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Resumo

As redes óticas são fundamentais para as comunicações atuais, tendo o seu planea-

mento uma grande importância. O encaminhamento e a atribuição de comprimentos de

onda são funções essenciais no planeamento do transporte de dados nestas redes. Este

trabalho pretende estudar diferentes técnicas de coloração de grafos para a atribuição de

comprimentos de onda nas redes óticas.

Analisamos e comparamos diferentes algoritmos de atribuição de comprimentos de

onda, como a heuŕıstica Greedy, um algoritmo exato baseado em Programação Linear

Inteira (PLI) e um algoritmo de procura meta-heuŕıstico, o Tabu Search. Estudaram-se

estes algoritmos para diferentes redes reais, diferentes topologias lógicas e de caminhos,

com o objetivo de analisar o número de cores e o tempo computacional obtidos por cada

algoritmo estudado.

Conclúımos que o algoritmo exato baseado em PLI, embora devolva sempre um número

de cores ótimo, aplica-se apenas a redes com menos de 20 nós, devido ao seu tempo com-

putacional elevado. Também se concluiu que o Tabu Search devolve sempre os mesmos

resultados que o algoritmo exato, para as redes reais, mas com mais rapidez computa-

cional. Concluiu-se também para as redes reais, que o Greedy estima o mesmo número de

cores que o Tabu Search. No entanto, com matrizes geradas aleatoriamente, nalguns casos,

o Tabu Search retorna menos cores que o Greedy. Por exemplo, o Tabu Search devolve

menos 35 cores que o Greedy para uma matriz de 1000 caminhos e 50% de probabilidade

de cada caminho ter uma ou mais ligações pertencentes aos restantes caminhos.

Palavras-Chave: Atribuição de comprimentos de onda, Coloração de grafos, Greedy,

Programação Linear Inteira, Redes óticas, Tabu Search
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Abstract

Optical networks are crucial in today’s communications, so their planning is of para-

mount importance. Routing and Wavelength Assignment (WA) are essential planning

functions to transport the data in these networks. This work aims to study different

graph coloring techniques for WA in static optical networks.

We analyze and compare different graph coloring algorithms such as the Greedy heuris-

tic, an exact algorithm based on Integer Linear Programming (ILP) and the Tabu Search

meta-heuristic, for WA in optical networks. The studies are performed considering several

real network scenarios, different logical and path topologies, and the number of colors and

computation time of each one of the studied algorithms is analysed.

We have concluded that the exact algorithm based on ILP, although giving always the

optimum number of colors, is only applicable to networks with less than 20 nodes, due to

its higher computation time. It was also concluded that the Tabu Search algorithm gives

always the same results as the exact algorithm, for the real networks studied, but in a much

faster computation time. Finally, we have concluded that the common Greedy algorithm

performs as well as the Tabu Search algorithm, for all the real networks studied, but in

some scenarios, with random path matrices, the Tabu Search gives a lower number of

colors than the Greedy algorithm. For example, the Tabu Search gives less 35 colors than

the Greedy algorithm for a random path matrix with 1000 paths and a 50% probability

that each path has one or more links being used by the other paths.

Keywords: Graph Coloring, Greedy, Integer Linear Programming, Optical Networks,

Tabu Search, Wavelength Assignment
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CHAPTER 1

Introduction

1.1. Motivation and Context

Routing and Wavelength Assignment (RWA) are fundamental functions to transport

data in an efficient way in optical networks [1]. Routing is responsible for finding the

best path for a given traffic demand, and Wavelength Assignment (WA) is responsible for

choosing an appropriate wavelength in that path to transport the given traffic demand

taking into account the wavelength continuity and the distinct wavelength constraints [2].

Several techniques have been used to solve the WA problem, ranging from exact al-

gorithms to heuristics that typically give a sub-optimal solution to the problem, but

in a shorter time, like First-Fit or Most-Used algorithms [2], [3]. Graph coloring tech-

niques, although applied to a large range of applications, such as constructing schedules,

scheduling reservations or compiler register allocations, can be also used for WA in optical

networks [2]. The most common graph coloring for WA is the Greedy algorithm [4]. Some

studies have, however, used other Graph coloring algorithms for WA, such as the Degree

of Saturation (DSATUR) and Recursive Largest First (RLF) [5], but for the majority of

the networks studied, Greedy algorithm performs as well as these algorithms.

In this work the aim is to study more complex and more rigorous algorithms based

on graph coloring techniques for WA in optical networks. In particular, we will study

an exact algorithm based on an Integer Linear Programming (ILP) formalism [4] and

the Tabu Search meta heuristic algorithm [3], [4], [6], for several network topologies.

The respective number of colors and computation time are computed and compared with

the Greedy algorithm performance [5]. The aim of these algorithms, considering a static

network scenario, is to find the minimum number of wavelengths (i.e. colors) that satisfies

all traffic demands, in a feasible and reasonable computational time.

Exact WA algorithms based on graph coloring techniques will give always the optimal

solution, although they require enhanced computational resources and tend to have high

computational times as the network size increases [4]. There are two common approaches

for graph coloring using exact algorithms. The first one is called the backtracking ap-

proach, and the second one is to use Integer Programming (IP), which is a specific linear

1



Chapter 1 Introduction

programming model type [4]. Linear programming is a general methodology for achieving

optimal solutions to linear mathematical models. In this dissertation, we will use ILP to

obtain exact solutions for the WA problem.

Due to the high computational requirements of exact algorithms, it is common to use

heuristic algorithms when the network size increases, to achieve feasibility and reduce the

computational time, but being aware that the solution could not be the optimal one [7].

In this dissertation, we also study the metaheuristic Tabu Search algorithm, which is used

for solving different kinds of problems, such as optimization problems in network design

[8]. For example, it has been used for solving RWA problems based on ILP formalisms [6],

[9], [10]. Moreover, in [7], this algorithm has been used to solve graph coloring problems.

But, to the best of our knowledge, there are no works that have used the Tabu Search

algorithm as a graph coloring technique for WA in optical networks, as performed in this

work.

1.2. Goals

The main goal of this work is to study more rigorous graph coloring algorithms for

WA in optical networks, than the usual Greedy algorithm. In particular, we will study

an exact algorithm based on ILP formalism and also the Tabu Search meta-heuristic

algorithm. A performance study is going to be made for several network topologies -

physical topologies, logical topologies and path topologies -, and a comparison between

the studied algorithms and the Greedy is performed, in terms of the number of colors and

also in terms of computation time. In this work, we consider the following real physical

networks: rings with a different number of nodes, COST239 [11], NSFNET [12], UBN

[13] and CONUS with 30 nodes network [14].

1.3. Dissertation Organization

This dissertation consists of five chapters with the following content.

In Chapter 1, the motivation of this study, goals and main contributions are presented.

Chapter 2 briefly describes the basic concepts in optical networks and describes sum-

marily several algorithms to perform the RWA.

Chapter 3 presents the graph coloring basics. A brief discussion of the problem com-

plexity is addressed. Also, the graph coloring algorithms that are studied in this work,

Greedy, ILP and Tabu Search are explained and their corresponding pseudocodes pre-

sented.

2



Chapter 1 Introduction

Chapter 4 presents the application of the three graph coloring algorithms for WA

in optical networks considering randomly generated path graphs, real regular and non-

regular optical networks. For each algorithm, the number of colors/wavelenghts assigned

is studied and conclusions regarding the computational time are presented. The Greedy

algorithm is compared with the exact algorithm based on ILP for small sized networks.

The Tabu Search algorithm is also compared with the Greedy algorithm considering ran-

dom path graphs. Finally, all the three algorithms are applied to real networks and their

performance is discussed.

Chapter 5 compiles the main conclusions of the whole work and presents future work

possibilities.

1.4. Main Contributions

The main contributions of this work are the following:

• Performance study of an exact and a meta heuristic graph coloring algorithm for

WA in optical networks. The exact algorithm is based on a ILP formalism and

the meta-heuristic algorithm is the Tabu Search algorithm.

• The exact algorithm based on ILP was implemented and tested with several

constraints, ranging from simple ones with slower computation times to more

complex constraints with faster computation times.

• A performance comparison with the Greedy algorithm was performed. It was

concluded that the Greedy with descending order gives similar number of colors

than the Tabu Search for the real networks tested. However, using random path

graphs, in several cases, the Tabu Search lead to a superior performance relatively

to the Greedy.

3





CHAPTER 2

Planning Optical Networks Concepts

2.1. Introduction

RWA techniques are a complex problem in the context of optical network planning.

These techniques are fundamental in establishing an optical path in a Wavelength Division

Multiplexing (WDM) transport network. The routing function is responsible for selecting

the set of connections between source and destination nodes and the WA corresponds to

the reservation of a specific wavelength for the path resulting from the routing [2].

In section 2.2, some important basic network concepts are clarified, such as the dif-

ferent network topologies and the correspondent matrices used in the routing and WA

functions. Section 2.3 contextualizes the RWA problem in optical networks describing

the telecommunications network and its elements and architectures. In particular, sub-

sections 2.3.1 and 2.3.2 describe, respectively, the routing and WA algorithms in order to

understand the real context of this work.

2.2. Basic Network Concepts

A telecommunications network can be represented as a graph that is geometrically de-

fined by a set of nodes or vertices joined through lines that represent the direct connection

between two adjacent nodes, which are called edges or links [4]. This definition of a graph

is represented as G=(V, E), where the set of vertices is represented by V = {v1, v2,. . . , vn}
and the set of links by the set E = {e1, e2,. . . , en}, where n is the total of vertices or edges.

An example of a telecommunication network is shown in Figure 2.1 and associated to the

respective graph G = ({v1, v2,. . . , vn}, {e1, e2,. . . , en}). This example corresponds to a

simple network with 5 nodes and 10 connections.

A link e1 = (v1, v2) between two nodes is characterized by its cost. Each link from e1

to e10 has a distinct cost represented, e.g., by the connection delay, the distance between

vertices, price, hops between nodes, examples can be found in [2]. A link can be unidi-

rectional or bidirectional. Two unidirectional links implemented from a source node to a

destination node in opposite directions result in a bidirectional link, which we assume is

implemented by a pair of fibers, one for each transmission direction.

5



Chapter 2 Planning Optical Networks Concepts

Figure 2.1. (a) Network and (b) Corresponding graph

A path can be described as a sequence of links that connect a sequence of distinct

vertices. A uv -path is a path between two nodes: node u is a source node and node v is a

destination node. A connection occurs when one of the possible paths between two nodes

is reserved, depending on certain criteria or cost. If a uv -path exists between all pairs of

vertices u and v, then a graph G is designated as connected; otherwise it is disconnected

[4]. From another point of view, a path is directed if it can only be traversed in one

direction. Otherwise, the path is undirected.

In the context of telecommunications networks, several topologies must be taken into

account and the choice of the topology is one of the most important steps in network

planning as it determines the development of the planning strategy and the type of service

that the network provides [2].

The physical topology is defined by the way these nodes are physically linked and,

on the other hand, the way how information is distributed between nodes determines the

network logical topology [2].

Figures 2.2 (a) and 2.2 (b) represent, respectively, physical and logical topologies.

Both topologies are respectively defined by the interconnection strategy between the nodes

and by the way information (i.e. traffic) flows over the network and that traffic can be

described by traffic demands or logical links. This is a result of assuming, according to

the example of Figure 2.2, that the node v1 distributes information to the other nodes

and that all communications between the different nodes pass through node v1.

The physical topology of the graph represented in Figure 2.2 (a) can be defined by

a matrix called adjacency matrix A with N × N dimension, where N is the number of

nodes, and can be represented by Equation 2.1. Taking into consideration that in an

6
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Figure 2.2. (a) Physical topology and (b) Logical topology

adjacency matrix bidirectional connections are considered, when aij = 0, then there is no

physical connection between both nodes i and j. If this link exists, then aij = 1 [15].

A =




0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0




(2.1)

The logical topology can also be represented by a matrix, called demand matrix D,

which represents the way traffic flows on the network. This traffic can be defined by the

amount of logical connections or traffic requests. The logical topology is then described

according to an demands matrix (which can be unidirectional or bidirectional). As in the

matrix A, in the demand matrix D represented in Equation 2.2, the element dij = 0 if

there is no traffic demand between nodes i and j and dij = 1 if that demand exists [15].

D =




0 1 1 0 1

1 0 1 0 0

1 1 0 1 1

0 0 1 0 1

1 0 1 1 0




(2.2)

The traffic matrix T represents the amount of traffic that flows between all network

nodes in a certain time range and is represented in Equation 2.3. This matrix is associated

to the Figure 2.3 that represents a 5 nodes network that transports traffic units in GbE

[16].
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Figure 2.3. Traffic flow between nodes

Traffic units of various types of client signals can be transported on these networks,

e.g., STM-1, GbE, 10 GbE. These units must be converted into traffic units that can be

used on the network. For example, traffic units for Optical Transport Network (OTN)

are defined considering Optical Transport Unit (OTU)-k signals. An example of these

matrices are shown in Equation 2.4.

T =




0 80 40 0 160

80 0 120 0 80

40 120 0 160 40

0 0 160 0 5

160 0 80 40 0




(2.3)

T (OTU − 2) =




0 10 5 0 20

10 0 15 0 0

5 15 0 20 40

0 0 20 0 5

20 0 10 5 0




(2.4)

2.3. RWA Problem in Optical Networks

A telecommunications network is composed by two layers: the service layer, and the

transport layer (i.e. forward information from the network to the users), which is divided

into the electrical and optical layers and is responsible for the information transmission,

routing and multiplexing through the network [17].
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Chapter 2 Planning Optical Networks Concepts

In Figure 2.4, the physical topology of a known real optical network, called COST239,

is represented [11].

Figure 2.4. Physical topology of the COST 239 network [11]

In these networks, the source-destination nodes typically used to route information

are the Reconfigurable Optical Add-Drop Multiplexer (ROADM), being a fundamental

element in the network structure that allows the establishment and termination of opti-

cal paths according to the needs of metro/long-haul networks [18]. The reconfiguration

property of the ROADM appeared due to the need to modify the wavelengths that are

extracted/inserted/expressed in an Optical Add-Drop Multiplexer (OADM), to increase

network flexibility [2].

Figure 2.5. 4-degree Broadcast and Select (B&S) ROADM [18]

9



Chapter 2 Planning Optical Networks Concepts

A 4-degree ROADM switches and transmits information in four directions, as shown in

Figure 2.5, taken from [18]. However, the ROADM degree, which represents the switching

direction and is related to a transmission fiber pair, may vary between two, for short

distance networks, to a maximum of eight in metro or long-haul networks [15]. Nowadays,

ROADM have several features: color independence, direction independence, wavelength

contention free, which are known as Colorless, Directionless and Contentionless (CDC)

ROADM and may support the flexible grid [18].

One of the main elements of ROADM is the Wavelength Selective Switch (WSS) [2].

These switches enable that an input wavelength can be selected to any of the output

ports. Multiple wavelengths can be switched to the same output port [18]. The impact

of WSS features on transmission is dependent on the ROADM node architecture: Route

and Select (R&S) or B&S [2].

The B&S architecture is shown in Figure 2.5. Each ROADM node has a passive splitter

(broadcast function) and a WSS associated (select function). The broadcast signals in all

splitter outputs are selected (blocked or passed) at each WSS input port. The advantages

of this architecture correspond to the reduction of optical and electrical complexity, cost

and power consumption [19]. However, due to the division of the input signal power by

the number of output ports, the insertion losses can be high. In this architecture, there

may be degradation in the transmission due to the crosstalk because of the isolation on

seletive ports [19]. There is no filtering in the splitter. This filtering happens in the WSS,

which is responsible for choosing the wavelength at the output ports. The splitter is a

passive element, where no filtering occurs; on the contrary, the WSS is active, that is, it

filters the wavelengths [19].

To have a R&S architecture, the splitter in Figure 2.5 is changed by a WSS. This

architecture uses, for each ROADM, two WSS, respectively 1xN and Nx1. The signal is

routed from the first (routing function) to the second WSS (select function) which selects

the desired signals, where filtering occurs [19]. By using this architecture, there is a

reduction of physical layer impairments, like in-band crosstalk [16].

RWA problem is more complex than the problem of routing in networks operating

electronically and this complexity is a consequence of two constraints. The first constraint

is that there is a need for continuity of wavelength, i.e., all links forming an optical

path must be assigned the same wavelength if there is no wavelength conversion in the
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network. The second constraint is that two distinct optical paths should not have the

same wavelength on the same link [2].

In general, the RWA problem should be seen as an optimization problem where the

main objective depends on whether the networks are static or dynamic. In the case of

this work, since it focuses on static networks, the main objective is to try to minimize the

number of wavelengths assigned to a given number of optical paths.

In order to simplify the approach to the RWA problem, it is advisable to divide it into

two separate sub-problems, first the routing and then, WA, which will be solved through

exact and heuristic solutions.

2.3.1. Routing Algorithms

Routing consists in selecting a path from among several possible paths between a

source node and a destination node through which a demand will be sent [3]. The choice

of the path should take into account its cost, which should be the one that least overloads

the connection and the network, regardless of the cost criteria. These indicators or metrics

used for routing are, for example, the lowest number of hops, the path with shortest

distance or the minimization of path regeneration [15]. It is based on these metrics that

the main goal of routing is obtained: given a physical topology G and a traffic matrix

T, find the possible paths that support the traffic demands and choose the best paths

according to the metric applied [2].

When the demand matrix D does not vary along time or if it varies depending on the

arrival and the end of new demands as a function of time, the configuration of the path

is made, respectively, in a static routing scenario or dynamic routing scenario [2].

There are two fundamental strategies to consider when selecting the set of paths for

demand, fixed-path routing and alternative-path routing.

In the Fixed-Path Routing strategy, the set of paths was already generated before

any demand being added to the network. It is important that from this set, the chosen

path is always used for that request [3]. From each set of candidate paths, the lowest-cost

path is preferably chosen. This path is responsible for routing all requests traffic from the

source node to the destination node [2].

In fixed-path routing, the state of the network does not changes or adapt to any

situation. This can block of demands in certain links or congestion in the network [2].

Given the graph G, which represents the physical topology of the network, and the

respective traffic matrix T, to find out which are the shortest paths for all traffic requests,
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it is necessary to use, for example, the Dijkstra or the Yens k-Shortest Path (YKSP)

algorithms [3].

As mentioned above, the Dijkstra algorithm is an algorithm that finds the shortest

path from a source node to a destination node. Given a graph oriented G = (V,E), where

E are the links with their associated cost w, the following condition has to be verified in

the characteristics of the graph: For all links (u, v), w(u, v) ≥ 0 ; that is, all the costs of

the links are not negative. This strategy allows to the minimization of end-to-end latency,

becoming the main advantage of its use [2].

In the case of the YKSP, it is an algorithm that needs Dijkstra to calculate the

shortest paths but with the objective of finding several shortest paths between two nodes,

i.e., finding the first shortest path, the second shortest path, and so on, using the first

that appears to make the demand transport [2].

After calculating the shortest paths, demands are ordered. For this, the following

sorting strategies should be considered:

(1) Shortest path first: demands ordered in ascending order of cost;

(2) Longest path first: demands ordered in decreasing order of cost;

(3) Random ordering: randomly ordered.

Demands should always be forwarded according to the chosen ordering strategy. If

several paths have the same associated cost, the path chosen is the one that represents

the least connection overload.

In the Alternative-Path Routing strategy, mostly associated with dynamic net-

works, the process is the same for creating the paths before selection. However, it con-

siders multiple alternative routes. There is always a backup route responsible for saving,

for each node, an ordered list of alternative paths for each destination node. As the name

indicates, it is possible that the state of the network may change and, therefore, these

tables are updated accordingly [3].

This is an advantageous strategy to solve problems of blocking or network constraints

caused by the overload of some connections in favor of less overloaded connections. This

strategy it is able to adapt and/or re-organize the network paths in order to balance that

traffic and avoid the problem. Also, it quickly changes the routing to an alternative path

if, in case of failure, it is necessary to resort to the protection path [2]. This network’s

ability to change to an alternative path in case a certain service fails that allows the

service to continue it is called survivability. This capacity is only checked and possible
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if both service and protection paths are disjoint, that is, they cannot have any node or

connection in common except the source and destination nodes [2].

Protection can be shared or dedicated [16]. In the case of shared protection, a pro-

tection path is shared by more than one service path. If these paths have elements in

common they fail simultaneously if one of these elements also fails. Therefore, it is ideal

that these shared paths be independent [16].

In the case of the dedicated one, and unlike shared protection, each service connection

is specifically associated with a particular demand, i.e., each service path has its own

dedicated backup path [2]. This protection can be 1+1 and 1:1. In 1+1 dedicated

protection, the protection path is always available, i.e., both paths between nodes are

active and the destination node selects the better path, according to a desired criteria.

On the other hand, in 1:1 dedicated protection, traffic uses only one fiber for transmission,

the service fiber. In case of a failure, both nodes start to use the protection fiber [16].

Dedicated 1+1 protection regenerates the failure quickly. The 1:1 protection takes a

longer time to respond after fault detection because it is still necessary to activate the

service path [2].

2.3.2. Wavelength Assignment Algorithms

After using one of the ordering strategies described in subsection 2.3.1, it is necessary

to associate a wavelength to each path. This is called WA. This problem associated to

static networks consists of assigning each wavelength with a light path ensuring that two

paths sharing the same physical link are assigned different wavelengths. This distinct

wavelength assignment to different paths makes it possible to minimize the number of

wavelengths, that should verify also the restriction of the wavelength continuity [4].

The algorithms typically used to perform the WA correctly on each network are the

First-Fit, Most Used and Graph Coloring Algorithms (in particular, the Greedy algo-

rithm).

First-Fit algorithm is based on one of the sorting strategy algorithms to index

wavelengths. After this indexing from 1 to WL, where WL is the maximum number of

lengths supported by the fiber, the available wavelength with the lowest index is chosen,

that is, the availability of the wavelengths to be assigned by increasing index order is used

to perform the assignment[2].

Most-Used algorithm, as First-Fit, is also based on sorting strategies to index

wavelengths. However, in this case, each assigned wavelength is saved in a variable that
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counts the number of times that wavelength is assigned, for each link. The higher the value

of the variable, the higher its priority. This priority is used to assign that wavelength to the

new path if the continuity of the wavelength and the different wavelengths conditions are

accomplished. If not, the wavelength with second higher priority is assigned [2]. Graph

Coloring Algorithms which are the focus of this work, namely the Greedy algorithm

[4], exact algorithm based on ILP [4] and Tabu Search algorithms [6], will be explained

in detail in Chapter 3.

2.4. Conclusion

In this chapter, the basic concepts related to optical networks are introduced. In sec-

tion 2.2, concepts related to graphs such as physical and logical topologies of a network

are described, along with the definition of adjacency, demand and traffic matrices. Next,

in section 2.3, the operation of ROADMs, element responsible for routing in optical net-

works, and their architectures, are briefly explained. Then, routing and WA functions are

introduced. Some WA algorithms are described, in particular the First-fit and Most-used

algorithms. The graph coloring techniques will be discussed in detailed in the following

chapters.
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CHAPTER 3

Graph Coloring Basics

3.1. Introduction

In this chapter, the basic concepts that allow to define and understand the graph

coloring problem, described in Section 3.2, are exposed. Some real examples to illustrate

that definitions are explained in Section 3.3 and the particular case of WA problem is

presented. Next, in Section 3.4, the graph coloring problem complexity is analysed in order

to recognize the complexity of the data and number of operations that the algorithms are

dealing with. Also in this section, it is justified that it is possible to work with algorithms

capable of solving these problems, regardless of their complexity, using the chromatic

number of the graph. Finally, at Section 3.5 are exposed the three algorithms studied and

compared in this work, Greedy, exact algorithm based on ILP and Tabu search algorithms.

Each of the algorithms have its respective explanation, descriptions, pseudocode, and

examples, which are fundamental to understanding how each one of them works.

3.2. Graph Coloring Problem Description

The problem of graph coloring consists in, given any graph G, assigning colors to the

vertices so that there are no adjacent vertices with the same colors and the number of

colors is as small as possible. This problem is present in many real cases and in several

areas of work [4].

Figure 3.1. A graph example with corresponding 4-coloring.

The graph represented in Figure 3.1 is formed by 5 vertices and 9 links and its respec-

tive 4-coloring is presented. This is the correct coloring solution since it fulfills the two

fundamental requirements: no pair of adjacent nodes has the same color between them
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and for this number of vertices and respective edges, 4 is the minimum number of colors

that can be used.

Formally, given a graph G=(V,E), the graph coloring problem consists in assigning to

the vertices v ∈ V an integer c(v) ∈ {1, 2, ..., k} (each integer corresponds to a color up to

k color) such that the following definitions are verified [4]:

(1) c(v) ̸= c(u) ∀{v, u} ∈ E, i.e., two nodes linked by the same link have different

color;

(2) k is minimal, i.e., assign as few colors as possible;

To understand the graph coloring problem, it is important to define some concepts,

which are the following [4]:

• When all vertices are colored c(v) ∈ {1, ..., k} then the coloring of the graph is

complete. If this is not the case, it is a partial coloring;

• When two adjacent vertices {u, v} ∈ V have the same color assigned as {u, v} ∈ E

and c(v) = c(u), a clash occurs and it is verified an improper coloring. Otherwise,

the coloring is proper;

• A solution is said to be feasible if it is both complete and proper.

• An optimal solution of a feasible coloring of a graph G corresponds to the solution

that uses exactly the minimum number of colors required in a feasible coloring

of G. This minimum number of colors, χ(G), is called chromatic number;

• The set of all vertices of a graph assigned to a specific color in a solution is a

color class: given a specific color i ∈ {1, ..., k}, the color class is defined as the

set {v ∈ V : c(v) = i};
• A subset of vertices C ⊆ V mutually adjacent is called a clique: ∀u, v ∈ C, {u, v} ∈
E;

• A subset of vertices I ⊆ V mutually nonadjacent is named the independent set:

∀u, v ∈ I, {u, v} ⊆ E.

Figure 3.2 illustrates a small generic example graph with its corresponding 5-coloring

graph and some of the concepts exposed in this section. The graph is composed by 10

vertices and 21 edges. As explained in previous subsection, 5-coloring graph means that

5 colors were needed to color the graph respecting the previous definitions.

In Figure 3.2, based on the concepts discussed, the coloring is complete because all

the nodes have a color and is a feasible solution because it is complete and proper. Each

color assigned represents a different color class and, as a result, each color represents an
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Figure 3.2. A graph example with corresponding 5-coloring.

independent set that is not adjacent to other independent set, i.e, there are 5 independent

sets. There are no clashes since there are no pairs of adjacent nodes with the same assigned

color. Vertex v1 forms a clique of size 5 with its neighbours v2, v3, v6, v4 and v7 .

3.3. Pratical Examples for Graph Coloring

In this subsection, some examples of the different possible applications in the real

world of graph coloring are explained. Color assignment can be made from simple to

more complex situations such as building work groups, scheduling taxis according to

customer orders, constructing schedules, help in compilation of programming code and

the focus of this work, WA [4].

Team building example is the first example presented. The objective in this example

is to group people - represented by the graph nodes - into groups, through their connection.

To make this association of nodes it is necessary having a criterion to group them, for

example, each person is allocated to a group that does not have one or more known

persons, i.e., friends. Each person (i.e. node) is connected to all the nodes known to

be its friends. This ensures that no group is formed by elements that are friends and

ensures that groups of people are formed for the purpose of getting to know each other.

The number of groups is the minimum possible, i.e., the nodes are assigned the minimum

number of colors, since this is a graph coloring problem [4].

As can be seen in the table in Figure 3.3 (a), persons with names from A to H are

associated with the respective known persons. In the graph of Figure 3.3 (b), each of the

vertices, which represents a person, is linked again to the respective people they know [4].

As verified in the graph above, there are 3 groups of people who know each other: A,

B and C; D, E and F; B, E and F. With this information, it is concluded that at least 3

groups will be built by assigning 3 different colors to each other (due to its adjacency).

Other solutions also would be correct if the color assignment occurred in another order, but
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Figure 3.3. (a) Team Building table and (b) Team Building graph [4]

only the solution in Figure 3.3 is the optimal solution, as it corresponds to the minimum

number of groups, i.e., minimum number of colors.

Constructing Schedules is the second example detailed. The graph coloring is

treated between certain events and certain timeslots in order to organize timetables and

schedules, following certain conditions that meet the achievement of the problem, such

as the non-collision of events allocated in the schedule of a person who needs to attend

both events. Two events that verify these conditions imposed by the problem cannot

be assigned to the same timeslot, i.e, cannot be assigned to the same color [4]. This

means that each vertex of the graph is a timeslot and therefore each available timeslot

will have an assigned color. Then, two vertex are linked if there is between them a collision

constraint, i.e, both events cannot occur ate the same time. At most, there will be as

many colors assigned as the number of available timeslots.

Figure 3.4. (a) Scheduling example graph and (b) Scheduling example
table [4]

In Figures 3.4 (a) and (b) it can be seen that the first timeslot has one more event

than the others. This solution is a feasible solution and correspond to assigning 4 colors

to the timeslots. In this context, the availability of one room per event and per timeslot

should also be taken into account, since it is the construction of a schedule. In this sense,
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it must be ensured that three rooms are available in timeslot 1 and two rooms in the

remaining timeslots (2, 3 and 4). If there are only two rooms available per timeslot, a

new timeslot will have to be added, increasing the complexity of the coloring problem.

Scheduling Taxis is the third example presented. When there is a need to make a

taxi reservation, it is necessary to make an assessment of the availability of taxis before

assigning them to a reservation. In this case it is necessary to know the bookings that

exist, i.e., duration of each reservation (start and end time) so that the taxi can be booked.

This is an example of interval graph, which are graphs where a pair of adjacent vertices

means overlapping intervals [4].

The diagram in Figure 3.5 represents the duration of each reservation, i.e., black points

represent the beginning of each reservation and white points represent its end. In terms

of the application of graph coloring, each of these reserves is a node of the graph and the

connections between them represent the reserves that are in a coincident time instant, i.e.,

adjacent vertices represent overlapping reserves. After the graph is completed, the colors

are assigned to the nodes taking into account that reservations at the same time cannot

have the same color assigned. The color represents the taxi assigned to the reservation

and two adjacent nodes cannot have the same color, since one taxi cannot have more than

one reservation at the same time. The solution found is as better as fewer colors are used.

Figure 3.5. Taxis Booking example [4]

It is important to note that as soon as a reservation reaches its end, the taxi is available

to cover another reservation. For example, reservations 2 and 4 may be assigned to the

same taxi because the final time of the reservation 2 coincides exactly with the initial time

of the reservation 4. In this case, optimal solution is achieved with 3 colors and therefore

3 taxis are sufficient for 10 bookings [4].

Another important function of the graph coloring techniques is to do Compiler Reg-

ister Allocation. This example has the main goal of facilitating the compilation of
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programming code, assigning the variables to registers so that it is faster to access and

update values by the processor.

Figure 3.6. Compiler Register Allocation example [4]

Figure 3.6 shows that graph coloring can solve these situations by assigning colors to

the intervals each variable is running in the program. Some of these variable life cycles are

overlapping. Each vertex of the graph represents a variable, and each of them connects

to the others that are in simultaneous “live time”. The color assigned to the variables

corresponds to the register allocated [4]. In this case, 3 registers are enough to run 5

variables in the program, since there are only 3 variables in the same ”live time”.

Finally, and the aim of this work, the WA example, which consists of assigning wave-

lengths to the optical paths of a network, which is the focus of this work.

Figure 3.7. Wavelength Assignment example [4]

In this case, the process consists in, from the graph G(V,E) of physical topology of

the network, create a graph G(W,P ) in which the vertices W are optical paths of the
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network (W = (w1, w2...wn), where n is the total number of paths W ) and P is the set

of links between these nodes. If one or more nodes share the same physical link, a link is

established between them.

Depending on the number of incident edges on a vertex, the node is assigned to an

order, i.e., if a node has 4 links, that node has order 4. The paths are sorted in descending

order of degree and it is in this order that the colors (i.e. wavelengths) are assigned, so

that each vertex is assigned the first color not assigned to any of the adjacent vertices [4].

The paths with 3 nodes and 2 links have order 4 and the remaining order 2. Given

the set of paths with the same degree, the order is arbitrary. Following the assignment

process, only 3 colors are needed for an optimal solution, as Figure 3.7 shows.

3.4. Graph Coloring Problem Complexity

After the detailed exposure of some real cases where graph coloring problem can be

applied, the question is based on understanding which algorithm is capable of finding

all feasible solutions, regardless of the topology or size of the problem. As said before,

several solutions are possible when it comes to the graph coloring problem but only one

is the optimal. However, and although ideal, it is almost impractical for an algorithm to

discover all these solutions and return the optimal [4].

A viable solution can correspond to the solution where a total of maximum colors

correspond to the total number of vertices, i.e, at most equal to Vn. To have a realistic

perspective of the number of candidate solutions it is necessary to recognize that each

vertex of the graph can have any of the colors c(n). In this sense, since each vertex can

have any color n associated, a graph can have nn possible solutions. It is easily perceptible

that this number is too large to be processed in practice. To make this perceptible in

real context, taking into account a graph with n = 50 nodes, the problem has a space of

solutions with 5050 ≈ 8.8 × 1084 possibilities, which is a really huge number of feasible

solutions so that all these assignments can be checked. To have an idea of the complexity

of the value, note that 1082 is the known estimated value of atoms in the universe, which

really huge [4].

What is most important in this analysis is not effectively what each node in the graph

represents but the number of different colors that are assigned to it [4].

A better approach for this context is to divide the vertices into independent groups

of color: S = {S1, ..., Sk}, where k is minimum. If the number of available colors were

decreased to k < n, the space for solutions would decrease further.
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Stirling numbers of second order, which define the number of n-item divisions in k

nonempty subsets, are calculated by the expression 3.1.

{
n

k

}
=

1

k!

k∑

j=0

(−1)k−j

(
k

j

)
jn (3.1)

The nth Bell number, Bn, depends on Stirling numbers and describes the amount

of ways of partitionating a set with n items into nonempty subsets containing the total

vertices of a graph, as can be seen in expression 3.2.

Bn =
n∑

k=1

{
n

k

}
(3.2)

The optimum solution resulting from this procedure corresponds to the solution with

the smallest number of S groups [4].

This division allows a considerable decrease in the number of solutions to be analyzed.

However, it is still not the ideal method because there are exponential growth rates in this

solution space (various k -values) associated with Stirling numbers. To understand this in

real context, taking into account a network with n=50 nodes again, with a division of 50

items in 10 subsets, would be obtained a value of possible solutions of
{
50
10

}
= 2.6× 1043

which is still a huge number.

Besides the complexity demonstrated in the description above, there are also decision

problems in which the answers of a decision consist only between two options. It means

that instead of testing a predefined set with all possible solutions and selecting the optimal

solution, something computationally expensive, the test is done under a condition that

does not require testing all solutions since only possible solutions that meet the defined

condition will be tested. These options are:

(1) Giving k colors, can a graph be assign with a feasible coloring solution?

(2) For a feasible coloring, which is the minimum k number of colors?

Questioning whether k colors are sufficient to make a certain graph feasible, the prob-

lem is transposed to a decision problem. Given a possible solution and a k -value, it is

possible to conclude whether the solution is viable in polynomial time.

Using heuristic methods in graph coloring problems has the intention not to solve the

problem completely in polynomial time but to find more easily a solution as approximate

as possible. It is possible to choose any algorithm A that is applied to a given graph G

and whose solution is feasible. If it is, there are k colors accepted and it ends; otherwise,
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algorithm A’s behavior is changed that can return an optimal solution, with the objective

of decreasing the number of k colors compared to the solution that was not possible [4].

If the chromatic number of a given graph is known, is possible to draw the exact

algorithm that produces the optimal solution. The simplest case is a graph composed of

vertices not adjacent to each other. This feature allows all the nodes to be assigned the

same color and the chromatic number is 1 [4]. The following graphs represent examples

of solutions where the optimum number of colors can be found.

Figure 3.8. Optimal solution for complete graphs

Figure 3.8 shows 5 types of complete graphs with different number of vertices that

are all adjacent to each other. This is the definition of a complete graph: there is no pair

of nodes without an edge between them. As explained before, two adjacent nodes cannot

contain the same color as each other and therefore the number of colors will be as much

as the number of nodes in the graph. Thus, the chromatic number will also be equal to

the number of vertices n: χ(G) = n [4].

Figure 3.9. Optimal solution for bipartite graph, tree graph and star
graph.

Analyzing the graphs drawn in Figure 3.9, which are called bipartite graphs, it is

possible to conclude that it can be divided into two independent subsets of vertices, each

with its associated color. This is because the nodes of each of the subsets are adjacent to

the nodes of the subset from which it is independent and not adjacent to the nodes of the

subset itself. Thus, the number of assigned colors is equal to the total number of subsets
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which is: χ(G) = 2 [4]. If the graph was tripartite, then the chromatic number would be

3 and so on.

Cycle and Wheel Graphs are easily identifiable by their particular characteristics.

These graphs have at least 3 vertices and the number of links corresponds to the number

of vertices plus one. When it comes to cycle graphs as shown in Figure 3.10, the number

of colors assigned and consequently chromatic number will be χ(G) = 2 if the number of

vertices is even and χ(G) = 3 if the number of vertices is odd [4].

Figure 3.10. Optimal solutions for cycle graphs

Figure 3.11. Optimal solutions for wheel graphs

A particular case of the cycle graphs, represented in Figure 3.11, are thewheel graphs

that result from the addition of a central node to cycle graphs and respective edges of that

node added to all the nodes already belonged to the topology. To each case, it adds a color

to graph coloring and, consequently, the chromatic number increases one. Thus, unlike

in cycle, graphs with vertices in odd number have an even chromatic number χ(G) = 3

and graphs with vertices in even number have an odd chromatic number χ(G) = 4 [4].

As can be seen in Figure 3.12,Grid Graphs can be sparse if each node is adjacent only

to the top and bottom nodes and positioned on both sides and can be dense if each node

is adjacent to all others, including diagonals [4]. Each of these graphs can be analyzed

by dividing the vertices into subsets. The first graph, the sparse one, is equivalent to a

bipartite graph, to which a chromatic number with χ(G) = 2 is associated. In the case

of the dense one, and because each node is adjacent with all the others around it, it is a
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Figure 3.12. Optimal solution for (a) sparse and (b) dense grid graphs

4-coloring graph. In this sense, the chromatic number doubles with respect to the first

case, i.e, χ(G) = 4.

Table 3.1. Optimal chromatic number for different examples.

Graphs Chromatic Number
Complete Graphs χ(G) = n
Bipartite Graphs χ(G) = 2
Cycle Graphs χ(G) = 2 (number of vertices even) and χ(G) =

3 (number of vertices odd)
Wheel Graphs χ(G) = 3 (number of vertices even) and χ(G) =

4 (number of vertices odd)
Grid Graphs χ(G) = 2 (sparse graph) and χ(G) = 4 (dense

grid graph)

Table 3.1 is a comparative table with respect to the chromatic number associated with

each graph presented in this subsection. Bipartite graphs are those that have the smallest

optimal chromatic number associated and complete or grid graphs are those that can

reach a larger chromatic number. In case of cycle and wheel graphs, chromatic number

depends directly on the parity of the number of vertices.

3.5. Graph Coloring Algorithms

Graph coloring algorithms are used to solve the WA problem.

As previously mentioned, WA algorithms aim to color the graph nodes, which represent

optical paths connected by edges that represent links between them, so that adjacent

nodes are assigned distinct colors and that this number is minimal. There are as many

wavelengths used in the network as the number of colors assigned in the graph, i.e, one

color corresponds to one wavelength [2].

The complexity of these algorithms lies in the fact that it is difficult to reach the

optimal solution, although any solution found is a feasible one.

In order to improve this situation, chromatic number works as a reference that reflects

the minimum number of colors attributed to a graph in a solution, which is the optimal
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number of a solution. Therefore, this chromatic number correspond to the solution of a

WA problem. The upper bound corresponds to the upper limit with very low precision, i.e,

the chromatic number as a minimum Dg +1 distinct colors, and thus Dg +1 wavelengths

[2], considering Dg as the node degree of the graph.

In simple networks, there are many examples where reaching the chromatic number

is simple because it can be calculated according to the topology of the graph, number

of nodes and edges. For large dimensions, it becomes even more complex to obtain an

optimal solution. In these cases, heuristic algorithms are used to found the number of

assigned colors because they find solutions close to the optimal [4].

Table 3.2. Notation for pseudocodes.

Notation Description
← Assignment operator
|π| Length of set π
π Set of vertices ordered of a certain strategy
S Set of all colors
Sj Color j from set S to assign to a vertex

independent set Subset of vertices non adjacent mutually
∪ Union operator

In the context of this work, the heuristic algorithms studied are the Greedy algorithm

and the Local Search algorithm (Tabu search). An exact algorithm based on ILP is also

studied.

Table 3.2 clarifies the notation of the pseudocodes that will be presented in this section.

3.5.1. Greedy Algorithm

The Greedy algorithm is the first graph coloring algorithm studied in this work and

offers feasible coloring solutions, coloring the vertices one by one of any graph G, after

ordering the nodes according to a certain strategy, normally in descending order of degree

[4]. In general, the algorithm works as follows: it goes through the nodes of a path graph

representing the connections of a particular network, one by one according to a previous

given order and applies an available color to each node.

Figure 3.13 shows the pseudocode for Greedy algorithm implementation [4]. Initially S

that represents the set of colors that are going to be assigned along the Greedy algorithm

process is empty and π represents a possible permutation of the graph vertices, e.g.

descending, ascending or random order of the vertices. The for cycle in line (1) of the

pseudocode goes through the set of vertices π and, for each vertex of π tries to find a color

class Sj belonging to S to which it can be associated. This process involves checking the
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color class of the adjacent vertices. If the working vertex belongs to an independent set

then a color Sj can be assigned to this vertex. If this is not the case then a new color

class must be assigned (lines 7 to 9).

Figure 3.13. Pseudocode for Greedy algorithm.

Figure 3.14 based on [4] represents an example of the operation of the Greedy algo-

rithm, assuming a coloring strategy based on the descending order of degree. Note that

white nodes represent uncolored nodes. The vertex with the highest number of links con-

nected, i.e., the highest degree, is colored first with the first available color, i.e. v2 in step

1 is color with green (S1={green}). In step 2 the algorithm continues the coloring with

the following vertex with highest degree, v8, which is adjacent to v2 so it is assigned to

a different color, pink (S2={pink}). In step 3, since there are four vertices with degree

3, one of them is randomly chosen. We have choose v1 with the color class S2 = {pink}.
This process continues until all vertices have been colored and in the end (step 8) we can

see that three colors are used.

In the implementation of a graph coloring, it is important to analyze its computational

effort. In this work, the computational effort of an algorithm is measured using the

definition of constraint checks, depending on the list of total nodes of the graph, the list

of adjacent nodes to a particular node u, |Adju|, i.e., on the inspection of the nodes to

determine their degree and colors of class S that are attributed. There are 3 ways to

define how constraints checks are counted according to [4]:

(1) To check adjacency from a u node to all other nodes, it is mandatory to access all

Adju elements, i.e., elements adjacent to node u. In this step, |Adju|, i.e., length
of the vector Adju, constraints are checked.
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Figure 3.14. Greedy algorithm example.

(2) Accessing the list of adjacent nodes to determine each node degree corresponds

to access the total list of nodes and corresponds to |π| constraint checks.
(3) Accessing the set of colors assigned, which is denoted as C, that is, accessing

each of the colors in the set to check the number of colors of class S adjacent to

a given vertex u is another constraint check.

Hence, the total number of constraint checks in the Greedy algorithm, i.e., its compu-

tational effort, can be represented through

#Constraints = |Adju|+ |π|+ |C| (3.3)

3.5.2. Exact Algorithm

Exact algorithms always try to obtain the optimal solution to solve a computational

problem such as the graph coloring problem, exhaustively searching the whole solution

space. If this solution space increases then the solution search time becomes longer [4].

One way to achieve the optimal solution of computational problems such as graph

coloring, instead of using exact solutions, such as the ILP, consists in using the “Back-

tracking” methodology. Algorithms such as Greedy or DSATUR algorithm are considered

constructive algorithms that analyse vertex sequences ordered in a specific way and as-

sign the colors for that specific vertices ordering. The “Backtracking” methodology uses

multiple vertices orderings in conjunction with these algorithms in order to achieve the
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exact solution, taking a longer time. Since it is an algorithm that builds several options

of solutions, with varying orders, it is possible that the execution may end prematurely

and never give the optimal solution but a feasible approximation solution [4].

Another way to implement an exact algorithm consists in using ILP, a particular type

of linear programming model used to search optimal solutions for linear mathematical

models. In ILP problems, the decision variables are restricted to integer values [4]. These

methods allow reaching optimal solutions to problems according to the definition of an

objective function delimited to constraints defined according to the variables and the goal

of the problem. The objective function is evaluated in order to reach a reasonable solution

range and to find the solution that is the optimal one [4].

ILP can use several minimization methodologies, such as the Branch and Bound

method that consists of a solution approach that splits the feasible solution space into

smaller subsets of solutions, which restrict part of the solution value [4].

To solve the graph coloring problem through linear programming, it is necessary to

define the restrictions and the objective function, which depend only on the logical topol-

ogy of the network where a path graph G(W,P ) contains W vertices and P edges. Each

vertex correspond to an optical path and an edge means that two optical paths are using

one or several common links [4].

The variables for a graph coloring problem are defined by a binary matrix Xn×n and

a binary vector Yn, where n is the number of vertices of the path graph. This means

that matrix X, which represents the color state of the vertices, and vector Y, which is

the coloring solution, are composed by binary numbers. Each of them has its elements

defined accordingly to conditions (3.4) and (3.5), respectively [4]:

Xij =




1 if vertex vi is assigned to color j

0 otherwise.
(3.4)

Yj =




1 if at least one vertex is assigned to color j

0 otherwise.
(3.5)

In matrix Xij, there are two possible states for vertex vi: having a color j assigned,

which is represented by number 1, or not having any color j assigned, which is represented

by number 0. The elements of vector Y will be 1 if at least one vertex is associated with

color j and 0 otherwise. The resulting vector Y returns the solution to the graph coloring
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problem: the number of 1’s in this vector corresponds to the number of colors assigned,

and therefore the number of wavelengths.

The goal of implementing integer programming models for graph coloring problems

is that this model is responsible for minimizing the number of colors according to a

predefined objective function [4]

min
n∑

j=1

Yj (3.6)

This objective is achieved by implementing the two constraints defined in Equations

(3.7) e (3.8). The first constraint guarantees that there are no adjacent vertices with the

same color assigned and that the element Yj has the value 1 only if any of these vertices

is associated with a color j. The second condition imposes that each vertex should be

associated to exactly one color [4].

Xij +Xlj ≤ Yj ∀{vi, vl} ∈ E, ∀j ∈ {1, ..., n} (3.7)

n∑

j=1

Xij = 1 ∀vi ∈ V (3.8)

The exact algorithm based on ILP is an algorithm that requires a very large compu-

tational time to provide a solution, due to the large space of possible solutions, n!
(n−k)!

,

where n is the number of vertices and k the number minimum of colors [4]. This last

expression represents the number of possibilities to color the total number of n nodes

with k colors. Hence, it is important to consider some implementation restrictions to the

space of solutions in order to reduce the computational time [4]. The number of solutions

can be really huge by the fact that any feasible k -color solution can be expressed in n!
(n−k)!

forms by simply permuting the columns of the matrix X. To surpass this constraint and

reduce the ILP search space, the condition (3.9) guarantees that a k -color solution uses

only the colors labelled 1 to k [4]. It also guarantees as possible solutions, solutions that

have the colors associated with nodes on the left columns of the matrix.

Yj ≥ Yj+1 ∀j ∈ {1, ..., n− 1} (3.9)

Equation (3.9) improves the ILP computational processing in a significant way, but it

is possible to improve the computational time by exchanging the first k colors that arise
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due to the k! possibilities, which represent equivalent solutions, by replacing Equation

(3.9) with

n∑

i=1

Xij ≥
n∑

i=1

Xij+1 ∀j ∈ {1, ..., n− 1} (3.10)

Equation (3.10) guarantees that color j is associated with a total number of vertices

greater than or equal to the total number of vertices with color j+1. Using this equation,

there is an improvement in computational processing, but symmetric solutions are still

verified due to the fact that color classes of the same size are interchangeable. To improve

this, Equation (3.10) can be replaced by the the following constraints

Xij = 0 ∀vi ∈ V, j ∈ {i+ 1, ..., n}, (3.11)

Xij ≤
i−1∑

l=j−1

Xlj−1 ∀vi ∈ V − {vi}, ∀j ∈ {2, ..., i− 1} (3.12)

Combining both constraints (3.11) and (3.12) specifies that only one solution from

the first k permutations is a solution, eliminating possible repeated solutions. Thus, each

column is assigned the minimum color of the color class according to each independent set.

Equation (3.11) guarantees that the upper part of the matrix X above the main diagonal

all its elements assigned to zero and, together with Equation (3.12), guarantees that

for each possible k -coloring a unique permutation of the first k columns is the solution.

Consequently eliminating these symmetric solutions greatly reduces the computational

time [4].

Figure 3.15 illustrates a 8-node network topology colored using the ILP algorithm and

the corresponding steps of the coloring problem. This network has 8 vertices and 12 edges

[4] and the coloring order considered is from vertex v1 to vertex v8. At each algorithm

step, the solutions matrix X with dimension n × n and vector Y with dimension n are

being built and updated. This updating process is shown with detail in Table 3.3.

In this example, step 1 corresponds to the coloring of node v1. Since there is no color

associated yet, the yellow color is first assigned to the node. In this step, first element

X11 of matrix X is set to 1, which means that color 1 has been assigned to vertex 1,

and the other matrix positions in this line (X12 to X18) are set to 0. This means that

to the vertex v1, which belongs to the total number of vertices V, yellow is the color

assigned to position 11 of matrix X, and the Equation (3.8) it is verified. In this step
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Figure 3.15. Exact algorithm based on ILP example.

also, position Y1 is set to 1 because one color is already assigned. Step 2 corresponds to

the coloring of node v2. Each node is colored after evaluating all the adjacent nodes. After

this evaluation, the color assigned is either the color attributed to non-adjacent vertices

or a new color if all the colors already used correspond to adjacent vertices. Hence, step

2 must obey condition (3.9). Means that for position X21 of matrix X, the color to be

assigned cannot be the yellow color, so X21 = 0, to obey X11 +X21 ≤ Y1. Thus, position

X22 will have the value 1 assigned and a new color, green is assigned. Again, Equation

(3.8) it is verified because just the color green is assigned to vertex v2. Y2 will also have

the value 1, representing the second assigned color. In step 3, after analyzing v1− v2 and

v1−v3 edges, as node v3 is adjacent to v1 but not adjacent to v2, the color assigned to v3 is

the same color of v2, in order to use the available color in non-adjacent nodes and achieve

the goal of minimum number of colors. Again, conditions (3.7) and (3.8) are verified and

as v1 = 3, v2 = 1 and v4 and v7 are still uncolored, then this means position X32 is set to

1 in matrix X.

Looking at the illustration in step 4, vertex v4 is associated with a third color, blue,

because this vertices is adjacent to vertex v1 and v3, which are colored yellow and green.

Condition (3.7) analyzes the edges v1 − v2, v1 − v3, v1 − v4 and v3 − v4, which are the

colored edges. In matrix X, the position X47 of the fourth row is assigned to 1, because

a new color has been assigned. The process continues until the entire graph is colored
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after analysing all the nodes and at each algorithm step, the matrix X has a new row

corresponding to the vertices already analyzed and assigned to a specific color, until the

solution, the vector Y, is found. In this example, Y = 1 1 0 0 0 0 1 0 , that is,

3 is the minimum number of colors found. The evolution of the matrix X and vector Y

in relation to the steps in Figure 3.15 is shown in Table 3.3. For each step illustrated in

Figure 3.15, a position Xij = 1 when it has color j assigned to vertex i. The solution

presented in Table 3.3 corresponds to one of 8!
(8−3)!

= 336 possible solutions of the graph

coloring problem that arise from Equations (3.4) and (3.5). For this reason, to reduce

these large number of solutions, Equations (3.11) and (3.12) have been developed.

To solve our ILP graph coloring problem, we have used the MATLAB function intlin-

prog, which is a mixed-integer linear programming solver developed to find the minimum

of a problem specified by an objective function. The syntax of inputs and outputs of this

function is presented in Table 3.4, with the optimization options set in ’optimooptions’ of

MATLAB.

Through the inputs described in Table 3.4, intlinprog minimizes the objective func-

tion f described by Equation (3.6) through the Branch and Bound method and at the

simulation end, displays the number of nodes and corresponding assigned colors, the total

computational time, the integer number of solutions and the relative gap. The relative

gap corresponds to the difference between internally generated upper and lower bounds

that tends to zero, while all feasible solutions are checked. When the objective value is

within a gap tolerance (absolute or relative) of the optimal value, the ILP minimization

stops and the optimal solution is found. As an output, the method returns the solution x

that minimizes the objective function and the ’exitflag’ that identifies the algorithm stop-

ping condition. If the method fails to perform the minimization, this ’exitflag’ describes

the error that has occurred.

In the next, the implementation of the ILP formulation in MATLAB to solve the

graph coloring problem is explained. Figure 3.16 shows the implementation in MATLAB

of the ILP algorithm, considering Equation (3.6) with the constraints (3.7) and (3.8).

In Figure 3.16, lines 62 and 63 of the code represent the information of the graph

used: variable E represents the edges and N represents the total number of nodes of the

path graph and defines the space of solutions that is sought for this problem. Variable

represented in Equation (3.4) (line 114) corresponds to the matrix X with the colors

solutions assigned to each edge of the path graph and variable represented in Equation
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Table 3.3. Evolution of matrix X and vector Y in ILP algorithm.

Steps Evolution of Matrix X Evolution of Vector Y
Step 1 X = 1 0 0 0 0 0 0 0 Y = 1 0 0 0 0 0 0 0

Step 2 X =
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

Y = 1 1 0 0 0 0 0 0

Step 3 X =
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0

Y = 1 1 0 0 0 0 0 0

Step 4 X =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

Y = 1 1 0 0 0 0 1 0

Step 5 X =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0

Y = 1 1 0 0 0 0 1 0

Step 6 X =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

Y = 1 1 0 0 0 0 1 0

Step 7 X =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

Y = 1 1 0 0 0 0 1 0

Step 8 X =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

Y = 1 1 0 0 0 0 1 0

(3.5) (line 117) corresponds to the vector Y, representing the solution for the color class

S.

Lines 69-73 impose the constraint (3.8), which specifies that each vertex should be

assigned to just exactly one color, having the matrix A1 dimensions N by N2 + N .

Constraint (3.7) is divided to guarantee two complementary situations: adjacent vertices

have different colors associated and Yj = 1 only if any vertex is associated with that color

j. The first condition, in lines 77-84, corresponds to the implementation of the expression

Xij +Xlj ≤ 1, where line 77 is the initialization of a matrix of zeros A2 with dimension
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Table 3.4. Syntax of intlinprog function.

Input Arguments

f Objetive function to minimize according to the problem

intcon Vector of integers defining the number of variables of the problem

A Constraint matrix to implement the inequality A · x ≤ b

b Constraint vector to implement the inequality A · x ≤ b

Aeq Constraint matrix to implement the equality Aeq · x = beq

beq Constraint vector to implement the equality Aeq · x = beq

lb Lower bound on the design value x

ub Upper bound on the design value x

Options To change ’intlinprog’ default options and improve processing

Options for ’intlinprog’ specified as the output of optimoptions

AbsolGapTol

’intlinprog’ stops if the difference between the internally calculated upper

(U) and lower (L) bounds on the objective function is less than or equal

to AbsoluteGapTolerance: U − L ≤ AbsoluteGapTolerance

MaxNodes
Maximum number of nodes ’intlinprog’ explored using the

branch-and-bound. Default value: 1e7.

MaxTime Maximum time (seconds) that ’intlinprog’ runs. Default value: 7200.

LPMaxIter
Maximum number of simplex algorithms iterations

per node during branch-and-bound

TolInteger
Maximum deviation from an integer that a component of the

solution x can have and still be considered as an integer

TolGapRel

’intlinprog’ stops if the relative difference between

upper and lower bounds on the objective function is

less than or equal to TolGapRel, which by default is 1e-4

Output Arguments

x Solution, returned as a vector that minimizes objective function

fval Value of the objective function at x

exitflag
Algorithm stopping condition, returned as a integer

identifying the reason for stopping the algorithm

N by N2 + N . The second condition, on lines 87-94, corresponds to the expression

Xij − Yj ≤ 0, which guarantees that no pair of adjacent nodes are assigned to the same

color.
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Figure 3.16. Implementation of the ILP algorithm in MATLAB.

Line 98 defines the objective function given by (3.6) that will return the solutions of

the matrix X and vector Y, where the
∑

Yj corresponds to the number of colors assigned.

The input arguments of the MATLAB function intlinprog are specified in lines 98 to

107. Line 98 indicates that the variables to minimize correspond to the number of colors

Yj. Lines 106 and 107 correspond, respectively, to the definition of the lower limits and

upper limits, i.e., bounds constraints where solution x must be found. The lower bound

(lb) and upper bound (up) are restricted to 0 and 1 respectively, so that it restricts the

result to binary results. Line 109 gives the integer linear programming solution.

Figures 3.17 (A), (B) and (C) refers to the code implemented to constraints (3.9),

(3.10) and (3.11)+(3.12), respectively. Each of these blocks of code runs independently
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(A) Constraint 3.9

(B) Constraint 3.10 (C) Constraints 3.11 and 3.12

Figure 3.17. Optimization Constraints

from the others in order to reduce the space of solutions under analysis and, consequently,

to improve the computational performance, changing the code of Figure 3.17 (A) by 3.17

(B) and then 3.17 (B) by 3.17 (C). When these constraints are considered for computa-

tional time study, they are included in the construction of matrix A and vector b of lines

102 and 103 of the code in Figure 3.16. Taking again into account the example in Figure

3.15 and since it is an 8-node topology, if it is running the original ILP algorithm code

with constraints (3.7) and (3.8), there are 8!
(8−3)!

= 336 possible candidate solutions. If

constraint (3.9) is applied then the space of solutions decreases significantly to 3! = 6 and

when it is applied the restrictions in Figure 3.17 (C) instead of restrictions in Figure 3.17

(B), the space of solutions corresponds to a unique solution of three colors, which is very

simple to find.

3.5.3. Tabu Search Algorithm

Tabu Search is a metaheuristic algorithm, used to solve different kinds of problems,

such as graph coloring [4]. The idea of this algorithm, when applied to graph coloring

problems, is to answer the following question: given a graph G(V,E), where V represent

the set of vertices and E the set of edges between vertices, is it possible to feasibly color

it with k colors? This algorithm has the following main steps:

(1) It starts by defining an initial solution S to color the graph with a predefined

value k of colors, which can be obtained randomly or by using a constructive

heuristic, like Greedy or DSATUR [4].

37



Chapter 3 Graph Coloring Basics

(2) The algorithm next proceeds by computing the number of clashes (i.e. two adja-

cent vertices with the same color) which is represented by function f(S), defined

by:

f(S) =
∑

∀{u,v}∈E

g(u, v) (3.13)

with

g(u,v)=




1 if c(u)=c(v),

0 otherwise.

where c(u) is the color of vertex u and c(v) is the color of vertex v.

If g(u, v) = 1 it means that the color of the two adjacent vertices u and v is

the same and therefore a clash occurs. The aim of the algorithm is to eliminate

the clashes, i.e., f(S) = 0.

If this number is not zero, a new solution S´ is obtained, by using the neighbor

operator, which is defined as follows: if a vertex v is assigned to a color i, a

neighbor operator corresponds to a color change of vertex v to a new color j.

Note that to obtain this new solution S´ there are some vertices color changes

that can not be done. These vertices color changes are registered in a list of

forbidden vertices’ color changes, called the Tabu list T. This list is used to

avoid previous undesired and already checked solutions [7].

If with this new solution S´ condition f(S ′) < A(f(S)) is verified, the best

solution S´ is found. In this condition, A is an “aspiration level” function that

gives the possibility that solutions S´ with a superior number of clashes be chosen,

with the aim to escape from local minima [7]. If f(S) = 0 and number of

operations (Niter) is less than Nmax it means that a solution with k colors is

found. If the number of operations is Nmax the algorithm stops.

(3) If a solution with k colors is found the algorithm starts again with k -1 colors.

Figure 3.18 represents a scheme that allows to understand how the best candidate

solutions are selected in Tabu Search algorithm. It starts evaluating each candidate move.

If from the current candidate list, the candidate move returns a better evaluation than

any other move admissible so far, then is analysed if it is a candidate tabu. If does not

represent a move with higher evaluation, is added to the candidate list. When the tabu

status is checked, there are two hypotheses: the candidate is tabu and it’s aspiration level

is evaluated (if satisfy aspiration criteria is an admissible move, if not is added to the
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Figure 3.18. Selecting the Best Candidate on Tabu Search [6]

candidate list) or is not tabu and is designated as best admissable candidate and added

to the candidate list. The candidate list is verified in order to understand if any move in

this list is better or if the candidate list should be extended. If don’t, the best admissible

move is obtained.

Figure 3.19 shows the pseudocode of the Tabu Search algorithm.

This algorithm starts by defining an initial solution S and the Tabu list T size. While

clashes occur, i.e., f(S) > 0, a new solution S´ is searched, the condition f(S ′) < A(f(S))

is checked and the Tabu list T is updated.

Figure 3.19. Pseudocode for Tabu Search algorithm.
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If a solution with k colors ensures that the number of clashes is zero, the algorithm

tries a solution with k− 1 colors (lines 9-10). The algorithm stops when no solution with

k − 1 colors is achieved or the number maximum of iterations is reached.

Figure 3.20 represents the same network of Figure 3.14, but now the coloring is going

to be made with the Tabu Search algorithm. The algorithm starts with a random coloring

solution (step 1). In this case, this random solution has 4 colors and 2 clashes, so f(S ′) = 2.

As explained before, this is an improper coloring, since there are adjacent nodes with the

same color. Once the solution has clashes, the algorithm generates a new solution S´. In

step 2, the neighbor operator works in the vertex 3 changing the color pink to green. This

operation eliminate the clash that occur between vertices 1 and 3 but create a new clash

between nodes 3 and 7, keeping the number of clashes to 2. The Tabu list T is updated

with this move, i.e., vertex 3 changes from pink to green.

Figure 3.20. Tabu Search algorithm example.

In step 3, the clash between vertices 3 and 7 is eliminated and a better solution is

found that reduces the number of clashes to one, between adjacent nodes 5 and 8. In this

step, the neighbor operator works in vertex 7, coloring it with yellow, which is one of the

four initial colors of the solution. The Tabu list T is updated again, with the addition of

the move corresponding to vertex 7 colored in green. Thus, in step 3 there is a solution

with 4 colors and one clash between vertices 5 and 8.

In step 4 occurs the coloring of vertex 8 with blue. Thus, all clashes are eliminated,

i.e., f(S) = 0 and a complete proper k coloring is found with k=4. At this stage, the

algorithm tries the solution k=3 colors, which represents a decrease of variable k. If

vertices 6 and 7 are colored with pink or vertices 1 and 5 are colored with yellow, this
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solution is feasible, with a total of k colors smaller than initially tested, making it a better

solution.

Next, (line 9 in the pseudocode) the algorithm tries the solution with k=2 colors, but

no solution with proper coloring is found, so, k=3 is the minimum number of colors.

In this dissertation we have used the Tabu Search algorithm implementation given in

[4] and developed in C++. This implementation has the following main features:

(1) it uses constructive methods for calculate the initial k colors, such as Greedy or

DSATUR (by default, the algorithm uses DSATUR).

(2) each time a feasible solution is found, the number of colors decreases in order to

find a better solution.

(3) the total number of constraint checks (see definition in 3.5.1) imposed by default

is 1×108. In our experiments we have used a higher number of constraint checks,

5× 1011 in order to find the best possible solutions [4] for the studied topologies.

3.6. Conclusion

In this chapter, the basic concepts that define and help to understand the graph

coloring problem have been described. The concepts regarding the presentation of a graph

and the clarification of a correct coloring such as the vertices adjacency or non-adjacency,

a complete coloring, clashes, improper coloring, feasible coloring or optimal solution have

been defined through the illustrations of real examples. Also, some restrictions imposed

on solving this problem are clarified, such as the k minimal or the coloring of adjacent

nodes with different colors. The graph coloring problem complexity was highlighted, with

some examples, in order to understand the complexity of the problem in what concerns

the number of constraint checks needed to obtain the optimal solution.

Finally, the three graph coloring algorithms that are studied and compared in this

dissertation were presented and explained: Greedy, exact algorithm based on ILP and

Tabu Search algorithms. For each of the algorithms, illustrative examples of their behavior

were given, as well as the respective pseudocodes. This study pretends to compare them

in what concerns to the number of wavelengths (i.e. number of colors) and the respective

computational effort. These results will be analysed in Chapter 4.
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CHAPTER 4

Application of Exact and Heuristic Graph Coloring Techniques

for WA in Optical Networks

4.1. Introduction

In this chapter, the graph coloring algorithms discussed in Chapter 3, i.e. Greedy,

exact algorithm based on ILP and Tabu Search, are applied to small networks, e.g. a

mesh network with 8 nodes, and real networks, e.g. COST239, NSFNET, UBN and

CONUS network with 30 nodes. Section 4.2 briefly explains the RWA planning tool used

in this work to solve the RWA problem. Section 4.3 characterises the parameters of the

network physical topology and section 4.4 characterises the same parameters, but applied

to the logical topology. In section 4.5, the performance of the exact algorithm based on

ILP, discussed in section 3.5.2, is assessed and analysed. We discuss the number of colors

predicted and the computational time for achieving an optimal solution for several small

networks and compare its results to the ones obtained with the Greedy algorithm. The

particular cases of ring networks and bipartite networks are also analysed. In section 4.6,

the performance of the Tabu Search algorithm, discussed in section 3.5.3, is studied. First,

its performance is studied on random graphs and compared with the Greedy algorithm.

Then, the performance of these algorithms considering regular (e.g. rings) and non-regular

real networks is evaluated and compared. Finally, in section 4.7, the main conclusions of

this chapter are presented.

4.2. RWA Planning Tool

The planning tool used to solve the RWA problem was developed in [15] and extended

in this work in order to study the performance of the exact algorithm based on ILP and

the Tabu Search algorithm as graph coloring WA techniques. The planning tool has the

following three main functionalities:

(1) Definition of the physical and logical topologies characterized, respectively, by

the adjacency and the traffic matrices.

(2) Routing algorithm based on the Yen´s k-shortest path algorithm.
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(3) WA algorithms based on graph coloring techniques: Greedy algorithm, exact

algorithm based on ILP and Tabu Search algorithm. Note that before using the

Graph Coloring algorithms, the path graph G(W,P ) must be computed. This

graph is obtained from the graph G(V,E) that represents the physical topology.

The vertices of G(W,P ) represent the optical paths and P represents the set of

links between those vertices [15]. These links are between one or more vertices

(i.e. paths) that share one or more physical links. After obtaining the graph

G(W,P ), the vertices can be colored considering the Greedy, the ILP and the

Tabu Search algorithms explained in Chapter 3. The number of colors obtained

corresponds to number of wavelengths needed for solving the RWA problem.

4.3. Parameters of the Network Physical Topology

In this section, some parameters of the physical topology of several networks, in partic-

ular the average and variance node degree, are defined and computed. These parameters

result from the analysis of the adjacency matrix of the network (see matrix (2.1)). Fig-

ures 4.1, 4.2 and 4.3 represent the physical topology of the networks studied, which are

classified, respectively, as small networks, ring networks and real networks. The ring net-

works studied range from 6 to 60 node networks, and the real networks are COST239

[11], NSFNET [12], UBN [13] and CONUS with 30 nodes network [14]. Note that in the

Figure 4.1 (B) and Figure 4.3 the values on the edges represent the distance, in kilome-

ters, between the nodes, which is the metric used by the routing algorithm, whereas in

Figures 4.1 (A) and 4.2, the edges have no values since the metric used, in these cases, is

the number of hops.

(A) Bipartite network with 10 nodes. (B) Partial Mesh network with 6 nodes.

Figure 4.1. Physical topology of two small networks

The network COST239, represented in Figure 4.3 (A), is an European transparent

optical Network with 11 nodes linked by 26 fibre optic links, that was built with the
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Figure 4.2. Physical topology of a regular ring network with 8 nodes.

goal of carrying all international traffic between the main cities of Europe [11], [20].

The National Science Foundation Network, best known as NSFNET (Figure 4.3 (B)),

appeared in 1990 to enhance communications, collaboration and resource sharing in the

United States scientific and engineering research community. This network has 14 nodes

and 21 links [12]. This is a benchmarking network [21]. The UBN or US Backbone

Network (Figure 4.3 (C)) is a network with 24 nodes and 43 links that appeared between

1997 and 1999 in the USA in order to respond to the fast and massive flow of information in

urban locations where distances vary greatly [13]. The CONUS network, with 30 nodes

and 36 links, represented in Figure 4.3 (D), is a fibre optic network in USA deployed

to guarantee a higher protection, since it has some cross-continental paths completely

interconnected [14]. It was a network developed for use in research on large-scale Dense

Wavelength Division Multiplexing (DWDM) networks [22].

A network physical topology can be characterized by several parameters such as the

average node degree and the variance of the node degree, respectively, given by [23]:

d =

∑N
i=1 Dgi
N

(4.1)

σ2
d =

∑N
i=1(Dgi − d)2

N − 1
(4.2)

where Dgi is the node degree of vertex i and N is the number of vertices (nodes). The

variance of the node degree helps to understand how regular the network is from the point

of view of the number of connections at each node in the network [23].

Table 4.1 presents the information regarding the network physical topologies with

respect to the number of nodes and links, average and variance of the node degree. It can

be observed that regarding ring networks, the number of nodes is equal to the number of

links and the average node degree and the variance of the node degree are, respectively,
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(A) COST239 network. (B) NSFNET network.

(C) UBN network. (D) CONUS 30 nodes network.

Figure 4.3. Physical topology of the real networks.

Table 4.1. Physical topology parameters for some networks.

Network Nodes Links
Average Variance

Nodes Degree Node Degree
Mesh 6 nodes 6 8 2.7 0.27
Ring 6 nodes 6 6 2.0 0.0
Ring 7 nodes 7 7 2.0 0.0
Ring 10 nodes 10 10 2.0 0.0
Ring 15 nodes 15 15 2.0 0.0
Ring 20 nodes 20 20 2.0 0.0
Ring 45 nodes 45 45 2.0 0.0
COST239 11 26 4.7 0.4
NSFNET 14 21 3.0 0.3
UBN 24 43 3.6 0.9

CONUS 30 36 2.4 0.4

2.0 and 0, which means that all nodes have degree 2, i.e., all nodes have 2 input/output

connections. When the variance node degree is null, it means that all nodes have the

same number of connections. Higher variances correspond to more irregular networks.
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4.4. Parameters of the Network Logical Topology

The logical topology considered for the networks presented in section 4.3 is a full

mesh topology, i.e., there is a logical connection between every node in the network. The

parameters used to characterize the physical topology in the previous section can also be

used to characterize the logical topology. Table 4.2 presents these parameters considering

that a full mesh logical topology (with one unit of traffic - in this work we consider that

the unit of traffic is one OTU-4) is applied over the physical topologies presented in the

previous section. Table 4.2 also presents the number of nodes of the network and the

number of paths. In this scenario, the average node degree for a network with a total

mesh logical topology is N − 1. Furthermore, the variance of the node degree is zero for

the logical topologies considered, because all nodes have the same number of edges.

Table 4.2. Network logical topology parameters.

Network
Number Number Average Variance
of nodes of paths Node Degree Node Degree

Mesh 6 nodes 6 15 5 0.0
Ring 6 nodes 6 15 5 0.0
Ring 7 nodes 7 21 6 0.0
Ring 10 nodes 10 45 9 0.0
Ring 15 nodes 15 105 14 0.0
Ring 20 nodes 20 190 19 0.0
Ring 45 nodes 45 990 44 0.0
COST239 11 55 10 0.0
NSFNET 14 91 13 0.0
UBN 24 276 23 0.0

CONUS 30 435 29 0.0

For a ring network with a full mesh logical topology, the number of paths (bidirectional

paths) is given by [23]

Npaths =
N(N − 1)

2
(4.3)

Note that the parameters presented in Table 4.2 result from the analysis of the traffic

matrix of the network (see matrix (2.2)). For example, the total number of 1’s in each

row of the traffic matrix corresponds to the number of connections of each node at the

logical level.

4.5. Performance of an Exact Algorithm Based on ILP

In this section, the performance of the exact algorithm based on ILP, presented in sub-

section 3.5.2, is studied. In subsection 4.5.1, the behaviour of this algorithm considering
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the different constraints, discussed in section 3.5.2, is studied and analyzed considering the

following small networks: bipartite network with 10 nodes, 8-node partial mesh network,

rings with 6 and 7 nodes and a small mesh network with 6 nodes. For these networks,

it is possible to find the optimal solution using the ILP algorithm. Then, in subsection

4.5.2, more complex networks, rings with higher number of nodes and non-regular real

networks, are considered in order to compare the ILP results with the Greedy algorithm

results. In subsections 4.5.3 and 4.5.4, the particular cases concerning ring networks and

bipartite networks with different dimensions (i.e. number of nodes) are studied with more

detail. Note that all results below were obtained by simulations performed on a computer

with an Intel XEON-CPU E5-2620v2 2.1 GHz processor and 128 GB of RAM.

4.5.1. Small Networks

In this subsection, the performance of an exact algorithm based on ILP is studied

for small networks. Tables 4.3 and 4.4 show the number of paths, number of colors (i.e.

number of wavelengths) and computational time for the constraints defined in eqs. (3.7),

(3.8), (3.9), (3.10) and (3.11) + (3.12) for different network topologies. In Table 4.3, the

8-node (Figure 3.20) and bipartite with 10 nodes logical topology are presented and, in

Table 4.4, the ring physical topology with 6 and 7 nodes and a mesh physical topology

with 6 nodes presented in Figure 4.1 (B) are considered.

Table 4.3. Results of ILP algorithm for logical topology networks

Network ILP Algorithm
Number Number Computational times (sec) with the restrictions

Type
of paths of colors (3.7) + (3.8) (3.9) (3.10) (3.11) + (3.12)

8 node topology
8 3 0.18 0.09 0.07 0.04

(Figure 3.20)
Bipartite 10 nodes 10 2 0.27 0.08 0.07 0.06

Table 4.4. Results of ILP Algorithm for physical topology networks

Network ILP Algorithm
Number Number Computational times (sec) with the restrictions

Type
of paths of colors (3.7) + (3.8) (3.9) (3.10) (3.11) + (3.12)

Ring 6 nodes 15 6 766.2 419.1 407.5 166.6
Mesh 6 nodes 15 8 39847.3 16244.0 15983.2 174.9
Ring 7 nodes 21 6 48427.4 17714.8 17416.1 9055.5

As can be observed in Tables 4.3 and 4.4, the computational time predicted by the

ILP algorithm decreases as the complexity of the constraints increases, i.e., the restriction

defined in eqs. (3.7) + (3.8) leads to much higher computational times than (3.11) +
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(3.12). This happens because the space of solutions, initially with a total number of

solutions equal to n!
(n−k)!

(n is the number of vertices in the path graph and k is the

number of colors) decreases considerably with the application of restrictions, and therefore

the search time for the optimal solution also decreases [4]. When constraint (3.9) is

used, the total number of solutions decreases to k!, and the most significant decrease in

computational time is obtained, i.e., a decrease between 46% (for ring with 6 nodes) and

71% (for bipartite with 10 nodes) in computational time [4]. When constraint (3.9) is

replaced by constraint (3.10), the difference in computational time is not significant, about

2% for physical topology networks and 21% and 10% for both 8-node and bipartite logical

topology networks. Then, by using constraints (3.11) and (3.12), there is again a large

decrease in the computing time, i.e., about 42% and 20% for logical topology networks and

between 50% and 98% for physical topology networks. With these constraints, for each

possible k -coloring, only a unique permutation of the first k permutations is specified [4].

In the case of the mesh topology with 6 nodes, the difference between the first restriction

and (3.10) is almost 7 hours. When constraint (3.10) is changed to (3.11) + (3.12), the

computational time improves again (about 4 hours) because redundant possible solutions

are eliminated [4]. So, it can be concluded that for this network, that there is an improve

of about 11 hours when restriction (3.7)+(3.8) are replaced by restrictions (3.11) + (3.12).

Thus, although the initial constraint (3.7)+(3.8) returns the optimal solution, the

introduction of more complex constraints can return optimal solutions much faster. Also,

for the networks with more nodes such as the ring with 7 nodes, the use of the complex

constraints has a higher impact on the reduction of the computational time.

4.5.2. Comparison of the Greedy Algorithm with the Exact Algorithm

In this subsection, the exact algorithm based on ILP results are compared with the ones

obtained with the Greedy algorithm considering the number of colors and computational

effort.

Table 4.5 shows the number of paths, the number of colors and computational time

obtained with the Greedy and the exact algorithms for the topologies analyzed in the

previous sections. The Greedy algorithm used considers three different sorting strategies:

descending order, ascending order and random order, whose number of colors is obtained

from the average of 10 simulation runs [15]. The particular cases of ring networks and

bipartite networks are more extensively analyzed in subsections 4.5.3 and 4.5.4, respec-

tively.
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Table 4.5. Total number of colors and computational effort of Greedy and
ILP Algorithms for several network topologies.

Network Greedy Algorithm ILP Algorithm

Number
Number of colors

Computat. Number Computat.
Type

of paths
descend.
order

ascendent
order

rand.
order

Time (sec) of colors Time (sec)

8 node
Topology

8 3 3 3 0.032 3 0.04

Bipartite
10 nodes

10 5 5 2 0.023 2 0.058

Mesh 6
nodes

15 8 8 8 0.022 8 174.9

Ring 6
nodes

15 6 6 6 0.022 6 166.63

Ring 7
nodes

21 6 7 7.3 0.033 6 9055.5

Ring 10
nodes

45 15 17 15.4 0.15 15 27228.78

COST239 55 8 9 8.3 0.088 8 32402.5
NSFNET 91 24 25 24.1 0.15 24 180076.8
Ring 15
nodes

105 28 34 33.6 0.20 32 180055.7

Ring
190 55 68 59.1 0.57

optimal solution
20 nodes not found

UBN 276 64 74 65.9 0.50
optimal solution

not found
CONUS

435 123 144 123.9 1.35
optimal solution

30 nodes not found
Ring

990 253 318 286.6 5.5
optimal solution

45 nodes not found

From Table 4.5, it is concluded that the Greedy using ascending order tends to return

a higher number of colors than the descending one, as the number of paths in the networks

increases. The Greedy algorithm using the random order strategy returns, in general, a

number of colors between the ones predicted by the descending and ascending strategies,

except for the case of the bipartite with 10 nodes network, where the random ordering

gives better results than the descending/ascending order. In fact, with the random order

the optimum solution is obtained in this scenario as can be seen in Table 4.5 by comparing

with the ILP result. This case is studied with more detail in subsection 4.5.4. From Table

4.5, it can be also observed that the Greedy algorithm with descending order and the

ILP give the same number of colors for the following networks: 8-node topology, mesh

with 6 nodes, rings with 6, 7 and 10 nodes, COST239 and NSFNET. For a ring with 15

nodes, the number of colors given by the ILP does not reach the optimal solution found
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by the Greedy, because the computational time reaches the computer time limit, which

is 18× 104 seconds.

With the exact algorithm based on ILP, as can be seen in Table 4.5, some results give

“optimal solution not found”. This is due to either exceeding the limit computational

time of the MATLAB implementation or lacking of available RAM memory to process

data.

4.5.3. A Particular Case: Ring Networks

Ring networks are an example of a regular network [24] and, in this case, an analytical

expression for the number of colors (with one unit of traffic per demand) can be found,

respectively, for an even and odd, number of nodes [Chapter 8 [25]], assuming a shortest

path routing:

W =
N2 + 2×N

8
(4.4)

W =
(N − 1)2 + 2× (N − 1)

8
(4.5)

Table 4.6. Number of colors obtained by Equations (4.4) and (4.5),
Greedy and exact algorithm based on ILP for each ring network.

Nodes Equations (4.4) and (4.5) Greedy Exact algorithm based on ILP
6 6 6 6
10 15 15 15
15 28 28 32
20 55 55 optimal solution not found
45 253 253 optimal solution not found

Table 4.6 shows the number of colors obtained for ring networks with different number

of nodes by Equations (4.4) and (4.5), Greedy and exact algorithm based on ILP . From

Table 4.6, it can be observed that the results obtained with the exact and the Greedy

algorithms are in agreement with the analytical results for rings with 6, 10 and 15 nodes.

For rings with 20 and 45 nodes, the exact algorithm based on ILP did not found an

optimal solution due to memory constraints.

Although ILP always finds the optimal solution through massive solution testing, it is

concluded that when the network has a high number of nodes (> 20) the optimal solution

is not found in an acceptable computational time.
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4.5.4. Another Particular Case: Bipartite Networks

Bipartite networks, presented in section 3.4, are also an example of a regular network.

These networks have always an even number of vertices. In bipartite networks, the node

degree is always the same, equal to N
2
− 1, e.g., for a 10 node bipartite, the node degree

is four. So, when using the Greedy algorithm, the coloring is totally dependent on the

sorting strategy.

Figure 4.4 shows the four possible colorings of using the Greedy with a random sorting

in a 10 node bipartite network.

Figure 4.4. Different coloring for the bipartite graph with 10 nodes.

A bipartite graph corresponds to a graph G = (V1, V2, E) where the vertex sets are

defined as V1 = {v1, v3, ..., vn−1} and V2 = {v2, v4, ..., vn} and where edges set is defined

as E = {{vi, vj} : vi ∈ V1 ∧ vj ∈ V2 ∧ i+1 ̸= j} [4]. The last condition in the definition of

the set of edges, i.e., i + 1 ̸= j guarantees that vertex v1 does not connect to v2, v3 does

not connect to v4, and so on.

The results obtained in Figure 4.4 depend on the order the vertices are colored. For

example, the two color case can be obtained when π = (v1, v3, ..., vn−1, v2, v4, ..., vn) [4].

This scenario has a higher probability of occurrence since there are a lot sequences where

the odd vertices appear first than the even vertices, and vice-versa. A possible permutation

that leads to the 3 colors outcome is π = (v9, v10, v6, v7, v4, v1, v3, v8, v5, v2) and a possible

permutation for the 4 color case is π = (v1, v2, v3, v4, v10, v6, v7, v8, v5, v9). The 5-color

scenario appears only when the color order is π = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10) or in

the reverse order. In this case, the outcome is half the total number of nodes, N
2
colors

[4]. This scenario happens with only 2 possible combinations in a total of 10!, so the

probability of occurrence is very low, 2
10!

.
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Table 4.7 shows the results of bipartite graphs with 10, 20, 30, 40 and 50 vertices. In

the exact algorithm based on ILP case, the optimal result of two colors is always reached,

as well as in most of the simulations using the Greedy, corresponding to the minimum

value of colors obtained, which is also the most probable outcome. For all the bipartite

networks, if the Greedy is sorted from v1 to vn or in reverse order, the total number of

estimated colors is equal to N
2
, being the maximum value of colors reached.

Table 4.7. Total number of colors and computational effort of Greedy and
ILP algorithms for bipartite graphs.

Network Greedy Algorithm Exact Algorithm

Number
Number of colors

Computat. Number Computat.
Bipartite

of paths
max
value

min
value

Time (sec) of colors Time (sec)

10 nodes 10 5 2 0.021 2 0.099
20 nodes 20 10 2 0.025 2 8565.3
30 nodes 30 15 2 0.031 2 11232.5
40 nodes 40 20 2 0.033 2 25434.8
50 nodes 50 25 2 0.039 2 30922.6

Regarding the computational time, each algorithm requires more time to obtain a

solution as the number of vertices increases in the bipartite network. As expected, the

exact algorithm based ILP takes significantly much longer time to provide a solution than

the Greedy.

4.6. Performance of the Tabu Search Algorithm

In this section, first, we will study the performance of the Tabu Search algorithm

on random graphs. Then, the comparison between the performance of the Tabu Search

algorithm with the performance of the other algorithms studied previously for real regular

and non-regular network scenarios is presented. Note that the Tabu Search algorithm

used in this work is within the software tool developed and provided in [4] and uses the

DSATUR algorithm as the constructive method to calculate the initial k colors. For the

Greedy algorithm, the descending strategy order is considered since it is the order that

returns the best results [15].

4.6.1. Random Path Graphs

Random graphs, Gn,p, are graphs with n vertices that are randomly generated by using

the parameter p, which corresponds to the probability of two vertices being adjacent [4].

Note that each one of these random graphs correspond to a graph path that need to be

colored. The parameter p is given by
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p =

∑n
i=1

Dgi
n−1

n
(4.6)

In the following analysis, we will present results for n = 20, 50, 100 and 1000 vertices.

For each value of p, 25 random graphs are generated through simulation, and the average

value regarding the number of colors of these simulations is analyzed. We also consider

a maximum number of constraint checks of 5 × 1011 for the Tabu Search to limit the

computational process [4].

The random graphs are built by generating random matrices with a size of n× n and

according to the chosen probability p. Pairs of adjacent vertices are randomly generated

(using an uniform distribution) in the matrix. In particular, when p = 1, it means that

the degree of any vertex of the matrix is n− 1, i.e., all vertices of the matrix are adjacent

to each other. After obtaining the random graphs, the Greedy (using descending order

strategy) and the Tabu Search algorithms are applied for graph coloring and comparison

purposes. It is possible to change this method to calculate the initial k by using the in-

built Greedy algorithm, which always considers a random ordering of the vertices. In this

case, the initial k value is always worse than the initial k obtained with the DSATUR.

Figure 4.5. Number of colors as a function of p for n = 1000 calculated
using the Greedy (descending and random order) and the Tabu Search
algorithms.

Figure 4.5 shows the number of colors as a function of p for n = 1000 calculated using

the Greedy (with random and descending order strategy) and the Tabu Search algorithms.

A very good agreement between these results and the ones presented in Figure 4.6 of [4]

is found. From these results, we can observe that the Tabu Search returns fewer colors
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than the Greedy algorithm, and that the difference in the number of colors increases with

the increase of the value of p, but the relative percentage increase is always around 40%.

For example, for p = 0.1, the Tabu Search gives 21 colors and the Greedy 30 colors, which

is a difference in 9 colors (43 % increase); for p = 0.5, the Tabu Search provides 89 colors

and the Greedy gives 125 colors, which is a difference in 36 colors (40 % increase) and

for p = 0.9, the Tabu Search gives 229 colors and the Greedy gives 313 colors, which is a

difference of 84 colors (37 % increase). Although in Figure 4.5 the results obtained with

Greedy random and Greedy descending orders seem to be very similar, in the inset of

Figure 4.5, it can be seen that the descending order gives always slightly better results (1

color difference).

Figure 4.6. Number of colors as a function of the number of constraint
checks considering the Tabu Search algorithm for n = 1000 and p = 0.5.

Another important issue to consider when comparing the Tabu Search and the Greedy

algorithm is the computation time. In order to compute the time needed for the Tabu

Search to provide a graph coloring solution, we first check the minimum number of con-

straint checks needed to achieve the best solution. In Figure 4.6, the number of colors as

a function of the number of constraint checks is represented for n = 1000 and p = 0.5,

considering the generation of 10 random graphs for each number of constraint checks.

As can be observed in Figure 4.6, the number of colors is minimized only when the

number of checks is above 1011. From that point on, the number of colors remains practi-

cally constant and the minimum number of colors has been reached. Thus, for n = 1000,

a number of constraint checks of 4×1011 is sufficient to ensure that the optimal solution is

reached. It was verified that the parameter p does not influence the number of constraint
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checks required to achieve the minimum number of colors with the Tabu Search, being

this number only dependent on the size of the network.

Figure 4.7 shows the evolution of the number of colors for Tabu Search algorithm as

the number of constraint checks imposed increases for n = 20, 50,100, 200 and p = 0.5.

The number of constraint checks in this study varies between 1 and 1× 1012.

Figure 4.7. Number of colors as a function of the number of constraint
checks imposed on Tabu Search for p = 0.5 and for different values of n.

From Figure 4.7, it can be concluded that for n = 20, only one constraint check

is sufficient to obtain the best solution with the Tabu Search. Likewise for n = 50,

n = 100 and n = 200, a number of constraint checks above, respectively, 1× 107, 1× 108

and 1 × 109 is sufficient to obtain the best solution. Above these values of constraint

checks, the required number of colors increases with the network size, as expected. In

what concerns the computational effort, as n decreases, the required number of constraint

checks that minimizes the number of colors also decreases, and therefore the computation

time for lower n will be lower as well.

After studying the number of constraint checks to use in the Tabu Search algorithm

in random graphs, the behavior of the Greedy and Tabu Search algorithms in finding the

optimal color solution is studied. Figure 4.8 shows the performance of both Greedy and

Tabu Search algorithms for random graphs with 200, 100, 50 and 20 nodes, as a function

of p.

As can be observed in Figure 4.8, the Tabu Search performs better than the Greedy

algorithm by predicting less colors and this behavior is more pronounced for increasing

values of n and p. For networks with a lower number of nodes, the number of colors is
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(A) n = 200 (B) n = 100

(C) n = 50 (D) n = 20

Figure 4.8. Performance of Greedy and Tabu Search for random graphs.

lower than in networks with more vertices. For p = 0 and p = 1, there are no difference

between the algorithms in the number of colors, as these are the cases where no adjacency

and full adjacency between nodes occur, respectively. That is, if no nodes are adjacent

to others, the same color, independently of the algorithm, can be applied to all nodes.

Similarly, if there is adjacency of a node with all nodes in the network, then each node is

assigned its own color.

To better understand the conclusions presented above, Figure 4.9 shows the increase

in percentage of the number of colors as a function of p predicted by the Greedy algorithm

in comparison with the Tabu Search, considering n = 20, 50, 100, 200, 1000. Note that

25 simulations were performed to obtain the results presented.

From Figure 4.9, it can be concluded that the higher the number of vertices in the

network, the higher the percentage growth. The maximum value found is around 40%.

For p = 0.1 and n = 200, there is a maximum 40% increase in the number of colors used
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Figure 4.9. Percentage of the number of colors increase between Tabu
Search and Greedy algorithms for n = 20, 50, 100, 200 and 1000 as a function
of p.

by the Greedy algorithm in comparison with the number of colors predicted by the Tabu

Search, whereas, for n = 100, there is only 32% increase, for n = 50, there is 10% increase

and, for n = 20, there is only 3% increase. From these results, it can be concluded that

the decrease in the total number of colors attributed by the Tabu Search in comparison

with the Greedy is more pronounced in networks with more nodes. For p = 0.9 and for

n = 200, there is only 26% increase in the numbers of colors used by the Greedy algorithm.

Similarly, for n = 100 and n = 50, the difference of total number of colors between both

algorithms decreases, respectively, to 20% and 8%. For n = 20 and p = 0.9, the results

predicted by both algorithms is equal. This is because the network has so few nodes that

it becomes easier for both algorithms to reach the same solution.

The study of the number of constraint checks needed to minimize the number of colors

for each network was developed to save computation time and is shown is Figure 4.10.

Note that the Tabu Search line represents the minimum number of constraint checks

that allows to minimize the number of colors using the Tabu Search. The number of

checks, as verified in Figure 4.10, depends remarkably on the number of vertices n in

the network. The study presented has been performed considering 25 simulations for a

parameter p = 0.5. However, from extensive simulation results, it has been verified that

there is no dependence of the number on constraint checks required of the parameter

p used. Thus, regardless the value of p, from Figure 4.10, it is possible to obtain an

approximation for the required number of constraint checks for any number of vertices n
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Figure 4.10. Number of constraint checks as function of the number of
vertices and some fitting curves.

that minimizes the number of colors in a random graph. To obtain such approximation

in Figure 4.10, a curve fitting has been performed to the obtained Tabu Search curve,

including linear, quadratic, cubic and fourth degree fittings. Note that for proper fitting,

the logarithm base 10 of the number of checks has been used.

As can be observed in Figure 4.10, the linear and quadratic fittings, respectively, below

n = 500 and n = 300, predict a number of checks much smaller than the one given by

the Tabu Search. The cubic and fourth degree fittings predict a very similar number of

constraint checks, but we prefer to use the cubic fitting, because it represents a simpler

function. The cubic fitting is given by:

6.364× 10−8n3 − 1.105× 10−4n2 + 5.691× 10−2n+ 1.897 (4.7)

4.6.2. Ring Networks: Comparison Between Tabu Search, Exact and Greedy

Algorithms

In this subsection, a comparative study between the Tabu Search, exact algorithm

based on ILP and Greedy algorithms is performed considering ring networks. All results

obtained in this subsection consider a full mesh logical topology. In the case of the

exact algorithm based on ILP, we use the constraints (3.11)+(3.12) to save computational

time. Table 4.8 shows the number of colors computed by the Greedy, ILP and Tabu

Search algorithms and also the analytical results from eqs. (4.4) and (4.5) that return the

minimum number of colors for rings with different number of nodes.
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Table 4.8. Number of colors obtained by eqs. (4.4) and (4.5), Greedy,
ILP and Tabu Search algorithms for each ring network.

Network Eqs. (4.4) and (4.5) Greedy ILP Tabu Search
6 nodes 6 6 6 (optimal solution) 6
7 nodes 6 6 6 (optimal solution) 6
8 nodes 10 10 10 (optimal solution) 10
9 nodes 10 10 11 (feasible solution) 10
10 nodes 15 15 15 (feasible solution) 15
15 nodes 28 28 32 (feasible solution) 29
20 nodes 55 55 optimal solution not found 55
25 nodes 78 78 optimal solution not found 81
30 nodes 120 120 optimal solution not found 120
35 nodes 153 153 optimal solution not found 157
40 nodes 210 211 optimal solution not found 210
45 nodes 253 253 optimal solution not found 262
50 nodes 325 327 optimal solution not found 325
55 nodes 378 378 optimal solution not found 385
60 nodes 465 469 optimal solution not found 465

Comparing the results obtained by the several algorithms in Table 4.8, it is possible

to observe that the analytical results obtained by eqs. (4.4) and (4.5) are in agreement

with the ones obtained by the Greedy and Tabu Search algorithms for rings with N =

6, 7, 8, 9, 10, 20 and 30 nodes. Regarding the remaining presented networks, it is concluded

that for rings with an odd number of vertices, the Greedy returns the optimal solution

calculated by the equations, while the Tabu Search does not. This result was not expected

since the Tabu Search algorithm is supposed to have a better or at least equal performance

to the Greedy algorithm. On the contrary, for networks with an even number of vertices,

the Tabu Search provides the optimal number of colors, while the Greedy predicts a

slightly higher number of colors. For some networks, the ILP is not able to compute the

optimal solution. In the case of Greedy algorithm for regular networks with even number

of nodes, the results are equal to those presented in [15] and the difference in the number

of colors is enhanced as the number of paths increases.

4.6.3. Real Networks: Comparison Between Tabu Search, Exact and Greedy

Algorithms

In this subsection, the three algorithms studied in this chapter are applied to the non-

regular real networks COST239, NSFNET, UBN and CONUS30. The Greedy algorithm

considers the descending order strategy and the exact algorithm based on ILP uses the

constraints (3.11)+(3.12). In this subsection, we also study the influence of the logical
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topology on the number of colors obtained by the Greedy and Tabu Search algorithms, as

well as the influence of the average and variance node degree of the path graph G(W,P ).

Table 4.9 presents the number of colors and the corresponding simulation times for

the networks COST239, NSFNET, UBN and CONUS30, considering a full mesh logical

topology, obtained with the Greedy, Tabu Search and ILP algorithms. In the case of the

Greedy algorithm, two simulation times are presented: the simulation time measured with

our MATLAB script and the simulation time measured by running the software provided

in [4], in the Microsoft Visual Studio. Note that the Tabu Search algorithm runs also on

Microsoft Visual Studio and the ILP runs as a MATLAB script.

Table 4.9. Number of colors and simulation time obtained by Greedy,
exact algorithm based on ILP, and Tabu Search for some non-regular net-
works.

Network Greedy Algorithm ILP Algorithm Tabu Search
Parameter Number Time Time [4] Number Time Number Time

Name
p of colors (sec) (sec) of colors (sec) of colors (sec)

COST239 0.101 8 0.02 0.002 8 3.24× 104 8 0.008
NSFNET 0.25 24 0.06 0.009 24 1.8× 105 24 0.015

UBN 0.2250 64 0.07 0.014
optimal solution

64 0.096
not found

CONUS30 0.379 123 0.12 0.040
optimal solution

123 0.373
not found

From the results presented in Table 4.9, regarding the computational time, it is ob-

served that the simulation time of the Greedy algorithm provided by [4] is 4 times faster

than the Tabu Search time for the COST239 network and almost 10 times faster than the

Tabu Search time for the CONUS30 network. The ILP, as expected, is the algorithm that

takes the longest time to run, around 9 hours for the COST239 network and more than 48

hours for the NSFNET network, which can be justified by the higher p and higher number

of paths of the NSFNET networks comparing to COST239. Thus, it is verified that the

Greedy algorithm provided by [4] (which leads to a lower time than the one obtained with

the Greedy developed in MATLAB) is faster than the Tabu Search, as expected, since

the Tabu Search runs the Greedy algorithm several times, instead of just one.

Also, as observed in Table 4.9, it can be concluded that for Greedy and Tabu Search

algorithms, the same number of colors are obtained for all the networks. These results are

also verified by the exact algorithm based on ILP in the case of COST239 and NSFNET

networks. For the other networks, an optimal solution could not be found due to time

limitations. However, in section 4.6.1, considering random path graphs, we have seen that

61



Chapter 4 Application of Exact and Heuristic Graph Coloring Techniques for WA in
Optical Networks

the Tabu Search predicts a lower number of colors than the Greedy algorithm. In order to

understand this apparently contradicting behavior, in the following, we are going to study

the influence of the traffic pattern in the number of colors obtained by the two algorithms.

Therefore, we are going to change the traffic matrix in order to obtain various logical

topologies different from the full mesh topology considered for the networks presented in

Table 4.9. First, we define a metric called the percentage of network traffic, denoted as

NT . This metric ranges from 0 (no network traffic) to 100% (full mesh topology) and

aims to quantify the change of network traffic in a traffic matrix considering only unitary

traffic units, for different real networks.

Figure 4.11 shows the numbers of colors as a function of the percentage of network

traffic NT , studied for the non-regular real networks considered in Table 4.9, using the

Greedy (considering descending strategy) and Tabu Search algorithms. From Figure 4.11,

it can be observed that, when NT = 0, as there is no traffic in the network, no colors

are assigned. When NT > 0, the two algorithms give exactly the same number of colors.

Thus, it can be concluded that the change of the traffic matrix (i.e. the logical topology)

does not produce any differences on the number of colors predicted by both algorithms.

The reason for this behavior is going to be detailed next, but relies on the fact that the

variance node degree of the path matrix is considerably greater than the corresponding

average value.

Figure 4.11. Number of colors provided by the Greedy and Tabu Search
algorithms for non-regular real networks depending on NT

Next, we are going to investigate the impact of the average and variance node degrees

of the path graph G(W,P ) in the performance of the Greedy and Tabu Search algorithms,
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in order to try to explain why the two algorithms give the same number of colors when

real networks are considered, independently of the network traffic, and different number

of colors with random path graphs.

In Table 4.10, the parameter p, the average and variance node degrees of the path

graph, G(W,P ) of the COST239 (n = 55 and p = 0.101), NSFNET (n = 91 and p = 0.25),

UBN (n = 276 and p = 0.225) and CONUS30 (n = 435 and p = 0.392) networks and

the respective number of colors predicted by the Greedy and Tabu Search algorithms

are presented. The same network paramaters are also presented for random path graphs

(where the corresponding path matrix is generated with a uniform distribution as in

section 4.6.1), with the same number of paths and parameter p of the referred networks.

Table 4.10. Number of paths n, parameter p, average node degree, vari-
ance node degree and number of colors given by the Greedy with descending
order and Tabu Search for the studied real networks and for random path
graphs with the same characteristics, n and p, of the real networks.

Network
Number Parameter Average Variance Greedy Tabu Color
of paths p node degree node degree descend Search Difference

Real networks
COST239 55 0.101 5.6 14 8 8 0
NSFNET 91 0.25 22.5 121.0 24 24 0
UBN 276 0.225 61.9 1.2840× 103 64 64 0

CONUS30 435 0.392 164.6 4.3696× 103 123 123 0
Random path graphs with uniform distribution

n = 55
55 0.101 5.88 4.6 5 4 1

p = 0.1
n = 91

91 0.25 22.5 14 11 8 3
p = 0.25
n = 276

276 0.225 61.9 51.9 21 15 5
p = 0.225
n = 435

435 0.392 170.2 164.5 47 34 13
p = 0.392

As can be observed in Table 4.10, the average node degree in real networks and random

path graphs is very similar as it depends on the number of paths and on the parameter p

that is equal for the real and random networks. However, it can be noticed, that in random

path graphs, the variance node degree has a similar magnitude than the average node

degree, while, in real networks, the variance node degree is at least one order of magnitude

higher than the average node degree. The lower variance found in random path graphs

is due to the uniform distribution of 1´s in the path matrix G(W,P ) (e.g. for p = 0.1 it

means that each line of the matrix has 10% ones and 90% zeros on average), while the

higher variances found in real networks are due to the non-uniform distribution of 1´s in
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the path matrix G(W,P ). Furthermore, in random path graphs, for lower variance node

degrees, the difference in colors between Greedy and Tabu Search is notorious, whereas

in real networks both algorithms produce the same number of colors. For example, for

n = 435 and p = 0.392, in Table 4.10, the variance node degree for the CONUS with

30 nodes network is 4369, whereas for the respective random graph, the variance has a

much lower value, 164.5. So, this finding can justify the fact that the number of colors

computed by the Greedy and Tabu Search algorithms when random graphs are used is

different, while the same number of colors is obtained when real networks are considered.

To further confirm this finding we are going to study the evolution of the number of

colors as a function of the variance node degree of the path graph, G(W,P ), for both

Greedy and Tabu Search algorithms.

Figure 4.12 shows the number of colors obtained with the Greedy and Tabu Search

algorithms as a function of the variance node degree for random matrices using uniform

and non-uniform distributions with the same number of paths n and parameter p of the

real networks (A) UBN and (B) CONUS30. In Figure 4.12 (C), the case of the random

graph shown in Figure 4.8 with n = 100 and p = 0.5 is studied also considering uniform

and non-uniform distribution. In Figures 4.12 (A) and (B), we also represent the number

of colors corresponding to the real cases of UBN and CONUS 30 network. To obtain the

results of the Figure 4.12, a script has been developed to change the distribution of the

1’s in the random path matrices in order to increase the variance node degree in relation

to the average node degree without changing the parameter p of the path matrix. It has

been verified that the parameter p of the network is kept constant for any variance node

degree considered and that the average node degree is also constant and equal to the ones

given in Table 4.10 for the UBN and CONUS30 networks.

As can be seen in Figure 4.12, for higher variance node degrees, the number of colors

given by Greedy and Tabu Search algorithms tends to converge, whereas for lower vari-

ances the number of colors produced by these algorithms is different, with Tabu Search

algorithm presenting a lower number of colors. This behavior is observed for all the three

networks studied. For example, in Figure 4.12 (C), for a low variance around 27, the

Greedy algorithm leads to, respectively, 22 and 20 colors, with a non-uniform and a uni-

form distribution, while the Tabu Search gives 15 colors for both distributions. Likewise,

in Figure 4.12 (C), for a high variance of 900, both algorithms produce around 52 col-

ors with a non-uniform distribution. In Figures 4.12 (A) and (B), the number of colors
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(A) n = 276 and p = 0.225 (B) n = 435 and p = 0.392

(C) n = 100 and p = 0.5

Figure 4.12. Number of colors estimated by the Greedy and Tabu Search
algorithms for random graphs using a non-uniform distribution as a function
of the variance node degree.

obtained in the UBN and CONUS with 30 nodes networks is also represented for both

algorithms. It can also be observed that in these scenarios, there is no difference between

the number of colors given by the Tabu Search and the Greedy algorithms, when the

number of colors predicted is high, which for the non-uniform distribution, in Figure 4.12,

happens, for high variance node degree. In the limit, when the maximum number of colors

is used (i.e. all vertices are adjacent) both algorithms must return the same number of

colors.

A more conclusive observation can be taken from Figure 4.13, where the number of

colors provided by the Greedy and the Tabu Search algorithms for a network with n = 435

and p = 0.392 is represented as a function of the variance node degree. In Figure 4.13,

several cases of the non-uniform distribution that lead to a high number of colors (above
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80) have been collected. It can be observed that even for low values of the variance node

degree, when a higher number of colors is required, both algorithms return the same

number of colors. When the number of colors becomes lower than 80, in most cases, the

Tabu Search algorithm gives less colors than the Greedy algorithm. For example, for a

variance node degree equal to 5120, the two algorithms return the same number of colors,

140. However, for similar variance node degree, when the Greedy returns 70 colors, the

Tabu Search returns only 62.

Figure 4.13. Number of colors provided by the Greedy and Tabu Search
algorithms for a network with n = 435 and p = 0.392 as a function of the
variance node degree.

So, it can be concluded that for the real networks tested, due to these networks

resulting logical topology that always requires a high number of colors, the simpler and

faster Greedy algorithm with descending order should be used, instead of the Tabu Search,

since it it gives the same number of colors as the Tabu Search.

4.7. Conclusion

In this chapter, the performance of an exact algorithm based on ILP and of the Tabu

Search algorithms has been studied in detail for wavelength (i.e. color) assignment in

regular and non-regular real networks, as well as, in randomly generated path graphs and

their performance has been compared with the one given by the Greedy algorithm.

We conclude that the exact algorithm based on ILP, although providing in theory the

optimal solution, it requires high computation times. It was observed that this algorithm

takes an unfeasible computational time for networks with a number of nodes larger than

20. However, we have also shown that by applying the constraints (3.11) and (3.12) in
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order to reduce the space solutions found with the initial constraints (3.8) and (3.9), a

significant computational time is saved. In particular, for the simple mesh logical topology

with 6 nodes network, the algorithm takes less 11 hours when using constraints (3.11)

and (3.12). We have also used the Greedy algorithm with descending order in the same

networks and have concluded that the Greedy algorithm gives in almost all the network

scenarios studied the same results as the exact algorithm. One exception is in Bipartite

networks, where the Greedy algorithm does not predict always the optimum number of

colors.

Regarding the Tabu Search algorithm, when the path graph is obtained randomly

with a uniform distribution, the Tabu Search can lead to a superior performance than the

Greedy algorithm. In particular, when n = 1000 and p = 0.5, the Tabu Search algorithm

returns only 89 colors, whereas the Greedy algorithm gives 124 colors. However, when non-

regular real networks are considered, both Greedy and Tabu Search algorithms give the

same number of colors. We have found that, independently of the variance node degree,

when the number of colors required is high, the Greedy and Tabu Search algorithms tend

to return the same number of colors. When the number of colors required is low, the

Tabu Search outperforms the Greedy. So, we can conclude that in real networks, the

resulting logical topology always demands a high number of colors, being the Greedy

a more advantageous algorithm, due to its simplicity and fastness, while predicting the

same number of colors as the Tabu Search.
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Conclusions and Future Work

In this chapter, the main conclusions of this work are presented and some possible

future studies are suggested.

5.1. Conclusions

In this work, the behaviour and performance of different graph coloring algorithms

for WA in optical networks with static traffic has been studied. The static RWA scenario

goal is to minimize the number of colors to attribute to a specific number of optical paths

in the network.

In Chapter 2, the basic concepts of optical networks are presented, such as physical

and logical topologies, as well as, corresponding adjacent and traffic matrices. Moreover,

a brief description of the usual RWA algorithms is presented.

Chapter 3 introduces some graph coloring basics and gives some examples for graph

coloring applications, such as constructing schedules, taxi scheduling, and WA, the appli-

cation that we study in this work. Then, the three graph coloring algorithms studied in

this work, Greedy algorithm, exact algorithm based on ILP and Tabu Search algorithm,

are explained using pseudocode and several examples of these algorithms are presented and

discussed. The ILP formalism used for the exact algorithm is studied and implemented

for several constraints that range from simple ones with high computational times to more

complex constraints with faster computational times.

In Chapter 4, Greedy, Tabu Search and exact algorithm based on ILP are applied,

as WA algorithms, to minimize the number of colors in several scenarios: random path

graphs, ring networks and real networks (COST239, NSFNET, UBN, CONUS 30). First,

the RWA tool is briefly described and the parameters of the physical and logical topologies

of these networks are explained and calculated.

The exact algorithm based on ILP, although leading to optimum solutions when its

application is feasible, even with restrictions imposed to save some computational time,

takes a huge computational time to return the same number of colors as the Greedy

algorithm using the descending order strategy. With a number of nodes larger than 20, it

was not possible to find the optimal solution due to the computational time and memory
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limitations. The bipartite graphs were the only example studied where the number of

colors estimated by the exact algorithm can be smaller than the Greedy.

Regarding the Greedy and Tabu Search algorithms, it was concluded that in the ran-

dom path graphs using a uniform distribution to build the path matrix, the Tabu Search

algorithm returned always a lower number of colors than the Greedy. For example, when

n = 1000 and p = 0.5, Tabu Search returns less 35 colors than the Greedy algorithm.

However, it was observed that in real networks, where the path matrix shows a non-

uniform distribution, both algorithms predict the same number of colors, independently

of the network traffic (or logical topology). We have concluded that the number of colors

estimated in each scenario determines the behavior of the Tabu Search and Greedy algo-

rithms, independent of the variance node degree of the path graph. For random graphs

with low variance node degree, the Tabu Search generally gives less colors than the Greedy,

as it happens with random path graphs with uniform distribution. However, even for low

variance node degrees, when the number of colors required is high, both Tabu Search and

Greedy algorithms give the same number of colors. For high variance node degree, as the

number of colors required is always high, the Greedy and Tabu Search predict the same

number of colors. As a final conclusion, for real networks, the Greedy with descending

order is a simpler and better tool for WA, as it takes a lower computational time than

the Tabu Search and estimates the same number of colors.

5.2. Future Work

In the following, possible future studies to continue the work developed are presented:

• Study the performance of evolutionary algorithms, inspired by biological evolu-

tion, as graph coloring algorithms [4] and compare its performance with the Tabu

Search and Greedy performance;

• Further study the statistical properties of the path matrix, in terms of higher or-

der moments such as the skewness of the node degree as a function of the number

of colors, considering the Greedy, Tabu Search and evolutionary algorithms;

• Consider traffic demands with more that one traffic unit and assess the perfor-

mance of the Greedy, Tabu Search and evolutionary algorithms. In this case,

each vertex of the path graph can have multiple colors [4].
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Abstract: The aim of this work is to study the Tabu Search algorithm as a graph coloring technique for wavelength
assignment in optical networks, a crucial function in optical network planning. The performance of the Tabu
Search is assessed in terms of the number of wavelengths and computation time and is compared with the one
of the most common Greedy algorithm. It is concluded that for real networks with a large number of nodes
and a higher variance node degree of the path graph relatively to its average node degree value, the Greedy
algorithm is preferable to the Tabu Search algorithm since it returns the same number of colors of Tabu Search,
but in a shorter computation time.

1 INTRODUCTION

Routing and Wavelength Assignment (RWA) are fun-
damental functions to transport data in an efficient
way in optical networks (Winzer et al., 2018). Rout-
ing is responsible for finding the best path for a given
traffic demand, and wavelength assignment (WA) is
responsible for choosing an appropriate wavelength in
that path to transport the given traffic demand taking
into account the wavelength continuity and the dis-
tinct wavelength constraints (Simmons, 2014).

Several techniques have been used to solve the
WA problem, ranging from exact algorithms to
heuristics that typically give a sub-optimal solution
to the problem, but in a shorter time, like the First-
Fit or the Most Used algorithms (Simmons, 2014),
(Zangy et al., 2000). Graph coloring techniques, al-
though applied to a large range of applications, such
as constructing schedules, can also be used for WA
in optical networks (Simmons, 2014). The most used
graph coloring algorithm for WA is the Greedy algo-
rithm (Lewis, 2016). Some studies have, however,
used other Graph coloring algorithms for WA, such
as the DSATUR and RLF (Duarte et al., 2021), but
for the majority of the networks studied the Greedy
algorithm performs as well as these algorithms.

In this work we aim to study a more complex and
more rigorous graph coloring technique for WA in op-
tical networks, the Tabu Search algorithm. A perfor-
mance study is made for several network topologies in

terms of the number of colors and computation time.
Moreover, a detailed comparison with the the Greedy
algorithm is performed. The aim of these algorithms,
considering a static network scenario, is to find the
minimum number of wavelengths that satisfies all the
traffic demands, in a feasible and reasonable compu-
tational time.

Note that the Tabu Search algorithm is a meta-
heuristic algorithm used for solving different kinds
of problems, such as optimization problems in net-
work design (Pióro and Medhi, 2004). For example,
it has been used for solving RWA problems based on
Integer Linear Programing (ILP) formalisms (Wang,
2004), (Goścień et al., 2014), (Dzongang et al., 2005).
Moreover, in (Hertz and Werra, 1987) this algorithm
has been used to solve graph coloring problems. But,
to the best of our knowledge, there are no works that
have used it as a graph coloring technique for WA in
optical networks, as we do in this work.

This paper is organized as follows. In Section
2, the Greedy and Tabu Search graph coloring algo-
rithms are explained and their pseudocodes and illus-
trative examples provided. In Section 3, the perfor-
mance of the Tabu Search algorithm in random graphs
and its comparison with the Greedy algorithm is stud-
ied. In Section 4, the RWA planning tool is briefly
described and the performance of both algorithms as
graph coloring techniques for WA in optical networks
is assessed for several real networks. Finally, in Sec-
tion 5, the conclusions are drawn.
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2 GRAPH COLORING
ALGORITHMS

In this section, the Greedy and Tabu Search algo-
rithms, are explained through their respective pseu-
docode and an illustrative example is given.

2.1 Greedy Algorithm

The Greedy algorithm is probably the most used
graph coloring algorithm (Lewis, 2016). It consists
in coloring the vertices of a given graph one by one,
with some ordering strategy, so that adjacent vertices
have different colors (Lewis, 2016).

Figure 1 shows the pseudocode for Greedy algo-
rithm (Lewis, 2016). Initially S that represents the
set of colors that are going to be assigned along the
Greedy algorithm process is empty and π represents
a possible permutation of the graph vertices, e.g. de-
scending, ascending or random order of the vertices.
The for cycle in line (1) of the pseudocode goes
through the set of vertices π and, for each vertex of
π tries to find a color class S j belonging to S to which
it can be associated. This process involves checking
the color class of the adjacent vertices. If the working
vertex is an independent set then a color S j can be as-
signed to this vertex. If this is not the case then a new
color class must be assigned (lines 7 to 9).

Figure 1: Pseudocode for Greedy algorithm.

Figure 2 represents an example of the operation of
the Greedy algorithm, assuming a coloring strategy
based on the descending order of degree. The ver-
tex with the highest number of links connected, i.e.,
the highest vertex degree, is colored first, i.e. v2 in
step 1 is color with green (S1={green}). In step 2 the
algorithm continues the coloring with the following
highest vertex degree, v8, which is adjacent to v2 so
it is assigned to a different color, pink (S2={pink}).
In step 3, since there are four vertices with degree 3,
one of them is randomly chosen. We have choose v1
with the color class S2 (step 4). This process contin-

ues until all vertices have been colored and in the end
(step8) we can see that three colors are used.

Figure 2: Greedy algorithm example.

2.2 Tabu Search Algorithm

Tabu Search is a metaheuristic algorithm, used to
solve different kinds of problems, such as graph col-
oring (Lewis, 2016). The idea of this algorithm, when
applied to graph coloring problems, is to answer the
following question: given a graph G(V,E), where V
represent the set of vertices and E the set of edges be-
tween vertices, is it possible to feasibly color it with k
colors? This algorithm has the following main steps:

1. It starts by defining an initial solution S to color
the graph with a predefined value k of colors,
which can be obtained randomly or by using a
constructive heuristic, like Greedy or DSATUR
(Lewis, 2016).

2. The algorithm next proceeds by computing the
number of clashes (i.e. two adjacent vertices with
the same color) which is represented by function
f(S), defined by:

f (S) = ∑
∀{u,v}∈E

g(u,v) (1)

with g(u,v)=

{
1 ifc(u)=c(v),
0 otherwise.

where c(u) is the color of vertex u and c(v) is the
color of vertex v.

If g(u,v) = 1 it means that the color of the two
adjacent vertices u and v is the same and there-
fore a clash occurs. The aim of the algorithm is to
eliminate the clashes, i.e., f (S) = 0. If the num-
ber of clashes is not zero, a new solution S´ is
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obtained, by using the neighbor operator, which
is defined as follows: if a vertex v is assigned to a
color i, a neighbor operator corresponds to a color
change of vertex v to a new color j. Note that to
obtain this new solution S´ there are some ver-
tices color changes that can not be done. These
vertices color changes are registered in a list of
forbidden vertices color changes, called the Tabu
list T. This list is used to avoid previous unde-
sired and already checked solutions (Hertz and
Werra, 1987). If with this new solution S´ condi-
tion f (S′) < A( f (S)) is verified, the best solution
S´ is found. In this condition, A is an “aspiration
level” function that gives the possibility that so-
lutions S´ with a superior number of clashes be
chosen, with the aim to escape from local minima
(Hertz and Werra, 1987). If f (S) = 0 and number
of operations (Niter) is less than Nmax it means
that a solution with k colors is found. If the num-
ber of operations is Nmax the algorithm stops.

3. If a solution with k colors is found the algorithm
starts again with k-1 colors.

Figure 3 shows the pseudocode of the Tabu Search
algorithm, which follows the previous explanation.
The pseudocode is initialize by defining an initial so-
lution S and the Tabu list T size. While clashes occur,
i.e., f (S)> 0, a new solution S´ is searched, the con-
dition f (S′)< A( f (S)) is checked and the Tabu list T
is updated.

Figure 3: Pseudocode for Tabu Search algorithm.

If a solution with k colors ensures that the number
of clashes is zero, the algorithm tries a solution with
k−1 colors (lines 9-10). The algorithm stops when no
solution with k− 1 colors is achieved or the number
maximum of iterations is reached.

Figure 4 represents the same network of Figure
2, but now the coloring is going to be made with
the Tabu Search algorithm. The algorithm starts with
a random coloring solution (step 1). In this case,
this random solution has 4 colors and 2 clashes, so

f (S′) = 2. Once the solution has clashes, the algo-
rithm generates a new solution S´. In step 2, the
neighbor operator works in the vertex 3 changing the
color pink to green. This operation eliminate the clash
that occurs between vertices 1 and 3, but a new clash
appears between vertices 3 and 7, keeping the number
of clashes equal to 2. The Tabu list T is updated with
this move, i.e., vertex 3 changes from pink to green.

Figure 4: Tabu Search algorithm example.

In step 3, the clash between vertices 3 and 7 is
eliminated and a better solution is found that reduces
the number of clashes to one, between adjacent ver-
tices 5 and 8. In this step, the neighbor operator works
in vertex 7, coloring it with yellow, which is one of the
four initial colors of the solution. The Tabu list T is
updated again, with the addition of the move corre-
sponding to vertex 7 colored in green. Thus, in step 3
there is a solution with 4 colors and one clash between
vertices 5 and 8.

In step 4 occurs the coloring of vertex 8 with blue.
Thus, all clashes are eliminated, i.e., f (S) = 0 and
a complete proper k coloring is found with k=4. At
this stage, the algorithm tries the solution k=3 colors.
If vertices 6 and 7 are colored with pink (step 4) or
vertices 1 and 5 are colored with yellow, this solu-
tion is feasible, with a total of k colors smaller than
initially tested, making it a better solution. Next, the
algorithm tries the solution with k=2 colors, but no
solution with proper coloring is found, so, k=3 is the
minimum number of colors.

3 PERFORMANCE OF THE TABU
SEARCH ALGORITHM IN
RANDOM GRAPHS

In this section, we study the performance of the Tabu
Search algorithm in random graphs, and compare its
performance with the one of Greedy algorithm with
descending order. We have used the implementation
of these algorithms available in (Lewis, 2016). But,
first, we analyze the influence of the number of con-
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straint checks (Lewis, 2016) on the accuracy of the
Tabu Search algorithm, in order to minimize the re-
spective computation time.

Random graphs, Gn,p, are graphs with n ver-
tices characterized by the parameter p, which corre-
sponds to the probability of two vertices being adja-
cent (Lewis, 2016). The parameter p can be given by

p =
∑n

i=1
Dgi
n−1

n
(2)

where Dgi is the degree of vertex i and n is the number
of vertices.

Random graphs are built by generating random
matrices with a n× n dimension according to the pa-
rameter p. Each matrix position represents a pair of
vertices; if its value is one it means that the vertices
are adjacent, if its value is zero, the vertices are non-
adjacent. These values are randomly generated using
a uniform distribution. In particular, when p = 1, it
means that the degree of any vertex of the matrix is
n− 1, i.e., all vertices of the matrix are adjacent to
each other.

3.1 Influence of the number of
constraint checks

In order to compute the time needed for the Tabu
Search algorithm to provide a graph coloring solution,
we first analyze the minimum number of constraint
checks needed to achieve the best solution. Constraint
checks are the operations within the Tabu Search al-
gorithm that involve information requests about the
graph, such as determining the degree of a vertex, or
determining if two vertices are adjacent or not (Lewis,
2016).

Figure 5: Number of colors as a function of the number of
constraint checks considering the Tabu Search algorithm for
n = 1000 and p = 0.5.

In Figure 5, the number of colors as a function
of the number of constraint checks is represented for
n = 1000 and p = 0.5, considering the generation
of 10 random graphs for each number of constraint
checks. As can be observed, the number of colors is
minimized only when the number of checks is above
1× 1011. From that point on, the number of colors
remains practically constant. Thus, for n = 1000, a
number of constraint checks of 4× 1011 is sufficient
to ensure that the optimal solution is reached. It was
confirmed that the parameter p does not influence the
number of constraint checks required to achieve the
minimum number of colors with the Tabu Search.
This number only depends on the size of the graph.

Figure 6 shows the evolution of the number of
colors for Tabu Search algorithm as the number of
constraint checks increases for n = 20, 50, 100 and
200 and p = 0.5. The number of constraint checks
in this study is between 1 and 1× 1012. From Fig-
ure 6, it can be concluded that for n = 20, only one
constraint check is needed to obtain the best solution.
Likewise for n = 50, n = 100 and n = 200, a num-
ber of constraint checks above, respectively, 1× 107,
1× 108 and 1× 109 is needed to obtain the best so-
lution. Below these values of constraint checks, the
required number of colors increases with the graph
size, as expected. In what concerns to the compu-
tational effort, as n decreases, the required number of
constraint checks that minimizes the number of colors
also decreases, and therefore the computation time for
lower n will be lower as well.

Figure 6: Number of colors as a function of the number
of constraint checks imposed on Tabu Search for p = 0.5
considering different values of n.

The study of the number of constraint checks
needed by the Tabu Search algorithm to minimize the
number of colors for each graph was carried out to
save computation time and is shown in Figure 7. The
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number of constraint checks, as observed in Figure
7 for the Tabu Search curve, depends remarkably on
the number of vertices, n, in the graph. This study
has been performed considering 25 simulations for a
parameter p = 0.5. However, from extensive simu-
lation results, it has been concluded that there is no
dependence between the number of constraint checks
required and the parameter p. Thus, regardless the
value of p, from Figure 7, it is possible to obtain an
approximation for the required number of constraint
checks for any number of vertices n that minimizes
the number of colors in a random graph. To obtain
such approximation in Figure 7, a curve fitting has
been performed relatively to the Tabu Search curve,
including linear, quadratic, cubic and fourth degree
fittings. Note that for proper fitting, the logarithm
base 10 of the number of checks has been used.

Figure 7: Number of constraint checks as function of the
number of vertices and some fitting curves.

As can be observed in Figure 7, the linear and
quadratic fittings, respectively, below n = 500 and
n = 300, predict a number of checks much smaller
than the one given by the Tabu Search. The cubic and
fourth degree fittings predict a very similar number
of constraint checks, but we prefer to use the cubic
fitting, because it represents a simpler function. The
cubic fitting is given by:

6.4×10−8n3−1.1×10−4n2+5.7×10−2n+1.9 (3)

3.2 Comparison with the Greedy
algorithm

After studying the appropriate number of constraint
checks to use in the Tabu Search algorithm, the per-
formance of the Greedy and Tabu Search algorithms
in finding the optimal color solution is also studied

and compared considering random graphs.
Figure 8 a) shows the number of colors as a func-

tion of p for n = 1000 calculated using the Greedy
(with random and descending order) and the Tabu
Search algorithms. A very good agreement between
the Tabu Search results and the ones presented in Fig-
ure 4.6 of (Lewis, 2016) is found. It can be observed
from Figure 8 a) that for p = 0 and p = 1, there are
no difference between the algorithms in the number
of colors, as these are the cases where no adjacency
and full adjacency between vertices occur, respec-
tively. That is, if the vertices are all non-adjacent,
the same color, independently of the algorithm, can
be applied to all vertices. Similarly, if all vertices are
adjacent between each other, then each vertex is as-
signed its own color. Also from Figure 8 a), we can
observe that the Tabu Search needs fewer colors than
the Greedy algorithm, and that the difference in the
number of colors increases with p, but the relative
percentage increase is always around 40%. For ex-
ample, for p = 0.1, the Tabu Search gives 21 colors
and the Greedy 30 colors, which is an increase of 9
colors (43 % increase); for p = 0.5, the Tabu Search
provides 89 colors and the Greedy gives 125 colors,
which is an increase of 36 colors (40 % increase) and
for p = 0.9, the Tabu Search gives 229 colors and the
Greedy gives 313 colors, which is an increase of 84
colors (37 % increase). Although in Figure 8 a) the
results obtained with Greedy random and Greedy de-
scending orders seem to be very similar, in the inset
of Figure 8 a), it can be seen that the descending order
gives always slightly better results (1 color difference)
(Duarte, 2020).

Figures 8 b) and c) shows again the performance
of both Greedy and Tabu Search algorithms for ran-
dom graphs, but for 100 and 20 vertices, respectively,
as a function of p. As observed in Figures 8 b) and
c), it can be concluded that the Tabu Search per-
forms once again better than the Greedy algorithm by
predicting less colors and this behavior is more pro-
nounced for increasing values of n and p.

To better understand the conclusions presented in
Figure 8, Figure 9 shows the increase in percentage
of the number of colors as a function of p predicted
by the Greedy algorithm in comparison with the Tabu
Search, considering n = 20, 50, 100, 200, 1000. Note
that 25 simulations were performed to obtain the re-
sults presented.

From Figure 9, it can be concluded that the greater
the number of vertices in the graph, the greater the
percentage growth. The maximum value found is
around 40%. For p = 0.1 and n = 200, there is a max-
imum 40% increase in the number of colors used by
the Greedy algorithm in comparison with the number
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Figure 8: Number of colors as a function of p calculated
using the Greedy and Tabu Search algorithms for random
graphs for a) n = 1000, b) n = 100 and c) n = 20.

of colors predicted by the Tabu Search, whereas, for
n = 100, there is only 32% increase, for n = 50, there
is 10% increase and, for n = 20, there is only 3% in-
crease. From these results, it can be concluded that

Figure 9: Percentage of the number of colors increase be-
tween Tabu Search and Greedy algorithms for n = 20,n =
50,n = 100,n = 200 and n = 1000 as a function of p.

the decrease in the total number of colors attributed
by the Tabu Search in comparison with the Greedy is
more pronounced in graphs with more vertices.

4 TABU SEARCH ALGORITHM
AS A GRAPH COLORING WA
TECHNIQUE

In this section, we assess the performance of the Tabu
Search algorithm as a graph coloring WA technique in
several real networks. A comparison with the Greedy
algorithm is also performed. But, first, we briefly out-
line the RWA planning tool used, as well as, the net-
work physical and logical topologies studied.

4.1 RWA planning tool

The planning tool used to solve the RWA problem
was developed in (Duarte, 2020) and extended in this
work in order to study the performance of the Tabu
Search algorithm as a graph coloring WA technique.
The planning tool has the following three main func-
tionalities:

1. Definition of the physical and logical topologies
characterized, respectively, by the adjacency and
the traffic matrices.

2. Routing algorithm based on the Yen´s k-shortest
path algorithm.

3. WA algorithms based on graph coloring tech-
niques: Greedy and Tabu Search algorithms. Note
that before using the Graph Coloring algorithms,
the path graph G(W,P) must be computed. This
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graph is obtained from the graph G(V,E) that rep-
resents the physical topology. The vertices of
G(W,P) represent the optical paths and P rep-
resents the set of links between those vertices
(Duarte, 2020). These links are between one or
more vertices (i.e. paths) that share one or more
physical links. After obtaining the graph G(W,P),
the vertices can be colored considering the Greedy
and the Tabu Search algorithm explained in Sec-
tion 2. The number of colors obtained corre-
sponds to number of wavelengths needed for solv-
ing the RWA problem.

4.2 Parameters of the network physical,
logical and path topologies

The network physical topologies used in this work
are the COST239 (Niksirat et al., 2016), NSFNET
(LaQuey, 1990), UBN (Biernacka et al., 2017) and
CONUS with 30 nodes (Monarch Network Archi-
tects, 1999), which we denominate in this work as real
networks.

A network physical topology can be characterized
by several parameters such as the average node degree
and the variance node degree, respectively, given by
(Fenger et al., 2000):

d =
∑n

i=1 Dgi

n
(4)

σ2
d =

∑n
i=1(Dgi−d)2

n−1
(5)

Table 1: Real networks physical topology parameters.

Average Variance
Network Nodes Links Node Node

Degree Degree
COST239 11 26 4.7 0.4
NSFNET 14 21 3.0 0.3

UBN 24 43 3.6 0.9
CONUS 30 36 2.4 0.4

Table 1 shows the information regarding the net-
work physical topologies with respect to the number
of nodes and links, average and variance of the node
degree. The variance node degree helps to understand
how regular the network is from the point of view
of the number of links at each node in the network
(Fenger et al., 2000). Higher variances correspond
to more irregular networks. When the variance node
degree is zero, it means that all nodes have the same
number of links (Fenger et al., 2000).

The parameters used to characterize the physical
topology, i.e. the average and variance node degree,
can also be used to characterize the logical topology.

Table 2 presents these parameters considering that a
full mesh logical topology is applied over the physi-
cal topologies. In this scenario, the average node de-
gree is N−1. Furthermore, the variance node degree
is zero, because all nodes have the same number of
links. In table 2 the number of bidirectional paths for
a full mesh logical topology is also shown and is given
by n(n−1)

2 .

Table 2: Real networks logical topology parameters.

Number of Average Variance
Network Paths node node

degree degree
COST239 55 10 0
NSFNET 91 13 0

UBN 276 23 0
CONUS 435 29 0

Also, the average and variance node degree pa-
rameters can be evaluated in the context of the path
graph G(W,P), as shown in Table 3. The parameter
p is also presented in Table 3. A high average value
means that on average, one or more links of every path
are being used by several different paths. From Table
3 it can be observed that the variance node degree is at
least one order of magnitude higher than the average
node degree. This means that there are some links
belonging to a path (i.e. vertex) that are being used
by many other different paths, and also that there are
some links belonging to a path that are not being used,
or are slightly used by other paths. So, networks with
high path variances need a high number of colors, as
we will discuss in subsection 4.3.

Table 3: Real networks path topology parameters.

Para- Average Variance
Network meter Node Node

p Degree Degree
COST239 0.101 5.6 14
NSFNET 0.25 22.5 121

UBN 0.2250 61.9 1.2840×103

CONUS 0.379 164.6 4.3696×103

4.3 Performance analysis

In this subsection, the performance of Greedy and
Tabu Search algorithms are assessed and compared
when applied to the real networks described in sub-
section 4.2.

Table 4 presents the number of colors and the
corresponding simulation times for the networks
COST239, NSFNET, UBN and CONUS with 30
nodes, considering a full mesh logical topology, ob-
tained with the Greedy and Tabu Search algorithms.

From the results presented in Table 4, regarding
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Table 4: Number of colors and simulation time obtained by
Greedy and Tabu Search for some networks.

Network Number of Time (sec)
colors Greedy Tabu

COST239 8 0.002 0.008
NSFNET 24 0.009 0.015

UBN 64 0.014 0096
CONUS 123 0.040 0.373

the simulation time, it is observed that the Greedy al-
gorithm is 4 times faster than the Tabu Search for the
COST239 network and almost 10 times faster than
the Tabu Search for the CONUS network. Thus, the
Greedy algorithm leads to a faster simulation time
than the one obtained with the Tabu Search.

Also, as observed in Table 4, the number of colors
obtained with the Greedy and Tabu Search algorithms
for the networks considered is the same. However, in
section 3, considering random graphs, we have seen
that the Tabu Search predicts a lower number of col-
ors than the Greedy algorithm. In order to understand
this apparently contradicting behavior, in the follow-
ing, we are going to study the influence of the traffic
pattern in the number of colors obtained by the two
algorithms. Therefore, we are going to change the
traffic matrix in order to obtain various logical topolo-
gies different from the full mesh topology considered
for the networks presented in Table 4. First, we de-
fine a metric called the percentage of network traffic,
denoted as NT . This metric ranges from 0 (no net-
work traffic) to 100% (full mesh topology) and aims
to quantify the change of network traffic in a traffic
matrix for different networks.

Figure 10: Number of colors provided by the Greedy and
Tabu Search algorithms for some networks as function of
NT .

Figure 10 shows the number of colors as a func-
tion of the percentage of network traffic NT , for the
networks considered in Table 4, using the Greedy and

Tabu Search algorithms. From Figure 10, it can be
observed that, when NT = 0, as there is no traffic in
the network, no colors are assigned. When NT > 0,
the two algorithms give exactly the same number of
colors. Thus, it can be concluded that the change of
the traffic matrix (i.e. the logical topology) does not
produce any differences on the number of colors pre-
dicted by both algorithms. The reason for this be-
havior is going to be detailed next, but relies on the
fact that the variance node degree of the path matrix
is considerably greater than the corresponding aver-
age value.

Next, we are going to investigate the impact of the
average and variance node degrees of the path graph
G(W,P) in the performance of the Greedy and Tabu
Search algorithms, in order to try to explain why the
two algorithms give the same number of colors when
real networks are considered, independently of the
network traffic, and different number of colors with
random graphs.

Table 5: Average and variance node degree and number of
colors given by the Greedy with descending order and Tabu
Search algorithms for real networks and for random path
graphs with the same characteristics, n and p, of the real
networks.

Average Variance Greedy Tabu
Network node node descend Search

degree degree
Real networks

COST239 5.6 14 8 8
NSFNET 22.5 121 24 24

UBN 61.9 1.28×103 64 64
CONUS 164.6 4.37×103 123 123

Random path graphs with uniform distribution
n = 55 5.88 5.88 4.6 5p = 0.1
n = 91 22.5 14 11 8p = 0.25

n = 276 61.9 51.9 21 15p = 0.225
n = 435 170.2 164.5 47 34p = 0.392

In Table 5, the average and the variance node de-
grees of the path graph, G(W,P) of the COST239
(n = 55 and p = 0.101), NSFNET (n = 91 and p =
0.25), UBN (n = 276 and p = 0.225) and CONUS
with 30 nodes (n = 435 and p = 0.392) networks
and the respective number of colors predicted by the
Greedy and Tabu Search algorithms are presented for
a full mesh logical topology, i.e. NT = 100%. The
same network parameters are also presented for ran-
dom graphs (where the corresponding path matrix is
generated with a uniform distribution), with the same
number of paths and parameter p of the referred net-
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works.
As can be observed in Table 5, the average node

degree of the path graph in real networks and random
graphs is very similar as it depends on the number of
paths and on the parameter p that is the same for the
real and random networks. However, it can be no-
ticed that in random graphs, the variance node degree
has a similar magnitude relatively to the average node
degree, while, in real networks, the variance node de-
gree is at least one order of magnitude higher than
the average node degree. The lower variance found
in random graphs is due to the uniform distribution
of 1´s in the path matrix, that defines the graph path
G(W,P) (e.g. for p = 0.1 it means that each line of
the matrix has 10% of ones and 90% of zeros on av-
erage), while the higher variances found in real net-
works are due to the non-uniform distribution of 1´s
in the path matrix. Furthermore, in random graphs,
for lower variance node degrees, the difference in col-
ors between Greedy and Tabu Search is notorious,
whereas in real networks both algorithms produce the
same number of colors. For example, for n = 435 and
p = 0.392, in Table 5, the variance node degree for
the CONUS with 30 nodes network is 4370, whereas
for the respective random graph, the variance has a
much lower value, 164.5. So, this finding can jus-
tify the fact that the number of colors computed by
the Greedy and Tabu Search algorithms when random
graphs are used is different, while the same number of
colors is obtained when real networks are considered.

To further confirm this finding we are going to
study the evolution of the number of colors as a func-
tion of the variance node degree of the path graph,
G(W,P), for both Greedy and Tabu Search algo-
rithms.

Figure 11 shows the number of colors obtained
with the Greedy and Tabu Search algorithms as a
function of the variance node degree for random ma-
trices using uniform and non-uniform distributions
with the same number of paths n and parameter p of
the real networks: a) UBN and b) CONUS with 30
nodes. In Figure 11 c), the case of the random graph
with n = 100 and p = 0.5 is also studied considering
uniform and non-uniform distributions. In Figures 11
a) and b), we also represent the number of colors cor-
responding to the real cases of UBN and CONUS with
30 nodes network, respectively.

As can be seen in Figure 11, for higher vari-
ance node degrees, the number of colors given by
Greedy and Tabu Search algorithms tends to con-
verge, whereas for lower variances the number of col-
ors produced by these algorithms is different, with
Tabu Search algorithm presenting a lower number of
colors. This behavior is observed for all the three net-

Figure 11: Number of colors obtained with the Greedy and
Tabu Search algorithms for random graphs as a function of
the variance node degree for a) n = 276 and p = 0.225, b)
n = 435 and p = 0.392 and c) n = 100 and p = 0.5.

works studied. For example, in Figure 11 c), for a
low variance value of around 27, the Greedy algo-
rithm produces, respectively, 22 and 20 colors, with a
non-uniform and a uniform distribution, whereas the
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Tabu Search produces 15 colors for both distributions.
Likewise, in Figure 11 c), for a high variance value of
900, both algorithms produce around 52 colors with a
non-uniform distribution. In Figures 11 a) and b), the
number of colors obtained in the UBN and CONUS
with 30 nodes networks is also represented for both
algorithms. It can be observed that in these scenarios,
there are no difference between the number of colors
given by the Tabu Search and the Greedy algorithms,
which can be explained by the higher variances val-
ues relatively to its average values and also due to the
higher number of colors used. In the limit, when the
maximum number of colors is used both algorithms
must return the same number of colors.

5 CONCLUSIONS

In this work, the performance of a metaheuristic al-
gorithm, the Tabu Search algorithm, has been studied
as a graph coloring technique for WA in optical net-
works, as well as in randomly generated path graphs
and his performance has been compared with the one
of the Greedy algorithm.

The Tabu Search algorithm, when the path graph
is obtained randomly (with a uniform distribution) has
been shown to have a superior performance to the
Greedy algorithm. In particular, when n = 1000 and
p = 0.5, the Tabu Search algorithm returns only 89
colors, whereas the Greedy algorithm gives 124 col-
ors, which represents a decrease of 35 colors. How-
ever, when real networks are considered, both Greedy
and Tabu Search algorithms give the same number of
colors. We have found that as the variance node de-
gree of the path graph, G(W,P), increases the Greedy
and Tabu Search algorithms tend to return the same
number of colors, whereas when the variance gets
lower this number of colors becomes different. So,
we can conclude that in real network scenarios the
simplest and faster Greedy algorithm sorted with de-
scending order should be used, instead of the more
complex and slower Tabu Search algorithm, since real
networks have typically high variance node degree
values which causes the Tabu Search and Greedy al-
gorithms to have a similar performance.
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