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Resumo

De modo a colmatar a necessidade de fornecer largura de banda suficiente para atingir
altas taxas de trafego de dados em ligacoes entre centros de dados, foi proposta a trans-
missao de sinais com modula¢do de impulsos em amplitude com 4 niveis (PAM4) em
ligagoes de curto alcance entre centro de dados com modulagao de intensidade e detecao
direta suportadas por fibras homogéneas multintcleo fracamente acopladas. No entanto,
neste tipo de fibras, a diafonia entre niicleos (ICXT) limita significativamente o desem-
penho das ligagoes, causando grandes flutuagoes da taxa de erros binérios (BER), o que
pode conduzir a indisponibilidade da ligacao.

Neste trabalho, através da andlise de diagramas de olho usando uma rede neuronal
convolucional (CNN) ¢ estimada a BER em ligages épticas entre centros de dados PAM4
degradadas por ICXT com o objetivo de monitorizagao do desempenho. Para avaliar o
desempenho da CNN é usada como métrica a raiz do erro quadratico médio (RMSE).

Para diferentes atrasos de propagacao entre nicleos, razoes de exting¢ao e niveis de dia-
fonia, a CNN é capaz de prever BERs sem ultrapassar o limite estabelecido para o RMSE.
As CNNs treinadas com diferentes parametros opticos obtiveram o melhor desempenho
em termos de generalizacao em comparagao com CNNs treinadas com parametros épticos
especificos. Estes resultados confirmam que os modelos baseados em CNN sao capazes
de extrair informagao a partir de imagens de diagramas de olhos, prevendo a BER sem

conhecimento prévio dos sinais transmitidos.

Palavras-chave: aprendizagem automatica, crosstalk entre nticleos, fibras multintcleo,

rede neuronal convolucional, taxa de erros binarios.

1ii






Abstract

To meet the required future challenge of providing enough bandwidth to achieve high data
traffic rates in datacenter links, four-level pulse amplitude modulation (PAM4) signals
transmission in short-haul intensity modulation-direct detection datacenters connections
supported by homogeneous weakly-coupled multicore fibers has been proposed. However,
in such fibers, a physical effect known as inter-core crosstalk (ICXT) limits significantly the
performance of short-reach connections by causing large bit error rate (BER) fluctuations
that can lead undesirable system outages.

In this work, a convolutional neural network (CNN) is proposed for eye-pattern analy-
sis and BER prediction in PAM4 inter-datacenter optical connections impaired by ICXT,
with the aim of optical performance monitoring. The performance of the CNN is assessed
using the root mean square error (RMSE).

Considering PAM4 interdatacenter links with one interfering core and for different
skew-symbol rate products, extinction ratios and crosstalk levels, the results show that
the implemented CNN is able to predict the BER without surpassing the RMSE limit. The
CNNs trained with different optical parameters obtained the best performance in terms of
generalization comparing to CNNs trained with specific optical parameters. These results
confirm that the CNN-based models can be able to extract features from received eye

patterns to predict the BER without prior knowledge of the transmitted signals.

Keywords: bit error rate, convolutional neural network, inter-core crosstalk, machine

learning, multicore fiber.
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CHAPTER 1

Introduction

This dissertation focuses on addressing physical level issues associated with four-level pulse
amplitude modulation (PAM4) signals transmission in multicore fibers (MCF), proposed
for short-haul intensity modulation-direct detection (IM-DD) datacenters connections [,
2), 3]. MCFs, from the total spatial channel count (SCC) perspective, are considered as
promising technologies to overcome the capacity limits of single core-single mode fiber (SC-
SMF) transmissions [4], 5, [6]. However, in homogeneous weakly-coupled multicore fibers
(WC-MCFs), a physical effect known as inter-core crosstalk (ICXT) limits significantly
the performance of such short-reach connections by causing large bit error rate (BER)
fluctuations that lead undesirable outage probabilities (OPs) [7]. To address this issue, in
this work, a convolutional neural network (CNN) is used to perform eye-pattern analysis
and extract predictions of the BER of PAM4 inter-datacenter optical connections impaired
by ICXT. The CNN developed can be applicable for performance monitoring and, if

intended, for system outage detection.

1.1. Motivation

As telecommunications technology evolved, alongside with the number of network users
and devices, datacenters became crucial to handle large amounts of data due to their
flexibility and scalability in computing and storage resources [8], [9]. Even so, the number
of devices connected to internet protocol (IP) networks is estimated to be more than three
times the global population by the year of 2023 [10], which leads to a significant global data
center IP traffic growth. This requires answering technologically to the future challenge
of providing enough bandwidth to achieve such high data traffic rates in datacenter links.

The current approach to deal with capacity scalability in datacenter links is using
multiple wavelengths (also known as lanes, in the datacenters terminology) carrying wave-
length division multiplexing (WDM) channels, where each one of these channels carries a
conventional on-off keying (OOK) signal [11]. 200 GBd OOK per lane IM-DD transmis-
sions has been achieved, however, this strategy is compromised, since it requires complex
and expensive components and leads to a high power consumption in order to enable the

upcoming data rates requirements [12), 13]. For this reason, PAM4 has been proposed

1



Chapter 1 Introduction
for datacenter connections and has already been standardized by the IEEE 802.3bs task
force to enable rates of 50 and 100 Gbit/s per wavelength channel, since it minimizes the
spectral efficiency and power consumption issues [11]. Datacenter connections are usually
categorized as intra-datacenter and inter-datacenter links, in relation to their maximum
range, respectively, up to 10 km and 100 km [11I]. Nowadays, some of these connections
typically rely on optical fibers such SC-SMF, however, it is expected that such fibers will
no longer fulfill the future capacity demands, as transmission in SC-SMF's is approaching
its limit of 100 Th/s with coherent detection and over 200 Gbit/s per lane with IM-DD
[14, 15].

Multicore fibers have been proposed in order to overcome this capacity limit issue.
In particular, homogeneous WC-MCF's ensure the simplicity, low cost and power con-
sumption design requirements imposed by datacenter links. Even so, transmission in such
MCPFs is impaired by ICXT, which due to its inherent random nature, can limit signifi-
cantly the performance of such connections by causing large BER fluctuations due to the
high ICXT levels that can occur, leading to undesirable system outage periods [3], [16].

Several implementations using machine learning (ML) have been proposed for the
physical layer of optical networks, which include fiber nonlinearity mitigation, modulation
format (MF) recognition and optical performance monitoring (OPM) [17, 18]. Regarding
the latter, most recently, the use of convolutional neural networks (CNNs) has been
investigated [19, [20]. Given the good results obtained with these techniques, in this work,
for performance monitoring, a CNN is used for eye-pattern analysis and BER prediction

in PAM4 inter-datacenter optical connections impaired by ICXT.

1.2. Goals

The main focus of this dissertation is to apply a CNN for performance monitoring of

IM-DD PAM4 datacenter connections impaired by ICXT. The main goals are:

e Study and characterization of short-haul IM-DD datacenter optical links with
PAM4 transmission and supported by homogenous WC-MCFss;

e Review of the literature in ML and ML applied to optical performance monitor-
ing;

e Study of the DP-DCM proposed in the literature [3, [21] that models accurately
the ICXT effect in homogeneous WC-MCF's;
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e Implementation and demonstration of the effectiveness of the CNN for perfor-
mance monitoring of the BER of the PAM4 datacenter connection impaired by

ICXT, used as an indicator to decide if ICXT mitigation is required.

1.3. Dissertation organization

This dissertation is organized in the following chapters. A literature review is presented
in Chapter 2, which addresses the fundamental concepts related to this work, namely
datacenter connections, PAM4 signal transmission in datacenter links supported by MCF's
impaired by ICXT and an overview on ML. In Chapter 3, the CNN implemented for eye-
pattern analysis and BER prediction of PAM4 inter-datacenter optical connections is
presented. The optical telecommunication system equivalent model used for collecting
data is also studied, where the DP-DCM developed to characterize the ICXT in MCFs is
described in detail. In Chapter 4, the performance of the CNN-based eye-pattern analysis
and BER prediction is evaluated for different optical parameters such as the crosstalk
level, extinction ratio and skew-symbol rate product based on the root mean square error

(RMSE) metric. The final conclusions and future work are presented in Chapter 5.

1.4. Main contributions
We consider that this work has the following main contributions:

e Implementation and validation of the effectiveness of a CNN for performance
monitoring of the BER and system outage detection of the PAM4 datacenter
connections impaired by ICXT;

e Design and validation of a sampling proposal for eye-pattern and BER balancing;

e Implementation of an eye-pattern to image conversion based on a fixed and a
dynamic scale;

e Demonstration that the BER can be extracted (through a proper pre-processing)
by analysis of eye-patterns generated from synthetic data (from MATLAB);

e Demonstration that the CNN can predict the BER accurately when trained with
several different optical link parameters, instead of being trained for only a spe-

cific optical link configuration.






CHAPTER 2
Literature Review

2.1. Datacenters

Datacenters are large-scale computing platforms built to handle high amounts of data by
providing flexibility and scalability in computing, networking and storage resources [8].
Therefore, as technology evolves, alongside with the number of network users and devices
[10], datacenters play a fundamental role in connectivity and are expected to ensure high

efficiency and reliability on how they manage such significant amounts of traffic.

2.1.1. Datacenter architecture

Traditionally, a datacenter has a three-tier architecture with an access, aggregation
and core tiers [11}, 22]. As shown in Fig, servers, through Top-of-Rack packet-based
switches (ToR), connect to access switches which are usually connected to two aggregation
routers. These aggregation routers are then linked to core routers in the upper layer. The
connections inside and between the aggregation and core tiers are set in such way to
provide redundancy [11]. In order to ensure a higher scalability, datacenters may have

more than three tiers, by expanding the aggregation tier to more than one stage [11J, [22].

- 8
—>
Routers

Core

Aggregation
Routers

g6 cif
fows ﬁ - EIEF -3 CF

Aggregation

Access

Rack

North-South traffic

ToR |
Switches

! ]

<10 km
<100 m

Server 1 ServerN

FIGURE 2.1. A three-tier data center architecture, suitable for handling
north-south traffic. Blues lines represent connections with less than 10
km and green lines represent connections with less than 100 m. Based on

8, [11;, [22].
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In this architecture, traffic from the Internet passes through the core tier, then to
the aggregation tier, access tier and edge layer, where the servers are located [11]. Here,
the data is channelled to the right server. The same approach is applied in the opposite
way. The traffic that travels along the datacenter in this way is named north-south traffic
[11]. However, when traffic is generated from one server to another, within the same
datacenter, in a three-tier architecture, it travels up to the core tier and then back to the
edge layer, meaning that it must traverse two access switches, two aggregation routers and
a core router, which increases latency and leads high power consumption [11]. Moreover,
with cloud external providers, such as Microsoft and Amazon, hosting massive amounts
of data [23], traffic must also travel in such way between different datacenters in big
facilities known as hyperscale datacenters. Hence, three-tier datacenter architectures are

quite problematic since they cannot scale properly to handle this so-called east-west traffic

[11].

Datacenter A | Datacenter B
Spine Bordei’ Leaf
Spine Switches Switches
Leaf o
Switches i
Leaf e
ToR | |
Switches < 100 km
<10 km
<100 m
Server 1 ServerN

East-West traffic

FIGURE 2.2. A two-tier data center architecture, suitable for handling
north-south and east-west traffic. Red lines represent connections with less
than 100 km, blues lines represent connections with less than 10 km, green
lines represent connections with less than 100 m. Based on [8, 1], [22].

To manage east-west traffic more efficiently, hyperscale datacenters have switched to
a two-tier architecture [11], shown in Fig.. ToR switches are now connected directly to
leaf switches. These leaf switches are connected to every spine switch inside a datacenter,
resulting in several possible paths, that increase the redundancy inside the datacenter [11].
In this architecture, east-west traffic is routed to a spine switch before traveling back down

to the most suitable leaf switch. Moreover, traffic between different datacenters is handled
6
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by border leaf switches. In order to provide a higher scalability, more leaf switches or

spine switches may be added [11].

2.1.2. Datacenter connections

Datacenter connections are categorized as short-haul links and can be labed as intra-
datacenter and inter-datacenter links by having a range up to 10 km and 100 km, respec-
tively [11]. For instance, in the two-tier architecture represented in Fig. , connections
between border leaf switches from different datacenters are considered inter-datacenter
links, while all connections within a datacenter are considered intra-datacenter links.
Both, above 100 m, are typically supported by optical fiber technology and less propa-
gation impairments in comparison with long haul links are of concern, since polarization
mode dispersion (PMD) and nonlinearities are generally low in such short propagation

distances [11].

Core
networks
Metro
networks
Datacenter .
interconnects _ A\
{—-—_

Wireless and wireline
access networks

FIGURE 2.3. Schematic of an optical network. Based on [24].

Optical networks are essentially divided into core, metro and access networks [24], 25],
schematically shown in Fig2.3] Even though coherent detection techniques enabling high
spectral efficiency have already been deployed in core and metro haul, short reach optical
access networks and the datacenters connections considered in this work, still rely on IM-
DD in order to meet the simplicity, low cost and power consumption design requirements.

In Fig. 2.4 an intra-datacenter WDM link is schematically presented. In general, this
type of link operates near the 1310 nm wavelength (second window) in order to avoid

signal distortion arising from chromatic dispersion (CD) [11]. For such short propagation
7
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distances, optical amplification is not required. The performance of intra-datacenter links
is usually measured by calculating the receiver sensitivity, which is the received power re-

quired to achieve a target BER, determined by a forward error correction (FEC) threshold

1.

< <10km RX
MUX
MUX
: 1310 nm .
X RX

FIGURE 2.4. Schematic of an intra-datacenter link, in which TX stands for
transmitter, MUX for multiplexer, DE-MUX for demultiplexer and RX for
receiver. Based on [11].

Inter-datacenter links, schematically shown in Fig. 2.5 can be up to ten times longer
than intra-datacenter links. Such distances require optical amplification which is imple-
mented with erbium-doped fiber amplifiers (EDFAs) that operate near 1550 nm (third
window) [11]. In this window and for the required data rates, CD is a major impairment,
that must be compensated by CD compensation (CDC) modules [11]. The performance
of inter-datacenter links is typically measured in terms of the optical signal-to-noise ratio

(OSNR) required to obtain a target BER specified again by a FEC threshold [11].

X  |— — RX

X |— DE- — RX
CDC MUX

X |— — RX

FIGURE 2.5. Schematic of an inter-datacenter link, in which EDFA stands
for erbium-doped fiber amplifier and CDC for chromatic dispersion com-
pensation module. Based on [11].

Regarding signal transmission, datacenter connections have been mainly using IM
signals such as OOK and, most recently, PAM4 have also been considered [11]. The latter
has been proposed to replace OOK for short reach optical communication using IM-DD
and has already been adopted by the IEEE 802.3bs task force to enable 50 and 100 Gbit /s
per wavelength, since it minimizes the power consumption and spectral efficiency issues

of OOK transmission [11], 26]. Current approaches to deal with capacity scalability
8
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in datacenter links rely on increasing the number of WDM channels and increasing the
baud rate, which demands higher bandwidth components and adopt a higher number of
symbols per bit [26]. Scaling the symbol rate is limited by the achievable bandwidth of
electrical and optical components [27]. Increasing the number of WDM channels has the
downside of requiring a higher number of optical and electrical components, as much of
the number of new WDM channels, and may severely increase the link cost. Encoding
more bits in one symbol allows scaling the capacity without requiring higher bandwidths
components, but has the disadvantages of requiring higher OSNRs (7 dB are lost when
passing from an OOK signal to a PAM4 format) and enhances the susceptability to
intersymbol interference (ISI) [26], 27].

2.2. Multicore Fiber

Datacenter links predominantly rely on conventional SC-SMF technology. SC-SMF based
transmission systems experiments have been able to reach capacity values up to 100 Th/s
mainly by using coherent detection in long-haul connections [1l, 2, 14]. Even so, due to
the ever-growing predicted traffic rates, these capacity values are expected to no longer
fulfil the future demands, which raises the challenge of redesigning optical fibers and asso-
ciated technology. By the information theory developed by Shannon, the additive white
Gaussian noise (AWGN) waveform channel allows to predict the capacity that can be
offered by a link [28]. Calculations based on this type of channel lead to the conclusion
that multiplexing factors, such as increasing the number spatial paths, are promising so-
lutions for capacity scaling demands [29]. Therefore, space division multiplexing (SDM)
on optical fibers has been proposed and actively researched since 2008, being an object
of deep study as a solution to overcome the upcoming capacity critical point of conven-
tional SC-SMF [8]. The SDM concept consists of multiple light paths used to transmit
independent channels. From the fiber point of view, there are three main approaches to
introduce multiple spatial paths [14}, B0]. The first approach is the intuitive and is the
most commonly used and consists of multiple parallel independent SC-SMF's, known as
fiber bundles. However, in order to achieve high capacities, a large number of SM-SCFs
is required leading to space issues inside datacenters facilities. The second approach is
to introduce several different modes in a fiber core, such as in few-mode fiber (FMF) or
multimode fiber (MMF), where each mode is assigned to a different channel [30]. This
approach requires multiple input-multiple output (MIMO) digital signal processing (DSP)

to deal with the mode coupling and is not suitable for datacenter link distances, since
9
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it does not meet the simplicity design requirements [30]. Finally, the third approach is
using MCFs, which are fibers that incorporate multiple cores in the same fiber cladding
[14]. MCFs, from the total SCC perspective, are considered promising technologies to
overcome the capacity limits of SC-SMF transmissions and as a SDM solution for maxi-
mizing the capacity and spatial efficiency of datacenter connections, as already claimed in
recent works [4], (5], [6]. Key enabling technologies for datacenter connections with MCF's,
such as SDM MUX/DEMUX modules, SDM switches and SDM transceivers have been

assessed in [6].

2.2.1. ICXT in multicore fibers

One of the main issues to be dealt in MCF signal transmission is the ICXT [14]. This
interference in MCF's occurs from coupling between cores and is particularly relevant with
the transmission of signals with the same wavelength in neighboring cores [4]. The ICXT
has been experimentally shown to have a stochastic time evolution, which can result in
high levels of ICXT in short or long time periods [7, [16]. This leads to poor signal
transmission quality and even system outages.

The effect of ICXT also depends of the type of MCFs, which can be categorized as
weakly-coupled or strongly-coupled (SC-MCF) in terms of signal coupling between cores
[14]. In WC-MCF's, the core-to-core distance, i.e, core pitch, is set to guarantee a low level
of interference between neighbouring cores for a ICXT level lower than -30 dB. Hence, the
core pitch must be higher than 30 pm to ensure a coupling coefficient lower than 0.01 m™!
[14]. In strongly-coupled MCFs, in order to increase the core density and fiber capacity,
the core pitch is decreased resulting in a high level of interference between neighbouring
cores and a higher ICXT [14]. In this case, the core pitch is lower than 30 pm, which
leads to a coupling coefficient higher than 0.1 m~' [14]. Transmission in SC-MCF can
be theoretically considered similar to the transmission in MMF's, and, as so, it requires
MIMO-DSP to separate the signals in the different cores and reduce the ICXT at the
receiver [14]. Due to the complex receiver setup, SC-MCFs are not considered suitable
datacenter links transmission due to the lower cost requirement. Therefore, WC-MCF's
have been considered a promising technology to improve the transmission capacity per
fiber in datacenter connections [31].

MCFs can also be categorized as homogeneous or heterogeneous [14, B1]. In ho-

mogeneous MCF's, all cores are made of the same material, which leads to equal core
10
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propagation constants [14]. In heterogeneous MCFs, adjacent cores have a different ge-
ometry and effective refractive index, leading to different propagation constants between
neighbouring cores [14]. The latter can be a good strategy to mitigate ICXT, however,
it also requires DSP to compensate the delays between the signals transmitted in the
fiber cores and recover properly the signal received at the end of each core [14]. Thus,
heterogeneous MCFs links are more complex to implement in datacenter connections.
The ICXT stochastic behaviour is problematic for datacenters connections, since they
are expected to ensure high efficiency and reliability on how they manage significant
amounts of traffic. For decreasing the ICXT in homogeneous WC-MCFs, the coupling
coefficient between cores must be reduced [14]. Trench-assisted and hole-assisted MCF's
have been proposed for that matter [14]. Another approach to ease ICXT in MCFs
is to employ propagation-direction interleaving (PDI) techniques resorting to resource
allocation algorithms (RSA) where adjacent cores are assigned to opposite transmission
directions [4}, [6, 14]. Low crosstalk and high core count MCFs can be designed using
trench-assisted MCFs with PDI [14]. The core pitch and layout, the refractive index,
operating wavelength, as well as the bending and twist of the fiber (typical of short links)
should be considered when evaluating techniques for decreasing the ICXT [14].

2.2.2. PAMA1 signal transmission in datacenter links supported by MCF's

PAM4 has been proposed to replace OOK for short reach optical communication using IM-
DD, since it minimizes the power consumption and enhances spectral efficiency compared
to OOK transmissions [11), 26]. In addition, PAM4 signals transmission over MCFs
has also been considered and studied for scaling the capacity of short haul links and,
particularly, of datacenter connections [4], 5, [6].

Several works have experimentally demonstrated PAM4 signals transmission sup-
ported by MCFs and have been reported in [5]. The standard 125 pm cladding diameter
MCF has been considered a preferred choice for applications in short-hauls to avoid bend-
ing ICXT-related impairments [5]. It has been also stated that a four or eight core-count
are a more realistic and deployable MCF-based solution in datacenters [5]. Fiber cable
density in datacenters can be improved by implementing 400 Gb/s PAM4 transmission
based on 4-core SM-MCF using 100 Gb/s per wavelength transceiver technology, which
was demonstrated over 2 km [5]. In [32], a PAM4 transmission with a directly modu-
lated 1.5pm single-mode vertical cavity surface emitting laser (VCSEL) supported by a

7-core MCF was achieved. PAM4 signals up to 70 Gbaud were generated with a VCSEL
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in optical back-to-back (B2B) and 50 Gbaud PAM4 signals were successfully transmit-
ted in each core through 1 km without dispersion compensation and 10 km with disper-
sion compensation [32]. In [33], a 80 Gbaud/wavelength/core PAM4 signal transmission
is demonstrated using an integrated externally modulated laser, which enabled 7x149

Gbit /s transmission speed over 1 km supported by SM-MCF [33].

2.3. Machine learning

Machine Learning is a branch of Artificial Intelligence and it is, essentially, a modeling
technique that finds a model, by itself, from a given training data [17), [34]. These models
are later applied to the actual field data and are generally assigned to detection, classifi-
cation, recognition and decision-making purposes. ML algorithms can be divided in three
main categories, depending on the training method, which are supervised learning (SL),
unsupervised learning (UL) and reinforcement learning (RL) [17]. In optical fiber com-
munications, the first two are the most addressed techniques according to [17, 18]. SL
consists of assigning to each training dataset an input and the output which the model
is supposed to produce for that particular input [34]. After several trainings, the ML
algorithm is finally able to obtain a model that predicts the output with sufficient ac-
curacy from input datasets different from the training dataset. The two most common
applications of supervised learning are classification and regression [17), 34]. Discrete
variables as outputs are associated with classification problems, which focus on determin-
ing the classes to which the input data belongs [17), [34]. Continuous variables are related
to regression problems, which do not infer classes but, instead, estimate output values
[17, 34]. In contrast, the training dataset in UL contains only inputs without outputs.
Therefore, the models are generated by examining common patterns in the input data.
This type of learning is most often associated with clustering techniques, which are useful
for grouping similar data.

One of the most well known ML algorithms is the Artificial Neural Network (ANN),
which can behave as an universal approximation function mediator between the input
data and output data after the training phase [35, [36]. The simplest architecture of an
ANN is composed of an input layer, an hidden layer and an output layer. These layers
contain nodes, or also called neurons, modeled as an activation function, with weights
and biases, which are continuously updated during through a back propagation training

process, until the output layer can produce the desired output [36].
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With the growth of data and computation capacity, ML has expanded into deep learn-
ing (DL) and ANNs developed into deep neural networks (DNN) composed by multiple
hidden layers and a high number of nodes [37]. This allowed to address a wider variety of
problems and data types resorting to new algorithms with specific structures such as con-
volutional neural networks (CNNs), which allow to process images, by adding convolution,

activation and pooling layers for feature extraction [37), [38].

Underfitting " Overfitting T Good generalization

-

Parameter 2

Parameter

Parameter 2

Parameter 1 Parameter 1 Parameter 1

a) b) c)

FIGURE 2.6. Schematic of underfitting, overfitting and good generalization
for an uni-dimensional regression problem. Based on [17].

Generalization is an important aspect of a consistent model [34]. Typically, overfitting
and underfitting phenomenons occur when a model is unable to generalize. Fig a),
shows an example of underfitting, in which relevant features of the data are not captured
due to a model unable to yield new data [17, [34]. In overfitting, schematically repre-
sented in Fig b), the model yields precisely the training data, which results in a low
generalization and inaccurate predictions for new input data [17, 34]. Therefore, it is
important to choose unbiased data, in order to decrease the disparity between the training
data and the data that will be later applied to the obtained model. However, one of the
main challenges DL still faces is the shortage of available data and unbalanced data within
the training data [39]. To address this issue, some techniques such as data augmentation
and domain randomization have been studied [39), 40]. The basic principle of data aug-
mentation is obtaining new data by transforming the already existing data [39]. Domain
randomization generates synthetic data similar enough to emulate the data under study
[40]. Training with synthetic data generated through simulation can be cheaper, diverse,

which prevents from training with unbiased data, and less time consuming compared to

collecting real data [40], 41], 42].
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As an addition to collecting unbiased and large amounts of data, validation is also
considered as a method to confront generalization. This method consists of splitting the
available data into a training set and a validation set. Then, during training, the model
performance is evaluated using the validation set [I7]. If the model presents an acceptable
performance in terms of generalization or a stabilized error, the training can be finished.
If not, the model must be modified and a new training and validation process must be
started. A slight variation of validation is cross-validation that splits training data into

groups for the training and validation, but systematically reorganises the sets [17].

2.4. ML in optical performance monitoring

The application of ML techniques to the physical layer of optical communication networks
has already been addressed in several works and has gained a lot of interest by the research
community in the last few years [17), 18], 43]. Hence, typical areas of application of ML
in the physical layer of optical communications networks are fiber nonlinearity mitigation,
modulation format (MF) recognition and optical performance monitoring (OPM). Even
so, ML approaches to deal with the ICXT in WC-MCFs have not been yet addressed in
the literature to the best of the authors’ knowledge, which we aim to address in this work.

Regarding OPM, the use of CNNs have been recently addressed . In [19], a CNN-based
technique is assessed to perform OSNR estimation and MF recognition, from eye-pattern
images of several modulation formats, PAM4 being one of them. In [20] an eye-pattern
analysis scheme based on a CNN for IM-DD transmissions is also presented. Different
eye-patterns of OOK and PAM4 signals from B2B and up to 80 km link transmissions are
sent to a CNN-based model that outputs eye diagram characteristics, fiber link length,
Q-factor and impairments recognition [20].

As the previous studies using CNNs presented good results, in this work, we focus on
contributing with the study of the performance of a CNN in predicting BERs through
eye-patterns from PAM4 datacenter optical connections impaired by ICXT and suported
by WC-MCFs, which to the best of our knowledge, has not been yet addressed in the

literature.
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System model description

In this chapter, the CNN for eye-pattern analysis and BER prediction of PAM4 inter-
datacenter optical connections is presented. The optical telecommunication system equiv-
alent model is described in section 3.1, where the DP-DCM developed to characterize the
ICXT in MCFs [21] is described in detail. The study of the BER distribution and respec-
tive eye-patterns in an optically amplified PAM4 link impaired by ICXT is performed in
section [3.2 The main tasks of the CNN-based eye-pattern analysis and BER prediction

are presented in section (3.3

3.1. Optical communication system model

Optical transmitters of cores m and n MCF
__________________________________ AaF—————————
| |
| PAM4 symbol Sample Electrical Optical II,:-II - ;c:r; ;n- -

: sequence & Hold Filter modulator m f'm(t)“ A ) IR :
I
: ] T
I
: PAMA4 symbol Sample Electrical Optical ||£: - -cc-,,-;;ﬁ- -
|  sequence & Hold Filter modulator n | ¢, (t | o 1ep(t) \C-
| :
| el 1
- T _____ S ]
r--_- - T T T T T T T T T T T T |

Decision Receiver Recerver
. . PIN ) . T
I Circuit Electrical Filter Optical Filter n
|
|

Direct-detection optical receiver of core n Optical amplification

FIGURE 3.1. System equivalent model to assess the impact of ICXT on a
PAM4 optical communication link with DD and MCFs. Based on [2], 3]

The optical telecommunication system equivalent model developed in 2], [3] for a PAM4
inter-datacenter optical link supported by MCF is shown in Fig. In this work, by
analysis of the results provided by this model, namely the BER and received eye-patterns,
a CNN will be tested and trained to predict the BER.

The impact of ICXT on the performance of optically amplified PAM4 links for inter-
datacenter connections has been analyzed in [2}, B] by resorting to the DP-DCM that
describes accurately the ICXT effect in homogeneous WC-MCFs [21]. The DP-DCM of

the MCF used in [2, 3], considers firstly only two cores, the interfering core m and the
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interfered core n as shown in Fig. 3.1l Hence, two transmitters, one for each core, generate
different signals where the signal transmitted along core m, ¢,,(t), is the interfering PAM4
signal and the signal transmitted along core n, ¢,(t), is the interfered PAM4 signal. After
symbols generation, the PAM4 symbols with non-ideal extinction ratio are sampled and
passed through an electrical filter that models the frequency limitations of the electrical
part of the transmitter. After electrical filtering, the PAM4 signal is converted to the

optical domain by an optical modulator with a finite extinction ratio and without chirp.

Py
Py

The extinction ratio is given by the inverse of the ITU-T definition as r = where P
and Pj3 are the powers of the PAM4 symbols "0’ and ’3’, respectively.

The optical signals ¢,,(t) and ¢,(t) are transmitted in two perpendicular polarization
directions, x and y, which are represented by the power splitting of the transmitted PAM4
signal by both polarization directions at the input of the MCF. Hence, in the interfering
core m, the power splitting in the PAM4 transmitted signal in polarization z, ¢, .(t), and

in the PAMA4 transmitted signal in polarization y, ¢, ,(t), is given by

emalt) = en(t) X V/em (3.1)

Cr(t) = () X VI = Em (3.2)

where &, determines the power distribution between the two polarization directions in
core m and can vary between 0 and 1.
In the interfered core n, the PAM4 transmitted signal in polarization z, ¢, .(t), and in

polarization y, ¢, ,(t) is given by

Cna(t) = cn(t) X V&0 (3.3)

Cngy(t) = cn(t) X V1 =& (3.4)

The results in [21] show that the variance of the ICXT field amplitude is similar for
all polarization directions and is independent of &, and &,.

After splitting, the PAM4 signal travels along core n of the MCF, which is modelled
by the linear propagation transfer function Hp(w). Linear propagation through the MCF

is assumed, since non-linear effects are usually insignificant in inter-datacenters distances
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[11), 44]. The signal at the output of core n without ICXT is represented as

cp(t) = cp(t) * F 1 Hp(w)] (3.5)

where * stands for convolution, F~! stands for the inverse Fourier Transform and Hp(w)
is given by

Hp(w) = exp(—jf(w)L). exp(—F-L) (3.6)

where w is the angular frequency, 8,(w) is the average of the propagation constants in
core n, which is given by the sum of the contributions in both polarization directions in
n asin B,(w) = (8%(w) + BY(w))/2; where a, is the attenuation coefficient of the core n
and L is the SM-MCF length. In the absence of the ICXT effect, linear propagation is
also considered in core m with the average of the propagation constants in core m being

given by f,,(w) = (8%(w) + BY (w))/2. The Bi(w) is represented as [45]

Bi(w) = Bos + Priw + %WQ + %wg (3.7)

where [ can be m or n, when referring to core m or m, respectively. In (3.7)), By, is the
propagation constant at the carrier wavelength, 3;; is the inverse of the group velocity,
B2, is the group velocity dispersion and f3; is the higher-order dispersion [45].

The effect of ICXT on the interfered cores is modelled by the DP-DCM simply by using
transfer functions that change randomly along time, being this dependence introduced by
applying random phase shifts (RPSs) along the longitudinal direction of the fiber. The
transfer functions [, ;(w) model the frequency response of the ICXT from the polarization
a, with a = z or y, at the input of core m to the polarization b, with b = z or y, at the

output of core n and are represented as [21]

N,

Fup(w) = —-L Ko xp(—n(W)L) - exp(— L) Y expl—jAByun ] exp[—jole)]
/2 2
(3.8)

where «,, is the attenuation coefficient of the core m. In the model proposed by [2, 3],
K, is the average inter-core coupling coefficient [21], N, is the number of phase-matching
points (PMPs), AB, is given by S, (w) — B, (w) and ¢7(§;3)k represent the RPSs associated
with the k-th PMP, which are modelled using an uniform distribution between [0, 27|

and zj, is the longitudinal coordinate of the k-th PMP randomly distributed between two
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consecutive PMPs and is given by
L
2, = ﬁp(rk +k—1) (3.9)
where (1 < k < N,) are independent random variables generated with an uniform
distribution between [0, 1[. In this work, we also assume «,, ~ .

The DP-DCM models the evolution of the ICXT impact on the system performance
in different MCF realizations by generating randomly different NV, sets of RPSs in each
MCF realization. Therefore, in each iteration of the Monte Carlo (MC) simulator, a
new PAM4 signal with symbols randomly generated is transmitted in core m and one
MCEF realization corresponding to the transfer functions given by is generated. The
transfer functions F, ,(w) and F}, ,(w) model the ICXT generated from polarization z and
y of the core m that is going to interfere with the electrical field in the polarization z of
the core n. The transfer functions F} ,(w) and F, ,(w) model the ICXT generated from
both polarizations of core m that interfere with the field of core n in the polarization y.
The ICXT level quantifies the ammount of ICXT power that will affect the interfered core
and is defined by the ratio between the mean ICXT power and the mean power of the
signal both at the output of the interfered core n and is calculated as in X, = Np\KnmP
[21].

The temporal dependence of the ICXT is induced by effects such as the walk-off due
to different group velocities between cores [44]. In this model, the skew between the
interfering core m and the interfered core n is given by S,,, = d,.,L, where d,,, is the
walkoff between cores m and n defined by dy,,, = B1m — Bin-

In the DP-DCM, the effect of ICXT in the PAM4 signal after propagation in core n, is
obtained by cg xr(t) = cp(t) + cxr(t), where the interfering signals from core m, cx7..(t)

(with a=z and b=y) and cxr,(t) (with a=y and b=x), are represented as

cxra(t) = cmalt) * f_l[Fa,a(w)] + Cmp(t) * f_l[Fa,b<W)] (3.10)

exr(t) = exra(t)a + cxrp(t)b (3.11)

In Fig. at the output of the MCF, a CDC module compensates the CD arising
from the transmission through core n, which can be a major source of performance degra-

dation due to the required data rates. The CDC is modelled considering a DCF in linear
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propagation with a length that fully compensates the distortion due to CD on the signal
crxr(t). The ideal DCF length is given by

—Dy, L

Dy pcr

Lpor = (3.12)

where D, , is the core n dispersion parameter and Dy por is the DCF dispersion param-
eter.

After the CDC module, there is an EDFA to compensate the inter-datacenter link
losses and an optical filter to reduce the amplified spontaneous emission (ASE) noise
power generated by the EDFA.

The amplifier gain is set to compensate all the losses from the SM-MCF and DCF and
the ASE noise is modelled as additive white Gaussian noise with power spectral density,

per polarization mode, given by [45]

Fy
Sase = 7(9EDFA — 1)hvg (3.13)

where ggpra is the EDFA gain in linear units, hvy is the photon energy and F), is the
EDFA noise figure.

The optical filter, modelled by a 4th order super Gaussian filter, reduces the power
of the optical noise and introduces negligible inter-symbol interference (ISI) [45]. The
transfer function of the i-th order super Gaussian filter is given by [46]

(Al M] B

Ho(f) = \/LZ—L exp

where fy is the optical filter lowpass equivalent center frequency, iy, is the insertion loss

in linear units, and By is the optical filter bandwidth at —3 dB.

After CDC and optical amplification, the PAM4 signal degraded by ICXT and ASE
noise passes the DD receiver dedicated to core n, where is converted to an electrical signal,
cpin(t), by the PIN photo-detector with a responsivity of R, = % . Electrical noise is
added after photodetection and an electrical filter, modelled as a 3"¢ order Bessel filter, is
used to reduce the noise power. In the decision circuit, the BER of each MCF realization,
the average BER and the OP are assessed. The BER of each MCF realization is calculated
by the semi-analytical method known as the exhaustive Gaussian approach. For a PAM4

signal, the BER is given by [47]
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4N7‘eg . 4N7‘eg . .
1 Fl_ZOk> [ <Z1k—F1> <F2—Z1k;>]
2- 4N’"89{ Z < ( o0k ; “ 01k < 01k
ap=0 ap=1
4Nreg . . 4Nreg .
io — Fh F3_22k):| <Z3k_F3>
=2 "2 4+ B 1 + k79
; {Q ( 02,k ) Q ( 02,k ; 03k
ap=2 ap=3

(3.15)

where 4"Vr<s is the maximum length of PAM4 symbols optical sequence generated using
deBruijn sequences, with N,., as the length of the offset register used to generate the
sequence; 4o i, 41k, 2,5 and i3 correspond to the means of the currents at the input of the
decision circuit for the symbols a, at the time sampling instants ¢, = to+7Ts(k— 1), where
to is extracted from the received eye-pattern at the decision circuit input, k € 1, ..., 4Nres,

O0ks O1k, 02 and o3y are the noise standard deviations for the different time sampling

instants [47] and the function Q(x) is given by [3]

Qz) = : Ee’Tdi’ (3.16)

In the simulation, the decision thresholds Fi, F, and F3 are optimized in each time-
fraction by applying the bisection method to minimize the BER [2, B]. Effects such as
ICXT, ISI, electrical noise, signal-ASE, and ASE-ASE beat noises are taken into account
using this semi-analytical method.

After several MCF realizations, the average BER is obtained by averaging the BERs
obtained in each MCF realization. The OP has been appointed as a key system perfor-
mance indicator on weakly-coupled DD MCF-based systems and evaluates the probability
of a system outage [16]. To assess the performance of optical links impaired by ICXT,
the OP is defined as the probability of the BER in the presence of ICXT, to exceed a
given BER limit [3]. The BER limit determines the minimum BER value in which the

system becomes unavailable. In the simulation, the OP is estimated by [2, 3]

N,
p=-2 1
O N, (3.17)

where Ny is the number of MCF realizations with BER above the BER limit and N, is the

number of simulated MCF realizations necessary to reach Ny occurrences of BER above

the BER limit.
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Chapter 3 System model description
3.2. Study of the inter-datacenter PAM4 link performance with ICXT

In this section, the impact of ICXT on the optically amplified PAM4 links performance
is assessed by analyzing the received eye-patterns and the distribution of the obtained
BER at the decision circuit. The system and simulation parameters used throughout this

section are presented in Table [3.1]

Parameters Value

Number of generated PAM4 symbols in
each MCF realization

Number of samples per symbol Ny = 32

— 14
NPAM4symbols =4

Symbol rate R, = 56 Gbaud
Operating wavelength Ao = 1550 nm
Receiver electrical filter bandwidth B¢ rx = 0.85 x R,
Receiver optical filter bandwidth By =1.6 x R,
SM-MCF length L =80 km

Optimized transmission power for r=0
and r=0.1

PTX,’I”ZO = -1.912 dBm,
PTXJ-:O.l = 0.26 dBm

Number of PMPs N, = 1000
EDFA noise figure 4.77 dB
Skew-symbol rate product |Spn Rs| = 1000, S Rs| = 0.01
Number of interfering cores with PAM4 N; =1

signaling

MCF chromatic dispersion parameter

Dy, = 17 ps/(nm-km)

MCF attenuation coeflicient

a = 0.2 dB/km

DCF chromatic dispersion parameter

Dy pcr = 100 ps/(nm-km)

DCF attenuation coefficient

Opcfr — 0.5 dB/km

PIN responsivity

Ry=1A/W

ICXT levels

X, = 20 dB, -14 dB

BER limit with ICXT
Target BER without ICXT

3.8 x 1073 (loglo(BERlimit)
3.8 x 107 (log,o( BE Ryimit)

—2.4202)
—1.4202)

~
~
~
~

TABLE 3.1. System and simulation parameters

In this work, we consider that the inter-datacenter link, impaired by ICXT, is in
outage when the BER is above a pre-defined limit of 3.8 x 1073, which is the thresh-
old typically used for datacenters connections with forward-error correction [3, 48, [49].
The electrical and optical receiver filters bandwidth were optimized in B2B operation to
maximize the receiver sensitivity [2, B]. For the MCF length of 80 km and r=0 and
r=0.1, the signal power at the transmitter output has also been optimized to achieve the
BER of 3.8 x 10~° without ICXT. The number of PMPs is set to characterize accurately
the RPS mechanism [3, 48, 49]. Two different intercore skews with skew-symbol rate
product of |S,,, Rs| = 1000 and |S,,, Rs| = 0.01 are also chosen to perform these studies.

The case of |S,,,, Rs| = 1000 is referred as high skew symbol rate product as |S,,, Rs| >> 1
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[3, 50}, [51]. The situation of |S,,, Rs| = 0.01 is referred as low skew-symbol rate product,

since S Rs| << 1 [3), 50 51].
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b)7=0.1

FIGURE 3.2. Eye-patterns of the PAM4 signal at the MCF input for a)
r=0 and b) r=0.1.

The eye-patterns in Fig. represent an example of the PAM4 transmitted signals
cm(t) and ¢, (t) at the output of the optical transmitter for r = 0 and r = 0.1. In contrast,
Fig. and Fig. show the impact of the ICXT on the eye-patterns at the decision
circuit input of the optically amplified PAM4 IM-DD system with full loss and chromatic
dispersion compensation. Fig. [3.3| shows the received eye-patterns for X, = -14 dB and
|SpnRs| = 1000 of a) best BER and b) worst BER with r=0 and c) best BER and d)
worst BER with r=0.1 after 1000 MCF realizations, which was shown to be a number high
enough to obtain a stabilized average BER [3]. Fig. H shows the received eye-patterns
for X, = -14 dB and |S,,,Rs| = 0.01 of a) best BER and b) worst BER with r=0 and c)
best BER and d) worst BER with r=0.1 after 1000 MCF realizations.

In Fig. b), for the worst BER with r=0, the lowest eye is fully closed due to the
strong ICXT. However, as seen in Fig. d), for the worst BER with r=0.1, the ICXT
degrades less the received eye-pattern (the lowest eye is not fully closed), which leads to a
lower BER. The product |S,,,Rs| has been shown to be relevant on the impact of ICXT
on the performance of optical links with DD [16, 50, 52]. The same conclusions can be
drawn through the analysis of Fig. b) and d) where the eye-patterns are fully closed
for both extinction ratios, in comparison with Fig. b) and d), which shows that,
for optical links with low |S,,, Rs|, the ICXT is more detrimental than for high |S,.,Rs|.

However, for the best BERs obtained with low |S,,,Rs|, Fig. a) c¢) show that the
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amplitude levels are more defined than in the eye-patterns shown in Fig. a) and c)

with high |S,,, Rs|, where more symbols in the interfering core are contributing to ICXT

[3].
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a)BER = 2.15x 107" andr =0 b)BER=7.71x 1072 andr = 0
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0 0.2 04 0.6 0.8 1 0
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¢)BER=3.13x 10"*andr = 0.1 d)BER =3.18 x 1072 andr = 0.1

FIGURE 3.3. Eye-patterns at the decision circuit input for X, = -14 dB,
|SinRs| = 1000 for a) best BER and b) worst BER with r=0 and a) best

BER and b) worst BER with r=0.1.

Figs. and [3.6]show the histograms of the BERs and the corresponding average BER
obtained in 1000 MCF realizations, with, respectively X, = -14 dB and X, = -20 dB,
r=0.1, r=0, for two different inter-core skews, a) |S,,,Rs| = 1000 and b) |S,,, Rs| = 0.01.

Fig. [3.5| shows that several MCF realizations experience system outage, especially for
| Sy Rs| = 0.01, since the corresponding BERs surpass the BER limit, as can be confirmed

by the OPs presented in Table [3.2] estimated from Figs. and using N, = 1000
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Amplitude

Amplitude

occurrences in Eq. (3.17). Ouly for |S,,,Rs|] = 1000 and r=0, the BER limit is never

2.5

Amplitude

0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8

Time normalized by symbol period Time normalized by symbol period

a)BER = 3.60 x 105 andr = 0 b) BER = 1.86 X 10 > and r = 0

Amplitude

0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8
Time normalized by symbol period Time normalized by symbol period

©)BER = 414 X 10~% and r = 0.1 d) BER = 850 X 10 2 and r = 0.1
FIGURE 3.4. Eye-patterns at the decision circuit input for X, = -14 dB,
|Syn Rs| = 0.01 for a) best BER and b) worst BER with =0 and a) best
BER and b) worst BER with r=0.1.

exceeded and there is no system outage.

In Fig. [3.6] as the ICXT level is 6 dB lower, the influence of ICXT on the perfor-

mance is reduced, which leads to a higher number of MCF realizations that have lower

BERs and are lower than the BER limit. Therefore, the only system

| SpnRs| = 0.01 and =0 and for |S,,, Rs| = 0.01 and r=0.1, where the corresponding OPs

are 0.007 and 0.001, much lower than the ones considered in Fig. |3.5]

For both crosstalk levels, the effect of ICXT on the BER distribution is less detrimental

with » = 0.1. This influence of the extinction ratio on the ICXT impact has been already
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FIGURE 3.5. Histogram of the log;,(BER) for 1000 MCF realizations with
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FIGURE 3.6. Histogram of the log,,(BER) for 1000 MCF realizations with
X, = -20 dB, r=0.1 and r=0 for a) |S,,, Rs| = 1000 and b) |S,,Rs| = 0.01.

observed in OOK systems [47]. For r = 0, a higher spreading of the BER values is ob-
served, and, hence, more MCF realizations have lower BERs and more lead to a BER that
surpasses the BER limit. The results in both figures show also that the product |S,,, Rs|
has a significant influence on the BERs distribution, since for |S,,, Rs| = 1000, the BER
range is significant lower in comparison with the BER range obtained for |S,,,, Rs| = 0.01.
Therefore, as seen is Table system outage is more likely to occur for |S,,, Rs| = 0.01
and r=0 and less likely to occur for |S,,,Rs| = 1000 and r = 0.1.

3.3. CNN for eye-pattern analysis and BER prediction

In this work, we study the use of a MATLAB-based CNN for eye-pattern image analysis

and BER prediction in PAM4 datacenter optical connections supported by homogeneous
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Simulation oP

X, = -14 dB | |S,Rs| = 1000, =0 | 0.1860
| Sy Rs| = 1000, » = 0.1 | 0
|SpnRs| = 0.01, r =0 0.397
|SpnRs| = 0.01, r = 0.1 | 0.149
X, = -20dB | |S,,,Rs|] = 1000, r =0 |0

| Sy Rs| = 1000, » = 0.1 | 0

|SpnRs| = 0.01, r =0 0.007
|SmnRs| = 0.01, » = 0.1 | 0.001

TABLE 3.2. OP obtained from Figs. [3.5/and[3.6] for 1000 MCF realizations,
X, = -14dB, X, = -20dB, r = 0, r = 0.1, L =80 km, |S,,,R,| = 1000
and |Sp,Rs| = 0.01.

WC-MCFs impaired by ICXT. The schematic of the main tasks of the MATLAB simulator
is illustrated in Fig.

CNN performance
Data collection Pre-processing assessment

i u T I
: Eye Pattern, E; N | : GEP image : : I
. 1 |
| PAM4 optical ) log10(BER) I 1| logio(BER) || | [
| communication H | . : | : CNN training I
I : : I
| system model Eye Pattern, Ey,_,, : I GEP image : | |

I ] 1
T |
i log1o(BER) ||| logw(BER) | | |
————————————————————————————————— I . :
| 3 '
I |

3 | I
I GEP image L CNN trained | |
I I3 model :
I GEP image : ; I
I I :
b e — [ I
: logs0(BER) I

FIGURE 3.7. Main tasks of the MATLAB-based CNN for eye-pattern anal-
ysis and BER prediction model.

The first main task corresponds to data collection, where eye-patterns and the cor-
responding BERs are collected from the PAM4 optical communication system model
described in section for different types of optical links. The latter are obtained by
varying several optical link parameters, such as crosstalk level, skew-symbol rate product
and extinction ratio. Before a CNN training, the eye-patterns are pre-processed, ac-
cording to the different optical links under study, to obtain what we denote as grayscale
eye-patterns (GEPs) images. After that, the CNN is trained, following a SL approach,
with GEPs as inputs and BERs as outputs. Then, the CNN is tested with unseen GEP
images, where the prediction performance is evaluated through the root mean square error

(RMSE) metric [53].
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3.3.1. Data collection

The data used to train and test the CNN corresponds to the data collected from the optical
telecommunication system equivalent model developed in [3] and described in section
that models with a good accuracy the ICXT effect in PAM4 inter-datacenter optical links
supported by homogeneous WC-MCFs. Each pair of collected data consists of a received
eye-pattern, F; (with i=1,...,Ngp), where Ngp is the number of eye-patterns collected,
such as the ones shown in Figs. and [3.4) and the corresponding BER calculated
logarithmically, i.e., log;o(BER), at the decision circuit. Each eye-pattern is a 32 x 256
matrix, with Ny=32 amplitude samples per symbol and 256 is the number of generated
PAM4 symbols in each MCF realization.

A good performance of the CNN is highly dependent on the training data. So, it is im-
portant to choose a high number of unbiased data to achieve a consistent model by decreas-
ing the disparity between the training data and testing data. Therefore, a guided sampling
is performed to collect a balanced number of BERs and corresponding eye-patterns. For
that purpose, for the different optical links, the data generated by the MATLAB optical
telecommunication system equivalent model is collected following a two-step balancing
scheme, schematically shown in Fig. 3.8 within a [log;,(BER)mnin, log1o(BER)4.] range,

where 1000 pairs of data (eye-patterns) are saved in every 0.1 interval of the log,,(BER).

lOgIO (BERWGI)_IOglo (BERmin)
0.1

Within these Nggr intervals, where Ngpr = , a second balanc-
ing step is performed with 20 sub intervals, where 50 pairs of data are saved in every 0.005
interval of the log,,(BER). Notice that the BER range is not the same for all optical links
studied, since the BER values distribution is much dependent on the link parameters as
seen in section [3.2]

1 Nger
so | | 50 | \ so0 ] . I

10g10 (BER), i + 0.005 ; i Nog;o(BER)im + (N — 1) X 0.1+ 0.005
10g1o(BER) ppin + 0.1 '10810(BER) in + (N — 1) X 0.1 :

ilogm(BER)mm EIng (BER) jmax
FIiGURE 3.8. Two-step balancing scheme of the collected data generated
by the optical telecommunication system equivalent model described in|3.1

where Nggr is the total number of intervals with a sub-division of 0.1 in
logarithmic scale in [log;,(BER)min, 10g1o(BER)max)-

As the ICXT has a stochastic behaviour with a random time evolution and frequency
dependence, it leads to random fluctuations of the BER and different BER distributions,

depending on the parameters of the optical link under study. Some BERs are less frequent
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than others, particularly for higher BERs associated with system outages. Especially for
low outage probabilities, these BERs become extremely rare to occur. Therefore, to
collect a good amount of balanced data inside each logarithmic BER interval and to
maintain the time of simulation at acceptable levels, particularly for BERs less likely to
occur, a slight change of the DP-DCM model has been implemented following a domain
randomization-based approach.

As mentioned in section in each iteration of the MC simulator, one MCF realiza-
tion corresponding to the transfer functions given by eq. is generated with random
different N, RPSs. This randomness models the unpredictability and affects the ICXT on
the received PAM4 signal and the corresponding BER. Firstly, the MC simulator starts
with a random set of N,, RPSs using the uniform distribution between [0, 27| and is stored
and used in the first MCF realization. After that, based on a single uniformly distributed
random number in the interval [0, 1], it is determined how the set of N, RPSs for the
next MCF realization is generated. If the random number is above or equal to 0.5, a new
set of N, RPSs is generated following the previously described procedure and, again, it is
stored. If not, a new set is obtained by adding normally distributed random noise with
zero mean and unitary variance to the set of N, RPSs previously stored that is known
to lead to a BER inside a BER interval. The set of RPSs generated with this random
perturbation is not stored, and, therefore, it is never used again in the following MCF
realizations. At the end of each MC simulator iteration, the eye-pattern and the corre-
sponding log,,(BER) are saved if the corresponding Npgg interval is not full. As the MC
simulator iterations continue, following the previously described procedures, the number
of N, RPSs sets stored increases and the random perturbation approach is performed by

randomly selecting one of the stored sets of IV, RPSs.

3.3.2. Eye-pattern pre-processing

Before training and testing the CNN, the eye-patterns are pre-processed to obtain what
we denote as grayscale eye-patterns (GEPs). Typically, oscilloscopes sample the received
signal and generate a two-dimensional database, that statistically represents the time,
where the unit interval or bit period of the eye-pattern is defined by the data clock, and
the amplitude of the digital signal [54]. As the number of samples increases, a third
dimension is considered, denoted as plot density, which represents the number of pixels
that are located in the same position on the oscilloscope display [54]. In this work, a

similar approach is used to obtain GEP images.
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First, for a  x y GEP image, the amplitudes of a synthetic eye-pattern obtained from
MATLAB are normalized into [1,3] € N amplitudes to obtain the vertical position of
the GEP image pixel assigned to the corresponding amplitude. For the case of a fixed
scale GEP, this normalization takes into account the maximum amplitude that occurred
in all eye-patterns obtained for the corresponding type of optical link under study, i.e.,
the eye-patterns used during a CNN training. For the case of a dynamic scale GEP,
each eye-pattern is normalized taking into account its maximum amplitude. After that,
the eye-pattern to GEP conversion process continues with a y x x GEP matrix with
zero elements. The plot density is modeled by incrementing one unit in all elements of
the GEP matrix with the rows given by the eye-pattern normalized amplitudes and the
corresponding columns given by the rows of the original eye-pattern normalized into [1, z].

Fig. shows the process to transform a synthetic 32x256 eye-pattern matrix ob-
tained from MATLAB into a 32x32 fixed scale GEP image. For instance, the amplitude
in the (1,1)" element of the eye-pattern matrix, F, is normalized into [1, 32] € N ampli-
tudes, which gives 4. This means that this amplitude falls in (4, 1) element of the GEP
matrix, G. The amplitude is considered in the GEP matrix by incrementing one unit in
that given element. If more amplitudes of the first row of the eye-pattern have the nor-
malized amplitude 4, the (4,1)" element of the GEP matrix is incremented accordingly
to these number of amplitudes. The case of F(6,1) amplitude follows the same logic,
where the normalized amplitude is 2 and one unit is incremented in G(2,6).

Notice that for a different GEP size, since each eye-pattern is a 32 x 256 matrix, an
additional normalization needs to be performed during the GEP transformation process.
For instance, to obtain a 64x64 GEP, the amplitudes of the eye-pattern are normalized
into [1, 64] € N amplitudes to obtain the vertical position of the GEP image pixel as-
signed to the corresponding amplitude. Then, the transformation process follows the
previously described procedure, however, the plot density is modeled by incrementing one
unit in all elements with the rows given by the eye-pattern normalized amplitudes and
the corresponding columns given by the rows of the original eye-pattern normalized into
1, 64].

After this transformation process, the GEP images, obtained from the GEP matrices,

are used as input data in the CNN described in the next subsection.
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F1GURE 3.9. Example of the process to transform eye-patterns into 32x32
GEP images.

3.3.3. CNN architecture

In this work, the CNN model is developed on the MATLAB platform using the Deep
Learning Toolbox and Deep Network Designer. The proposed CNN architecture is based
on [19, 20] and is schematically represented in Fig. [3.10l First, normalization is applied
by re-scaling the data in the range [—1, 1] every time a GEP image is forward propagated
through the input layer of the CNN. This architecture has five convolutional (Conv) layers,
C1 to C5, that pass the GEP images through a set of convolutional kernels with stride
(1,1). The layers C1 and C2, where both kernel sizes are 5x5, produce, respectively, 32
and 64 feature maps and the layers C3, C4 and C5, where the corresponding kernels sizes
are 3x3, produce, respectively, 128, 256 and 512 feature maps. All convolution layers add
the required padding to the input, either a GEP image or feature map, to ensure that its
border pixels are completely exposed to the filter and the resulting feature map has the
same size as the input. The outputs of each convolutional layers are normalized using a
batch normalization (BN) layer followed by a Rectified Linear Unit (ReLU) layer for a
more effective and faster training [38]. After the first four Conv+BN+ReLU operations,
a down-sampling is performed by an average pooling layer. In our CNN, we set the four
pooling layers, P1, P2, P3 and P4, with 2x2 subsampling regions and stride (2,2). After
feature extraction (C5+BN+ReLU), a dropout layer is placed to prevent overfitting and

a fully connected layer followed by a regression layer are used to predict the BER.
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F1GURE 3.10. CONN architecture considered in this work to learn the BER
from the GEP images.

3.3.4. Performance evaluation metric

In this work, the performance evaluation metric chosen to evaluate the CNN-based eye-

pattern image analysis and BER prediction is the Root Mean Square Error (RMSE), which
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has been widely used in the literature as a key CNN regression performance indicator

[53], 55| 56], and is given by

(3.18)

where n is the number of eye-patterns considered either in the training, test or validation
sets and e; is the difference between the expected values and the predicted values of the
BER. In this work, we consider a RMSE below 0.1 as an acceptable prediction of the
log,, (BER).

3.4. Conclusions

In this chapter, the CNN for eye-pattern analysis and the prediction of the BER from
PAM4 inter-datacenter optical connections was presented. The optical telecommunica-
tion system equivalent model was described in section 3.1, where the DP-DCM developed
to characterize the ICXT in MCFs was described in detail. The study of the BER dis-
tribution and respective eye-patterns in an optically amplified PAM4 link impaired by
ICXT is performed in section [3.2] which showed that the product |S,.,Rs| has a sig-
nificant influence on the BERs distribution, since for |S,,,Rs|= 1000, the BER ranges
and the distribution across this range are significant lower in comparison with the BER
range and distribution obtained for |S,,,Rs| =0.01. These different BER distributions
and ranges may influence significantly the CNN training. It was also shown that system
outage is more likely to occur for |S,,,Rs| =0.01 and r=0 and less likely to occur for
| Sy Rs|= 1000 and r= 0.1, which is related to the BER distributions obtained for the
two different |.S,,, Rs|-

The main tasks performed by the CNN-based eye-pattern analysis and BER prediction
was presented in section [3.3] with an emphasis on the data collection process from the
optical telecommunication system equivalent model, eye-patterns pre-processing based on

oscilloscopes’ eye-patterns representation and the CNN architecture.
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CHAPTER 4

CNN performance assessment and discussion

In this chapter, the performance of the CNN-based eye-pattern analysis and BER predic-
tion in PAM4 inter-datacenter optically amplified short IM-DD connections impaired by
ICXT is assessed. In section[4.1] the simulation parameters are introduced. The GEP size
influence on the CNN performance is evaluated in section [4.2] and an assessment regarding
the CNN non-deterministic behaviour is presented in section The performance of the
CNN-based eye-pattern analysis and BER prediction is evaluated in section [4.4] for fixed
scale GEPs and in section for dynamic scale GEPs. The main conclusions drawn from

this chapter results are presented in section [4.6

4.1. Simulation parameters

Throught this chapter, the CNN developed for eye-pattern analysis and BER prediction
in PAM4 inter-datacenter optical connections impaired by intercore crosstalk with the
architecture presented in section is trained and tested with the system simulation and
training CNN parameters shown in Table[d.1] The remaining simulation parameters of the
optical communication system model that generates the data provided to the CNN models
are presented in Table 3.1} As studied in section [3.2] the skew-symbol rate products
|SpnRs| = 1000 and |S,,,Rs| = 0.01 and the extinction ratios r = 0 and r = 0.1 are
relevant to the impact of ICXT, as they affect the BER range and distribution. Therefore,
these parameters are also chosen to perform these studies. We also consider the crosstalk
levels X. = -16 dB, -14 dB and -12 dB.

In this work, the data used to obtain a CNN regression model is randomly splitted
before each CNN training, where 70% is assigned as training data, 15% as validation
data and 15% as test data. The main performance metric chosen to evaluate the CNN
performance is the RMSE and we consider an acceptable error margin limit of 0.1, in
logarithmic scale. The hyperparameters of the CNN were tuned and empirically set. The
network is trained with a stochastic gradient descent with momentum (SGDM) optimizer
that updates the weights and biases of the CNN. The maximum number of epochs, i.e.,
the number of times the training data is given to the CNN during training, is set to

30, since lower values resulted in worse performances and higher values did not enhance
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the performance and resulted in a much higher computation time. A mini-batch size,
that gives the number of training data samples sent to the CNN after each parameter
update, with 8 observations at each iteration is used, since from the CNN training tests,
it performed better when comparing to 16, 32 and 64 mini-batch sizes. The initial learning
rate, which defines the frequency the optimizer updates the CNN parameters, is has been

empirically set to 1 x 107* and reduced by a factor of 0.1 after 20 epochs.

Parameters Value
Skew-symbol rate product |Spn Rs| = 1000, |.S,n Rs| = 0.01
ICXT levels X.=-16dB, X, = -14dB, X, = -12dB
Extinction ratio r=0,r=0.1
Data splitting Training data = 70%, validation data =
15% and test data = 15%
Optimizer SGDM
Mini batch size 8
Epochs 30
Initial learning rate 1x107?
Learning rate drop factor 0.1
Learning rate drop period 20
Error margin limit (logarithmic scale) 0.1

TABLE 4.1. System simulation parameters and CNN hyperparameters.

The total ammount of data collected from the PAM4 optical telecommunication link
equivalent model considering different system parameters is presented in Table[4.2] Notice
that the BER range is not the same for all optical links studied, since the BER values
distribution is much dependent on the link parameters as seen in section [3.2l However,
inside each logarithmic BER interval of 0.1, it is guaranteed that there are 1000 eye-

patterns, for a good data balacing.

4.2. Grayscale eye-pattern size influence on the CNN performance

In this section, the impact of the GEP images size, 32 x 32, 64 x 64, 128 x 128 and
256 x 256, on the CNN performance is studied. To perform this study, an optical link
with X, = -14 dB, r=0.1 and |S,,, Rs| = 1000 is considered.

Fig. shows the RMSE values obtained for the BER predictions of each GEP size
under study after ten CNN trainings. After splitting, the training, validation and test
data remained the same during the ten trainings. By doing this, the variability of the
RMSE results for each GEP size is only influenced by the CNN training algorithm. It can
be observed that, for all GEP sizes, the RMSEs differ for each training, which confirms

the non-deterministic behaviour of the CNN algorithm. There is no significant difference
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Link type Ngp | log,o(BER) range
X, = -16 dB | [SymR.| = 1000, 7 =0 | 16000 | [-3.8, -2.2]
1S, Ry| = 1000, 7 = 0.1 6000 | [-3.7, -3.1]
1SRy = 0.0L, r =0 | 26000 | [-4.5, -1.9]
1S Rs| = 0.01, 7 = 0.1 | 21000 | [4.3, -2.3]
X, = -14 dB | |[SyunRs| = 1000, 7 =0 | 25000 | [-3.7, -1.2]
S, Ry = 1000, 7 = 0.1 | 14000 | [-3.3, -1.9]
1S Bs| = 0.01, 7 =0 | 34000 | [-4.5, -1.1|
1S B2s] = 0.01, = 0.1 | 33000 | [-4.4, 11|
X, = 12 dB | |SymB,| = 1000, 7 =0 | 20000 | [-3.1, -1.2]
1SR = 1000, 7 = 0.1 | 10000 | [-3, 2]
1SnRs =001, 7 =0 | 35000 | [-4.3, -0.8]
1SR = 0.01, 7 = 0.1 | 34000 | [-4.3, -1]

TABLE 4.2. Data collected from the optical telecommunication system
equivalent model described in section [3.1], for different crosstalk levels, ex-
tinction ratio and skew-symbol rate products.

between the training and test RMSEs for each training attempt, from which we conclude
that the model does not present overfitting or underfitting. Table presents the average
RMSEs and respective standard deviations of the ten CNN trainings for each GEP size

corresponding to the results presented in Fig. [4.1]
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F1GURE 4.1. RMSE of the BER prediction obtained in ten trainings of the

CNN for different GEP sizes for an optical link with X, = -14 dB, r=0.1
and |Sp, Rs| = 1000.

The 256 x 256 GEP has the worst performance, since it leads to a higher average RMSE,
of 1.16 x 107! for the training set and 1.20 x 10! for the test set, for all ten trainings
in comparison with the other GEP sizes. For 256 x 256 GEPs, a more variability of the
RMSE results is observed for the ten trainings, as can be seen in Fig. and confirmed
by its highest standard deviation. Fig. and Table also show that the CNN trained
with 32 x 32, 64 x 64 and 128 x 128 GEPs present similar training and test RMSEs, from

which we can conclude that the current CNN archicteture is more adequate for smaller
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Chapter 4 CNN performance assessment and discussion
GEP sizes. As the RMSEs are very similar, there is the advantage in training the CNN

with 32 x 32 GEP images, due to lower computation time.

. Av.g . Std. . Avg test | Std test
GEP size | training | training RMSE RMSE
RMSE RMSE
32 x 32 6.25x1072[1.2x 1072 [6.32x1072 [ 1.0 x 1073
64 x 64 5.95x 1072 2.7 x 1073 [6.41x1072 2.7 x 1073
128 x 128 [6.37x1072[74x 1072 [6.49x102[7.0x 1073
256 x 256 | 1.16x 1071 |[1.87x1072[1.20x 101 [ 1.76 x 1072

TABLE 4.3. Average (Avg) RMSE and standard deviation (Std) of the
BER predictions obtained in ten trainings of the CNN for different GEP
sizes for an optical link with X, = -14 dB, r=0.1 and |S,,, Rs| = 1000.

4.3. CNN non-deterministic behaviour assessment

As mentioned in the section [4.2] the CNN algorithm presents a non-deterministic be-
haviour, which means that different CNN trainings using the same data splitting can
perform differently, i.e., the predicted BERs are not the same. This is directly reflected in
the RMSE and, therefore, in the CNN performance evaluation. To study this effect and
determine the reliability of the CNN regarding the variability of results, a further study is
performed, where training the CNN with the same percentage of data splitting, but with
the data points distributed differently is also assessed. This situation is denoted as ”dif-
ferent data splitting” and the corresponding RMSE results from the training, validation
and test data are presented in Fig. [£.2] The results with the same splitting along the ten
trainings shown in Fig. correspond to the ones presented in Fig. [4.1 As seen in Fig.
a), for the training data points, the highest RMSE is obtained in the fifth training
using the same splitting and, in general, the different splitting approach present lower
RMSEs. However, Figs. b) and c¢) do not present the same behaviour, since with
the validation data points obtained similar RMSEs have been obtained and the test data
points give, in general, lower RMSEs with the same splitting during the ten trainings.
To compare the RMSEs of the two training approaches, we resort to statistical hy-
pothesis testing, using the parameters shown in Table[4.4] where the null hypothesis under
test is the nonexistence of a significant statistical difference between the RMSEs of the
two training approaches and whether this difference is due to the different splitting and
not due to chance. By performing the Shapiro-Wilk test, using a right-tailed normal dis-

tribution, both training approaches do not reject the null hypothesis that their RMSEs
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FIGURE 4.2. RMSE of the BER prediction obtained with different train-
ing, validation and test data splitting before each one of the ten CNN train-
ings performed, labeled as different splitting, and the same data splitting
during the ten trainings, labeled as same splitting.

are normally distributed, since at the 5% significance level, the p-value is 0.392039 for dif-
ferent data splitting and without data splitting the p-value is 0.693304, which are higher
than 5%. One of the most used techniques in statistical hypothesis testing is the Student’s
t-test, used when the difference between samples follows a normal distribution with mean
equal to zero and unknown variance. A paired-sample t-test is performed [57] between
the two training approaches, where at the 5% significance level, the ¢-value with a degree
of freedom Dy = 9 and the p-value are, respectively, £y = 3.7166; p=0.0048. This means
that the null hypothesis is to be rejected, i.e., a significant statistical difference between

the RMSEs of the two training approaches.
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Even so, as the number of samples used to perform these tests can be considered
statistically small, as an alternative to the t-test, a Wilcoxon signed rank test, which
is non-parametric, is performed. The p-value obtained at the 5% significance level is
p=0.0137, which means that the null hypothesis is also rejected. Thus, a conclusion that
can be drawn regarding the results of both tests is that, even with a balanced range of
synthetic data, different data splitting per each independent CNN training combined with
the non-deterministic behaviour of the CNN algorithm leads to a little higher variability
of the RMSE results as well as higher RMSEs than with the same data splitting.

To study the effect of the variability of results, the effect size between the RMSEs of
the two types of training is measured through the Hedges’ ¢ formula given by [58]

TT—T3 n—-3 [n—2

= 4.1
J Sp n—2.25 n (4.1)
where 77 is the average RMSE of the test set of the CNN trained with different splitting,
T5 is the average RMSE of the test set of the CNN trained with the same splitting,

ni and ny are the number of independent CNN trainings performed, s, is the pooled

(n1—1)sf+(n2—1)s3) n—3 n—2 :
1(n1—11)+(n22—1) ? n—22\ n B2
bias correction typically recommended when n < 50 [59].
From (4.1)), the obtained g = 6.06 x 10~*, which means that a really small effect

standard deviation given by s, = \/ , n = ny + ny and

between the two training approaches is observed. Therefore, we assume that the CNN
performance studies presented in this chapter, following a random data splitting, are

reliable regarding the variability of results.

Avg Std
Type of training | training | training
RMSE RMSE
Different splitting | 6.16 x 1072 [ 1.2 x 1073
Same splitting 6.25 x 1072 1.2 x 1073

Avg test | Std test
RMSE RMSE

1=652x10"2[1.7x 1073
5 =06.32x10"2 1.0 x 1073

iy

8

TABLE 4.4. Average (Avg) training and test RMSE and the corresponding
standard deviations (Std) obtained with different data splitting and the
same data splitting considering ten CNN trainings using 32 x 32 GEPs.

4.4. CNN performance with fixed scale GEP images

Firstly, the accuracy of the BER prediction is assessed by training the considered CNN
from the eye-pattern analysis and test the corresponding regression model for each type
of optical link. The data collected from the optical equivalent model used to perform

this and subsequent studies is presented in Table [4.2] In this first study, regarding the
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Chapter 4 CNN performance assessment and discussion
pre-processing step of the CNN-based model, each eye-pattern is normalized taking into
account the maximum amplitude that occurred in all eye-patterns obtained for the cor-
responding type of optical link under study, in order to obtain proper GEP images. This
normalization is denoted has having a fixed scale and is explained with detail in section
0.0 2.

Fig. [4.3| shows the BER prediction distribution of the test set from the CNN trained
for the case of an optical link with X, = -14 dB, |S,.,Rs| = 1000, for a) r=0.1 and b)
r=0. The "linear” curve represents a linear regression of the data points (generated with
the MATLAB Basic fitting tool) and the coefficient of determination, R?, indicates that,
for the case of Fig. a) the linear fit of the data explains 97.6% of its variance. In both
cases, the CNN shows a smaller dispersion of results in relation to the ”linear” curve in
predicting BERs above the BER limit. A possible reason for this behaviour can be drawn
by comparing these results with the BER distributions presented in Fig. a), where,
for both cases of extinction ratio, less diversity of amplitudes with BERs above the BER
limit is obtained, making it easier for the CNN to learn and predict the BER based on the
GEPs, because probably the GEPs are more distinguishable between them than the ones
with lower BERs. In Fig. a), a ”clustering” type of behaviour is seen above the BER
limit, which can be possibly caused by a higher similarity between GEPs obtained for a
particular BER above the BER limit, since high BERs are less likely to occur. Another
possible reason is that the GEPs that lead to less likely higher BERs for 7=0.1, have been
obtained with more eye-patterns generated using the random perturbation described in
section [3.3.1} This random perturbation may not lead to meaningful differences between
the eye-patterns obtained, leading to this clustering effect. For both cases, each CNN
presents a RMSE lower than the error margin limit of 0.1. Even so, the CNN trained
with r = 0.1 led to a RMSE of 0.066, which outperformed the RMSE of 0.099 of the one
obtained with r = 0.

Fig. [4£.4) shows the BER prediction distribution of the test set from the CNN trained
for the case of an optical link with X, = -14 dB, |S,.,Rs| = 0.01 for a) r=0.1 and b)
r=0. In comparison with the results presented in Fig. [£.3] lower RMSE values and less
dispersion of results in relation to the ”linear” curve are obtained. For both cases, each
CNN presents a RMSE lower than the error margin limit and the RMSEs are very similar
for the two extinction ratios. As seen in Fig. b), for |S,,, Rs| = 0.01, a wider range of
amplitudes with BERs either below or above the BER limit is obtained, which leads to
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FiGURrE 4.3. BER prediction distribution of the test set from the CNN
trained for the case of an optical link with X. = -14 dB, |S,,, Rs| = 1000 for

a) r=0.1 and b) r=0. The BER limit that leads to an outage probability
is also depicted.

a superior performance of the CNN in comparison with the case represented in Fig. [£.3]
This can possibly be explained due to a much higher representation of eye-patterns with
distinct features obtained without using the random perturbation, leading to a higher

number of GEPs with useful information for the CNN training.
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FiGURE 4.4. BER prediction distribution of the test set from the CNN
trained for the case of an optical link with X, = -14 dB, |S,,,Rs| = 0.01
with a) r=0.1 and b) r=0.

Considering different levels of crosstalk, Fig. shows the BER prediction dis-

tribution of the test data from the CNN trained for the case of an optical link with
|Spn Rs| = 0.01 and r=0 for a) X, = -16 dB and b) X,

-12 dB. Figs. 4.3 a) and b),

show a higher dispersion of results compared to Fig. and the obtained RMSEs are
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close to the margin error, being 0.083 and 0.091 obtained, respectively, for X, = —16 dB
and X, = —12 dB.
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FiGURE 4.5. BER prediction distribution of the test set from the CNN
trained for the case of an optical link with |S,,,Rs| = 0.01 and r=0 for a)
X, = -16 dB and b) X, = -12 dB.
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FIGURE 4.6. RMSE of the CNN models trained and tested with fixed scale
GEPs as a function of X, for |S,,,Rs| = 0.01 and r=0; |S,,,Rs| = 0.01 and
r=0.1; |SpmnRs| = 1000 and =0 and |S,,,Rs| = 1000 and r=0.1.

In Fig. [4.6] the summary of the RMSESs obtained in the previous studies is presented.
Overall, each CNN model was able to predict the log;, (BER) without surpassing the
RMSE limit of 0.1, except for the cases of X, = -16 dB and X, = -12 dB with |S,,, Rs| =
1000 and r=0. For all CNNs trained, this case, =0 and |S,, Rs| = 1000, is the one that

it is more difficult to train, leading to a worst BER prediction. The best predictions (with
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lower RMSE) are obtained for the case of |S,,,Rs| = 0.01 and r=0.1, being the RMSE
lower than 0.05, for all the crosstalk levels. In fact, with r=0.1, the RMSEs obtained
with the different crosstalk levels are more similar, than in the case with r=0.
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FiGure 4.7. BER prediction distribution of optical links with X, =
-16 dB, | S, Rs| = 0.01, r=0 and GEPs normalized with the eye-pattern
maximum amplitude obtained with X, = -16 dB and b) GEPs normalized
with the eye-pattern maximum amplitude obtained with X, = -16 dB and
X. = -14 dB from a CNN trained for optical links with X, = -14 dB,
|SmnRs| = 0.01 and r=0. The blue data points represent the predictions
with a margin error below 0.1.

Fig. [4.7 shows the results obtained for a CNN trained for the case of optical links
with X, = -14 dB, |S;n Rs| = 0.01 and r=0 and tested with GEPs from optical links with
X, = -16 dB, |S;nRs| = 0.01 and r=0. In Fig. a), the GEPs were normalized with the
eye-pattern maximum amplitude obtained in all eye-patterns simulated with X. = -16 dB
and b), the GEPs were normalized with the eye-pattern maximum amplitude obtained in
all eye-patterns generated for both crosstalk levels of -16 dB and -14 dB. As the GEPs’s
true BER values increase, both CNN models predictions are more inconsistent, since a
wider range of predicted BERs is obtained. In both figures, the linear behaviour expected
of the regression model is not observed. Fig. @ a) presents a higher RMSE than Fig.
[4.7b). In Fig. b), for log;, (BER) ~ —2, the predicted BERs vary between ~ —3.13
and ~ —1.42 and for log;, (BER) between -4.5 and -1.9, the CNN predicts log,, (BER)
around -3.26. These results show that the CNN is unable to predict correctly the BER of
test GEPs obtained with other crosstalk level, meaning that the CNN is not capable of
generalization.

However, Fig. shows a CNN trained and tested with eye-patterns obtained with

all the crosstalk levels, with X. = -16 dB, -14 dB and -12 dB , |S,..Rs| = 0.01, r=0
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and log,, (BER) € [-3.1,—1.9[ , which is able to predict more correctly the BER from
GEPs with different crosstalk levels, leading to a RMSE of 0.082 is obtained. This indi-
cates that the CNN needs to train with different optical parameters to perform a better

generalization in predicting the BERs.
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FiGURE 4.8. BER prediction distribution of the test set from the CNN
trained for the case of optical links with X, = -12 dB, X, = -14 dB, X, =
-16 dB, |S; Rs| = 0.01, r=0.

Fig. shows another situation where the CNN is completely unable to predict
correctly the log;, (BER) from the GEPs. In this case, we are assessing if a CNN trained
for a specific skew-symbol rate product can generalize its BER predictions to a different
skew-symbol rate product. Fig. a) presents the results, considering X. = -14 dB
and r=0, of the CNN model trained for the case of an optical links with X, = -14 dB,
|SmnRs| = 0.01 and tested for the case of an optical link with |S,,,Rs| = 1000. Fig. 4.9
b) presents the results, considering X. = -14 dB and r=0.1, of the CNN trained for the
case of an optical links with |S,,, Rs| = 0.01 and tested for the case of an optical link with

1S, Rs| = 1000.

4.5. CNN performance with dynamic scale GEP images

The performance of the CNN presented in section |3.3] is also assessed regarding a dif-
ferent pre-processing step, where each eye-pattern is normalized taking into account its
maximum amplitude to obtain the GEP image, which we denote as having a dynamic
scale. As previously performed, a CNN is trained and tested considering different optical

link parameters. The RMSEs obtained for the dynamic scale GEPs as a function of the
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FIGURE 4.9. BER prediction distribution of optical links with a) X, =
-14 dB, |S;nRs| = 1000, 7=0 tested in a CNN trained for the case of optical
links with X, = -14 dB, |S,,,Rs| = 0.01 and r=0 and with b) X, = -14 dB,
|SpnRs| = 1000, 7=0.1 tested in a CNN trained for the case of optical links
with X, = -14 dB, |S,,nRs| = 0.01 and r=0.1.

crosstalk level are shown in Fig. and show a similar behavior to the one obtained
for the fixed scale GEPs in Fig. 4.6, Each CNN model is able to predict the log;, (BER)
without surpassing the RMSE limit of 0.1, except for the cases of X, = -16 dB and
-12 dB with |S,,, Rs| = 1000 and r=0.
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F1GURE 4.10. RMSE of the CNN models trained and tested with dynamic
scale GEPs as a function of X, for |S,,,Rs| = 0.01 and r=0; |S,,,Rs| = 0.01

and 7=0.1; |S,,Rs| = 1000 and r=0 and |S,,,Rs| = 1000 and r=0.1 for
dynamic scale GEPs.
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The results presented in Fig. show that the CNN regression model obtained
for the case of optical links with X, = -14 dB, |S,.,Rs| = 0.01 and r=0 is also unable
to predict correctly the BER of dynamic scale GEPs obtained from optical links with
X, = -16 dB, |S;nRs| = 0.01 and r=0, where a RMSE = 0.285 is obtained. However, it
seems more able to generalize, giving BERSs are closer to have a linear behaviour comparing

to the case presented in Fig. [4.9
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FiGUurReE 4.11. BER prediction distribution of GEPs from optical links
with X, = -16 dB, |S;.Rs| = 0.01 and r=0 from a CNN regression model
obtained for the case of an optical link with X, = -14 dB, |S,.,Rs| = 0.01
and r=0.

Considering GEPs with dynamic scale, Fig. a) presents the results of the CNN
model trained for the case of optical links with X. = -14 dB, |S,.,Rs| = 0.01, =0 and
tested for the case of an optical link with |S,,, Rs| = 1000. Fig. [£.12]b) presents the results,
considering X, = -14 dB, r=0.1, of the CNN model trained for the case of an optical links
|SynRs| = 0.01 and tested for the case of optical link with |S,,, Rs| = 1000. Comparing
with Fig. using GEP images with dynamic scale gives a better generalization to
another skew-symbol rate product, being the results improved particularly for the case of
Fig. a), which gives a RMSE below the limit.

Fig. shows the BER prediction distribution of the test set from a CNN trained
with disjoint BER intervals, i. e., for the case of optical links with X, = -16 dB and
log,, (BER) € [-4.5,—-3.9] , X, = -14 dB and log,, (BER) € [-3.8,-2.9[, X. = -12 dB
and log,, (BER) € [-2.9,—0.8] , for |S,,,Rs| = 0.01 and r=0. This CNN is tested with

the full log;, (BER) range considering eye-patterns obtained for the three crosstalk levels
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F1GURE 4.12. BER prediction distribution of GEPs from optical links with
a) X, = -14 dB, | S Rs| = 1000, r=0 tested in the CNN regression model
obtained for the case of optical links with X. = -14 dB, |S,,, Rs| = 0.01 and
r=0 and with b) X, = -14 dB, |S,..Rs| = 1000, r=0.1 tested in the CNN
regression model obtained for the case of optical links with X, = -14 dB,
|SmnRs| = 0.01 and r=0.1.

and the results are shown in Fig. [4.14] which shows that, in this case, the CNN is able to

predict the BER for the three crosstalk levels considered without surpassing the RMSE
limit of 0.1.
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Chapter 4 CNN performance assessment and discussion

-1.5 ¢ -7

| BER limit BER limit
1

2F

257 BER limit

3k

True BER

3571

4t

-45 : : : - : : : : : : : : : : :
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
Predicted BER Predicted BER

a) X_=-16 dB, RMSE =0.081 b) X =-14 dB, RMSE =0.082

051 . I
, BER limit
1

BER limit

True BER

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
Predicted BER

c) Xc =-12 dB, RMSE = 0.081

FiGURE 4.14. BER prediction distribution of GEPs from optical links
with | Sy Rs| = 0.01 and r=0, for a) X. = -16 dB, b) X, = -14 dB and ¢)
X. = -12 dB, trained for the case of optical links with X. = -16 dB and
log,, (BER) € [-4.5,—-3.9] , X, = -14 dB and log,, (BER) € [—3.8,—2.9],
X. = -12 dB and log;, (BER) € [—2.9,—0.8].

4.6. Conclusions

In this chapter, the performance of the CNN-based eye-pattern analysis and BER predic-
tion in PAM4 inter-datacenter optically amplified short IM-DD connections impaired by
ICXT has been studied by assesssing the RMSE of the obtained BER predictions.

The studies performed took into consideration one interfering core, skew-symbol rate
products |S,.,Rs| = 1000 and 0.01, extinction ratios » = 0 and 0.1, crosstalk levels
X, = -16 dB, -14 dBand -12 dB and a link length of 80 km. Two different approaches
regarding the GEPs have been assessed: fixed scale GEPs and dynamic scale GEPs. With
the fixed scale GEP images, by training a CNN and test the corresponding regression
model for each of the optical link parameters presented above, each CNN model was able

to predict the log,, (BER) without surpassing the RMSE limit of 0.1, except for the cases
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of X, = -16 dB and -12 dB with |S,,,Rs| = 1000 and r=0. The best performance was
obtained with X, = -16 dB, |S,,,Rs| = 0.01 and r=0. We have also shown that training a
CNN with a certain crosstalk level, |S,,, Rs| and extinction ratio and trying to generalize
the CNN to test data obtained from other crosstalk levels or other skew-symbol rate
products, leads to innacurate BER predictions. The BER predictions can be improved by
training the CNN with eye-patterns generated for all the different crosstalk levels studied,
giving RMSEs below the limit.

The same tests have been performed with dynamic scale GEPs and the results obtained
are very similar to the ones obtained with a fixed scale GEP images. However, when
trying to generalize the CNN behavior to parameters values other than those trained,
the dynamic situation leads to a better generalization. For both fixed and dynamic scale
GEPs, the CNNs models trained and tested with |S,.,Rs] = 1000 and r = 0, have

presented the worst performances.
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CHAPTER 5

Conclusions and future work

This chapter summarizes the dissertation final conclusions and presents some proposals

for future work.

5.1. Conclusions

In this work, the use of a CNN for eye-pattern image analysis and BER prediction
in PAM4 datacenter optical connections supported by homogeneous WC-MCFs impaired
by ICXT has been studied. A literature review has been presented in Chapter 2, which
addresses the fundamental concepts related to this work, namely datacenter connections,
PAM4 signal transmission in datacenter links supported by MCF's impaired by ICXT and
an ML overview.

In Chapter 3, the equivalent model of the PAM4 optical telecommunication system
equivalent model supported by MCFs was presented in section [3.1] being the DP-DCM
developed to characterize the ICXT in MCF's described in detail. The study of the BER
distribution and respective eye-patterns in the optically amplified PAM4 link impaired by
ICXT has been performed in section , which showed that the product |S,,,Rs| has a
significant influence on the BERs distribution, since for |S,,, Rs|= 1000, the BER range
and the distribution across this range is significant lower in comparison with the range
obtained for |S,,, Rs| =0.01. It was also shown that system outage is more likely to occur
for |.S,n Rs| =0.01 and r=0 and less likely to occur for |S,,, Rs|= 1000 and r= 0.1, which is
related to the BER distributions obtained for the two different |S,,,Rs|. Then, in section
[3.3] the main tasks of the CNN implemented for eye-pattern analysis and BER prediction
has been presented, with an emphasis on the data collection process from the system
equivalent model, eye-patterns pre-processing and the considered CNN architecture.

In chapter 4, the performance of the CNN-based eye-pattern analysis and BER pre-
diction in PAM4 inter-datacenter optically amplified short IM/DD connections impaired
by ICXT has been studied by assessing the RMSE of the obtained BER predictions.
Two different approaches regarding the GEPs have been assessed: fixed scale GEPs and
dynamic scale GEPs. With the fixed scale GEPs and by training a CNN and test the

corresponding regression model for each of the optical link parameters considered, each
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CNN model was able to predict the log;, (BER) without surpassing the RMSE limit of
0.1, except for the cases of X, = -16 dB and X, = -12 dB with |5,,,R,s| = 1000 and =0,
being the RMSE only around 0.01 higher than the limit established.

Training the CNN with a certain crosstalk level, |S,,,Rs| and r and testing with
data with different optical link parameters, the CNN is unable to predict correctly the
log,, (BER). These situations can be improved by training the CNN with eye-patterns
collected for the different crosstalk levels or with dynamic scale GEPs. From an implemen-
tation point of view, a CNN based on dynamic GEPs seems a better solution, since it does
not require a prior knowledge in terms of amplitudes from other eye-patterns. Each GEP
is generated based only on the corresponding eye-pattern maximum amplitude. Consid-
ering dynamic scale GEPs, when the CNN was trained with data with a certain crosstalk
level, |S,,, Rs| and extinction ratio and tested with a different level of crosstalk, a good
performance was obtained for r=0 while, for r=0.1, the RMSE surpassed the limit.

An additional test has been performed, by training the CNN with different log,, (BER)
ranges for the different crosstalk levels, same |S,,Rs| and r and the CNN was able to
predict the BERs for the three crosstalk levels along the total BERs range.

Furthermore, we have statistically studied that the CNN results presented, which
follow a random data splitting, can be considered reliable in terms of variability of results.

As a final remark, the results obtained in this work confirm that CNN-based models
can extract features from eye-patterns to predict the BER without prior knowledge of
the transmitted signals, since only the eye-pattern image is used to extract information
and predict the BER. Such ML algorithms can be seen as a potencial side-tool to provide

additional monitoring information to existing optical systems.

5.2. Future work
Regarding the results obtained in this work, we suggest for future work:

e Generalize the CNN architecture to predict the BER with different crosstalk
levels, extinction ratios, skew-symbol rate products and other optical link pa-

rameters, instead of having a CNN trained for each parameters case.

e Assess the performance of the CNNs trained with synthetic data for monitoring

experimental data and generalize the CNN for these experiments.
e Train the CNN to predict the OP from the eye-patterns.

e Study of ICXT mitigation techniques using ML.
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Absiract—To meet the required future challenge of providing
enough bandwidth to achieve high data traffic rates in datacenter
links, four-level pulse amplitude modulation (PAM4) signals
transmission in shori-haul intensity modulation-direct detection
(IM-DI}Y datacenters connections supported by homogeneous
weakly-coupled multicore fibers has already been proposed.
However, in such fibers, a physical effect known as inter-
core crosstalk (WCXT) limits significantly the performance of
shori-reach conmnections by caunsing large bit error rate (BER)
Auctuations that can lead to undesirable system outages. In this
work, a convolutional neural network (CNN) is proposed for eye-
pattern analysis and BER prediction in PAM4 inter-daiacenier
optical connections impaired by ICXT, with the aim of optical
performance monitoring. The performance of the UNN is assessed
using the root mean square error (RMSE). Considering PAM4
interdatascenter links with one interfering core and for different
skew-symbol rate products, extinction rafios and crosstalk levels,
thie results show that the implemented CNN is able to predict the
BER without surpassing the RMSE limit. The CNNs trained with
different optical parameters obtained the best performance in
terms of generalization comparing to UNNs trained with specific
optical parameters. These results confirm that the CNN-based
midels can be able to extract features from received eye patlerns
to predict the BER without prior knowledge of the transmitted
sigmals.

Index Terms—bit error rate, convolutional neural neiwork,
inter-core crosstalk, machine learning, multicore fiber

I. INTRODUCTION

As the number of network users and devices evolved, datacen-
ters became crucial to handle large amounts of data due 1o their
Mexibility and scalability in computing and storage resources
[1]. Even so, the number ol devices connected 1o internet
protocol (IP) networks is estimated w be more than three
times the global population by the year of 2023 [2], which
leads to a significant global data center [P traffic growth, This
requires answering technologically 1o the future challenge of
providing enough bandwidth to achieve such high data traffic
rates in datacenter links,

The current approach to deal with capacity scalability in
datacenter links is using multiple wavelengths (also known
as lanes) carrying wavelength division multiplexing (WDM)
channels, where each one of these channels carries a conven-
tiomal on-off keying (OOK) signal [3]. Four-level pulse am-

plitede modulation (PAM4) has been proposed for datacenter
connections and has already been standardized by the IEEE
802.3bs task force to enable rates of 30 and 100 Ghiv's per
wavelength channel in datacenters connections [3]. Datacenter
connections are usually categorized as intra-datacenter and
inter-datacenter links, in relation o their maximum range,
respectively, up to 10 km and 100 km [3].

Nowadays, datscenter connections typically rely on single
core-single mode fibers (SC-SMFs), however, it is expected
that such fibers will no longer fulfill the future capacity
demands, as ransmission in SC-SMFs is approaching its hmat
of 100 This with coherent detection and over 200 Ghit's per
lane with IM-DD [4], [5]. Multicore fibers {MCFs) have been
proposed in order o overcome this capacity limil issue, In par-
ticular, homogeneous weakly-coupled multicore fibers {WC-
MCFs) ensure the simplicity, low cost and power consumption
design required by datacenter links. Even so, transmission in
such MCFs is impaired by inter-core crosstalk (ICXT). This
interference i MCFs occurs from power coupling between
cores and is particularly relevant with the transmission of
signals with the same wavelength in neighboring cores [6]. The
ICXT has been expennmentally shown to have a stochastic time
evolution, which can result in high levels of ICXT in short time
pericds and can limit significantly the performance of such
connections by causing large bit-error-rute (BER) fluctuations
leading to undesirable system outage periods [7], [8). Hence,
ICXT monitoring in such connections is crucial o predict and
maintain acceplable BERs,

Regarding predictive models, for either regression or clas-
sification, machine learning (ML) has been widely addressed.
ML is a branch of artificial intelligence (AI) and it is, éssen-
tially, a modeling technique that finds a model, by iself, from
a given training data [9], [10]. One of the most well known
ML algorithms is the artificial neural network (ANN), which
can behave as an universal approximation function mediator
between the inpul data and output data after the training phase
[11]. [12]. The simplest architecture of an ANN s composed
of an input layer, an hidden layer and an output layer. These
layers contain nodes, or also called neurons, modeled as an
activation function, with weights and biases, which are con-
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o4

tinwously updated during through a back propagation training
process, uniil the output layer can produce the desired output
[12]. With the growth of data and computation capacity, ML
has expanded into deep learning (DL) and ANNs developed
into deep neural networks (DNN) composed by multiple
hidden layers and a high number of nodes [13]. This allowed to
address a wider vanety of problems and data types resorting to
new algorithms with specific structures such as convolutional
neural networks (CNNs), which allow to process images, by
adding convolution, activation and pooling layers for feature
extraction [13], [14]. However, one of the main challenges
DL still faces is the shortage of available data and unbalanced
data within the training data [15]. To address this issue,
some techniques such as doman randomuzation have been
studied [15], [16]. Domain randomization generates synthetic
data similar enowgh 0 emulate the data under swudy [16].
Training with synthetic data generated through simulation
can be cheaper, diverse, which prevents from training with
unbiased data, and less time consuming compared to collecting
real data [16]-[18]. The application of ML technigues to the
physical layer of optical communication networks has already
been addressed in several works and has gained a lot of interest
by the research community in the last few years [9], [19], [20].
Hence, typical areas of application of ML in the physical layer
of optical communications networks are fiber nonlinearity
mitigation, modulation format (MF) recognition and optical
performance monitoring (OPM). Regarding the latter, most
recently, the use of CNNs has been investigated in [21], [22]
for optical performance monitoring by analysing eve-patiems.
In [21], a CNN-based technigue is assessed o perform optical
signal-to-noise ratio (OSNR) estimation and MF recognition,
from eye-pattern images of several modulation formats, PAM4
being one of them. In [22] an eye-pattern analysis scheme
based on a CNN for intensity modulation-direct detection {IM-
DD} transmissions is alse presented. Different eye-pattemns of
OOK and PAM4 signals from back-to-back (B2B) and wp o
B0 km link transmissions are sent (o a CNN-based model that
oulputs eye-pattern charactenistics, fiber link length, Q-factor
and impairments recognition [22]. Given the good resulis
obtained with these techniques, in this work, for performance
monitoring, 8 CNN is used for eye-patiern analysis and BER
prediction in PAM4 inter-datacenter optical connections im-
paired by ICXT,

1. MODEL DESCRIPTION

The schematic of the main tasks of the MATLAB simulator
for the CNN-based eye pattern analysis and BER prediction in
PAM4 inter-datacenter optical connections impaired by ICXT
is illustrated in Fig. 1.

The first main sk comesponds o data collection, where
eye-patterns and the comresponding BERs are collected from
the PAMA4 optical communication system model described
in section [I-A, The eye-patterns are obtained by varying
several optical link parameters, such as crosstalk level, skew-
symbol rate product and extinction ratio. Before a CNN
training, the eye-patierns are pre-processed, according to the

Fig. 1. Man tasks of the MATLAB-based CNN for eve-panern analyias and
BER prediction maodel

different optical hnks under study, to obtain what we denote
as grayscale eye-patierns (GEPs) images. After that, the CNN
is trained with GEPs as inputs and BERs as outputs. Then,
the CNN is tested with unseen GEP images.
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Fig. 2. System equivalent model 1o asiess the impact of ICXT on a PAMJ
optical communication link with DD and MCFs. Based on |7,

The optical ielecommunication system equivalent model devel-
oped in [7] for a PAM4 inter-datacenter optical link supported
by MCF is shown in Fig. 2.

The impact of ICXT on the performance of optically
amplified PAM4 links for inter-datacenter connections has
been analyzed in [7] by resorting to the dual polarization-
discrete changes model (DP-DCM) that describes accurately
the ICXT effect in homogeneous WC-MCFs [23]. The DP-
DCM of the MCF used in [7], considers firstly only two cores,
the interfering core m and the interfered core n as shown in
Fig. 2. Two transmitters, one for each core, generate differemt
signals where the signal transmitted along core m, o, (), is
the imerfering PAM4 signal and the signal transmitted along
core n, ¢q(t), is the interfered PAM4 signal. The optical
signals e, (1) and o, (t) are ransmitted in two perpendicular
polarization directions, x and vy, which are represented by
the power splitting of the transmitted PAM4 signal by both
polarization directions at the input of the MCF,

The PAM4 signal travels along core n of the MCF, where
linear propagation is assumed, since non-linear effects are
usually insignificant in inter-datacenters disunces [3], [24]).
The effect of ICXT on the interfered cores is modelled by
the DP-DCM simply by using transfer functions that change
randomly along time, being this dependence introduced by
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applying random phase shifts (RPSs) along the longitudinal
direction of the fiber. The transfer functions F, p(w) model
the frequency response of the ICXT from the polarization a,
with @ = x or v, at the input of core m to the polarization b,
with b = x or v, at the output of core n and are represenied as
[23]

j for . Lid
Faplw) =- EKnm expl—j i, (w)L) - exp(— TmL:]

N, . M

Y expl—jABmnz] expl—jélnm ]

k=1
where v, 15 the attenuation coefficient of the core m. In the
model proposed by [T], [25], K, is the aveérage inler-core
coupling coefficient [23], [V is the number of phase-maiching
points (PMPs), Ad,, is given by o, (w) — G.(w) and o[57)
represent the RPSs associated with the k-th PMP, which are
modelled using an uniform distribution between [0, 27| and
zp 15 the longitudinal coordinate of the k-th PMP randomly
distributed between two consecutive PMPs and is given by

L
m=—(re+k=1) 2y
N,

where ri(1 < k < N, are independent random variables
generated with an uniform distnbution between [0, 1], In this
work, we also assume tim = .

The DP-DCM models the evolution of the ICXT impact
on the system performance in differemt MCF realizations
by generating randomly different N, sets of RPSs in each
MCF realization. Therefore, in each seration of the Monte
Carlo (MC) simulator, a new PAM4 signal with symbols
randomly generated is ransmined in core m and one MCF
realization corresponding o the transfer functions given by
(1) is generated. The transfer functions F,  (w) and F, . (w)
model the ICXT generated from polarization x and v of the
core m that is going to interfere with the electrical field in the
polarization x of the core n. The wansfer functions F ,(w) and
Fy ylw) model the ICXT generated from both polarizations of
cong m that interfere with the field of core n in the polarization
v, The ICXT level quantifies the ammount of ICXT power
that will affect the interfered core and is defined by the ratio
between the mean ICXT power and the mean power of the
signal both at the output of the interfered core n and is
caleulmed as in X, = No|Kow|* [23].

The wemporal dependence of the ICXT is induced by effects
such as the walk-off due 1o different group velocities between
cores [24]. In this model, the skew between the interfering
core m and the interfered core n is given by 8., = d,.. L,
where dian is the walkofT between cores m and n defined by
i = Frm = B

In Fig. 2, at the output of the MCF, a chromatic disper-
sion compensation (CDC) module compensates the chromatic
dispersion (CD) arising from the tansmission through core n,
which can be a major source of performance degradation due
1o the required data rates. The CDC is modelled considering

a dispersion compensating fiber {DCF) in linear propagation
with a length that fully compensates the distortion due to CD.

Afier the CDC module, an erbium-doped fiber amplifier
(EDFA) compensates the inter-datacentier link losses and
an opiical filter reduces the amplified spontaneous emission
(ASE) noise power generated by the EDFA. The amplifier gain
is set to compensate all losses from the single mode-multicore
fiber (SM-MCF) and DCF and the ASE noise is modelled as
additive white Gaussian noise [T]. The optical filier, modelled
by a 4th order super Gaussian filter. reduces ASE noise power
and introduces negligible inter-symbol interference (I51) [26].

After CDC and optical amplification, the PAM4 signal
degraded by ICXT and ASE noise passes the DD receiver
dedicated to core n, where is converted to an electrical signal,
epry(t), by the PIN photo-detector with a responsivity of
Ry = HFE.' . Electrical noise is added after photodetection and
an electrical filier, modelled as a 37 order Bessel filter, is used
o reduce the noise power. In the decision circuit, the BER of
each MCF realization, the average BER is assessed. The BER
of each MCF realization is calculated by the semi-analytical
method known as the exhaustive Gaussian approach. For a
PAN4 signal, the BER is given by [27]

) 1L 'S (Fi—igs
HLR_'J.;;.\'...{EQ( e )+
uk,_—h I
] . . . N
5 [o(425) o 522)]-
o L' L
ag=1
ANeng 3

 [o(557) o (%))
To(2)

ay=2
k=1

ag=1

where 4V is the maximum length of PAM4 symbols optical
sequence generated using deBruijn sequences, with N, as
the length of the offset register used 1o generate the sequence;
B ks 10k, 12,k and i3 correspond to the means of the currents
ot the input of the decision circuit for the symbols ap ot the
time sampling instants &, = fy + T,(k = 1), where #; is
extracted from the received eye-pattern at the decision circuit
iml[. kel,.., 'IN"'. T s T ke T2k and Ty ang the noise
standard deviations Tor the different time sampling instants
[27] and the function CXx) is given by [7]

Qr) = j 1\—%- & g @

In the simulation, the decision thresholds Fi, Fo and Fy
are optimized in each time-fraction by applying the bisection
methed 1w minimize the BER (7], [25]. Effects such as ICXT,
IS, electrical noise, signal-ASE, and ASE-ASE beal noises
are laken into account using this semi-analytical method.

55



Chapter 5 Conclusions and future work

56

After several MCF realizations, the average BER is obtained
by averaging the BERs obtmined in each MCF realization.

In this work, we consider that the inter-datacenter link,
impaired by ICXT, is in outage when the BER is above
a pre-defined limit of 3.8 % 1079, which is the threshold
typically used for datacenters connections with forward-error
correction [7], [28]. The elecirical and optical receiver filiers
bandwidih were optimized in B2B operation to maximize the
receiver sensitivity [7]. For the MCF length of 30 km and
r=0 and r=0.1, the signal power at the transmitter output
has also been optimized to achieve the BER of 3.8 » 1077
without ICXT. The number of PMPs is set 1o characierize
accurately the RPS mechanism [7], [28]. Two different inter-
core skews with skew-symbol rate product of |5,,,,, /7, = 1000
and |Synf = 001 are also chosen to perform these
studies. The case of |8, /.| = 1000 is referred as high skew
symbol rate product as |S,,,f,| == 1 [7]. The sitation of
| S f2| = 0,01 is referred as low skew-symbol rate product,
singe |Smnfls| << 1 [7].
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The eye-pamterns in Fig. 3 represent an example of the
PAM4 transmitted signals o, () and ¢,,(¢) at the output of the
optical transmitter for r = 00 and r = 0.1, In contrast, Fig. 4 and
Fig. 5 show the impact of the ICXT on the eye-patterns at the
decision circuit input of the optically amplified PAM4 IM-DD
system with full loss and chromatic dispersion compensation,
Fig. 4 shows the received eve-patterns for X, = -14 dB and
| Swan | = 1000 of a) best BER and b) worst BER with r=0
and ¢) best BER and d) worst BER with w=0.1 after 1000
MCF realizations, which is high enough to obtain a stabilized
average BER [7]. Fig. 5 shows the received eye-patterns for
X. = =14 dB and |S,,,, ;] = 0.01 of a) best BER and b)
worst BER with r=0 and ¢) best BER and d) worst BER with
=01 after 1000 MCF realizations.

In Fig. 4 b), for the worst BER with r=0, the lowest eye is
Tully closed due to the strong ICXT, However, as seen in Fig. 4
d), for the worst BER with r=0.1, the ICXT degrades less the
received eye-pattern (the lowest eye is not fully closed), which
leads 1o a lower BER, The product |Spq /.| has been shown
o be relevant on the impact of ICXT on the performance of
optical links with DD (8], [29], [30]. The same conclusions
can be drawn through the analysis of Fig. 5 b) and d) where
the eye-patterns are fully closed for both extinction ratios, in

comparison with Fig. 4 b) and d), which shows that, for optical
links with low |S,,,, /.|, the ICXT is more detrimental than for
high | Simn Rs|. However, for the best BERs obtained with low
|Sndis), Fig. 5 a) and ¢) show that the amplimde levels are
more defined than in the eye-patterns shown in Fig. 4 a) and
¢) with high |Smafls|. where more symbols in the interfering
core are contributing w ICXT [7].
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Fig. 6 shows the histograms of the BERs and the corre-
sponding average BER obtained in 1000 MCF realizations
with X = -14 dB, r=0.1 and r=0, for two different inter-
core skews, a) |84, = 1000 and b) |50, = 0.0
Several MCF realizations experience system outage, especially
for |Smafls] = 0.01, since the corresponding BERs surpass
the BER limit. Only for |S,,, /.| = L1000 and r=0.1, the BER
limit is nmever exceeded and there is no sysiem outage. The
effect of ICXT on the BER distribution is less detrimental with
r = (I.1. This influence of the extinction ratio on the ICXT
impact has been already observed in OOK systems [27]. For
r = (I, a higher spreading of the BER values is observed, and,
hence, more MCF realizations have lower BERs and more lead
toa BER that surpasses the BER limit. The results in both his-
tograms show also that the produet |S,,,, /7, has a significant
influence on the BERSs distribution, since for |S,,,,, /.| = 1000,
the BER range is significant lower in comparison with the BER
range obtained for |5, /,| = 0.01. Therefore, system outage
is more likely o oceur for |S,,, ) = 0.01 and r=0 and less
likely to oceur for |5, R,| = 1000 and r = 0.1.
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Fig. 6. Histogram of the log (B ER) for 1000 MCF realizations with X, =
=14 dB, /=0l and =0, for ) | Sy fs) = 10 and b) | Sy fa| = 0001

B. Data collection and eve-pattern pre-processing

The data used o train and test the CNN comesponds to the data
collected from the optical lelecommunication syslem equiv-
alent model developed in [7] and described in section I1-A
that models with a good accuracy the ICXT effect in PAM4
inter-datacenter optical links supported by homogeneous WC-
MCFs. Each pair of collected data consists of a received eye-
pattern, E; (with i=l,. . Ngp), where Ngp is the number
of eye-panterns collected, such as the ones shown in Figs, 4
and 5, and the corresponding BER calculuted logarithmically,
i.e., log,,(BER), at the decision circuit, Each eye-pattern is a
A2 x 256 matrix, with N, =32 amplitude samples per symbol
and 256 is the number of generated PAM4 symbaols in each
MCF realization,

A good performance of the CNN is highly dependent
on the training data. So, it is important w0 choose a high
number of unbissed data w achieve o consistent model by
decreasing the disparity between the training data and testing
data. Therefore, & guided sampling is performed 1o collect a
balanced number of BERs and corresponding eye-patterns. For
that purpose, for the different optical links, the data generated
by the MATLAB optical telecommunication system equivalent

model is collected following a two-step balancing scheme
within a [log, o (BER )y in. 108,(BER) ;.. | range, where 1000
pairs of data (eye-patterns) are saved in every (.1 interval
of the log,,(BER). Within these Nggp intervals, where
Nper = AL BERmi=) 3 second balancing
step is performed with 20 sub intervals, where 50 pairs of data
are saved in every 0.003 interval of the log,,(BER). Notice
that the BER range is not the same for all optical links studied,
since the BER values distribution is much dependent on the
link parameters as seen in section II-A.

As the ICXT has a stochastic behaviour with a random
time evolution and frequency dependence, it leads to random
fAuctwations of the BER and different BER disiributions, de-
pending on the parameters of the optical link under study.
Some BERs are less frequent than others, particularly for
higher BERs associated with system outages. Especially for
low outage probabilities, these BERs become extremely rare
o occur. Therefore, 1o collect a good amount of balanced data
inside each loganthmic BER interval and 1o maintain the time
of simulation at accepiable levels, particularly for BERs less
likely to occur, a slight change of the DP-DCM model has
been implemented following a domain randomization-based
approach.

As mentioned in section II-A, in each iteration of the MC
simulator, one MCF realization corresponding to the transfer
functions given by eq. (1) is generated with random different
Np RPSs. This randomness models the unpredictability and
affects the ICXT on the received PAM4 signal and the core-
sponding BER. Firstly, the MC simulator stans with a random
set of N, RPSs using the uniform distribution between [0, 2r|
and is stored and used in the first MCF realization. After that,
based on & single uniformly distributed random number in the
interval [0, 1], it is determined how the set of N, RPSs for
the next MCF realization is generated. If the random number
is above or equal to 0.5, a new set of Ny, RPSs is generated
following the previously described procedure and, again, it
is stored, If not, a new set is obtained by adding normally
distributed random noise with zero mean and unitary variance
1o the set of N, RPSs previously stored that is known 1o lead
1o a BER inside a BER interval, The set of RPSs generated
with this random perturbation is not stored, and, therefore,
it is never used again in the following MCF realizations. At
the end of each MC simulator itération, the eye-pattern and
the corresponding log,(BER) are saved if the corresponding
Nppp interval is not full, As the MC simulator iterations
continue, Tollowing the previously described procedures, the
number of N, RPSs sets stored increases and the random
perturbation approach is performed by randomly selecting one
of the stored sets of N, RPSs.

Before training and testing the CNN, the eye-patierns are
pre-processed 1o obtain what we denote as GEPs, Typically,
oscilloscopes sample the received signal and generate a two-
dimensional database, that statistically represents the time,
where the unit interval or bit period of the eye-patiern is de-
fined by the data clock, and the amplitude of the digital signal
[31]. As the number of samples increases, a third dimension

o7
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Fig. 7. Example of the process o ransform eye-patierns mo 32332 GEP
Images.

is considered, denoted as plot density, which represents the
number of pixels that are located in the same position on the
oscilloscope display [31]. In this work, a similar approach is
used to obtain GEP images.,

Farst, for a o« % y GEP image, the amplitudes of a synthetic
eye-pattern obtained from MATLAB are normalized into [1, v
£ N amplindes o obtain the vertical position of the GEP
image pixel assigned to the corresponding amplitude, For
the case of a fixed scale GEP, this normalization takes into
account the maximum amplitude that occurred in all eye-
patierns obtained for the corresponding type of optical link
under study, i.e., the eye-patierns used during a CNN training.
For the case of a dynamic scale GEP, each eye-patiern is
normalized taking into account its maximum amplitude. After
that, the eye-patiern to GEP conversion process continues with
a y ® x GEP matrix with zero elements. The plot density
is modeled by incrementing one unit in all elements of the
GEP matrix with the rows given by the eye-pattem normalized
amplitudes and the comesponding columns given by the rows
of the original eve-pattern normalized into [1, x].

Fig. 7 shows the process to transform a synthetic 32x256
eye-pattern matrix obtained from MATLAB into a 32x32 fixed
scale GEP image. For instance, the amplitude in the (1, 1)*"
element of the eye-pattern matrix, £, is normalized into [1, 32]
€ N amplitudes, which gives 4, This means that this amplitude
falls in {4, 1)'" element of the GEP matrix, G, The amplitude
is considered in the GEP matrix by incrementing one unit
in that given element, If more amplitudes of the first row of
the eye-pattern have the normalized amplitude 4, the (4, 1)
element of the GEP matrix is incremented accordingly 1o these
number of amplitudes. The case of E{6, 1) amplitude follows
the same logic, where the normalized amphiude 15 2 and one
unit is incremented in G2, 6G).

Notice that for a different GEP size, since each eye-pattern
is a 32 x 266 matrix, an additional normalization needs o
be performed during the GEP wransformation process, For
instance, 0 obtain a 64x64 GEP, the amplitudes of the eye-
pattern are normalized into [1, 64] € N amplitudes o obtain
the vertical position of the GEP image pixel assigned o the
corresponding amplitude. Then, the transformation process

follows the previously described procedure, however, the plot
density is modeled by incrementing one unit in all elements
with the rows given by the eye-pattern normalized amplitudes
and the corresponding columns given by the rows of the
original eye-pattern normalized into [1, 64].

After this ransformation process, the GEP images, obtained
from the GEP matrices, are used as input data in the CNN
described in the next subsection.

C. Convolutional neural network

In this work, the CNN model is developed on the MATLAB
platform using the Deep Learning Toolbox and Deep Network
Designer. The proposed CNN architecture is based on [21],
[22] and is schematically represented in Fig. 8. First, normal-
ization is applied by re-scaling the data in the range [—1,1]
every tme a GEP image is forward propagated through the in-
put layer of the CNN. This architecture has five convolutional
(Conv) layers, C1 o C5, that pass the GEP images through a
set of convolutional kemels with stride (1,1). The layers Cl
and C2, where both kernel sizes are 5x3, produce, respectively,
32 and 64 feature maps and the lavers C3, C4 and C5, where
the comesponding kernels sizes are 3x3, produce, respectively,
128, 256 and 512 feature maps. All convolution layers add the
required padding to the input, either a GEP image or feature
map, o ensure that its border pixels are completely exposed w
the filter and the resulting feature map has the same size as the
input, The outputs of each convolutional layers are normalized
using a batch normalization (BN) layer followed by a Rectified
Linear Unit (RelLU) layer for a more effective and faster
training [14]. After the first four Conv+BN+ReLU operations,
a down-sampling is performed by an average pooling layer.
In our CNN, we set the four pooling layers, P1, P2, P3
and P4, with 2x2 subsampling regions and stride (2,2). After
feature extraction (C5+BN+RelU), a dropout layer is placed
o prevent overfitting and a fully connected layer followed by
a regression layer are used o predict the BER.
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Fig. 8. UNN srchitecture conssdered in thas work 10 learn the BER from the
CEP images,

The performance evaluation metric chosen to evaluate the
CMN-based eye-paniern image analysis and BER prediction is
the root mean square error (RMSE), which has been widely
used in the literature as a key CNN regression performance
indicator [32]-[34], and is given by

-

1
(5)
F

RMSE = - gl
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where n is the number of eye-patterns considered either in the
training, test or validation sets and e; is the difference between
the expected values and the predicted values of the BER. In
this work, we consider a RMSE below 0.1 as an acceptable
prediction of the log,, (BER).

III. CNN PERFORMANCE ASSESSMENT

In this section, the performance of the CNN-based eye-paitern
analysis and BER prediction in PAM4 inter-datacenter opti-
cally amplified short IM-DD connections impaired by ICXT
is assessed. The simulation parameters are presented in Table
L

TABLE I
SIMULATION PARAMETERS

Parameter Value
Skew-symbal rale product [ u] = LAY, [Mpen ] = LT
TCRT level Ne= -164dB, K. = -4 db. N, = -12dB |
Extinction ratic r=0r=01

A. CNN performance for specific optical link parameters
Firstly, the accuracy of the BER prediction is assessed by
training the considered CNN from the eye-patiern analysis and
testing the comesponding regression model for each type of
optical link, Fig. 9 shows the summary of the RMSEs obtained
for the CNNs trained with fixed scale GEPs. Each CNN model
is able o predict the log,, (BER) without surpassing the
RMSE limit of 0.1, except for the cases of X. = -16 dB and
X = -12 dB with |S,,,, f2,| = 1000 and r=0. For all CNNs
trained, this case, r=0 and |S,,,, /.| = 1000, is the one that it
is more difficull o train, leading 1o a worst BER prediction.
The best predictions (with lower RMSE) are obtained for the
case of |8, 01, = 0.01 and r=0.1, being the RMSE lower
than 0.05, for all the crosstalk levels. In fact, with r=0.1, the
RMSEs obtained with the different crosstalk levels are more
similar, than in the case with r=0,
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The RMSEs obtained for the dynamic scale GEPs as a
function of the crossialk level are shown in Fig. 10 and show
a similar behavior to the one obtained for the fixed scale GEPs
in Fig. 9. Each CNN madel is able to predict the log,, (BER)
without surpassing the RMSE limat of 0.1, except for the cases
of X. = -16 dB and -12 dB with |Syuafls| = 1000 and r=0.
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Fig. 10, RMSE of the CNN models rained and ested with dynamic scale
GEPs as a function of X, for |Sme | = 001 and =k |Smn ] =001
and r=l.1; | Smn ] = 1000 and /=0 and | Sy B = 1000 and /=001 for
dynamic scale GEPs.

B. CNN generalization

In this subsection, the performance of the CNN generalization
is assessed. Fig. 11, shows the results obtained for a CNN
trained fixed scale GEPs for the case of optical links with
X, = -144dB, |5, R, = 001 and r=0 and tested with
fixed scale GEPs from optical links with X, = -16 dB,
|8 fts] = 0,01 and r=0. The GEPs were normalized with the
eye-patiern maximum amplitude obtained in all eye-patterns
generated for both crosstalk levels of -16 dB and -14 dB.
As the GEPs’ rue BER values increase, the CNN predictions
are more inconsistent, since a wider range of predicted BERs
is obtained. The linear behaviour expected of the regression
model is not observed, Fig. 11 presents a much higher RMSE
than the RMSE limit of 0.1. These results show that the CNN
is unable to predict correctly the BER of est GEPs oblained
with other crosstalk level, meaning that the CNN is not capable
of generalization.

Fig. 12 shows a CNN trained and tested with eve-palterns
obtained with X. = -16 dB, -14 dB and -12 dB , |Sua ls| =
0.01, r=0 and log,, (BER) € [~3.1,~1.9] , which is able
to predict more correctly the BER from GEPs with differem
crosstalk levels, leading 1o a4 RMSE of 0,082, This indicates
that the CNN needs to train with different optical parameters
to perform a better generalization for predicting the BERs.

Regarding dynamic scale GEPs, the results presented in Fig.
13, show that the CNN regression model obtained for the case
of optical links with X, = -14dB, |5,/ = 001 and
r=0 is also unable w predict comrectly the BER of dynamic
scale GEPs obtained from optical links with X, = -16 dB,
[ Sy fta] = 0,01 and r=0, where a RMSE = 0.285 is obtained.
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However, it seems more able 1o generalize, predicting BERs
closer to a linear behaviowr comparing o the case presented
in Fig, 11, for the fixed scale,

Fig. 14 shows the BER prediction distribution of the
test set from a CNN trained with dynamic scale GEPs of
disjoint BER intervals, 1. e, for the case of optical links
with X: = -16dB and log,, (BER) € [-4.5,-3.9] ,
X, = -14 dB and log,, (BER) € [-3.8, 20, X = -12 dB
and log,, (BER) € [-2.0, 0.8 , for |5,,, 0, = 0.01 and
r=0). This CNN is tested with the full log,, (BER) range
considering eve-patterns obtuined for the three crosstalk levels
and the results are shown in Fig. 15, which shows that, in this
case, the CNN is able o predict the BER for the three crosstalk
levels considered without surpassing the RMSE limit of 0.1,

IV, CONCLUSIONS

The performance of the CNN-based eye-pattern analysis and
BER prediction in PAM4 inter-datacenter optically amplified
IM-DD connections impaired by ICXT has been studied by
assessing the RMSE of the obtained BER predictions. Two
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Fig. 13. BER predictions of GEPs from opical links with X, = -16 dB,
|Syem s = 0.01 and r=0 from a CNN regression madel obtained for an
optical link with X = -14 dB, |Syn Ba| = 0.01 and =0,
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Fig. 14. BER predictsons of the test set from a CNN trained for optical
links with X, = -16 dB and logy, (BER) € |—1.5,—:|.1|[], X, = 14 dB
and log,, (BER) € |-38,-20( X. = -12dB snd log,, BER) €
|—2.‘.L —“.il]. | S Al | = 001 and =il

different approaches regarding the GEPs have been assessed:
fixed scale GEPs and dynamic scale GEPs, With the fixed scale
GEPs, training a CNN and test the corresponding regression
model for easch of the optical link parameters considered,
each CNN model was able o predict the log,, (BER) without
surpassing the RMSE limit of 0.1, except for the cases of
X. = -16dB and X, — -12 dB with |5,,,,/%,| = 1000 and
r=0), being the RMSE only wround 0,01 higher than the limit
established.

By training the CNN with a certain crosstalk level, |5, I, |
and v oand testing with data extracted for different optical
link parameters, we have shown that the CNN s unable 1o
predict comectly the log,, (BER). These siluations can be
improved by training the CNN with eye-patterns collected for
the different crosstalk levels or with dynamic scale GEPs,
From an implementation point of view, 8 CNN based on
dynamic GEPs seems a better solution, since it does not
require a prior knowledge of the signal amplitudes obtained for
other eye-patterns. Each GEP is generated based only on the
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Fig. 15, BER predictions of GEPs from optscal links with |5,,,,, R, = 0,01
and =0, for a) Xo = <16 dB, b)X, = -14 dB and ¢) X = =12 dB, tramed
for optical links with X, = -16 dB and bog, (BER) € [-4.5, -3.9], X, =
<14 dB and logy (BER € [=5.8, 28], X, = 12 dB and log,  (BER) €
(=20, ~08).

corresponding eye-pattern maximum amplitude. Considering
dynamic scale GEPs, when the CNN was trained with data
with o certain crosstalk level, |8, /T, and extinction ratio and
tested with a different level of crosstalk, a good performance
was obtained for r=0 while, for r=0.1, the RMSE surpassed
the linit.

By training the CNN with different log,, (BER) ranges for

the different crosstalk levels, same |S,,,,7,| and r, the CNN
was able to predict the BERs for the three crosstalk levels
along the toial BERs range. As a final remark, the resulis
obtained in this work confirm that CNN-based models can
extract features from eye-patierns to predict the BER without
prior knowledge of the ransmitied signals, since only the eye-
partern image is used to extract information and predict the
BER.
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