA algorithm, to
obtain similar blocking probabilities as the ones given by the
First-fit.

The number of recolorings computed and the number of
colors used are the two major weaknesses of the Small-
Buckets algorithm application to optical networks, because to
face recolorings with a such higher number of colors, fast
tunable transceivers would be required, leading to an increase
of the network cost and management. In the Small-Bucket
algorithm, a demand may not be blocked because there is
a possibility of recoloring. In the First-fit, there is no such
possibility. The advantage of the Small-Buckets algorithm is
that it allows more network dynamism due to the recoloring
ability.
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