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Resumo

É convenientemente assumida a distribuição Normal como representante do comportamento de
retornos de ativos e de índices. No entanto, a Skewed Generalised t (SGT), tendo também
uma forma de sino, consegue refletir melhor o mercado e as quedas e aumentos extremos. A
SGT tem a capacidade de acompanhar a distribuição empírica quando mostra altos valores de
enviasamento e de curtose, os quais são ignorados quando se utiliza uma distribuição Normal.

Esta tese contribuiu para a investigação sobre os padrões de enviesamento da distribuição
real das rendibilidades de ativos financeiro, utilizando séries de índices de ações como objeto
de análise. O trabalho realizado analisa os padrões de enviesamento das distribuições relativas
a diferentes horizontes temporais, períodos e frequências. Para o efeito, consideramos a dis-
tribuição SGT, uma distribuição de cinco parâmetros inicialmente introduzida por Theodossiou
(1998), para fazer o enquadramento da distribuição empírica dos retornos financeiros a uma
distribuição parametrizada. Para tal, foram considerados índices dos principais mercados de
ações no mundo: FTSE 100, Dax 30, S&P 500 e o Nikkei 225; com base no número de empresas
cotadas.

Os resultados obtidos validam a hipótese de que os retornos financeiros apresentam efe-
tivamente enviesamento para o lado esquerdo, confirmando que a SGT supera a Normal em
termos da capacidade em seguir o comportamento da distribuição empírica. Estes resultados
são encorajadores para encarar a SGT em termos paramétricos na estimação do Value at Risk
(VaR) e futuras metodologias financeiras.
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Abstract

The Skewed Generalised t (SGT), which has a bell shape, is more suitable to reflect market
returns behaviour and its extreme drops and rises than the Normal distribution. This distribu-
tion is efficient in following the empirical distributions of financial returns, as it may incorporate
high values of skewness and kurtosis, typically ignored by the normal distribution.

This dissertation contributes to the investigation on skewness present in financial returns,
by using stock indices as the object of analysis. The study focuses on identifying patterns
of skewness in distributions with different time windows, time periods and frequencies. For
the analysis, we use the SGT distribution, a five-parameter distribution initially introduced
by Theodossiou (1998), to reflect the empirical distribution of returns into a parameterized
distribution. To this end, the leading indices of the most traded currencies in the world were
considered: FTSE 100, DAX 30, S&P 500 and Nikkei 225.

The achieved results validate the hypothesis that the financial returns show a negative
asymmetry, confirming that the SGT fits the empirical distribution better than the Normal
distribution does. These outcomes are uplifting to use the SGT in parametric terms to esti-
mate the Value at Risk (VaR) and future financial methodologies.

Keywords: Skewness; Value at Risk; Market risk; Skewed Generalized t distribution; Gener-
alised Pareto

JEL Codes: C12; C13.
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1. Introduction

In this thesis, we aim to test differences in skewness in terms of sample types, between different
time periods, in normal market conditions, as well as during periods of Market Stress. For
that purpose, we are going to analyse a five-parameter distribution, firstly introduced by Theo-
dossiou (1998). The Skewed Generalized T distribution (henceforth named SGT) is a skewed
version of the Generalized T (GT) Distribution presented by McDonald and Newey (1988).
Afterwards, we are going to compare the SGT fitting into the tails with an Extreme Value
Theory distribution which also accounts for skewness.

A convenient assumption usually made by financial institutions is that financial returns are
normally distributed. The particular reason for this choice is that as the time scale increases,
the empirical distribution of financial returns tends to look identical to a Normal distribution.
Moreover, the normality assumption, although not required, is a commonly choosed feature
in Markowitz’s portfolio theory, in the CAPM theory, and in implementing the Black-Scholes
option pricing model. It is likely that the financial returns follow a geometric Brownian motion
process, in which the increments adjusts to a Normal distribution.

The main problem of the Normal distribution is the imposition of symmetry and mesokur-
tosis (kurtosis of 3). Empirical evidence shows that the observed distribution of daily returns
data has a heavier lower tail and is leptokurtic and skewed to the left. Thus, the Normal
distribution may not reveal the most proper fit.

Leptokurtosis can result from jumps in prices, correlations between shocks, changes in
moment dependencies and the leverage effect. It can be reduced when standardizing the returns
and transforming the data as shown by Ayán and Díaz (2008). Once the leptokurtosis is
observed in the distribution of the given returns, the probability of large losses is greater than
the one implied by the Normal distribution, as mentioned by Harris and Küçüközmen (2001).
And so, using the Normal distribution, in this case, would mislead probabilities and result in
deceitful Value at Risk (VaR) estimates.

SGT is a highly flexible distribution which provides a good fit to the empirical distribution
of data, as studied by Theodossiou (1998). BenSaïda and Slim (2016) also came to the same
conclusion when analysing the SGT and the Generalized Hyperbolic, confirming the superiority
of these two distributions in approximating the empirical distribution of the chosen data at a
notable exactness. This way, for the fitting process, we use the maximum likelihood estimates
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method, also utilized and programmed by BenSaïda for the Skewed Generalised t, and the
Distribution Fitter app for the Generalised Pareto. The results show that the SGT surpass
the skewness and kurtosis problem of the Normal distribution. Overall, these findings are
encouraging for using the SGT distribution to estimate market risk measures, such as VaR. An
empirical study (Liu et al., 2009) inclusively shows that the SGT distribution benefits the VaR
estimations.

In addition to this Section, the study is organized into five sections. Section 2 reviews the
state-of-the-art literature regarding the assumptions of the Normal and alternative distribu-
tions. Section 3 focuses on the concepts and methodologies used in the fitting process and on
the validation of the studied distributions. Section 4 reveals the empirical study, describing
the data and the estimated parameters as well as the results of the goodness-of-fit process.
Finally, Section 5 concludes the dissertation by restating the critical outcomes and conclusions
and showing insights for future research on this subject by analysing alternative assets, distinct
time periods and distributions, and their use to estimate VaR.
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2. Literature Review

2.1. Deviations from the assumptions of the normal distribution

The most popular distribution in statistics is the normal distribution. It is common to choose
this distribution to describe a sample or the results of a procedure. The reason for this preference
to other distributions is due to the simplicity of the parameter’s evaluations and partly to the
central limit theorem and some direct implications.

To fit a normal distribution in a specific data sample, we need to know how wrong the best
approximation may be. Therefore, we need to verify some assumptions. The Assumption of
Normality says, in a straightforward way, that if we take the mean from independent samples
and write it down, these values will have a perfect bell shape. Therefore, the distribution of
the means will converge to a normal distribution as the number of samples increases. Another
reason to assume the sample follows a normal distribution is that the sample mean and the
sample variance are independent when observations are independent of each other. The only
distribution that held this assumption is the Normal distribution, which explains its preference
of choice versus alternative distributions.

Following Mordkoff (2016), the first property of the Normal distribution claims that the
distribution of the sample means is centred on the population’s mean and there is perfect
symmetry around it. The second property says that it is a unimodal distribution. Third, the
normal distribution is asymptotic, meaning that the further we get from the mean, the closer
we get to the x-axis. Lastly, the mean, the mode and the median are equal. This shows the
perfect bell shape of the distribution, which has just one peak exactly on the mean, mode and
median, and half the values are in the right while the other half on the left side of the mean.

The Normal distribution is known for having a skewness value of zero due to the symmetric
property and kurtosis of 3. The coefficients of skewness and kurtosis are both the third and the
fourth standardized moment of a distribution (a detailed description of moments is presented
in the Appendix).

Sometimes, a distribution may not be symmetric with respect to its mean. One of the tails
may be heavier than the other, in which case, we say that the distribution is skewed. The
skewness can take positive or negative values depending on which tail is heavier. If the heavier
tail is on the right, we have a positive asymmetry and if it is on the left side, we have negative
asymmetry. While a Normal distribution is symmetric to its mean, the majority of the time the
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empirical distribution shows a relative skewness. Johansson (2005, 11) analyses the Swedish
stock market in which research he claimed that “an asset with positive (negative) co-skewness
reduces (increases) the risk of the portfolio to large absolute market returns and should yield a
lower (higher) expected return in equilibrium”. The co-skewness term represents the correlation
of residuals from the regression of the market returns with the squared market returns.

Hair Jr et al. (2021) offer a general guideline to interpret the excess skewness, saying that a
substantially skewed distribution occurs when the skewness is lower than -1 or greater than +1.
Additionally, when the absolute value for skewness is lower than 0.5, the distribution is fairly
symmetrical, and it is moderately skewed when it is in a range of [-1,-0.5] or [0.5,1]. Finally,
for values greater, in absolute terms, than 1, the distribution is highly skewed.

In terms of kurtosis, Peiro (1999) studies skewness and kurtosis in financial returns and
highlights the high kurtosis appearance in the empirical distribution of returns. All his studied
distributions showed a more peaked and heavier tail than the normal distribution. He also
connects the high skewness with the leptokurtic data.

Meanwhile, some implicated problems are detected in financial modelling theory. Since
the Capital Asset Pricing Model (CAPM) only assumes the mean and the variance of returns,
higher moments such as skewness and kurtosis do not take place on its evaluation. Thus,
assuming a normal distribution is favourable. Despite this, a skewness implementation would
benefit the model since a positive skewness is tempting, since it means a few large gains and
recurrent small losses for the investor. The Black-Scholes option-pricing model also presents
some accuracy problems due to the lack of a skewness parameter. As explained by Corrado
and Su (1996), the model misprices deep-in-the-money and deep-out-of-the-money options.

Lastly, we focus the calculation of Value at Risk (VaR). The VaR quantifies the monetary
value of the expected losses within a given probability of occurrence. So, it represents the
maximum potential loss of a portfolio over a particular time horizon at a certain confidence
level. There is not a single way of computing VaR. Analysts may use a historical simulation
method, a Monte Carlo simulation or a variance-covariance method. The last approach assumes
that the financial returns follow a Normal distribution. Therefore, only the expected return and
the standard deviation is required to estimate VaR. But, the skewness and kurtosis risk also
have implications in the evaluation of the VaR. If either is ignored, the VaR calculations will be
flawed. As Liu et al. (2009) referred, the assumptions of the SGT distribution benefit the VaR
estimation, which shows a need to consider fat-tails, leptokurtosis and skewness behaviours in
VaR models. Bali and Theodossiou (2007) also analyses the conditional VaR incorporating
the SGT and compared the relative performance of the SGT and the normal distribution in
the construction of the average expected value of losses above VaR, also known as expected
shortfall.
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2.2. Alternative distributions

2.2.1. The Skewed Generalised T Distribution

The skewed generalised t-distribution (SGT), firstly introduced by Theodossiou (1998), is a
skewed version of the Generalized t (GT) distribution proposed ten years before by McDonald
and Newey (1988). The SGT is a highly flexible five-parameter distribution that accommodates
the skewness and excess kurtosis, unlike the broadly used Normal distribution. It has enormous
applications, such as on the VaR models to estimate the risk, or the CAPM application for
evaluation of regression estimation methods and intercept bias.

Our study focus on the fit of the SGT distribution into the empirical unconditional distribu-
tion of financial data. However, Kucukozmen et al. (2004) applied this same distribution into the
modelation of the conditional distribution of daily equity returns. The Generalised Autoregres-
sive Conditional Heteroscedasticity (GARCH) class of models is widely used in the estimation
of the variance of conditional distribution, since the conditional distribution is needed in order
to present a time-varying volatility. The use of SGT distribution is a great improvement in the
fit of these GARCH and EGARCH models.

Countless researchers have come to different ways to present the SGT probability density
function. In a first approach, Theodossiou (1998) presented it as a non-location-parameter
distribution. This way the new skewness parameter would be the rate of descent of the den-
sity around x = 0. Right after then, it is introduced the first moment, which represents the
mean, so that it incorporates the location parameter when using a transformed random variable
z = x−µ, where µ is the mean of the random variable x ( µ=E(x) ). Hence, we represent the
probability density function of the SGT distribution of the random variable z as:

f(z|µ,k,n,λ,σ2) =

 f1 = C(1 + ( k
n−2)θ−k× (1−λ)−k|z+µ

σ |
k)−(n+1)/k z ≤−µ

f2 = C(1 + ( k
n−2)θ−k× (1 +λ)−k|z+µ

σ |
k)−(n+1)/k z ≤−µ

(2.1)

where k,n,λ,µ, and σ2 are scaling parameters. The following restrictions are required k > 0,
n > 2, −1< λ< 1. k and n are shape parameters controlling the height and tails of the density
while λ is the skewness parameter. σ2 is the variance or second centralized moment, with µ

being the mean, which represents a location parameter. C and θ are normalizing constants
in order to verify all the properties of a probability density function for f and are defined as
follows:

C = k

2σB
(1
k
,
n

k

)−3/2
B
(3
k
,
n−2
k

)1/2
S(λ) (2.2)

θ =
(

k

n−2

)1/k
B
(1
k
,
n

k

)1/2
B
(3
k
,
n−2
k

)−1/2 1
S(λ) (2.3)
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S(λ) =
(

1 + 3λ2−4λ2B
(2
k
,
n−1
k

)2
B
(1
k
,
n

k

)−1
B
(3
k
,
n−2
k

)−1)1/2
(2.4)

where B(·) is the beta function.
Most researchers use a direct form for the SGT distribution density function, instead of

a branch function, as introduced by the sign function. For this study, we are going to use
the one presented by BenSaïda and Slim (2016). This one, apart from the way it is written,
is also programmed in a flexible distributions toolbox containing essential tools related to the
SGT distribution provided by Ahmed BenSaïda, which we must grasp and use to estimate the
parameters and fit this distribution to real data. That way for the fitting process we are going
to use his MatLab toolbox. Accordingly, for any random variable x ∈ R following an SGT
distribution, the probability density function is given as:

fSGT (x;k,n,λ,µ,σ) = k

2θ∗σB
(

1
k ,

n
k

)[
1 + |x−µ∗|k

(1+sign(x−µ∗)λ)kσkθ∗k

](n+1)/k (2.5)

We change the nomenclature to preserve the writing and mathematical guideline developed
by Theodossiou (1998). Although we use of the computational program for the fitting process,
we keep the original nomenclature and present values accordingly. It should also be noted that
the new constant θ∗ is just a slight change to the one used in Theodossiou’s work.

θ∗ =
B
(

1
k ,

n
k

)
√

(1 + 3λ2)B
(

1
k ,

n
k

)
B
(

3
k ,

n−2
k

)
−4λ2B

(
2
k ,

n−1
k

)2
=
(

k

n−2

)−1/k
× θ (2.6)

Moreover, the x−µ∗ is going to be equivalent to z+µ from the first presented formula.
Let E(x) =m, the value of µ∗ is chosen according to the restriction:

µ∗ =m−2σθ∗λ
B
(

2
k ,

n−1
k

)
B
(

1
k ,

n
k

)
It is easy to verify that the second term of the previous equality corresponds to the first

moment which represents the expected value m (please see the Appendix for details about
moments). This way it’s introduced the location parameter regarding the mean, which informs
where the distribution is located with relation to a null mean. To validate the veracity of
BenSaïda and Slim’s probability density function, we present in the appendix the demonstration
starting at the new function and aiming at Theodossiou’s function.

It is beneficial to remark that conditioning parameters can restrict qualities for the SGT
distribution and generate other known distributions. Therefore, for λ = 0, the SGT distribu-
tion, formerly presented, is symmetric and has all odd moments equal to zero, so it turns out
to be directly McDonald and Newey (1988) generalised-t distribution. For k = 2, the SGT dis-
tribution can spawn the skewed student t distribution. When λ= 0 and k = 2, n is interpreted
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Figure 2.1.: Nested distributions of the SGT distribution modified from Sikora et al. (2019)

as the degrees of freedom and the student t distribution is obtained. For λ = 0 and n→∞,
we get the Subbotin’s power exponential or Box-Tiao distribution. The widely known normal
distribution is obtained when k = 2, λ = 0 and n→∞. Cauchy’s distribution is taken after
imposing λ = 0, k = 2 and n = 1, while Laplace or double exponential distribution takes after
λ= 0, k= 1 and n→∞. Lastly, the uniform distribution is obtained by restricting λ= 0, k=∞
and n=∞.

Figure 2.1 presents the aforementioned nested distributions of the SGT distribution includ-
ing some jointed ones.

Next, the third and fourth standardised moments, respectively the skewness and kurtosis,
for the SGT distribution, are given as follows:

Sk = m3
σ3 = 4θ∗3λ(1 +λ2)

B( 4
k ,

n−3
k )

B( 1
k ,

n
k )
−2θ∗λ

B( 2
k ,

n−1
k )

B( 1
k ,

n
k )

[
3 + 4θ∗2λ2B( 2

k ,
n−1
k )2

B( 1
k ,

n
k )2

]
(2.7)

Ku = m4
σ4 =

θ∗4[1 + 5λ2(2 +λ2)]B( 5
k ,

n−4
k )

B( 1
k ,

n
k )

+ 24θ∗2λ2B( 2
k ,

n−1
k )2

B( 1
k ,

n
k )2

×
[
6 + 12θ∗2λ2B( 2

k ,
n−1
k )2

B( 1
k ,

n
k )
−8θ∗2(1 +λ2)

B( 4
k ,

n−3
k )

B( 2
k ,

n−1
k )

] (2.8)

where m3 and m4 are, respectively, the third and the fourth central moments. The proof and
in-depth analysis of moments are presented in the Appendix. For the upcoming fitting process
of the SGT distribution towards the empirical financial data, we apply the classical maximum
likelihood estimation method also used by BenSaïda and Slim (2016).

2.2.2. Extreme Value Theory
The Extreme Value Theory (EVT) is a powerful framework capable of predicting the occur-

rence of rare events. Under this approach, the focal point is the tail behaviour. Probabilistically,
it deals with the stochastic behaviour of problems of maxima and minima of i.i.d. (independent
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and identically distributed) random variables. In a wide selection of researches, the main field of
study of this theory and its formed distributions is its applications in climatology, epidemiology,
environmental studies, although there have also been some studies in the financial literature
Bali (2003).

There is not a single methodology for modelling extreme events through EVT. It is possible
to model a problem using a distribution of minimum or maximum procedures or just model
the exceedances of a particular threshold. The first method leads to the Generalised Extreme
Value distribution, proposed by Jenkinson (1955), while the other entails the creation of the
Generalised Pareto distribution of Pickands III (1975). According to Gencay and Selcuk (2004,
290), "the GPD and the extreme value theory are an indispensable part of risk management in
general and the VaR calculations in particular, in emerging markets". The afore paper shows
the importance and the dominance of the GPD in modelling extremal events at a 0.999 per-
centile with 95% confidence intervals. In the next section, the Generalised Pareto distribution
is going to be the main distribution in the study.

As presented in Embrechts et al. (2013), we introduce the main formalization of the Ex-
treme Value Theory. The EVT can be compared to the central limit theorem, thereby all
the methodology hereafter explained is comparable with the conclusions drawn on the central
limit problem formally featured in Embrechts et al. (2013). The focal point of the EVT is the
convergence of maxima. The question that Embrechts et al. (2013) tries to answer is which
distributions satisfy for all n≥ 2 the identity in law max(X1, ...,X1) m= cn(X+dn) for appropri-
ate constants cn > 0 and dn ∈ R. Suppose that (Xt)t=1,2,...,n, is a sequence of independent and
identical distributed random variables, all with common distribution function F (x) =P [Xt≤ x]
with mean µ and variance σ2. Noting the definition of a max-stable distribution:

Definition 2.2.1 (Max-stabel distribution). If Xt is a non-degenerate random variable that
satisfies the identity in law max(X1, ...,Xn) m= cn ∗X+dn for appropriate constants cn > 0 and
dn ∈ R and every n≥ 2, it is said max-stable.

We denote the sample of maxima of Xt by M1 = X1, Mn = max(X1, ...,Xn) for n ≥
2. Then, assuming that (Xn) is a sequence of i.i.d. max-stable random variables, the law
max(X1, ...,X1) m= cn ∗X+dn can also be written as

c−1
n (Mn−dn) m=X (2.9)

This results in every max-stable distribution being a limit distribution for maxima of i.i.d
random variables. Therefore, the Limit property of max-stable laws is given as follows:

Theorem 2.2.1 (Limit property of max-stable laws). The class of max-stable distributions
coincides with the class of all possible (non-degenerate) limit laws for (properly normalised)
maxima of i.i.d random variables.
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The Proof is explicitly formulated in Embrechts et al. (2013). Considering that the theory
deals with the convergence of maxima, we present the Fisher-Tippett theorem as follows:

Theorem 2.2.2 (Fisher-Tippet theorem). Suppose that (Xn) is a sequence of i.i.d. random
variables. For a sequence of cn > 0 and dn ∈ R and a non-degenerate distribution function H

such that c−1
n (Mn−dn) d→H, then H belongs to one of the following three distribution functions:

1. Gumbel (type I): ∆(x) := e−e
−x for x ∈ R

2. Fréchet (type II): Φα(x) :=

 0 x≤ 0
e−x

−α
x > 0;α > 0

3. Weibull (type III): Ψα(x) :=

 e−(−x)α x≤ 0;α > 0
1 x > 0

The formal proof of the Fisher-Tippet theorem was first given in Gnedenko (1943). This
last theorem is the most important EVT result since it offers three distributions where we
can fit the asymptotic distribution of maxima disregarding the original empirical distribution.
Most of all, these three families of distributions can be generalised with the incorporation of
location (µ) and scale (σ) parameters. Fréchet and Weibull families gain the Gumbel family
form when its α parameter extends through +∞ and −∞, respectively. That way, the three
distributions may be nested in a single parameter family, the named Generalised Extreme value
distribution. This family of distributions are present in Figure 2.2. Reparametrizing ξ = 1/α
and bearing in mind 1 + ξx > 0, it is attainable the representation introduced by Jenkinson
(1955) and Von Mises (1936).

GEVξ(x) =

 e−(1+ξx)− 1
ξ

ξ 6= 0
e−e

−x
ξ = 0

(2.10)

Tolikas (2008) also shows a written form for the probability density function of a standard-
ised variable. By standardising x we get the probability density function given by:

gevµ,σ,ξ(X) = α−1e−(1+ξ)ye−e
−y

(2.11)

where

y =

 ξ−1ln
(
1 + ξX−µσ

)
ξ 6= 0

X−µ
σ ξ = 0

(2.12)

and, σ, µ, ξ are called the scale, location, and shape parameters, respectively.
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Figure 2.2.: EVT distributions comparison from Embrechts et al. (2013)

High σ values suggest that the distribution of extremes is widely spread out, while a high
µ implies large extremes. Recapping the meaning of different values of ξ and the associated
distributions we obtain:

• ξ > 0 corresponds to the Fréchet distribution, which has an infinite right endpoint.

• ξ = 0 corresponds to the Gumbel distribution, which has an infinite right endpoint and
the tail decays much faster than the tail of Fréchet distribution.

• ξ < 0 corresponds to the Weibull distribution which is a short-tailed distribution with
finite right endpoint (after a certain point there are no extremes).

Bali (2003) introduced an even more generalisation of the Generalised extreme value dis-
tribution. Using the Box and Cox (1964) transformation, Bali proposed a new distribution
nesting the GEV distribution of Jenkinson (1955) and the hereafter spoken Generalised Pareto
distribution of Pickands III (1975). The new Box-Cox-GEV distribution is given as follows:

BCGEVmax,ξ(X;µ,σ,λ) =


[
exp

{
−
[
ξ
(
M−µ
σ

)]−1/ξ}]λ
−1

λ

+ 1 (2.13)

When λ = 1 the distribution reduces to the GEV distribution and when λ = 0 the distri-
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bution reduces to the GPD by L’Hopital’s rule, as indicated in Bali (2003). Additionally Bali
rejects GEV distribution and GPD over the newly presented Box-Cox-GEV distribution.

2.2.3. Generalised Pareto distribution
Despite the existence of an inclusive distribution, the one formerly introduced, the most popular
approach to model the financial extremes is the Generalised Pareto distribution (GPD), firstly
presented by Pickands III (1975). This one is a generalisation of the Pareto distribution, studied
in detail by Arnold (2014). There is abundant literature that concludes the importance of the
GPD (e.g., (Embrechts et al., 2013; Das and Halder, 2016)). Embrechts et al. (2013) and
Packham et al. (2017) show that the GPD is a useful tool in modelling extremal events and
distributions over a high threshold and in avoiding tail risks. Embrechts et al. (2013) test and
evaluates the suitability of the GPD model through the VaR spread. The VaR spread stands
for the spread between the VaR from a GARCH model following a GPD and a VaR from a
GARCH model following a Normal distribution.

Although the GPD is used for making interpretations about the upper tail, in this work,
we analyse only the lower tail. In fact, it is more important to prevent great drops and analyse
the behaviour of financial losses than to anticipate great profits and analyse their forward
behaviour. Aiming to understand the GPD, we use the definition and explanation given in
Embrechts et al. (2013). Since excesses over thresholds are fundamental in different fields,a
mean excess function (MEF) is defined:

e(u) = E(X−u|X > u) (2.14)

where X is a random variable with density function F and right endpoint xF , where, for a fixed
u < xF , the excess density function of the random variable over the threshold u is given as

Fu(x) = P (X−u≤ x|X > u) for x≥ 0 (2.15)

Fu(x) donates the distribution function of exceedances above the threshold u. By the
conditional probabilities, Fu can also be defined as

Fu(x) =


F (u+x)−F (u)

1−F (u) x≥ 0
0 else

(2.16)

Therefore, for any u and x, [1−F (u+x)]/[1−F (u)] is the conditional probability that an
observation is greater than x+u, given that it is greater than u, i.e.:

P (X > x+u|X > u) = 1−Fu(x) for x > 0 (2.17)

Solving F , the distribution of the threshold exceedances may also be solved. Let y be a
random variable given as y = x+u for a restricted X > u. Then, we can represent Fu(x) as
follows:
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F (y) = [1−F (u)]Fu(x) +F (u) (2.18)

Pickands III (1975), presented a theorem, alongside Balkema and De Haan (1974), that
shows that for a sufficiently high threshold u, the distribution function of excess may be ap-
proximated by the GPD. As mentioned in Das and Halder (2016, 46) "high values of the
threshold are preferred".

Therefore, the generalised Pareto distribution is a three parameters distribution with a lo-
cation parameter µ, a scale parameter σ, and a shape parameter ξ = 1/α, where α is known as
the tail index. The shape parameter ξ is the most important, since the GPD can be specified
using only this parameter. As Das and Halder (2016) mentioned, the 2-parameter GPD re-
specting µ= 0 is more practical in some cases. As a matter of fact, it eases the fitting process.
The standardized cumulative distribution function of the GPD of a random variable x can be
written as:

GPDµ,σ,ξ(x) =

 1−
(
1 + ξ

(
x−µ
σ

))− 1
ξ ξ 6= 0,σ < 0

1− exp
{
−x−µσ

}
ξ = 0,σ < 0

(2.19)

with restrictions

x≥ µ if ξ ≥ 0, σ < 0
µ≤ x≤ µ− 1

ξ if ξ = 0, σ < 0
(2.20)

Since the MEF (mean excess function) presented before can also be seen as the sum of the
excesses over a threshold u divided by the number of data point that exceeds such threshold,
if the empirical MEF is positively sloped and is a straight line, the respective GPD must have
a positive shape parameter ξ.
The corresponding probability density function (pdf) is simply the first derivative in order to
the random variable x of the cumulative distribution function (cdf). For the GPD, it is:

fGPD(x) = dGPDµ,σ,ξ

dx
=


1
σ

(
1 + ξ

(
x−µ
σ

))− ξ+1
ξ ξ 6= 0,σ < 0

1
σexp

{
−x−µσ

}
ξ = 0,σ < 0

(2.21)

When µ = 0 and σ = 1 the GPD is known as the standard GPD. As observed in the pre-
vious SGT distribution, different values of the parameters contribute to a number of nested
distributions within the GPD. We can start by relating the GPD with the GEV distribution
mentioned above, its relationship can be given for ln(GEVµ,σ,ξ(x))>−1 as:

GPDµ,σ,ξ(x) = 1 + ln(GEVµ,σ,ξ(x)) (2.22)
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The other embedded distributions are given restricting the parameters as follows: For ξ = 0
(α→∞) the GPD corresponds to the exponential distribution. When ξ < 0 the distribution
has a heavy upper tail making it equivalent to a Pareto II type distribution. When ξ > 0,
the GPD corresponds to the original Pareto distribution; restricting the parameters as ξ = 0.5
the distribution takes the form of a Triangular distribution; when ξ = 1, it takes the form of
a uniform distribution. It should be noted that for ξ > 0, the nth central moment, E[Xn], is
infinite for every n> 1/ξ. For instance, with the triangular distribution, ξ= 0.5, the distribution
has infinite variance since the variance is also the 2nd central moment. When ξ = 1/3 the
distribution has infinite skewness, and when ξ = 0.25, it has infinite historical kurtosis.

The nested distributions restricting the 3-parameter GPD to a 2-parameter distribution can
be seen in the diagram presented in Figure 2.3. Papastathopoulos and Tawn (2013) proposed
an extension of the GPD that incorporates an additional shape parameter while keeping the
tail behaviour unaffected.

For the upcoming fitting process of the GPD towards the empirical financial data, GPD
parameters may be estimated through the classical maximum likelihood method. This process
was also used in several works of literature.

Figure 2.3.: Nested distributions of the GPD
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3. Concepts and Methodologies

The parameter estimation of each distribution can be performed through different methods.
Sikora et al. (2019) performed a Chan-Karolyi-Longstaff-Sanders (CKLS) model parameters
estimation. This one is defined by the Itô stochastic differential equation dX = (α+βX)dt+
σXddB, where B(t) is a Brownian Motion, which is an extension of the Vasicek model. In
this and some other literature (e.g. Das and Halder (2016)), the method of moments and its
generalisation (GMM) is also discussed, as well as the Probability Weighted Moments (PWM)
introduced by Greenwood et al. (1979), and the Maximum Penalised Likelihood (MPE) intro-
duced by Coles and Dixon (1999). In some empirical evidence, the maximum likelihood method
(MLE) is more sophisticated and harder to implement than the method of moments (MM).
Then again, the ahead fitting process is going to be performed upon the Maximum Likelihood
Method, since, as cited in Das and Halder (2016, 57), "MLE provides the estimates with lowest
standard error".

3.1. Maximum Likelihood Estimation
For the SGT distribution, we need to estimate five parameters, whereas, for the GPD, only two
parameters need to be estimated, since the location parameter will be approximated according
to the empirical mean.

To start with the interpretation of the method at hand, we introduce the likelihood func-
tion, which for independent observations X1,X2, ...,Xn from a probability distribution, is a
k-parameters function

L(x1,x2, ...,xn;p1,p2, ...,pk) =
n∏
i=1

f(xi;p1,p2, ...,pk)

where f(·) represents the probability density function (p.d.f.) of the observation sample when
it is absolutely continuous and represents the probability mass function (p.m.f.) when it is
discrete. The joint p.d.f of X1,X2, ...,Xn, can be seen as a function of the k parameters
p1,p2, ...,pk, or simply a function of θ, being θ = (p1,p2, ...,pk) a vector, as shown in Hoel et al.
(1954).

The likelihood function examines the probability or the probability density behaviours
through different functions in F , and thus explains the observed sample results based on the
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evaluation of the likelihood for the different probability distributions of the F family.
The maximum likelihood estimation method (MLE) is a parameter estimation method for a

certain probability function. The likelihood function can act as a function completely composed
of unknown parameters, θ = (p1,p2, ...,pk). From DeGroot (2012), the frugal point is to find
the vector in the restricted space Ω, letting Ω be the set −∞ < θ <∞, that maximises the
likelihood function. The parameters of this vector are the estimate parameters. Subsequently,
supposing that a function of x1,x2, ...,xn is found, u(x1,x2, ...,xn), such that, replacing θ with,
the likelihood function L is maximum. In other words, for every θ∗ ∈ Ω, L(x1,x2, ...,xn;θ) ≥
L(x1,x2, ...,xn;θ∗) and θ is called the maximum estimator, represented as θ̂.

When θ is a vector of parameters, θ̂ is obtained by solving a system of equations ∂log(L)
∂pi

= 0
for i = 1,k. Suppose the system has a unique solution, such that its corresponding matrix for
the second-order derivative is positive semi-definite, from optimisation theory. In this case, the
solution shall be considered as a maximum and, therefore, is the estimate. If there are multiple
solutions, the existence of the estimate shall not be considered.

The likelihood function will change in respect to the distribution in use. We shall present
the likelihood function for the SGT, GP and Normal distribution:

3.1.1. SGT Likelihood function
In the SGT distribution, the estimators will be obtained using the log-likelihood function. On
that account, the log-likelihood function is:

L(θ) =
n∑
i=1

Li(θ) =
n∑
i=1

lnfSGT (xi;k,n,λ,µ,σ) (3.1)

remembering that the fSGT function corresponds to the function present in equation 2.1 and
with respect to the vector θ = (k,n,λ,µ,σ) with the parameters delimited by |λ|< 1, n≤ 4 and
k ≤ 0.

The maximisation of the above log-likelihood function can be revealed as complicated. De-
spite this, interactive algorithms can overcome these cases. Since the fitting process for the
SGT distribution is going to be performed according to the BenSaïda and Slim (2016)’s given
program, and this one is implemented in MatLab (2021), maximisation and equation solver
algorithms are performed. As a rule, the previous parameters delimitations are critical in the
program implementation since maximisation algorithms can easily "flee out" the restrictions for
σ2 > 0 and |λ|< 1. The programming process description is presented further on.

3.1.2. GP Likelihood function
For the GPD, the likelihood function for estimation of two parameters (considering the location
parameter, µ, as a first approximation and not an estimation) is
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L(θ) =
n∏
i=1

fGPD(xi;ξ,σ) (3.2)

where the fGPD function corresponds to the function present in equation 2.21 and with respect
to the vector θ= (ξ,σ). As suggested in Das and Halder (2016), to get better fitting parameters
for the GPD, it is essential to have at least 500 observations and the ξ values must be within
the bounds −1/2 and 1/2.

Grimshaw (1993) presents an algorithm for computing the GPD maximum likelihood es-
timates ξ and σ. Later on, more researchers started studying the topic with different max-
imisation algorithms and even proposed an equivalent MLE method taking into account the
efficiency and robustness as revealed in Pham et al. (2019). These reseachers presented an
algorithm structure using the Newton-Raphson algorithm and wrote it in R.

3.1.3. Normal Likelihood function
For the Normal distribution, the probability density function is:

fnormal = 1√
2πσ2

exp−(x−µ)2

2σ2 (3.3)

And the likelihood function for this case is:

L(θ) =
n∏
i=1

fnormal(xi;µ,σ) =
n∏
i=1

1√
2πσ2

exp−(x−µ)2

2σ2 (3.4)

3.2. Goodness of fit
The goodness-of-fit test allows the verification of the adequacy of a specific probability distri-
bution into an observed distribution. This way, it is possible to analyse if the empirical data
was derived from a population that follows that distribution function.

The goodness-of-fit is an essential step in fitting an estimated distribution to the real data
distribution. It helps to determine whether the observed data resembles the expected values.
It is represented by a statistical method that inferences about the experimental values to see
if the actual values are sufficiently close to the distribution generated values. As presented
in Dodge (2008), the process involves hypothesis testing: Being the null hypothesis H0 is the
equality of the unknown distribution function of the underlying population with the presumed
distribution function versus the alternative hypothesis H1 of the inequality.

Once estimated the parameters through the MLE and presuming a certain distribution, the
comparison among estimates is done using the Kolmogorov-Smirnov (KS) test, the Anderson
and Darling (1954) (AD) test as well as the Kuiper (1960) test. The choice of use of these
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tests were to vary the tests used in other literature. BenSaïda and Slim (2016) also tests
the Bayesian Information criterion per observation (BIC0), while Theodossiou (1998) uses the
Kolmogorov-Smirnov test as well as the Log-Likelihood ratio test (LR) for testing the normality
against the SGT distribution. Chu et al. (2019) presented several goodness-of-fit tests for Pareto
distributions, and despite the existence of many other goodness-of-fit tests, the tests mentioned
above are held for both distributions.

Although the Chi-Square test is the most common goodness-of-fit test, it is typically used
in discrete distributions. Sprent (2012) expressed that sometimes one or more parameters must
be estimated from the data. In conjunction with this, it has a few other problems, such as the
number of samples required to produce a reliable result. Thus, the choice of the goodness-of-fit
tests is fundamental.

3.2.1. Kolmogorov-Smirnov test
The Kolmogorov-Smirnov (KS) test is a refinement of the Kolmogorov test. It is a nonparamet-
ric goodness-of-fit test that evaluates the adequacy of a unidimensional continuous probability
function with the observed distribution. Although it can sometimes be applied for discrete
distribution, the test criteria are no longer exact, following inefficient results. The main focus
is to quantify the distance between the empirical cumulative distribution function of the ob-
served data and the cumulative distribution function of the presumed distribution. Contrary
to the Chi-Square test, the KS test is exact and does not depend on the test’s underlying
cdf. Despite these advantages, the KS has some significant limitations that should be cared
(NIST/SEMATECH, 2021). It tends to be more sensitive near the centre than at the tails,
which contrasts with the purpose of this dissertation, where the main goal is to analyse the
skewness. Moreover, it is recommended for large samples of over 2000. Despite this, numerous
pieces of literature still use it, and it is an almost standard goodness-of-fit test on its simplic-
ity. The Kolmogorov-Smirnov hypothesis testing considers in the null the hypothesis that the
empirical data follows the theoretical distribution. The respective test statistic is defined as:

D = sup
x
|F (x)−Fn(x)| (3.5)

where F is the hypothesised cumulative distribution, which must be continuous, and Fn is the
empirical distribution function. Fn may be defined as:

Fn(x) =


0 x < x1
k
n xk ≤ x≤ xk+1

1 x≥ xn
(3.6)

The null hypothesis is rejected if the test statistic, D, is greater than the critical value. The
KS test is distribution-free, meaning that it does not depend on the distribution to evaluate
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the critical values. The statistical table is in Appendix C. MatLab has two types of KS tests.
Since the aim is to compare the Normal, the SGT, and the GP distributions fit the empirical
data, the kstest2 is used.

3.2.2. Anderson-Darling test
The Anderson and Darling (1954) test is a refinement of the KS test. Being a goodness-of-fit
test, it also evaluates if the given data sample is drawn from the proposed probability function.
Unlike the KS test, the AD test gives more attention to the tails, and is more potent than
the KS test. It similarly defines in the null the hypothesis that the empirical data follows the
theoretical distribution. The test statistic is defined in this case as

A2 =−N −S, where S =
N∑
i=1

(2i−1)
N

[lnF (Yi) + ln1 +F (YN+1−i)] (3.7)

and F is the cumulative distribution function of the specified distribution.
Again, the null hypothesis is rejected if the test statistic, A, is greater than the critical

value. Here, the AD test makes use of the proposed distribution to evaluate the critical values.
This is beneficial for sensitivity but disadvantageous since it is necessary to evaluate each distri-
bution’s critical values. The tables for the critical values of each distribution are not provided
here. However, the test is implemented in MatLab through adtest() for all the Normal and the
GPD. For the SGT distribution, the adtest() was modified to assume this distribution since
MatLab does not have an SGT probability distribution object. Therefore, the modified code
adtestsgt() is annexed. It should also be noted that the SGT tends to look more like a Normal
distribution for a large number of samples. Hence its critical values are estimated according to
the Normal’s critical values.

3.2.3. Kuiper Test
The Kuiper (1960) goodness-of-fit test is a modification of the Kolmogorov-Smirnov goodness-
of-fit test. It also tests the null hypothesis that the given data comes from a population with
a continuous distribution function. Again, all of our distributions are continuous, having no
problem in the implementation of this test. It is test also considers in the null the hypothesis
that the empirical data follows the theoretical distribution. The respective test statistic is
defined as

V = sup(FN (x)−F (x)) =− inf(FN (x)−F (x)) for −∞< x <∞ (3.8)

where F is the hypothesised distribution function and, FN is the sample distribution function.
Similar to the Kolmogorov-Smirnov statistic, the distribution is independent of F (x). This test
is also comparable with the Anderson-Darling test. Both are equally sensitive at the tails and
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the median. However, the Kuiper test is invariant under cyclic variations. This means that if
some occurrences take place in cyclic times, both the KS and the Kuiper test will miss it.

For its implementation, we use BenSaïda (2021)’s Kuiper test function kuipertest(), based
on the exact distribution of Stephens (1965), where significance level percentages tables are
presented.
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4. Empirical Study

In this section, we present the data description with all the preliminary statistics of the empir-
ical data. Each data series is presented in the respective table with all the information for a
better analysis.

Right after, the fitting process is also done with the respective tables of the estimated pa-
rameters as well as the goodness-of-fit tables and graphic representation. Not all the studies
are presented here, instead, the less marked are present in the appendix.

4.1. Data Description
In this dissertation, the financial series used consist of daily, weekly, and monthly observations
on the S&P500 stock market index for the United States, the FTSE100 stock market index for
the United Kingdom, the DAX30 stock market index for a representative European Union stock
market, represented by the Deutsch index, and Nikkei225 stock market index for a significant
Asian portion, represented by the Japanese index. The data for each series is retrieved from
Yahoo Finance and Investing.com. The collected data correspond to 21 years, starting on
January 1st of 2000 and ending on December 31st of 2020, with different data frequencies being
considered.

Different sub-periods are defined within the whole period to analyse the results obtained
in stressed market conditions. We define a stress market condition according to the definition
of Bear Market presented in Investopedia (2021). A Bear Market is a prolonged period charac-
terised by a downward stock price trend. Typically, we assume that the price declines in a Bear
market when there is a fall of at least 20% from the most recent high (a similar but symmetric
definition applies to a Bull market, characterised by a rise of 20% from the most recent low). A
Bear Market should not be mistaken with a Correction, which is a short-term downturn with
duration no longer than two months and characterised by a decline of at least 10%. We define
the sub-periods with and without stress according to the Bear Markets related to the S&P500
index.

The first decade of the 2000s was marked by two prolonged bear markets, with great declines
in the S&P 500 index value. This decade represented the worst period for the US stock market
since the Great Depression. Since many investors assume different beginnings and ends for
the corrections, we define the bear market periods suggested in SPGlobal (2021). The first
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bear market began on March 24th of 2000 and ended on October 9th of 2002, and registered
a cumulative loss of 49.1%. The dot-com bubble triggered this bear market or also known as
the "dot-com crash", which followed the decade-long bull market and from the higher level of
uncertainty and panic caused by the 9/11 terrorist attack. The second bear market started on
October 9th of 2007, and ended on March 9th of 2009, leading to a loss of 56.8%. The collapse
of the subprime mortgage was boosted due to severe growth in the debt and housing bubbles.

Therefore, we get four partitions, three related to stress market conditions represented by
the bear market periods, and one for the remaining observations along the original 21-years
period. The stressed sub-periods are carried out only in daily returns with the intention of
having enough samples. For this case, it does not make sense to consider monthly and yearly
frequencies since we need a reasonable sample size to reach significant and accurate estimates.

To do a portfolio analysis, presented below in Table 4.1, we also create a portfolio with the
indices presented. Given the importance of all indices, the portfolio consists of 25% of each
index (all data is annexed and freely available in .csv format).

The level series were transformed into continuously compounded returns. Using the loga-
rithmic changes, the series are a stationary process. This is demonstrated by using the aug-
mented version of the Dickey and Fuller (1979) test, where the null hypothesis states that a
unit root is present in the autoregressive time series, and the alternative hypothesis is that the
time series is a stationary process.

Finally, for the analysis of the GP distribution, the fitting process will be performed in the
left tail, under a threshold of 5% and 20%. All the evaluation and representation of the GP
distribution is performed having in mind the distribution for the loss values. Both cases are
analysed, and the best choice to opt for a threshold is made.

The preliminary statistics are presented. In a first broad analysis, the majority of the
empirical means for the stress subperiods are negative. Only for the FTSE100, presented in
Table 4.2, all the three series representing the entire period of 21 years did capture negative
values for the mean. This may result from distinct reasons. Environmental effects as 2005
hurricanes, the Sub-Prime Housing Crisis, the Global Recession, the Brexit Vote and results and
the COVID-19 Pandemic did a great impact on the U.K. economy. Adding to this, the monthly
series for the S&P500, presented in Table 4.3, also captured a negative mean. Although the
frequent negative means, all of them, except for the third stress partition, assume an almost null
absolute value. The third stress partition representing the COVID-19 Pandemic Bear Market
is a short duration effect which implies an outstanding mean and standard deviation. This
should not represent symmetric distributions. Instead, the skewness factor, which expresses
the distortion of the data set, is analysed.

The skewness assumes overall negative values. The weekly returns give overall the most
negative values. They assume values lower than −1, except for the DAX30 in Table 4.4 and
S&P500 in Table 4.3, respectively −0.90 and −0.96, which can be almost considered a highly
skewed data set. The remaining return series are overall moderately skewed to the left side. The
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Table 4.1.: Portfolio preliminary statistics
Daily Weekly Monthly P1 P2 P3 P4

# of observations 5327 1097 252 646 357 24 4296
mean 0.004 0.020 0.093 -0.119 -0.232 -1.916 0.049
std. dev. 1.262 2.785 4.709 1.476 2.108 3.703 1.072
skewness -0.346 -1.11 -0.745 -0.08 0.17 -1.053 -0.195
kurtosis 10.059 12.722 4.565 4.266 6.396 3.935 6.193
excess kurtosis 7.059 9.722 1.565 1.266 3.396 0.935 3.193
minimum -12.39 -24.16 -17.38 -5.285 -7.219 -12.39 -7.335
maximum 9.928 13.435 13.027 5.828 9.594 3.038 6.723
5th percentile -1.966 -4.102 -9.571 -2.613 -3.942 -9.697 -1.682
95th percentile 1.906 3.903 6.426 2.31 3.094 2.419 1.73
Dickey-Fuller 2641.12 624.29 98.49 301.85 185.43 20.210 22.236
Jarque-Bera 11166.8 4545.18 49.024 43.811 173.26 5.312 1851.7

(1) The Augmented-Dickey-Fuller and Jarque-Bera statistics are present.
(2) Unless otherwise noted, all statistics reject the null hypothesis at one percent level of signifi-
cance.
(3) Statistics whose value is higher than the critical values, implying the non rejection of the null
hypothesis, are in bold.

Table 4.2.: FTSE100 preliminary statistics
Daily Weekly Monthly P1 P2 P3 P4

# of observations 5304 1096 253 641 358 24 4278
mean -0.001 -0.006 -0.031 -0.088 -0.171 -1.629 0.032
std. dev. 1.199 2.487 4.082 1.408 2.172 3.362 0.995
skewness -0.332 -1.266 -0.694 -0.232 0.087 -1.168 -0.132
kurtosis 10.864 15.282 4.122 4.480 6.651 4.390 6.130
excess kurtosis 7.864 12.283 1.122 1.480 3.651 1.390 3.130
minimum -11.512 -23.631 -14.858 -5.589 -9.265 -11.512 -6.199
maximum 9.384 12.583 11.647 4.878 9.384 2.7538 5.904
5th percentile -1.887 -3.771 -7.538 -2.386 -3.422 -9.053 -1.593
95th percentile 1.793 3.285 6.19 2.284 2.851 2.525 1.610
Dickey-Fuller 2848.81 623.27 127.21 322.68 209.69 17.570 33.315
Jarque-Bera 13763.9 7182.36 33.546 64.265 199.24 7.386 1759.16

(1) The Augmented-Dickey-Fuller and Jarque-Bera statistics are present.
(2) Unless otherwise noted, all statistics reject the null hypothesis at one percent level of signifi-
cance.
(3) Statistics whose value is higher than the critical values, implying the non rejection of the null
hypothesis, are in bold.
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Table 4.3.: SP500 preliminary statistics
Daily Weekly Monthly P1 P2 P3 P4

# of observations 5284 1096 251 638 356 24 4263
mean 0.018 0.086 -0.398 -0.106 -0.233 -1.707 0.063
std. dev. 1.255 2.536 4.417 1.444 2.396 5.011 0.985
skewness -0.393 -0.964 0.711 0.162 -0.057 0.02 -0.1465
kurtosis 13.963 10.808 4.456 4.315 6.779 3.012 7.678
excess kurtosis 10.964 7.808 1.456 1.315 3.779 0.012 4.678
minimum -12.77 -20.084 -11.942 -6.005 -9.47 -12.77 -6.895
maximum 10.957 11.424 18.564 5.574 10.957 8.881 6.837
5th percentile -1.915 -4.015 -7.244 -2.402 -4.628 -10.83 -1.55
95th percentile 1.723 3.559 8.34 2.226 3.628 6.74 1.527
Dickey-Fuller 3313.26 631.27 106.78 314.11 243.17 52.29 21.716
Jarque-Bera 26501 2953.7 43.33 48.78 211.97 0.0017* 3901.70

(1) The Augmented-Dickey-Fuller and Jarque-Bera statistics are present.
(2) Unless otherwise noted, all statistics reject the null hypothesis at one percent level of signifi-
cance.
(3) Statistics whose value is higher than the critical values, implying the non rejection of the null
hypothesis, are in bold.

S&P500 is the index that showed more positive skewness. S&P500 monthly returns spotted a
moderately high positive skew with a value of 0.71. In a fair analysis, it is advisable to invest
daily or monthly rather than weekly, since weekly returns show a high negative skewness. The
first and the third partitions gave the other two positive skews, with 0.16 and 0.02, respectively.
We consider that the respective distributions are fairly symmetrical. To sum up, the weekly
returns are mostly highly negative skewed while the monthly returns have mostly a moderate-
high negative skew. For the daily returns, the skewness tends to be moderately low, standing
at about −0.35. The third subperiod, representing the COVID-19 Pandemic, exhibits a highly
negative skew in almost all cases. These values result from a bear market of just one month
that had a massive impact on the economy. The other two bear markets have, overall, an
almost null skewness, showing symmetry. A comprehensive way to interpret this stands in the
frequent small gains against the few substantial losses.

In terms of kurtosis, almost all the empirical data is leptokurtic. It has a positive excess
kurtosis. The only exception of this trait is the covid crisis period for Nikkei 225, presented in
Table 4.5, the same period that the Dickey-Fuller test rejected.

The majority of the samples returns present a higher maximum loss than the maximum
gain. Only for the second partition, the maximum overcome in absolute value the minimum
of the data set. Showing what most researchers claim, there are more abrupt drops than rises
in stock market prices. The Nikkei225 daily returns also presented a small outstanding higher
maximum gain above the absolute value of the a maximum loss. The higher loss of the entire
21-years period is equivalent to the higher loss of the third partition, meaning that the Covid-19
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Table 4.4.: DAX30 preliminary statistics
Daily Weekly Monthly P1 P2 P3 P4

# of observations 5327 1097 252 646 357 24 4297
mean 0.013 0.064 0.268 -0.168 -0.216 -1.867 0.065
std. dev. 1.493 3.262 6.129 1.887 2.209 3.683 1.297
skewness -0.171 -0.857 -0.895 -0.118 0.495 -1.241 -0.125
kurtosis 8.735 9.385 5.890 4.675 8.269 4.807 6.035
excess kurtosis 5.735 6.385 2.890 1.675 5.269 1.807 3.035
minimum -13.05 -24.35 -29.33 -8.875 -7.434 -13.05 -7.067
maximum 10.798 14.942 19.374 7.553 10.798 3.633 7.086
5th percentile -2.398 -5.028 -10.04 -3.124 -4.205 -9.710 -2.05
95th percentile 2.253 4.662 8.886 2.855 2.751 2.648 2.092
Dickey-Fuller 2728 583.8 111.12 331.61 196.73 16.048 51.597
Jarque-Bera 7326 1998 121.35 77.013 427.60 9.424 1660.5

(1) The Augmented-Dickey-Fuller and Jarque-Bera statistics are present.
(2) Unless otherwise noted, all statistics reject the null hypothesis at one percent level of signifi-
cance.
(3) Statistics whose value is higher than the critical values, implying the non rejection of the null
hypothesis, are in bold.

Table 4.5.: NIKKEI225 preliminary statistics
Daily Weekly Monthly P1 P2 P3 P4

# of observations 5145 1097 252 630 348 22 4147
mean 0.007 0.036 0.138 -0.133 -0.256 -1.442 0.057
std. dev. 1.492 3.076 5.653 1.689 2.668 2.227 1.297
skewness -0.387 -1.008 -0.721 0.100 -0.252 -0.483 -0.367
kurtosis 9.377 11.06 4.446 4.307 7.251 2.379 7.159
excess kurtosis 6.377 8.061 1.446 1.307 4.251 -0.622 4.159
minimum -12.11 -27.88 -27.22 -7.234 -12.11 -6.274 -11.153
maximum 13.235 15.817 14.013 7.222 13.24 2.003 7.731
5th percentile -2.344 -5.137 -10.067 -2.644 -4.847 -5.628 -2.099
95th percentile 2.206 4.217 8.010 2.648 3.323 1.449 2.055
Dickey-Fuller 2730.2 572.32 97.111 344.52 196.43 6.275* 52.872
Jarque-Bera 8847 3156.2 43.842 45.887 261.82 1.208* 3081.72

(1) The Augmented-Dickey-Fuller and Jarque-Bera statistics are present.
(2) Unless otherwise noted, all statistics reject the null hypothesis at one percent level of signifi-
cance.
(3) Statistics whose value is higher than the critical values, implying the non rejection of the null
hypothesis, are in bold.
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stress period caused, in fact, one of the highest losses of all time during a short period.
All the statistics presented are obtained with the logarithmic returns. The second last row

gives the Dickey-Fuller statistic. For all the data sets except for the third partition of the
Nikkei225 return series, these values are greater than their critical value at a 1-per cent level.
This provides support to the alternative hypothesis that the series of logarithmic returns is a
stationary process. This is an essential hypothesis that, as said before, reduces the chances of
producing estimation errors.

The last row gives the Jarque-Bera statistic for detecting withdraws of the data from the
normality. The Jarque-Bera statistic is calculated in MatLab using JB=n(s

2

6 + (k−3)2

24 ), where n
is the sample size, and s and k represent the sample skewness and kurtosis, respectively. There-
fore, the normality assumption is not rejected only for the third partition of the Nikkei225 and
the S&P500. Although rejected, the statistics for the remaining indices are very low, almost
not rejected. Since most statistics are greater than their critical value, the logarithmic changes
series are non-normal.

4.2. Estimation results
We held the estimation of each distribution’s parameters through the log-likelihood maximi-
sation process. As aforementioned, the SGT distribution parameter estimation is performed,
resorting to BenSaïda’s MatLab code. For the parameter estimation process of the GPD, we
use Matlab’s Distribution Fitter app, which can also display the comparison of the empirical
observations with the fitted distribution. In addition, a QQ-plot is also presented in other
works of literature to analyse the fitting process. The results for the estimated parameters are
presented in the aforementioned tables.

Albeit most results were successfully estimated, four estimations did not generate reliable
results. Only for the parameter estimation of the S&P500 monthly SGT distribution (Table
4.6), the Maximum likelihood has converged to a boundary point of the parameter space. On the
other hand, for the second period of DAX30 at 5% tail data (Table 4.7), the FTSE100 monthly
returns at 5% tail data (Table 4.8) and the portfolio second subperiod at 5% tail (Table 4.9),
the generalised Pareto distribution did converge to an estimate out of the boundary, leading
to unreliable data. Out-of-boundary estimated parameters may not represent entirely the real
data behaviour. The generalised Pareto boundary approximated results are due to the small
sample size. This shows that, even if the choice of 5% tail information is better to evaluate
the tail behaviour, we also need to pay attention to the amount of information present in that
5% of the empirical distribution. The 5% of the daily returns did not present any problems,
suggesting that around 260 observations is data enough to estimate the generalised Pareto
accurately.

The SGT showed almost null standard errors for the estimators, as included in parentheses
under the estimated values presented in the tables. On the other hand, the GP estimated
parameters showed some significant standard errors.
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The values for k and n jibe with BenSaïda and Slim (2016) expectations, complying with the
convergence of k→ 2 and n→∞. Remember that k and n are shape parameters that control
the height and tails of the distribution. Their combination indicates a kurtosis higher than
the permitted by the Normal distribution. Additionally, the skewness parameter λ suggests
a possible symmetry in some cases, while in others, a high value close in absolute terms to
1 indicates a highly skewed distribution. The estimated skewness and kurtosis are calculated
using equations 2.7 and 2.8.

The estimated skewness does not match the empirical skewness completely. Most of the
estimated skewness values are, in absolute terms, lower than the actual empirical skewness.
That is to say that the fitted distribution assumes a more symmetric distribution than the actual
observed. These differences are not very significant since, as early mentioned, the empirical
skewness is highly distorted due to the excess of kurtosis. Another cause for the excessive
empirical skewness may be the atypical observations that exceed the standard deviation of
the observed data. As mentioned earlier, all the empirical samples are leptokurtic, which
overestimates the skewness. Despite the difference in the values, the estimated skewness and
the empirical skewness signal are almost always the same. Therefore, the SGT is a worthwhile
distribution that does not overestimate the skewness, letting to a rigorous interpretation of
the actual behaviour of the market. Moreover, the Nikkei225 shows a very simillar skewness
(Tables 4.10 and 4.5).

For the GP estimated parameters, most of ξ values are lower than 1/4 due to the low
amount of information when choosing the lower 5% of the total data. This leads us to the
impossibility to evaluate both the skewness and the kurtosis of each data series. The estimated
skewness for the left tails is relatively high. This means that even considering only the tails,
the analysed tail is skewed to the loss region. All the estimated parameters here presented for
the GP distribution fit are evaluated into the series of loss returns; This means that all the
data from the series is given with absolute values.

4.3. Goodness of fit results
The goodness-of-fit inspected numerically is also presented. Laio et al. (2009) affirms that

the lower the value of the criterion, the better the fit. The goodness-of-fit is also inspected
graphically. The returns are plotted as a normalised histogram along with the normal and the
SGT fitted distribution. Both 5% and 20% thresholds are represented against the fitted GPD
over the same point for the left tail. All tests are implemented with the null hypothesis that the
data comes from the hypothesised distribution at a 1% significance level.Although not present
in this dissertation, all the graphic representations are annexed.

For the Nikkei 225 return series, the SGT was utterly rejected by all tests in the weekly
returns on the Table 4.11. In a graphic interpretation, it is also possible to check the non-relation
of the estimated SGT with the empirical distribution. The estimated Normal distribution is
also plotted, and again it does not describes the empirical distribution. In Figure 4.1(a),
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Table 4.6.: SP500 estimated parameters
Daily Weekly Monthly P1 P2 P3 P4

SGT

k
1.272
(0.000)

1.678
(0.000)

1.066
(0.016)

1.741
(0.005)

0.914
(0.000)

1.142
(0.000)

1.159
(0.000)

n
4.416
(0.000)

4.000
(0.000)

200.
(0.000)

9.878
(0.04)

91.218
(0.000)

1.2E+31
(0.000)

9.138
(0.000)

λ
-0.055
(0.007)

-0.001
(0.000)

0.221
(0.012)

0.023
(0.380)

-0.018
(0.001)

0.17
(121.5)

-0.02
(0.005)

µ
0.019
(0.005)

0.237
(0.000)

-0.38
(0.003)

-0.11
(0.079)

-0.03
(0.000)

-1.74
(5.932)

0.06
(0.001)

σ
1.26
(0.000)

2.529
(0.000)

4.497
(0.001)

1.444
(0.006)

2.383
(0.000)

5.099
(2.022)

0.986
(0.000)

skewness -0.531 -0.011 0.812 0.067 -0.089 0.579 -0.122
kurtosis 43.057 4.2E+7 5.946 4.62 7.213 5.260 8.438

GPD - 5%

ξ
0.194
(-0.139)

0.307
(-0.36)

-0.213
(-0.65)

0.244
(-0.53)

-0.263
(-0.76)

6.478
(-9.79)

-0.027
(-0.12)

σ
0.945
(0.593)

1.671
(0.762)

1.808
(0.992)

0.546
(0.047)

2.354
(1.235)

0.000
(-6.48)

0.849
(0.736)

µ 1.933 4.107 6.854 2.299 4.113 8.287 1.582
skewness 4.467 20.627 1.147 6.638 1.019 (a) 1.849
kurtosis 63.988 (b) 4.056 792.41 3.590 (b) 7.857

GPD - 20%

ξ
0.134
(-0.07)

0.160
(-0.15)

-0.213
(-0.30)

-0.076
(-0.14)

-0.025
(-0.26)

-1.141
(0.000)

-0.012
(-0.06)

σ
0.838
(0.633)

1.645
(1.191)

2.806
(2.085)

0.910
(0.806)

1.940
(1.394)

8.851
(9.992)

0.795
(0.737)

µ 0.686 1.501 3.122 1.134 1.367 3.303 0.559
skewness 3.239 3.688 1.148 1.616 1.857 -0.116 1.9298
kurtosis 24.98 35.218 4.059 6.339 7.918 1.786 8.453

(1) All the estimates are significant at the 1% level.
(2) The standard errors for the estimators are included in parentheses.
skewness and kurtosis measures are calculated using equations (2.3) and (2.4) for the SGT distri-
bution and
(a) skewness for the generalised Pareto distribution is only evaluated for ξ < 1/3.
(b) kurtosis for the generalised Pareto distribution is only evaluated for ξ < 1/4
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Table 4.7.: DAX30 estimated parameters
Daily Weekly Monthly P1 P2 P3 P4

SGT

k
1.249
(0.016)

2.105
(0.000)

2.218
(0.000)

2.289
(0.001)

1.372
(0.161)

2.268
(0.000)

1.117
(0.032)

n
7.191
(0.000)

4.000
(0.000)

4.000
(0.000)

5.07
(0.000)

2.000
(0.000)

4.000
(0.000)

18.265
(0.002)

λ
-0.068
(0.043)

-0.007
(0.000)

-0.001
(0.002)

-0.014
(0.119)

-0.100
(2.223)

0.002
(0.035)

-0.052
(0.033)

µ
0.011
(0.000)

0.241
(0.000)

0.751
(0.000)

-0.155
(0.016)

-0.261
(0.424)

-1.376
(0.000)

0.064
(0.027)

σ
1.492
(0.01)

3.257
(0.000)

6.146
(0.000)

1.900
(0.003)

2.278
(0.049)

3.618
(0.000)

1.298
(0.003)

skewness -0.376 -0.045 -0.005 -0.052 -1.080 0.010 -0.229
kurtosis 9.460 2.8E+7 2.6E+7 7.304 7.1E+7 2.5E+7 6.543

GPD - 5%

ξ
0.071
(-0.13)

0.283
(-0.35)

-0.156
(-0.61)

-0.131
(-0.30)

-1.096
(0.000)

6.619
(-9.98)

-0.150
(-0.11)

σ
1.139
(0.882)

2.067
(1.060)

6.634
(3.098)

1.554
(1.119)

3.468
(4.563)

0.000
(-6.62)

1.208
(1.165)

µ 2.410 5.105 10.317 2.953 4.053 6.410 2.083
skewness 2.518 11.133 1.318 1.402 -0.080 (a) 1.336
kurtosis 14.043 (b) 4.780 5.178 1.786 (b) 4.864

GPD - 20%

ξ
0.061
(-0.06)

0.134
(-0.14)

0.068
(-0.33)

0.080
(-0.21)

0.098
(-0.37)

-0.064
(-1.62)

-0.075
(-0.06)

σ
1.040
(0.894)

1.997
(1.522)

4.588
(2.923)

1.080
(0.744)

1.446
(0.835)

3.442
(0.608)

1.104
(1.084)

µ 0.929 2.234 3.958 1.396 1.261 2.223 0.766
skewness 2.432 3.237 2.493 2.601 2.785 1.668 1.62
kurtosis 13.062 24.936 13.745 15.034 17.463 6.653 6.362

(1) All the estimates are significant at the 1% level.
(2) The standard errors for the estimators are included in parentheses.
skewness and kurtosis measures are calculated using equations (2.3) and (2.4) for the SGT distri-
bution and
(a) skewness for the generalised Pareto distribution is only evaluated for ξ < 1/3.
(b) kurtosis for the generalised Pareto distribution is only evaluated for ξ < 1/4
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Table 4.8.: FTSE100 estimated parameters
Daily Weekly Monthly P1 P2 P3 P4

SGT

k
1.60
(0.000)

2.036
(0.000)

1.379
(0.001)

1.409
(0.200)

1.699
(0.000)

12.492
(0.000)

1.480
(0.035)

n
2.206
(0.000)

2.000
()

118.74
(0.000)

15.753
(0.009)

3.833
(0.000)

4.000
(0.010)

6.357
(0.004)

λ
-0.056
(0.000)

-0.132
(0.00)

-0.351
(0.000)

-0.059
(0.356)

-0.028
(20.66)

-0.003
(0.043)

-0.040
(0.000)

µ
-0.001
(0.000)

-0.005
(0.030)

-0.001
(0.028)

-0.087
(0.120)

-0.177
(0.053)

-1.161
(0.000)

0.031
(0.000)

σ
1.219
(0.000)

2.394
(0.000)

4.131
(0.000)

1.408
(0.000)

2.211
(0.000)

2.556
(0.000)

1.002
(0.205)

skewness -0.508 -0.903 -0.882 -0.195 -0.240 -0.008 -0.193
kurtosis 4.7E+7 3.3E+7 4.737 4.997 4.1E+7 3.2E+7 8.328

GPD - 5%

ξ
0.1545
(-0.140)

0.3612
(-0.377)

-0.5658
(-0.788)

-0.3795
(-0.337)

-0.3743
(0.4629)

1.9972
(-4.237)

-0.0244
(-0.131)

σ
0.893
(0.588)

1.554
(0.330)

4.629
(2.436)

1.478
(1.292)

2.716
(1.820)

0.212
(-1.99)

0.790
(0.680)

µ 1.885 3.766 7.512 2.295 3.321 6.310 1.594
skewness 3.578 (a) 0.470 0.770 0.780 (a) 1.862
kurtosis 32.401 (b) 2.234 2.851 2.876 (b) 7.950

GPD - 20%

ξ
0.121
(-0.066)

0.240
(-0.156)

-0.147
(-0.318)

-0.040
(-0.196)

0.013
(-0.269)

2.202
(-4.261)

-0.003
(-0.065)

σ
0.784
(0.596)

1.303
(0.825)

3.690
(2.577)

1.037
(0.838)

1.605
(1.112)

0.193
(-2.20)

0.738
(0.675)

µ 0.706 1.597 2.902 0.968 1.251 2.238 0.621
skewness 3.068 6.364 1.346 1.782 2.083 (a) 1.980
kurtosis 21.864 448.97 4.910 7.394 9.686 (b) 8.844

(1) All the estimates are significant at the 1% level.
(2) The standard errors for the estimators are included in parentheses.
skewness and kurtosis measures are calculated using equations (2.3) and (2.4) for the SGT distri-
bution and
(a) skewness for the generalised Pareto distribution is only evaluated for ξ < 1/3.
(b) kurtosis for the generalised Pareto distribution is only evaluated for ξ < 1/4
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Table 4.9.: Portfolio estimated parameters
Daily Weekly Monthly P1 P2 P3 P4

SGT

k
1.458
(0.000)

2.020
(0.000)

1.871
(0.000)

1.295
(0.082)

1.736
(0.000)

2.964
(53.37)

1.328
(0.004)

n
4.980
(0.000)

4.000
(0.000)

2.000
(0.000)

129.2
(0.002)

3.999
(0.000)

2.059
(0.000)

8.697
(0.000)

λ
-0.063
(0.000)

-0.047
(0.000)

-0.334
(0.000)

0.022
(0.146)

0.001
(0.006)

-0.74
(642.0)

-0.053
(0.015)

µ
0.005
(0.002)

0.214
(0.000)

0.001
(0.020)

-0.123
(0.013)

-0.208
(0.000)

-1.989
(159.0)

0.049
(0.033)

σ
1.266
(0.000)

2.726
(0.000)

5.148
(0.000)

1.477
(0.004)

2.137
(0.000)

3.993
(118.9)

1.074
(0.002)

skewness -0.412 -0.325 -2.298 0.068 0.009 -2.838 -0.239
kurtosis 15.434 3.0E+7 5.9E+7 4.466 3.9E+7 7.2E+7 7.088

GPD - 5%

ξ
0.099
(-0.13)

0.235
(-0.31)

0.473
(-1.24)

-0.491
(-0.40)

-1.115
(0.000)

6.207
(-9.42)

-0.074
(-0.11)

σ
1.016
(0.752)

2.069
(1.155)

1.467
(-0.09)

1.470
(1.388)

3.629
(4.744)

0.000
(-6.21)

0.952
(0.878)

µ 1.969 4.132 9.718 2.490 3.734 6.627 1.695
skewness 2.806 6.071 (a) 0.579 -0.095 (a) 1.622
kurtosis 17.751 291.033 (b) 2.425 1.786 (b) 6.376

GPD - 20%

ξ
0.1100
(-0.07)

0.1886
(0.1408)

-0.2356
(-0.27)

-0.0656
(-0.20)

0.0875
(-0.34)

-1.1686
(65535)

-0.246
(-0.06)

σ
0.8305
(0.650)

1.5286
(1.074)

5.2521
(3.842)

1.0713
(0.887)

1.3709
(0.825)

9.7477
(65535)

0.8403
(0.792)

µ 0.771 1.953 2.849 1.014 1.269 2.132 0.655
skewness 2.926 4.321 1.086 1.661 2.678 -0.137 1.8611
kurtosis 19.549 57.117 3.828 6.610 16.015 1.787 7.945

(1) All the estimates are significant at the 1% level.
(2) The standard errors for the estimators are included in parentheses.
skewness and kurtosis measures are calculated using equations (2.3) and (2.4) for the SGT distri-
bution and
(a) skewness for the generalised Pareto distribution is only evaluated for ξ < 1/3.
(b) kurtosis for the generalised Pareto distribution is only evaluated for ξ < 1/4
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Table 4.10.: NIKKEI225 estimated parameters
Daily Weekly Monthly P1 P2 P3 P4

SGT

k
1.572
(0.000)

2.653
(0.000)

1.920
(0.000)

2.035
(4E+6)

1.720
(0.000)

2.880
(8641)

1.464
(0.000)

n
5.512
(0.000)

2.088
(0.000)

18.583
(0.000)

7.825
(2E+6)

3.999
(0.000)

2.013
(0.000)

8.468
(0.000)

λ
-0.044
(0.001)

-0.175
(0.058)

-0.315
(0.000)

0.081
(2E+6)

0.002
(0.003)

-0.594
(0.000)

-0.031
(0.007)

µ
0.013
(0.002)

0.040
(0.254)

0.146
(0.000)

-0.128
(2E+6)

-0.151
(0.000)

-1.492
(0.000)

0.060
(0.001)

σ
1.481
(0.000)

3.051
(0.000)

5.621
(0.000)

1.688
(2E+6)

2.698
(0.000)

2.136
(0.000)

1.291
(0.000)

skewness -0.228 -0.929 -0.617 0.221 0.018 -0.488 -0.123
kurtosis 9.879 2.5E+7 3.848 4.543 4.0E+7 2.673 6.253

GPD - 5%

ξ
0.264
(-0.17)

0.418
(-0.38)

1.296
(-1.74)

0.107
(-0.41)

-0.045
(-0.72)

5.65
(-8.66)

0.127
(-0.14)

σ
0.907
(0.475)

1.329
(0.433)

0.465
(-1.22)

0.895
(0.418)

2.238
(0.997)

0.000
(-5.65)

0.835
(0.559)

µ 2.3502 5.186 10.259 2.511 4.559 3.756 2.119
skewness 8.360 (a) (a) 2.892 1.76 (a) 3.149
kurtosis (b) (b) (b) 19.013 7.242 (b) 23.287

GPD - 20%

ξ
0.094
(-0.06)

0.121
(-0.13)

-0.075
(-0.18)

0.107
(-0.19)

0.284
(-0.40)

-1.117
(0.00)

0.007
(-0.06)

σ
0.972
(0.798)

1.874
(1.439)

4.377
(3.238)

0.756
(0.477)

1.420
(0.610)

3.212
(4.329)

0.968
(0.880)

µ 0.958 2.153 4.582 1.419 1.690 1.956 0.816
skewness 2.748 3.061 1.620 2.886 11.399 -0.097 2.040
kurtosis 16.95 21.733 6.366 18.939 (b) 1.789 9.3255

(1) All the estimates are significant at the 1% level.
(2) The standard errors for the estimators are included in parentheses.
skewness and kurtosis measures are calculated using equations (2.3) and (2.4) for the SGT distri-
bution and
(a) skewness for the generalised Pareto distribution is only evaluated for ξ < 1/3.
(b) kurtosis for the generalised Pareto distribution is only evaluated for ξ < 1/4
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(a) (b) (c)

Figure 4.1.: Nikkei225 fitted distributions for (a) weekly returns (b) daily returns (c) p1 returns

The left skewness is visible, and the pike of information around the mean exceeds the normal
distribution considerably. Therefore, neither the SGT nor the Normal distributions are good
enough to represent the behaviour. On the other hand, the SGT distribution accommodates
remarkably well the allocations for the remaining Nikkei 225 return series. As we can see
in Figures 4.1(b) and 4.1(c), the SGT is an excellent adaptation for the real world returns
behaviour. For the first partition of Nikkei returns, the Normal distribution provides a good
monitor for the empirical distribution along with the SGT, but again, the SGT approximation
is favoured. The skewness of the observed distribution is visible in the graphic representation.
In contrast, the normal distribution may follow a tail but does not follow the other due to the
skewness, while the SGT follows both tails while supporting the peak around the mean. In
other words, the Normal distribution can’t keep track of the curvature present in the tails.

The index that shows the best results is the S&P500, whose results are presented in Table
4.12. The KS and the Kuiper test do not reject the SGT for all samples, while the AD test
rejected the weekly and the second stress subperiod. The AD test is not entirely accurate
for the SGT, since it focuses on the convergence for the normal distribution to evaluate the
critical values. As graphically visible, the weekly returns (Figure 4.2(a)), rejected by the AD
test, accommodate very well the SGT distribution. In the meantime, the Normal distribution
is rejected. It is graphically explicit that the peak is much higher than the Normal distribution
peak, and the left tail presents an extreme skew. Environmental, economic, and social events
and phenomenon provide financial drains on our economy. Events such as the Dot.com Bubble,
Terrorist Attacks, Stock Market Crash, War, Hurricanes, and others. The second partition
(Figure 4.2(c)), also rejected by the AD test, slightly repudiate the SGT distribution due to
its higher peak. Despite this, the SGT preserves the tail behaviour exceptionally well. The
Sub-Prime Housing Crisis and the Housing bubble were the main reasons for the excess of tail
data and a lower peak around the mean. The daily returns (Figure 4.2(b)) and the fourth
partition have high empirical peaks, and both welcome the SGT distribution very well.

The FTSE100 has the most rejected fit results (Table ??). Both the daily and the weekly
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(a) (b) (c)

Figure 4.2.: SP500 fitted distributions for (a) weekly returns (b) daily returns (c) p1 returns

returns (Figures 4.3(a) and 4.3(b)) do not follow an SGT distribution nor a Normal distribution.
Despite the exaggeration made by the SGT for peak information, it still shows arch tails, i.e. it
can accompany the skewness but not entirely the data. On the other hand, the SGT distribution
follows the empirical data for the fourth partition (Figure 4.3(c)) extremely well, which has a
higher peak. The GP distribution holds the tail behaviour for the daily and weekly returns for
both the 5% and 20% tail information (Figures 4.4(a), 4.4(b) and 4.4(c)). All the analytical
tests are non-rejected, and its graphical representation shows the well-fitting. For the FTSE100
index, Theodossiou’s distribution could not correspond to the real behaviour. This can be due
to the specific distribution and having nothing to do with the economic and financial reason
for conducting the empirical data.

The DAX30 returns follow the same analysis previously made, as revealed by Figure 4.5(c).
The good-of-fit results are presented in Table 4.14. Albeit the skewness presented, the DAX30
daily returns form a balanced distribution. Analysing the timeline of gains and losses, for
example, after the 2011 European dept crisis related to Spain and Italy, which implicated a
remarkable drop in the DAX30 price, the gains were substantially high. The same happened
after the 2020 coronavirus lock-downs. For the Portfolio (Table 4.15), the third subperiod
4.5(a) was analytically rejected in all tests for the SGT, while the Normal distribution was not
dismissed. Again, the amount of data is a significant feature for fitting distributions. All the
other distributions followed the SGT exceptionally well. The problem with the covid subperiod
is due to the lack of information. Results like the ones obtained for the Portfolio daily returns
(Figure 4.5(b)) are preferable.

The remaining graphic representations are annexed. We recommend a close look at the GP
fit for the tails. The principal difficulty for this distribution is the amount of data, and it is
challenging to validate the fit for each subperiod and monthly returns.

Most of the stress partitions present good fit results. Even with the small amount of data,
principally in the covid-19 bear market partition, the SGT produced an acceptable fit. It is in
this same partition that the Normal distribution was accepted for all the return series. The
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(a) (b) (c)

Figure 4.3.: FTSE100 fitted distributions for (a) daily returns (b) weekly returns (c) p4 returns

fourth partition, the bigger and without stress, was the partition with the better estimation.
Therefore, for both stress and non-stress market periods, the SGT establishes a good empirical
distribution adjust. It should also be noted that, even for the non-stress partition, unavoid-
able events exist, such as social, environmental and economic crises. Taking into attention
the DAX30 case, the crisis in European countries such as Italy and Spain had a significant
implication on its price. In the same way, we could observe unusual gains, which compensated
for the tremendous losses.

The main skewness patterns were most observed in weekly returns. Monthly returns also
showed a negative asymmetry, exhibiting the skewness pattern in high frequency series. This
way, we do not support the investment on high frequency such as weekly and monthly return
series, moreover we alert to the use of the Normal distribution, since it does not reflect the real
behaviour of the empirical distribution. It should also be noted that long-duration periods, such
as our 21-years period, are not correctly performed by a Normal distribution, being the SGT
distribution an advantage. This is due to the disregard of the skewness and kurtosis parameters
by the Normal distribution. On the other hand, in the tails’ analysis, the GP distribution is
a pretty good fit. It can follow the skewness patters and corresponds to the real behaviour of
the tails of a non centralized distribution.
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(a) (b) (c)

Figure 4.4.: FTSE100 GPD fitted distributions for (a) daily returns 20% (b) daily returns 5%
(c) weekly returns 20%

(a) (b) (c)

Figure 4.5.: Fitted distributions for (a) Portfolio P3 returns (b) Portfolio daily returns (c) DAX
daily returns
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Table 4.11.: NIKKEI225 goodness-of-fit
Daily Weekly Monthly P1 P2 P3 P4

SGT

KS test 0.009*
(0.023)

0.254
(0.049)

0.042*
(0.102)

0.02*
(0.065)

0.024*
(0.087)

0.084*
(0.337)

0.010*
(0.025)

AD test 0.62*
(0.752)

289.32
(0.751)

0.450*
(0.75)

0.178*
(0.751)

0.322*
(0.750)

0.143*
(0.724)

0.614*
(0.752)

Kuiper test 0.016*
(0.028)

0.455
(0.060)

0.077*
(0.125)

0.035*
(0.079)

0.047*
(0.079)

0.148*
(0.407)

0.016*
(0.031)

GPD - 5%

KS test 0.043*
(0.101)

0.051*
(0.216)

0.306*
(0.433)

0.079*
(0.281)

0.144*
(0.371)

0.331*
(0.929)

0.044*
(0.112)

AD test 0.443*
(3.880)

0.224*
(3.888)

0.885*
(3.910)

0.524*
(3.887)

0.819*
(3.901)

0.314*
(4.07)

0.784*
(3.880)

Kuiper test 0.071*
(0.123)

0.101*
(0.263)

0.425*
(+∞)

0.148*
(0.341)

0.272*
(0.448)

0.641*
(0.995)

0.088*
(0.137)

GPD - 20%

KS test 0.03*
(0.051)

0.041*
(0.109)

0.150*
(0.224)

0.046*
(0.144)

0.12*
(0.193)

0.293*
(0.669)

0.046*
(0.056)

AD test 1.301*
(3.879)

0.383*
(3.880)

1.618*
(3.89)

0.357*
(3.882)

1.204*
(3.884)

7.8319
(3.959)

3.818*
(3.879)

Kuiper test 0.056*
(0.062)

0.072*
(0.273)

0.254*
(0.273)

0.076*
(0.176)

0.180*
(0.236)

0.493*
(0.789)

0.067*
(0.069)

Normal

KS test 0.0671
(0.0227)

0.0506
(0.0490)

0.0857*
(0.1018)

0.0344*
(0.0640)

0.0859*
(0.0874)

0.1129*
(0.3367)

0.0587
(0.0252)

AD test 65535
(3.878)

6.503
(3.879)

1.876*
(3.880)

1.144*
(3.879)

4.741
(3.88)

0.29*
(3.897)

26.066
(3.878)

Kuiper test 0.116
(0.028)

0.095
(0.060)

0.128
(0.125)

0.060*
(0.079)

0.158
(0.107)

0.196*
(0.407)

0.102
(0.031)

(1) All the tests were executed at a 5% level of significance.
(2) Critical values at 5% for each test are given by the last row in parenthesis.
* corresponds to the non rejection of the null hypothesis that the empirical distribution follows
the estimated distribution.
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Table 4.12.: SP500 goodness-of-fit
Daily Weekly Monthly P1 P2 P3 P4

SGT

KS test 0.0099*
(0.0223)

0.0278*
(0.0490)

0.0302*
(0.1020)

0.0230*
(0.0642)

0.0641*
(0.0856)

0.0965*
(0.3229)

0.0118*
(0.0249)

AD test 0.578*
(0.752)

1.312
(0.751)

0.245*
(0.75)

0.316*
(0.751)

1.603
(0.750)

0.222*
(0.726)

0.706*
(0.752)

Kuiper test 0.016*
(0.028)

0.039*
(0.060)

0.055*
(0.125)

0.040*
(0.079)

0.068*
(0.079)

0.166*
(0.389)

0.018*
(0.031)

GPD - 5%

KS test 0.036*
(0.099)

0.067*
(0.216)

0.123*
(0.433)

0.143*
(0.281)

0.170*
(0.371)

0.334*
(0.929)

0.037*
(0.110)

AD test 0.484*
(3.88)

0.299*
(3.888)

0.613*
(3.91)

0.536*
(3.887)

0.783*
(3.901)

0.322*
(4.074)

0.459*
(3.880)

Kuiper test 0.073*
(0.122)

0.128*
(0.263)

0.219*
(+∞)

0.211*
(0.341)

0.286*
(0.448)

0.65*
(0.995)

0.058*
(0.135)

GPD - 20%

KS test 0.0185*
(0.0499)

0.0396*
(0.1089)

0.1141*
(0.2239)

0.0874*
(0.1424)

0.0593*
(0.1890)

0.3641*
(0.6685)

0.0513*
(0.0555)

AD test 0.377*
(3.879)

0.401*
(3.880)

1.462*
(3.89)

1.336*
(3.882)

0.343*
(3.884)

8.612
(3.959)

3.488*
(3.879)

Kuiper test 0.032*
(0.061)

0.067*
(0.273)

0.169*
(0.273)

0.144*
(0.174)

0.10*
(0.231)

0.564*
(0.789)

0.068*
(0.068)

Normal

KS test 0.099
(0.022)

0.0844
(0.049)

0.099*
(0.102)

0.042*
(0.064)

0.1018
(0.086)

0.124*
(0.323)

0.0830
(0.025)

AD test 65535
(3.878)

16.8535
(3.879)

3.031*
(3.880)

1.706*
(3.879)

6.145
(3.88)

0.341*
(3.896)

55.27
(3.878)

Kuiper test 0.185
(0.027)

0.162
(0.060)

0.159
(0.125)

0.087
(0.079)

0.19
(0.105)

0.234*
(0.3895)

0.146
(0.031)

(1) All the tests were executed at a 5% level of significance.
(2) Critical values at 5% for each test are given by the last row in parenthesis.
* corresponds to the non rejection of the null hypothesis that the empirical distribution follows
the estimated distribution.
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Table 4.14.: DAX30 goodness-of-fit
Daily Weekly Monthly P1 P2 P3 P4

SGT

KS test 0.006*
(0.022)

0.028*
(0.049)

0.049*
(0.102)

0.016*
(0.064)

0.521
(0.086)

0.080*
(0.323)

0.009*
(0.025)

AD test 0.218*
(0.751)

1.862
(0.751)

0.801
(0.750)

0.191*
(0.751)

1916.816
(0.750)

0.312*
(0.726)

0.235*
(0.752)

Kuiper test 0.012*
(0.027)

0.054*
(0.060)

0.092
(0.060)

0.031*
(0.078)

0.971
(0.078)

0.147*
(0.390)

0.016*
(0.030)

GPD - 5%

KS test 0.035*
(0.099)

0.060*
(0.216)

0.170*
(0.433)

0.079*
(0.277)

0.297*
(0.371)

0.334*
(0.929)

0.057*
(0.110)

AD test 0.466*
(3.880)

0.338*
(3.888)

0.972*
(3.910)

0.398*
(3.887)

3.665*
(3.901)

0.323*
(4.074)

0.951*
(3.880)

Kuiper test 0.065*
(0.121)

0.119*
(0.263)

0.298*
(+∞)

0.137*
(0.336)

0.397*
(0.448)

0.651*
(0.995)

0.096*
(0.135)

GPD - 20%

KS test 0.026*
(0.050)

0.042*
(0.109)

0.082*
(0.224)

0.059*
(0.141)

0.091+
(0.189)

0.245*
(0.669)

0.045*
(0.055)

AD test 0.661*
(3.879)

0.448*
(3.880)

0.283*
(3.890)

0.418*
(3.882)

0.941*
(3.884)

1.581*
(3.959)

3.495*
(3.879)

Kuiper test 0.045*
(0.061)

0.076*
(0.273)

0.131*
(0.273)

0.090*
(0.173)

0.170*
(0.231)

0.388*
(0.789)

0.074
(0.068)

Normal

KS test 0.077
(0.022)

0.059
(0.049)

0.074*
(0.102)

0.043*
(0.064)

0.098
(0.086)

0.139*
(0.323)

0.074
(0.025)

AD test 67.315
(3.878)

9.940
(3.879)

2.767*
(3.880)

1.658*
(3.879)

7.883
(3.880)

0.602*
(3.896)

43.38
(3.878)

Kuiper test 0.142
(0.027)

0.115
(0.060)

0.143
(0.125)

0.074*
(0.078)

0.188
(0.105)

0.230*
(0.39)

0.132
(0.031)

(1) All the tests were executed at a 5% level of significance.
(2) Critical values at 5% for each test are given by the last row in parenthesis.
* corresponds to the non rejection of the null hypothesis that the empirical distribution follows
the estimated distribution.
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Table 4.15.: Portfolio goodness-of-fit
Daily Weekly Monthly P1 P2 P3 P4

SGT

KS test 0.006*
(0.022)

0.038*
(0.049)

0.567
(0.102)

0.019*
(0.064)

0.026*
(0.086)

0.452
(0.323)

0.007*
(0.025)

AD test 0.101*
(0.752)

2.644
(0.751)

1666.5
(0.75)

0.267*
(0.751)

0.345*
(0.750)

29.711
(0.726)

0.139*
(0.752)

Kuiper test 0.010*
(0.027)

0.048*
(0.060)

0.991
(0.125)

0.032*
(0.078)

0.050*
(0.078)

0.7271
(0.39)

0.013*
(0.031)

GPD - 5%

KS test 0.031*
(0.099)

0.074*
(0.216)

0.176*
(0.433)

0.134*
(0.277)

0.259*
(0.371)

0.334*
(0.929)

0.038*
(0.110)

AD test 0.173*
(3.88)

0.375*
(3.888)

0.868*
(3.91)

0.865*
(3.887)

4.381
(3.901)

0.319*
(4.074)

0.444*
(3.8803)

Kuiper test 0.056*
(0.121)

0.13*
(0.263)

0.344*
(+∞)

0.217*
(0.336)

0.426*
(0.448)

0.647*
(0.995)

0.057*
(0.135)

GPD - 20%

KS test 0.0241*
(0.0497)

0.0531*
(0.1089)

0.0849*
(0.2239)

0.0638*
(0.1413)

0.1197*
(0.1930)

0.2926*
(0.6685)

0.0487*
(0.0553)

AD test 0.44*
(3.879)

0.766*
(3.880)

0.617*
(3.89)

0.564*
(3.882)

1.204*
(3.884)

7.832
(3.959)

3.280*
(3.879)

Kuiper test 0.042*
(0.061)

0.097*
(0.273)

0.168*
(0.273)

0.102*
(0.173)

0.180*
(0.236)

0.493*
(0.789)

0.078
(0.068)

Normal

KS test 0.067
(0.023)

0.051
(0.049)

0.086*
(0.102)

0.049*
(0.064)

0.085*
(0.087)

0.135*
(0.323)

0.061
(0.025)

AD test 68.508
(3.878)

6.503
(3.879)

1.876*
(3.880)

2.472*
(3.879)

4.957
(3.88)

0.552*
(3.896)

37.665
(3.878)

Kuiper test 0.116
(0.028)

0.095
(0.060)

0.128
(0.125)

0.087
(0.078)

0.16
(0.105)

0.229*
(0.39)

0.117
(0.031)

(1) All the tests were executed at a 5% level of significance.
(2) Critical values at 5% for each test are given by the last row in parenthesis.
* corresponds to the non rejection of the null hypothesis that the empirical distribution follows
the estimated distribution.
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5. Conclusions

The Skewed Generalised t is a very compelling distribution as it nests several other distributions.
For almost all cases, the Skewed Generalised t distribution provided an excellent fit to the
empirical distribution of the data. Evidence from our sample proves that such model-based
parametric distribution is appropriately applied. Furthermore, analytical and graphical analysis
strongly favours the SGT distribution as a good fit for financial index returns.

While we expected long-horizon returns to be found normally distributed, our most ex-
tended horizon of twenty-one years did not verify the attributes, nor did the goodness-of-fit
test accept the normality. In fact, the normal distribution is carried only for the third partition
distribution, which has the lowest number of values. Indeed, an increased time scale does not
benefit the normal distribution. This evidence jeopardises the legitimacy of the Aggregational
Gaussianity.

We investigate the skewness patterns in four market indices and a hypothetical equal-
weighted portfolio. We find that a negative skewness is predominant among the indices. Weekly
returns are the most negative skewed, while stress-partitions are considered symmetric. Kurtosis
tends to impact skewness values, although not in a direct way.

We want to draw the investors and risk managers’ attention to the use of the Normal
distribution. The results presented in this dissertation provide solid support for using the
SGT for economic and financial models, providing a better approximation to reality. And, as
mentioned before, the Normal distributions lack many possible risks incorporated in the tails.
Therefore, an approximation for the Skewed Generalised t distribution on the daily returns
data and its implementation, rather than the normal distribution, is highly recommended.

This dissertation provides multiple ideas for future work and research. The future research
should focus on similar studies regarding individual stocks, foreign exchange rates, and alterna-
tive assets. It is also worth studying the effect of the Skewed Generalised t distribution, when
working with financial models and its applications on the evaluation of the VaR. The same
applies to the creation of expanded pricing models that incorporate a high flexible distribution,
such as SGT. Research about how the Generalised Pareto would benefit financial models avoid-
ing tails risk is also suggested. On top of this, restructuring the same analysis made in this
work but estimating the parameters via Generalised Method of Moments (GMM) and forward
goodness-of-fit test with the Log-Likelihood ratio test is a surplus-value to future research.
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A. Moments

In this analysis we consider the definitions presented in Spiegel et al. (2016):
The r-th moment of a random variable in relation to the mean µ , also commonly called the
r-th central moment, is defined as mr = E[(X−µ)r] for r = 0,1,2, ... . Overall, we have:

mr =
n∑
j=1

(xj−µ)rf(xj) =
∑

(x−µ)rf(x) (discrete variable) (A.1)

mr =
∫ +∞

−∞
(x−µ)rf(x) dx (continuous variable) (A.2)

In each case, there are similar formulas to the ones seen before with µ= 0.
The normalised n-th central moment or standardised moment is the n-th central moment

divided by σn. Therefore, the n-th standardised moment of a variable X is

Mn = mn

σn
= E[(X−µ)n]

σn
(A.3)

Having in mind a financial interpretation where rt represents the return of an asset at the
time t.

The mean is also called the first moment and is equal to the expected value of the distri-
bution. We define it as

µ= E[rt] (A.4)

Similarly, the variance is the second central moment, representing the dispersion of the
distribution around its mean. We define it as

σ2 = E[rt−µ]2 (A.5)

The third and the fourth standardized moments represent the skewness and kurtosis of
the alleged distribution. We define the skewness and kurtosis, respectively, according to the
formulas:

Sk = E[(X−µ)3]
σ3 = m3

σ3 (A.6)

Ku = E[(X−µ)4]
σ4 = m4

σ4 (A.7)
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It is common to compare both values to zero and three, the respective values for a normal
distribution. It is also common to refer to the excess kurtosis instead of the kurtosis since the
comparison to the normal distribution is done by subtracting three to the kurtosis value. We
can characterize a distribution by its skewness and kurtosis values.

If a distribution has a kurtosis greater than 3, we call it leptokurtic. If the kurtosis is equal
to 3, the same as the normal distribution, we say the distribution is mesokurtic. And it is called
platykurtic when the kurtosis is lower than 3.

For the SGT distribution, given the fact that the probability density function of the trans-
formed variable z = x−µ, where µ is the mean, is given by equation 2.1. The fourth theorem
of Theodossiou (1998) shows that

E(|z|) = E(|x|)−λµ+ 2
∫ 0

µ
xf1dx−2µ

∫ 0

µ
f1dx for λ < 0

E(|z|) = E(|x|)−λµ+ 2
∫ 0

µ
xf2dx−2µ

∫ 0

µ
f2dx for λ > 0

where E(|x|) is the expected value of |x| given by

E(|x|) = (1 +λ2) σ

S(λ)
B( 2

k ,
n−1
k )

B( 1
k ,

n
k )1/2B( 3

k ,
n−2
k

−1/2)

for S(λ) =
(

1 + 3λ2−4λ2B
(

2
k ,

n−1
k

)2
B
(

1
k ,

n
k

)−1
B
(

3
k ,

n−2
k

)−1)1/2

For every r ∈ N, the rth noncentered moment function of x is, as in function (5) of Theo-
dossiou (1998):

E(xr) = ((−1)r(1−λ)r+1 + (1 +λ)r+1) σr

S(λ)r
B(r+1

k , n−rk )B( 1
k ,

n
k )−1+(r+2)

B( 3
k ,

n−2
k )r/2

Consequently, the first moment, the mean, is given replacing r by 1.

µ= E(x) = 2λ σ

S(λ)
B( 2

k ,
n−1
k )

B( 1
k ,

n
k )1/2B( 3

k ,
n−2
k )1/2

= 2λσ
B( 2

k ,
n−1
k )

((1 + 3λ2)B( 1
k ,

n
k )B( 3

k ,
n−2
k )−4λ2B( 2

k ,
n−1
k ))1/2

= 2λσθ∗
B( 2

k ,
n−1
k )

B( 1
k ,

n
k )

for θ∗ given by equation 2.6.

Next, the second and the third normalized moments are
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m3 = E(z3) = E(x3)−3µσ2−µ3 =

= 4λ(1 +λ2) σ3

S(λ)3
B( 4

k ,
n−3
k )×B( 1

k ,
n
k )1/2

B( 3
k ,

n−2
k )3/2 −3µσ2−µ3

m4 = E(z4) = E(x4)−4µm3−6µ2σ2−µ4 =

= (1 + 10λ2 + 5λ4) σ4

S(λ)4
B( 5

k ,
n−4
k )×B( 1

k ,
n
k )

B( 3
k ,

n−2
k )2 −4µm3−6µ2σ2−µ4

Therefore, the skewness and kurtosis estimated through the SGT distribution is given as:

Sk = m3
σ3 = 1

σ3

(
4λ(1 +λ2) σ3

S(λ)3
B( 4

k ,
n−3
k )×B( 1

k ,
n
k )1/2

B( 3
k ,

n−2
k )3/2 −3µσ2−µ3

)

= 4λ(1 +λ2)
B( 1

k ,
n
k )3/2B( 3

k ,
n−2
k )3/2

((1 + 3λ2)B( 1
k ,

n
k )B( 3

k ,
n−2
k ))3/2

B( 4
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n−3
k )B( 1

k ,
n
k )1/2

B( 3
k ,

n−2
k )3/2 − 1

σ3 (3µσ2 +µ3)

= 4λ(1 +λ2)
B( 1
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k )4
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k )B( 3
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n−2
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B( 4
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B( 1
k ,

n
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− 1
σ3 (3µσ2 +µ3)

= 4θ∗3λ(1 +λ2)
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n−3
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B( 1
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k )
−2θ∗λ

B( 2
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n−1
k )

B( 1
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n
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[
3 + 4θ∗2λ2B( 2
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n−1
k )2

B( 1
k ,

n
k )2

]

where, the second part ( 1
σ3 (3µσ2−µ3)) unrolls as follows:

1
σ3 (3µσ2 +µ3) = 1

σ3

3
(

2λσθ∗
B( 2
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B( 1
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n
k )

)
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(
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]

For the kurtosis we have:
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Ku = m4
σ4 = 1

σ4

(
(1 + 10λ2 + 5λ4) σ4

S(λ)4
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where the second part unrolls as follows:
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σ4 (4m3 + 6µσ2 +µ3)

=− 1
σ4

(
2λσθ∗

B( 2
k ,

n−1
k )

B( 1
k ,

n
k )

)(
4
(

4λ(1 +λ2)σ3

S(λ)3
B( 4

k ,
n−3
k )×B( 1

k ,
n
k )1/2

B( 3
k ,

n−2
k )3/2

−3µσ2−µ3
)

+ 6σ2
(

2λσθ∗
B( 2

k ,
n−1
k )

B( 1
k ,

n
k )

)
+
(

2λσθ∗
B( 2

k ,
n−1
k )

B( 1
k ,

n
k )

)3

= 2θ∗λ
σ3

B( 2
k ,

n−1
k )

B( 1
k ,

n
k )

(
−4

(
4σ3λ(1 +λ2)θ∗3

B( 4
k ,

n−3
k )

B( 1
k ,

n
k )
− σ

3

σ3 (3µσ2 +µ3)
)

−6σ3
(

2λθ∗
B( 2

k ,
n−1
k )

B( 1
k ,

n
k )

)
−σ3

(
2λθ∗

B( 2
k ,

n−1
k )

B( 1
k ,

n
k )

)3
= 4θ∗2λ2B( 2

k ,
n−1
k )2

B( 1
k ,

n
k )2 ×

[
6 + 12θ∗2λ2B( 2

k ,
n−1
k )2

B( 1
k ,

n
k )
−8θ∗2(1 +λ2)

B( 4
k ,

n−3
k )

B( 2
k ,

n−1
k )

]

= 24θ∗2λ2B( 2
k ,

n−1
k )2

B( 1
k ,

n
k )2 ×

[
6 + 12θ∗2λ2B( 2

k ,
n−1
k )2

B( 1
k ,

n
k )
−8θ∗2(1 +λ2)

B( 4
k ,

n−3
k )

B( 2
k ,

n−1
k )

]

for θ∗ given by equation 2.6.
For the case of the Generalised Pareto distribution we pay attention to the skewness and

kurtosis presented in the skewness and kurtosis are given for ξ < 1/3 and ξ < 1/4, respectively,
as follows:

Sk = 2(1 + ξ)
√

1−2ξ
(1−3ξ) (A.8)

Ku = 3(1−2ξ)(2ξ2 + ξ+ 3)
(1−3ξ)(1−4ξ) (A.9)
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B. Demonstration: equality of BenSaïda’s
and Theodossiou’s formula

Let k, n, λ, µ and σ be the scaling parameters representing the height, tails, skewness, mean
and variance of the distribution. And θ∗ given by equation 2.6. We demonstrate the verac-
ity of BenSaïda and Slim’s probability density function starting with it and aiming to get
Theodossiou’s function by replacing parameters and specifying the passages.

k

2θ∗σB
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n
k
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where we can formulate C, replacing S(λ) by its corresponding formula:
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C. Kolmogorov-Smirnov table

Figure C.1.: Kolmogorov-Smirnov table
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D. MatLab Code

The code used to the analysis and representation of the studied data may heavy this dissertation
content. Therefore, all the code used to gather the data, graphics and econometric methodolo-
gies is available on the open source repository: https://github.com/DanieSofia/patternskewness.git.
There is also code from another author (BenSaïda and Slim, 2016) that is not publicly shared
in the aforementioned repository. Some fundamental code is chosen from several types of public
code according to the interest of the programmer.
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