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Resumo

O objetivo desta tese é buscar evidências em saltos e volatilidade estocástica em condições do

mercado em baixa, nomeadamente quebras e correções de mercado de 1990 a 2020. Usamos os

índices SPX e VIX para analisar os saltos nos retornos e a volatilidade estocástica no mercado,

respectivamente. Para detectar saltos, aplicamos o teste não paramétrico de Lee and Mykland

(2008) para identificar os tempos de chegada dos saltos e os tamanhos dos saltos realizados.

Primeiro, avaliamos o desempenho do teste usando dados de baixa e de alta frequência, com-

parando os saltos detectados com um banco de dados de referência para o período de estudo. Em

seguida, avaliamos os resultados dos testes com o objetivo de responder às seguintes questões:

A volatilidade aumenta exatamente quando o mercado está em baixa? Os índices SPX e VIX

saltam simultaneamente quando o mercado está em baixa? Os índices SPX e VIX saltam em

direções opostas quando o mercado está em baixa? Historicamente, qual dos índices salta com

mais frequência? Os resultados revelam várias descobertas sobre a relação entre os retornos

do SPX e as mudanças no VIX. Quando há um evento relacionado ao mercado em baixa, os

índices saltam em direções opostas. O VIX, em nosso estudo de alta frequência, salta em todas

as datas de referência, o que nos leva a concluir que a volatilidade aumenta exatamente quando

há uma quebra ou correção de mercado.

Palavras-chave: Teste de salto não paramétrico, Salto simultâneo, Dinâmica de salto, SPX

& VIX
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Abstract

The objective of this thesis is to look for evidence in jumps in returns and stochastic volatility in

bear market conditions, namely market crashes and market corrections from 1990 to 2020. We

use the SPX and VIX indexes to analyze the jumps in returns and stochastic volatility in the

market, respectively. To detect jumps, we apply the nonparametric test of Lee and Mykland

(2008) to identify jump arrival times and realized jump sizes. First, we assess the performance

of the test using low and high-frequency data, comparing the detected jumps with a benchmark

database for the study period. Then, we assess the outcomes of the tests aiming to answer the

following questions: Does volatility spikes exactly when there is a stock market crash or correc-

tion? Do the SPX and VIX indexes co-jump when there is a stock market crash or correction?

Do the SPX and VIX indexes jump in opposite directions when there is a stock market crash or

correction? Historically, which of the indexes jump more frequently? The results reveal several

findings regarding the relationship between the SPX returns and the changes in the VIX. In a

nutshell, we conclude that the SPX tends to jump more frequently than the VIX. When there

is an event related to a market crash or market correction, the indices co-jump in opposite

directions. The VIX, in our high-frequency study, jumped in all benchmark dates, which leads

us to conclude that volatility spikes exactly when there is a market crash or correction.

Keywords: Nonparametric jump test, Co-jump, Jump dynamics, SPX & VIX
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1. Introduction

1.1. Motivation

Since 1900 many scientists have been studying the theory of option pricing. Bachelier (1900)

was the first to deduce an option pricing formula based on the assumption that stock prices

follow a Brownian motion with zero drift. A breakthrough in option pricing theory appeared

in Black and Scholes (1973). This classic article presents an analysis based only on observable

variables. The formulas do not require investors’ tastes or beliefs on the expected returns from

the underlying stock prices. To derive the option pricing formula, Black and Scholes assumed

ideal market conditions for the stock and option to avoid creating arbitrage possibilities. The

ideal market conditions described in Black and Scholes (1973) are given below:

1. Frictionless market;

2.The short-term interest rate is known and constant through time;

3.The stock pays no dividends during the life of the option;

4.The option can only be exercised at the expiration date (European-style option);

5.The stock price follows a geometric Brownian motion through time, producing a log-normal

distribution for the stock price between any two points in time.

Merton (1973) demonstrates that the analysis proposed by Black and Scholes is obtained

even when the interest rate is stochastic, the share pays dividends, and the option can be

exercised before maturity. In addition, Merton shows that, as long as the share price dynamics

can be described by a continuous diffusion process, whose sample path is continuous with

probability one, such arbitrage technique is still valid. It would be exaggerated to say that

the Black-Scholes analysis is invalid because continuous trading is impossible and no empirical

time series has a continuous sample path. In fact, Merton and Samuelson (1974) prove that the

continuous-trading solution will be a valid asymptotic approximation to the discrete-trading

reality, as long as the dynamics have continuous sample-paths. In essence, the validity of the

Black-Scholes formula depends on whether the stock price changes or not by a small amount.
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Since that time, there has been a great effort in modeling option prices, where each new

model attempts to explore some of the restrictive premises of the Black-Scholes model. Efforts

include (i) the stochastic-interest-rate option models; (ii) the jump-diffusion/pure jump models;

(iii) the local volatility models; (iv) the stochastic-volatility models; (v) the stochastic-volatility

and stochastic-interest-rates models; and (vi) the stochastic-volatility jump-diffusion models.

For examples, please see the work of Bakshi et al. (1997).

Pricing an option relies on complex mathematical formulas. Still, the common ingredients

of each of the models are i) the underlying price process, ii) the interest-rate process, and iii)

the variance of the asset returns process. The underlying price may follow a process in either

continuous or discrete time. Examples of continuous-time processes are the pure diffusion pro-

cess, a Poisson jump process, a combination of jump and diffusion components with or without

stochastic volatility, and with or without random jumps, among many other possibilities. For

the interest-rate and variance processes, the choices are similar.

Merton (1976) was the first to explore the continuous-time stock price motion as a discon-

tinuous (so-called jumps) stochastic process defined in continuous time and derived an option

pricing formula where the underlying stock returns are generated by a combination of both

diffusion and jump processes. In a nutshell, this process allows a stock price change of sig-

nificant magnitude, no matter how small the time interval between two observations can be.

Since the work of Merton, several empirical and theoretical studies proved the existence of

these discontinuities and pointed out that if models fail to incorporate jump characteristics,

the result will be mispricing —see, for example, the work of Jorion (1988), Bakshi et al. (1997)

and Das and Sundaram (1999). As a result, authors started to incorporate jump processes in

stock and/or option market analysis —see, for instance, the work of Chan and Maheu (2002)

and Eraker et al. (2003)— and studied the impact on option pricing, bond pricing, risk man-

agement, and hedging —see Bakshi et al. (1997) and Lee and Mykland (2008).

More recently, several studies have focused on looking for evidence for jumps in returns and

stochastic volatility. Since the stochastic volatility is not directly observable, the observable VIX

index is used instead and its jump characteristics are compared to the returns of the SPX index.

Wagner and Szimayer (2004) investigated the implied volatility index’s jump characteristics,

concluding that evidence of significant positive jumps exists. Dotsis et al. (2007) explored

continuous-time diffusion and jump-diffusion processes to capture the dynamics of implied

volatility indices over time; the authors found that the addition of jumps is necessary to capture

the evolution of the implied volatility index. Becker et al. (2009) also discuss jumps in the VIX.

Their findings indicate that the VIX reflects past jump activity in the SPX index. Lin and Lee

(2010) analyzed the discontinuous jump and the time-varying correlated jump intensity for the

changes in the VIX and the SPX returns. Their results provide evidence of a strong negative

relationship between the SPX returns and the changes in the VIX volatility index.

One of the common findings among recent studies is that jumps are empirically difficult

to detect since only discrete data are available for models that assume continuous-time trad-
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ing. Correspondingly, a variety of jump tests have been developed in recent decades —for a

brief revision, see Jiang and Oomen (2008). An approach that has recently gained momen-

tum is the study of nonparametric tests for the presence of price jumps using high-frequency

data —see, for example, the work of Barndorff-Nielsen and Shephard (2006), Lee and Mykland

(2008), Jiang and Oomen (2008), Aït-Sahalia and Jacod (2009), Jacod and Todorov (2009) and

Dumitru and Urga (2012). Such methods are straightforward to apply, as they require high-

frequency transaction prices only. Furthermore, they are developed in a model-free framework,

incorporating different classes of stochastic volatility models.

As seen in the brief discussion above, great effort has been put into enhancing pricing mod-

els in the stock and option markets. The inclusion and detection of price jumps have become

a necessity and are no longer a model choice. In this sense, this work aims to further look

for evidence for jumps in returns and stochastic volatility, focusing on historically bear market

conditions, namely market crashes and corrections. We will use a nonparametric methodology

to assess the jump dynamics of the SPX and VIX indexes from 1990 to 2020. Most of the afore-

mentioned studies focused on detecting jumps in specific short periods; hence our contribution

is to study a broader time span.

1.2. Objective and methodology

This thesis aims to look for evidence for jumps in returns and stochastic volatility in bear

market conditions, namely market crashes and market corrections from 1990 to 2020. We use

the SPX and VIX indexes to analyze the jumps in returns and stochastic volatility in the market,

respectively. In order to detect jumps, we apply the nonparametric test of Lee and Mykland

(2008), hereafter the "LM test", to detect jump arrival times and realized jump sizes. There is

evidence that this test outperforms other nonparametric tests —see Lee and Mykland (2008)

and Dumitru and Urga (2012)— such as the linear test of Barndorff-Nielsen and Shephard

(2006) and the difference test of Jiang and Oomen (2008). Moreover, Todorov (2010) used the

LM test to prove the persistent effect of jumps on the variance risk-premium, finding evidence

that the SPX and VIX indexes co-jumped between 1990 and 2002.

First, we assess the performance of the LM test using low-frequency (one-day data) and

high-frequency intraday data (one-hour, 30-minute, and 5-minute data), comparing the detected

jumps with a benchmark database where market crashes and corrections dates are listed for the

time span of the study. Even though nonparametric tests perform better when high-frequency

data is used, we decided to include low-frequency data as it is free and easily obtained.

Then, we assess the outcomes of the tests aiming to answer the following questions:

• Does volatility spikes exactly when there is a stock market crash or correction?

• Do the SPX and VIX indexes co-jump when there is a stock market crash or correction?

3



• Do the SPX and VIX indexes jump in opposite directions when there is a stock market

crash or correction?

• Historically, which of the indexes jump more frequently?

The thesis is structured as follows. Section 2 derives the LM test, setting up the theoretical

framework and the test description. Section 3 discusses the data and the implementation of

the LM test on the SPX and VIX indexes. Section 4 discusses the results obtained. Finally,

the conclusions and recommendations for future work are given in Section 5.

4



2. The Lee and Mykland (2008)

nonparametric test

The LM test takes a nonparametric approach aiming for the robustness of the results concerning

the model specifications and the nonstationarity of the price process. The authors identify two

main motivations for their study. First, to enhance the mapping of stochastic features of jump

arrivals and their association to market information. Secondly, the improvement of derivative

hedging as the presence of jumps can create incomplete markets, and the degree of market

incompleteness build upon the jump structure — i.e., the size and intensity of jumps — is

related to the magnitude of derivative hedging inaccuracy. The test has been built in a way

that applies to any financial time series, including equity returns and volatility, interest rates,

and exchange rates as long as high-frequency data are used. The test outputs the direction and

size of the detected jumps making possible the characterization of the jump size distribution

as well as the stochastic jump intensity.

2.1. The stochastic differential equations (SDE)

Let (Ω,F,P) be a filtered probability space with filtration F =(Ft)t≥0, where P denotes the real

world (or physical) probability measure. The continuously compounded return equals d lnSt

for t ≥ 0, where St is the underlying asset price at time t. The underlying price is governed by

the following SDE when there are no jumps in the market:

d lnSt = µ(t)dt+ σ (t)dW P

t , (2.1)

where
{

W P
t (u) : 0 ≤ u ≤ t

}

is an Ft-adapted standard Brownian motion defined under P. The

drift µ(t) and spot volatility σ(t) are Ft-adapted processes, such that the underlying process is

an Itô’s process with continuous sample paths. On the other hand, when there are jumps,

the underlying price is given by the following SDE:

d lnSt = µ(t)dt+ σ (t)dW P

t + Y (t)dJP

t , (2.2)
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where Y (t) is the random jump size and JP
t is a counting predictable process defined under P.

The model assumes that the random components W (t), Y (t) and J(t) are independent and the

jump sizes Y (t) are independent and identically distributed.

2.2. Test assumptions

Definition 1 Following Protter (2004), for random vectors {Xn}n>0 and non-negative random

variables {dn}n>0, write Xn = Op (dn) to mean: for each δ > 0, there exists a finite constant

Mδ such that P(|Xn| > Mδdn) < δ eventually.

Assumption 1 For any ǫ > 0 and discrete times 0 = t0 < t1 < .. . < tn = T ,

sup
i

sup
ti≤u≤ti+1

|µ(u)−µ(ti)| = Op

(

∆t
1
2 −ǫ

)

, (2.3)

where ∆t = ti − ti−1 for i = 1, . . . ,n.

Assumption 2 For any ǫ > 0 and discrete times 0 = t0 < t1 < .. . < tn = T ,

sup
i

sup
ti≤u≤ti+1

|σ (u)−σ (ti)| = Op

(

∆t
1
2 −ǫ

)

, (2.4)

where ∆t = ti − ti−1 for i = 1, . . . ,n.

Note that the assumptions above consider equally spaced discrete times ∆t = ti − ti−1.

Notwithstanding, this simplified structure can be easily generalized to non-equidistant cases by

letting max(ti − ti−1) → 0. Assumptions 1 and 2 can be interpreted as the drift and diffusion

coefficients maintaining a stable variation over a short time period, respectively. Moreover, the

assumptions allow the drift and diffusion to depend on the process itself.

2.3. Intuition for the jump test

The main question that the test seeks to answer is how to distinguish market jumps from

the diffusive part of the pricing models. Suppose that a jump occurs at some time ti; it is

expected that the absolute realized return be considerably greater than the usual continuous

change. However, it can also happen that the spot volatility at ti is also high, even if there is

no jump and, therefore, as we can only observe prices at discrete times, the realized return may

be as high as the return expected by an actual jump in the market. In order to discriminate

between these two scenarios, a common practice is to standardize the return by a measure that

explains the local variation that corresponds to the continuous (diffusive) part of the process. In

essence, the ratio of realized return to estimated volatility creates the test statistic for jumps. A

commonly used nonparametric estimator for variance is the realized power quadratic variation:

6



Definition 2 Consider a semimartingale (Xt)t≥0, and let 0 = t0 < t1 < .. . < tn = T be any

sequence of partitions of the time-interval [0,T ]. The power quadratic variation of the

stochastic process (Xt)t≥0 until time T is equal to:

〈X,X〉(T ) := plim
n→∞

n
∑

i=1

(

Xti
−Xti−1

)2
, (2.5)

as long as supi {ti − ti−1} −→ 0 for n−→ ∞.

However, this estimator is inconsistent as it fails to separate the contributions of the diffu-

sion and jump components. Indeed, let rti
be the continuously compounded rate of return in

the time interval [ti−1, ti], this is:

rti
:= ln

Sti

Sti−1

. (2.6)

Then, following Barndorff-Nielsen and Shephard (2004), the power quadratic variation is given

by:

〈r,r〉(t) =
∫ t

0
σ2 (u)du +

JP
t
∑

i=1

Y 2 (ti) . (2.7)

A slightly modified alternative version, called the realized bipower variation has been pro-

posed by Barndorff-Nielsen and Shephard (2004):

Definition 3 The bipower variation process is given by:

{r,r}[r,s] (t) = plim
δ→0

δ1−(r+s)/2
[t/δ]−1
∑

i=2

|rti
|
∣

∣

∣rti−1

∣

∣

∣ , r,s ≥ 0, (2.8)

with r = s = 1, i.e.

{r,r}[1,1] (t) := plim
n→∞

n
∑

i=2

|rti
|
∣

∣

∣rti−1

∣

∣

∣ . (2.9)

The bipower quadratic variation process (2.9) is a consistent estimator of the (integrated)

variance process:

Proposition 1 (Barndorff-Nielsen and Shephard (2004)) For t > 0,

{r,r}[1,1] (t) = c2
∫ t

0
σ2 (u)du, (2.10)

with

c :=

√

2

π
. (2.11)
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Proof. (Barndorff-Nielsen and Shephard, 2004, Page 9 and Remark 3) show that

{r,r}[r,s] (t) = µrµs

∫ t

0
σr+s (u)du, (2.12)

with

µr = 2r/2
Γ
(

1
2(r + 1)

)

Γ
(

1
2

) , (2.13)

and where Γ(·) represents the Euler gamma function as given in (Olver et al., 2010, Equation

5.2.1).

Making r = s = 1, it follows that

{r,r}[1,1] (t) = µ1µ1

∫ t

0
σ2 (u)du, (2.14)

with

µ1 :=
√

2
Γ(1)

Γ
(

1
2

) , (2.15)

Since Γ
(

1
2

)

=
√

π and Γ(1) = 1, then

µ1 =

√

2

π
= c, (2.16)

and equation (2.10) follows from equations (2.14) and (2.16).

Therefore, the realized bipower variation is a consistent estimator for the integrated volatil-

ity no matter how jumps are mixed with the diffusive part of pricing models.

2.4. The LM test statistic

Definition 4 The statistic that tests, at time ti, whether there was a jump from ti−1 to ti is

defined as

Lµ (ti) :=
rti

− m̂i

σ̂i
, (2.17)

with

m̂i :=
1

K −1

i−1
∑

j=i−K+1

rtj , (2.18)

and

σ̂2
i :=

1

K −2

i−1
∑

j=i−K+2

∣

∣

∣rtj

∣

∣

∣

∣

∣

∣rtj−1

∣

∣

∣ , (2.19)

and where K is the estimation window size, m̂i is the average rate of return (drift) in the

window, and σ̂2
i is the average bipower (quadratic) variation realized over the window.

The window size should be large enough to dilute the effect of jumps on estimating the

8



instantaneous variance but small enough so that the variance can be assumed approximately

constant over the window. Later, precise bounds will be given to define K.

2.5. Preliminary results

This subsection aims to introduce several propositions that will be used to study the asymptotic

behaviour of the jump detection statistic.

Proposition 2 For a window size equal to K = Op (∆tα), with α ∈ ]−1,−0.5[,

sup
i,t≤ti

∣

∣

∣

∣

∣

∫ t

ti−K

[µ(u)−µ (ti−K)]du

∣

∣

∣

∣

∣

= Op

(

∆t
3
2 +α−ǫ

)

. (2.20)

Proof. Since ti − ti−K = K ×∆t, then

∫ ti

ti−K

[µ(u)−µ(ti−K)]du =
∫ ti

ti−K

µ(u)du −µ(ti−K) ×K ×∆t, (2.21)

for ti−K ≤ ti. Given Assumption 1,

∫ ti

ti−K

[µ(u)−µ(ti−K)]du = Op

(

∆t
1
2 +−ǫ+1

)

−Op

(

∆t
1
2 −ǫ+α+1

)

= Op

(

∆t
3
2 +α−ǫ

)

(2.22)

uniformly in all i. This implies equation (2.20).

Proposition 3 For a window size equal to K = Op (∆tα), with α ∈ ]−1,−0.5[,

sup
i,t≤ti

∣

∣

∣

∣

∣

∫ t

ti−K

[σ (u)−σ (ti−K)]dW P

u

∣

∣

∣

∣

∣

= Op

(

∆t
3
2 −δ+α−ǫ

)

, (2.23)

where δ ∈
]

0, 3
2 + α

[

.

Proof. Let
∫ ti
ti−K

[σ (u) −σ (ti−K)]dW P
u := X , 〈X,X〉T be its quadratic variation and X∗

T be

the maximum process, where T is a finite time.

Since X is an Itô’s integral, the quadratic variations is given by:

〈X,X〉ti
=
∫ ti

ti−K

[σ (u)−σ (ti−K)]2 du. (2.24)

Moreover, the maximum process is given by:

X∗
ti

= sup
i,t≤ti

∣

∣

∣

∣

∣

∫ t

ti−K

[σ (u)−σ (ti−K)]dW P

u

∣

∣

∣

∣

∣

. (2.25)

Since X is a local martingale, we can apply the Burkholder inequality —see Protter (2004):

EP

{

(X∗
T )p

}

≤ Cp ×EP

{

〈X,X〉
p
2
T

}

, (2.26)

9



where Cp =
{

qp
(

p(p−1)
2

)}

p
2
, with 1

p + 1
q = 1. Therefore, applying equation (2.26) with p = 2 and

T = ti:

EP

{

(

X∗
ti

)2
}

≤ 4 ×EP

{

〈X,X〉
ti

}

, (2.27)

and, hence,
{

EP

(

X∗
ti

)}2 ≤ EP

{

(

X∗
ti

)2
}

≤ 4 ×EP

{

〈X,X〉
ti

}

, (2.28)

using equations (2.24) and (2.25),

{

EP

[

sup
i,t≤ti

∣

∣

∣

∣

∣

∫ t

ti−K

[σ (u)−σ (ti−K)]dW P

u

∣

∣

∣

∣

∣

]}2

≤ 4 ×EP

{

∫ ti

ti−K

[σ (u)−σ (ti−K)]2 du

}

. (2.29)

Assumption 2 yields,

∫ ti

ti−K

σ2 (u)du −2σ (ti−K)
∫ ti

ti−K

σ (u)du + σ2 (ti−K) ×K ×∆t = Op

(

∆t2( 1
2 −ǫ)+α+1

)

, (2.30)

and, hence,

EP

{

∫ ti

ti−K

[σ (u)−σ (ti−K)]2 du

}

= Op

(

∆t2( 1
2 −ǫ)+2α+2

)

. (2.31)

Therefore, and similarly to Lemma 1 in Mykland and Zhang (2006), there must exist a δ ∈
]

0, 3
2 + α

[

such that:

sup
i,t≤ti

∣

∣

∣

∣

∣

∫ t

ti−K

[σ (u)−σ (ti−K)]dW P

u

∣

∣

∣

∣

∣

= Op

(

∆t
3
2 −δ+α−ǫ

)

(2.32)

Proposition 4 As n → ∞ and for θ > 0,

1

n

n
∑

i=1

∣

∣

∣rti
+ Op

(

∆tθ
)∣

∣

∣

∣

∣

∣rti−1 + Op

(

∆tθ
)∣

∣

∣=
1

n

n
∑

i=1

|rti
|
∣

∣

∣rti−1

∣

∣

∣+ Op

(

∆tθ
)

. (2.33)

Proof. Since
∣

∣

∣rti
+ Op

(

∆tθ
)∣

∣

∣≤ |rti
|+ Op

(

∆tθ
)

and Op

(

∆tθ
)

≥ 0, then

1

n

n
∑

i=1

∣

∣

∣rti
+ Op

(

∆tθ
)∣

∣

∣

∣

∣

∣rti−1 + Op

(

∆tθ
)∣

∣

∣

≤ 1

n

n
∑

i=1

[

|rti
| + Op

(

∆tθ
)][∣

∣

∣rti−1

∣

∣

∣+ Op

(

∆tθ
)]

=
1

n

n
∑

i=1

[

|rti
|
∣

∣

∣rti−1

∣

∣

∣+ Op

(

∆tθ
)(

|rti
|+
∣

∣

∣rti−1

∣

∣

∣

)

+
(

Op

(

∆tθ
))2

]

. (2.34)

Moreover,

lim
n→∞

1

n

n
∑

i=1

|rti
| = lim

n→∞

1

n

n
∑

i=1

∣

∣

∣rti−1

∣

∣

∣= E [|rt|] = Op (1) , (2.35)

10



because the expectation is a constant, and, therefore, inequality (2.34) yields

1

n

n
∑

i=1

∣

∣

∣rti
+ Op

(

∆tθ
)∣

∣

∣

∣

∣

∣rti−1 + Op

(

∆tθ
)∣

∣

∣

≤ 1

n

n
∑

i=1

|rti
|
∣

∣

∣rti−1

∣

∣

∣+ 2Op

(

∆tθ
)

×Op (1)+
(

Op

(

∆tθ
))2

=
1

n

n
∑

i=1

|rti
|
∣

∣

∣rti−1

∣

∣

∣+ Op

(

∆tθ
)

. (2.36)

Alternatively, and since
∣

∣

∣rti
+ Op

(

∆tθ
)∣

∣

∣≥ |rti
|−Op

(

∆tθ
)

and Op

(

∆tθ
)

≥ 0, then

1

n

n
∑

i=1

∣

∣

∣rti
+ Op

(

∆tθ
)∣

∣

∣

∣

∣

∣rti−1 + Op

(

∆tθ
)∣

∣

∣

≥ 1

n

n
∑

i=1

[

|rti
|−Op

(

∆tθ
)][∣

∣

∣rti−1

∣

∣

∣−Op

(

∆tθ
)]

=
1

n

n
∑

i=1

[

|rti
|
∣

∣

∣rti−1

∣

∣

∣−Op

(

∆tθ
)(

|rti
| +

∣

∣

∣rti−1

∣

∣

∣

)

+
(

Op

(

∆tθ
))2

]

=
1

n

n
∑

i=1

|rti
|
∣

∣

∣rti−1

∣

∣

∣−2Op

(

∆tθ
)

×Op (1)+
(

Op

(

∆tθ
))2

=
1

n

n
∑

i=1

|rti
|
∣

∣

∣rti−1

∣

∣

∣+ Op

(

∆tθ
)

. (2.37)

Combining inequalities (2.36) and (2.37), equation (2.33) arises.

Proposition 5 For a sequence of independent and identically distributed (iid) random variables

{Ui}n
i=1 with a standard normal probability law,

1

n

n
∑

i=1

|Ui| |Ui−1| = c2, (2.38)

where c = EP (|Ui|), for all i ∈ {1,2, . . . ,n}, is defined in equation (2.11).

Proof. Since

(|Ui| − c)(|Ui−1|− c) = |Ui| |Ui−1| − c(|Ui| + |Ui−1|)+ c2, (2.39)

and because COVP (|Ui| , |Ui−1|) = 0, given that |Ui| and |Ui−1| are independent, then

1

n

n
∑

i=1

|Ui| |Ui−1| =
1

n

n
∑

i=1

(|Ui|− c) (|Ui−1| − c) + c

(

1

n

n
∑

i=1

|Ui| +
1

n

n
∑

i=1

|Ui−1|
)

− c2

= COVP (|Ui| , |Ui−1|) + c(EP (|Ui|) +EP (|Ui|))− c2

= 0 + 2c2 − c2 = c2. (2.40)
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Proposition 6 Let X = Op

(

∆tθ
)

and Y = Op

(

∆tβ
)

, for θ,β ∈ R. Then,

X + Op (∆tγ)
√

Y + Op (∆tγ)
=

X√
Y

+ Op

(

∆t
min
(

θ+γ− 3β
2 ,γ− β

2 ,2γ− 3β
2

)

)

, (2.41)

for γ ∈ R and θ,β < γ.

Proof. Using the difference of squares formula,

{

[Y + Op (∆tγ)]−
1
2 −Y − 1

2

}{

[Y + Op (∆tγ)]−
1
2 + Y − 1

2

}

= [Y + Op (∆tγ)]−1 −Y −1,

[Y + Op (∆tγ)]−1 −Y −1 =
Y −Y −Op (∆tγ)

[Y + Op (∆tγ)]Y
, (2.42)

and, hence,

[Y + Op (∆tγ)]−
1
2 = Y − 1

2 − Op (∆tγ)

[Y + Op (∆tγ)]Y
{

[Y + Op (∆tγ)]−
1
2 + Y − 1

2

}

= Y − 1
2

− Op (∆tγ)

Op

(

∆tmin(γ,β)
)

Op

(

∆tβ
)

{

[

Op

(

∆tmin(γ,β)
)]− 1

2 + Op

(

∆t− β
2

)

}

= Y − 1
2 − Op (∆tγ)

Op

(

∆t2β
)

Op

(

∆t− β
2

)

= Y − 1
2 − Op (∆tγ)

Op

(

∆t
3β
2

) . (2.43)

Using equation (2.43), then

X + Op (∆tγ)
√

Y + Op (∆tγ)
= [X + Op (∆tγ)] [Y + Op (∆tγ)]−

1
2

= [X + Op (∆tγ)]
[

Y − 1
2 −Op

(

∆tγ− 3β
2

)]

=
X√
Y

−XOp

(

∆tγ− 3β
2

)

+ Op (∆tγ)
[

Y − 1
2 −Op

(

∆tγ− 3β
2

)]
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X + Op (∆tγ)
√

Y + Op (∆tγ)
=

X√
Y

−Op

(

∆tθ
)

Op

(

∆tγ− 3β
2

)

+Op (∆tγ)
[

Op

(

∆t− β
2

)

−Op

(

∆tγ− 3β
2

)]

=
X√
Y

−Op

(

∆tθ+γ− 3β
2

)

+ Op (∆tγ)Op

(

∆t
min
(

γ− β
2 ,2γ− 3β

2

)

)

=
X√
Y

+ Op

(

∆t
min
(

θ+γ− 3β
2 ,γ− β

2 ,2γ− 3β
2

)

)

. (2.44)

2.6. Asymptotic behavior of the test statistic

2.6.1. Under the absence of jumps

The scope of this subsection is to describe the asymptotic behavior of the jump detection

statistic, Lµ (ti), when there is no jump at time ti. The realized return from time ti−1 to ti

follows the diffusion part of equation (2.1) or equation (2.2).

Theorem 7 ((Lee and Mykland, 2008, Theorem 1.1)) Under Assumptions 1 and 2, for

a window size equal to K = Op (∆tα), with α ∈ ]−1,−0.5[, and as ∆t → 0,

sup
i∈An

∣

∣

∣Lµ (ti) − L̂µ (ti)
∣

∣

∣= Op

(

∆t
1
2 −δ+α−ǫ

)

, (2.45)

where δ ∈
]

0, 3
2 + α

[

, An is the subset of i ∈ {1,2, . . . ,n} where there is no jump at time ti,

L̂µ (ti) =
Ui − Ūi−1

c
(2.46)

yields the probability law of the test statistic (2.17) under the diffusion process (2.1), Ui is a

standard normal random variable, c = EP (|Ui|), for all i ∈ {1,2, . . . ,n}, is defined in equation

(2.11), and

Ūi−1 :=
1

K −1

i−1
∑

j=i−K+1

Uj . (2.47)

Proof. Propositions 2 and 3 allow the diffusion process (2.1) to be approximated by the Itô

process

d lnSi
t = µ(ti−K)dt+ σ (ti−K)dW P

t , (2.48)
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for t ∈ [ti−K , ti] because

∣

∣

∣

∣

∣

∣

ln
St

Sti−K

− ln
Si

t

Si
ti−K

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t

ti−K

µ(u)du +
∫ t

ti−K

σ (u)dW P

u −
∫ t

ti−K

µ(ti−K)du −
∫ t

ti−K

σ (ti−K)dW P

u

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t

ti−K

[µ(u) −µ(ti−K)]du +
∫ t

ti−K

[σ (u) −σ (ti−K)]dW P

u

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t

ti−K

[µ(u) −µ(ti−K)]du +
∫ t

ti−K

[σ (u) −σ (ti−K)]dW P

u

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

Op

(

∆t
3
2 +α−ǫ

)

+ Op

(

∆t
3
2 −δ+α−ǫ

)∣

∣

∣

∣

= Op

(

∆t
3
2 −δ+α−ǫ

)

. (2.49)

Starting with the numerator of the test statistic (2.17), and using definitions (2.6) and

(2.18), as well as equation (2.49), for all i and j such that tj ∈ [ti−K , ti],

rtj
− m̂j = ln

Stj

Stj−1

− 1

K −1

j−1
∑

l=j−K+1

ln
Stl

Stl−1

= ln
Si

tj

Si
tj−1

− 1

K −1

j−1
∑

l=j−K+1

ln
Si

tl

Si
tl−1

+ Op

(

∆t
3
2 −δ+α−ǫ

)

,

and using equation (2.48),

rtj
− m̂j =

∫ tj

tj−1

µ(ti−K)du +
∫ tj

tj−1

σ (ti−K)dW P

u

−
∑j−1

l=j−K+1

[

∫ tl
tl−1

µ(ti−K)du +
∫ tl
tl−1

σ (ti−K)dW P
u

]

K −1
+ Op

(

∆t
3
2 −δ+α−ǫ

)

= µ(ti−K)×∆t+ σ (ti−K) ×
(

W P

tj
−W P

tj−1

)

−
∑j−1

l=j−K+1

[

µ(ti−K) ×∆t+ σ (ti−K) ×
(

W P
tl

−W P
tl−1

)]

K −1
+ Op

(

∆t
3
2 −δ+α−ǫ

)

= µ(ti−K)×∆t+ σ (ti−K) ×
(

W P

tj
−W P

tj−1

)

−µ(ti−K) ×∆t

−
σ (ti−K) ×∑j−1

l=j−K+1

(

W P
tl

−W P
tl−1

)

K −1
+ Op

(

∆t
3
2 −δ+α−ǫ

)

(2.50)

Since

Ui :=
W P

ti
−W P

ti−1√
∆t

(2.51)

possesses a standard normal probability law, and using definition (2.47), then equation (2.50)
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can be restated as

rtj
− m̂j =

√
∆tσ (ti−K)Uj −

σ (ti−K) ×∑j−1
l=j−K+1

√
∆tUl

K −1
+ Op

(

∆t
3
2 −δ+α−ǫ

)

=
√

∆tσ (ti−K) ×


Uj −
∑j−1

l=j−K+1 Ul

K −1



+ Op

(

∆t
3
2 −δ+α−ǫ

)

=
√

∆tσ (ti−K) ×
(

Uj − Ūj−1

)

+ Op

(

∆t
3
2 −δ+α−ǫ

)

. (2.52)

Concerning the denominator of the test statistic (2.17), and to cope with the drift of the

diffusion processes (2.1) and (2.48), a measure change can be made. Girsanov’s theorem implies

that the stochastic differential equation (2.1) can be rewritten as

d lnSt = σ (t)dW P̄

t (2.53)

where

dW P̄

t =
µ(t)

σ (t)
dt+ dW P

t (2.54)

is a Brownian motion increment but under a new equivalent probability measure P̄, and equation

(2.53) can be approximated by the Itô process

d lnSi
t = σ (ti−K)dW P̄

t (2.55)

for t ∈ [ti−K , ti]. Therefore, equations (2.49) and (2.53) imply that

σ̂2
i =

1

K −2

i−1
∑

j=i−K+2

∣

∣

∣rtj

∣

∣

∣

∣

∣

∣rtj−1

∣

∣

∣

=
1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

ln
Stj

Stj−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ln
Stj−1

Stj−2

∣

∣

∣

∣

∣

=
1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

∣

ln
Si

tj

Si
tj−1

+ Op

(

∆t
3
2 −δ+α−ǫ

)

∣

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∣

ln
Si

tj−1

Si
tj−2

+ Op

(

∆t
3
2 −δ+α−ǫ

)

∣

∣

∣

∣

∣

∣

. (2.56)
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Proposition 4 allows equation (2.56) to be restated as

σ̂2
i =

1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

∣

ln
Si

tj

Si
tj−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ln
Si

tj−1

Si
tj−2

∣

∣

∣

∣

∣

∣

+ Op

(

∆t
3
2 −δ+α−ǫ

)

=
1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

∫ tj

tj−1

σ (ti−K)dW P̄

u

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ tj−1

tj−2

σ (ti−K)dW P̄

u

∣

∣

∣

∣

∣

+ Op

(

∆t
3
2 −δ+α−ǫ

)

=
1

K −2

i−1
∑

j=i−K+2

∣

∣

∣σ (ti−K)×
(

W P̄

tj
−W P̄

tj−1

)∣

∣

∣

∣

∣

∣σ (ti−K) ×
(

W P̄

tj−1
−W P̄

tj−2

)∣

∣

∣

+Op

(

∆t
3
2 −δ+α−ǫ

)

=
σ2 (ti−K)

K −2
×

i−1
∑

j=i−K+2

∣

∣

∣

√
∆tUj

∣

∣

∣

∣

∣

∣

√
∆tUj−1

∣

∣

∣+ Op

(

∆t
3
2 −δ+α−ǫ

)

, (2.57)

where the last equality follows from equation (2.51). Finally, Proposition 5 allows equation

(2.57) to be rewritten as

σ̂2
i =

σ2 (ti−K)

K −2
×∆t×

i−1
∑

j=i−K+2

|Uj | |Uj+1|+ Op

(

∆t
3
2 −δ+α−ǫ

)

=
σ2 (ti−K)

K −2
×∆t×

[

(K −2)c2
]

+ Op

(

∆t
3
2 −δ+α−ǫ

)

= σ2 (ti−K)×∆t× c2 + Op

(

∆t
3
2 −δ+α−ǫ

)

. (2.58)

Combining equations (2.17), (2.52) and (2.58), then

Lµ (ti) =

√
∆tσ (ti−K) ×

(

Ui − Ūi−1

)

+ Op

(

∆t
3
2 −δ+α−ǫ

)

√

σ2 (ti−K) ×∆t× c2 + Op

(

∆t
3
2 −δ+α−ǫ

)

. (2.59)

Since σ (ti−K) is a constant ,σ (ti−K) = Op (1) (at time ti) and defining X :=
√

∆tσ (ti−K)×
(

Ui − Ūi−1

)

= Op

(

∆t
1
2

)

and Y := σ2 (ti−K) ×∆t× c2 = Op (∆t), we can apply equation (2.41)

to equation (2.59):

Lµ (ti) =

√
∆tσ (ti−K) ×

(

Ui − Ūi−1

)

√

σ2 (ti−K) ×∆t× c2
+ Op

(

∆t
min
(

θ+γ− 3β
2 ,γ− β

2 ,2γ− 3β
2

)
)

, (2.60)
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where θ = 1
2 , β = 2θ = 1 and γ = 3

2 − δ + α− ǫ. Hence,

min

(

θ + γ − 3β

2
,γ − β

2
,2γ − 3β

2

)

= min(γ −2θ,γ −θ,2γ −3θ)

= min
(

γ −1,γ − 1

2
,2γ − 3

2

)

= min
(

γ −1,2γ − 3

2

)

= γ −1 + min
(

0,γ − 1

2

)

. (2.61)

Note that since δ ∈
]

0, 3
2 + α

[

, then (−δ + α) ∈
]

−3
2 ,α

[

and γ ∈
]

−ǫ, 3
2 + α− ǫ

[

. However,

since α ∈ ]−1,−0.5[, then γ > 1
2 , and min

(

0,γ − 1
2

)

= 0. Consequently,

min

(

θ + γ − 3β

2
,γ − β

2
,2γ − 3β

2

)

= γ −1. (2.62)

Therefore,

Lµ (ti) =

(

Ui − Ūi−1

)

c
+ Op

(

∆t
1
2 −δ+α−ǫ

)

, (2.63)

and equation (2.45) follows.

Remark 1 Lee and Mykland (2008) find that supi∈An

∣

∣

∣Lµ (ti) − L̂µ (ti)
∣

∣

∣ = Op

(

∆t
3
2 −δ+α−ǫ

)

as

long as ∆t → 0, whilst our finding is supi∈An

∣

∣

∣Lµ (ti)− L̂µ (ti)
∣

∣

∣ = Op

(

∆t
1
2 −δ+α−ǫ

)

as long as

∆t → 0. The difference in the findings appears when dealing with Equation (2.59).

Theorem 7 states that the jump detection statistic Lµ (ti) follows approximately the same

distribution as L̂µ (ti). In turn, L̂µ (ti) ∼ N
(

0, 1
c2

)

since Ui is a standard normal random

variable.

2.6.2. Under the presence of jumps

This subsection describes the behavior of Lµ (ti) when a jump arrives. The realized return from

ti−1 to ti follows the jump-diffusion process (2.2). Next theorem shows that as ∆t → 0, the test

statistic becomes so large that the jump arrival at time ti can be detected.

Theorem 8 Let Lµ (ti) be as defined in equation (2.17) and the window size be K = Op (∆tα),

with α ∈ ]−1,−0.5[, and as ∆t → 0. Suppose the price process follows equation (2.2) and

that Assumptions 1 and 2 are satisfied. Moreover, suppose there is a jump at any time τ ∈
(ti−1, ti].Then,

Lµ (ti) ≃ Ui − Ūi−1

c
+

Y (τ)

cσ
√

∆t
11τ∈(ti−1,ti), (2.64)
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where Y (τ) is the actual jump size at the jump time τ . Therefore, Lµ (ti) → ∞, as ∆t → 0.

If there is no jump at any time τ ∈ (ti−1, ti], Lµ (ti) has the asymptotic behavior described in

Theorem 7.

Proof. Propositions 2 and 3 allow the price process (2.2) to be approximated by the Itô

process

d lnSi
t = µ(ti−K)dt+ σ (ti−K)dW P

t + Y (t)dJP

t , (2.65)

for t ∈ [ti−K , ti] because

∣

∣

∣

∣

∣

∣

ln
St

Sti−K

− ln
Si

t

Si
ti−K

∣

∣

∣

∣

∣

∣

= |
∫ t

ti−K

µ(u)du +
∫ t

ti−K

σ (u)dW P

u +
∫ t

ti−K

Y (u)dJP

u

−
∫ t

ti−K

µ(ti−K)du −
∫ t

ti−K

σ (ti−K)dW P

u −
∫ t

ti−K

Y (u)dJP

u |

=

∣

∣

∣

∣

∣

∫ t

ti−K

[µ(u) −µ(ti−K)]du +
∫ t

ti−K

[σ (u) −σ (ti−K)]dW P

u

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

Op

(

∆t
3
2 +α−ǫ

)

+ Op

(

∆t
3
2 −δ+α−ǫ

)∣

∣

∣

∣

= Op

(

∆t
3
2 −δ+α−ǫ

)

. (2.66)

Starting with the numerator of the test statistic (2.17), and using definitions (2.6) and

(2.18), as well as equation (2.66), for all i and j such that tj ∈ [ti−K , ti] ,

rtj
− m̂j = ln

Stj

Stj−1

− 1

K −1

j−1
∑

l=j−K+1

ln
Stl

Stl−1

= ln
Si

tj

Si
tj−1

− 1

K −1

j−1
∑

l=j−K+1

ln
Si

tl

Si
tl−1

+Op

(

∆t
3
2 −δ+α−ǫ

)

, (2.67)

and using equation (2.65),

rtj
− m̂j =

∫ tj

tj−1

µ(ti−K)du +
∫ tj

tj−1

σ (ti−K)dW P

u +
∫ t

ti−1

Y (u)dJP

u

−
∑j−1

l=j−K+1

[

∫ tl
tl−1

µ(ti−K)du +
∫ tl
tl−1

σ (ti−K)dW P
u +

∫ t
ti−1

Y (u)dJP
u

]

K −1

+Op

(

∆t
3
2 −δ+α−ǫ

)

, (2.68)
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i.e.,

rtj
− m̂j = µ(ti−K)×∆t+ σ (ti−K) ×

(

W P

tj
−W P

tj−1

)

+

JP
tj

−JP
tj−1

∑

m=1

Y (τm) ×11{τm∈]tj−1,tj]}

−

∑j−1
l=j−K+1







µ(ti−K) ×∆t+ σ (ti−K) ×
(

W P
tl

−W P
tl−1

)

+
∑

JP
tl

−JP
tl−1

m=1 Y (τm) ×11{τm∈]tl−1,tl]}







K −1

+Op

(

∆t
3
2 −δ+α−ǫ

)

, (2.69)

or

rtj
− m̂j = µ(ti−K)×∆t+ σ (ti−K)×

(

W P

tj
−W P

tj−1

)

+

JP
tj

−JP
tj−1

∑

m=1

Y (τm)×11{τm∈]tj−1,tj]}

−µ(ti−K) ×∆t−
σ (ti−K)×∑j−1

l=j−K+1

(

W P
tl

−W P
tl−1

)

K −1

−
∑j−1

l=j−K+1

∑

JP
tl

−JP
tl−1

m=1 Y (τm) ×11{τm∈]tl−1,tl]}

K −1

+Op

(

∆t
3
2 −δ+α−ǫ

)

. (2.70)

Using equations (2.47) and (2.51), and since K → ∞ when ∆t → 0, equation (2.70) can be

restated as

rtj
− m̂j ≃

√
∆tσ (ti−K) ×

(

Uj − Ūj−1

)

+ Y (τ )11τ∈(ti−1,ti). (2.71)

Concerning the denominator of the test statistic (2.17), and to cope with the drift of the

diffusion processes (2.2) and (2.65), a measure change can be made. Girsanov’s theorem implies

that the stochastic differential equation (2.2) can be rewritten as

d lnSt = σ (t)dW P̄

t + Ȳ (t)dJ P̄

t , (2.72)

which is still a jump-diffusion process but under a new equivalent probability measure P̄, and

equation (2.72) can be approximated by the Itô process

d lnSi
t = σ (ti−K)dW P̄

t + Ȳ (t)dJ P̄

t (2.73)
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for t ∈ [ti−K , ti]. Therefore, equation (2.66) implies that

σ̂2
i =

1

K −2

i−1
∑

j=i−K+2

∣

∣

∣rtj

∣

∣

∣

∣

∣

∣rtj−1

∣

∣

∣

=
1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

ln
Stj

Stj−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ln
Stj−1

Stj−2

∣

∣

∣

∣

∣

=
1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

∣

ln
Si

tj

Si
tj−1

+ Op

(

∆t
3
2 −δ+α−ǫ

)

∣

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∣

ln
Si

tj−1

Si
tj−2

+ Op

(

∆t
3
2 −δ+α−ǫ

)

∣

∣

∣

∣

∣

∣

, (2.74)

and Proposition 4 allows equation (2.74) to be restated as

σ̂2
i =

1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

∣

ln
Si

tj

Si
tj−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ln
Si

tj−1

Si
tj−2

∣

∣

∣

∣

∣

∣

+ Op

(

∆t
3
2 −δ+α−ǫ

)

=
1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

∣

∫ tj

tj−1

σ (ti−K)dW P̄

u +
∫ tj

tj−1

Ȳ (u)dJ P̄

u

∣

∣

∣

∣

∣

×
∣

∣

∣

∣

∣

∫ tj−1

tj−2

σ (ti−K)dW P̄

u +
∫ tj−1

tj−2

Ȳ (u)dJ P̄

u

∣

∣

∣

∣

∣

+Op

(

∆t
3
2 −δ+α−ǫ

)

, (2.75)

i.e.,

σ̂2
i =

1

K −2

i−1
∑

j=i−K+2

∣

∣

∣

∣

σ (ti−K) ×
(

W P̄

tj
−W P̄

tj−1

)

+ Ȳ (τ j) ×11τj∈(tj−1,tj)

∣

∣

∣

∣

×
∣

∣

∣

∣

σ (ti−K) ×
(

W P̄

tj−1
−W P̄

tj−2

)

+ Ȳ (τ j−1) ×11τj−1∈(tj−2,tj−1)

∣

∣

∣

∣

+Op

(

∆t
3
2 −δ+α−ǫ

)

, (2.76)

or

σ̂2
i =

1

K −2

i−1
∑

j=i−K+2

|σ (ti−K)2 ×UjUj+1∆t

+σ (ti−K) × Ȳ (τ j−1) ×11τj−1∈(tj−2,tj−1) ×
(

W P̄

tj
−W P̄

tj−1

)

+σ (ti−K) × Ȳ (τ j)×11τj∈(tj−1,tj) ×
(

W P̄

tj−1
−W P̄

tj−2

)

+Ȳ (τ j) × Ȳ (τ j−1)×11τj∈(tj−1,tj),τ j−1∈(tj−2,tj−1)|

+Op

(

∆t
3
2 −δ+α−ǫ

)

. (2.77)
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Since σ (ti−K)×Ȳ (τ j−1)×11τj−1∈(tj−2,tj−1)×
(

W P̄
tj

−W P̄
tj−1

)

= Op (1)×Op (1)×Op (1)×Op

(

∆t
1
2

)

=

Op

(

∆t
1
2

)

and Ȳ (τ j) × Ȳ (τ j−1) × 11τj∈(tj−1,tj),τ j−1∈(tj−2,tj−1) = Op (1) × Op (1) = Op (1), equa-

tion (2.77) can be restated as

σ̂2
i =

1

K −2

i−1
∑

j=i−K+2

|σ (ti−K)2 ×UjUj+1∆t+ Op

(

∆t
1
2

)

+ Op

(

∆t
1
2

)

+ Op (1) |

+Op

(

∆t
3
2 −δ+α−ǫ

)

=
σ2 (ti−K)

K −2
×∆t×

i−1
∑

j=i−K+2

|Uj | |Uj+1| + Op

(

∆t
1
2

)

+ Op

(

∆t
3
2 −δ+α−ǫ

)

=
σ2 (ti−K)

K −2
×∆t×

[

(K −2)c2
]

+ Op

(

∆tmin( 1
2 , 3

2 −δ+α−ǫ)
)

= σ2 (ti−K) ×∆t× c2 + Op

(

∆tmin( 1
2 , 3

2 −δ+α−ǫ)
)

. (2.78)

Combining equations (2.17), (2.71) and (2.78), then

Lµ (ti) ≃
√

∆tσ (ti−K) ×
(

Uj − Ūj−1

)

+ Y (τ)11τ∈(ti−1,ti)
√

σ2 (ti−K) ×∆t× c2

≃ Ui − Ūi−1

c
+

Y (τ)

cσ
√

∆t
11τ∈(ti−1,ti). (2.79)

2.6.3. Rejection region of the test

As seen in Theorem 7 and Theorem 8, the test statistics present different limiting behavior

depending on the existence of jumps at the testing times. If there is no jump at the testing

time, the test follows approximately a normal distribution, whilst the test becomes very large if

there is a jump. The main question is how large the test statistic can be when there is no jump?

The answer to this question relies upon choosing a relevant threshold to distinguish the presence

of jumps at a testing time. Therefore, it is reasonable to study the asymptotic distribution of

maximums of the test statistics under the absence of jumps at any time in (t−1, ti].

Lemma 9 If the conditions for Lµ (ti), K, c, and An are as in Theorem 7, then as ∆t → 0,

maxi∈An |Lµ (ti)|−Cn

Sn
→ ξ, (2.80)

where ξ has a cumulative distribution function P(ξ ≤ x) = exp
(

−e−x
)

,

Cn =
(2logn)

1
2

c
− log4π + log(logn)

2c(2 logn)
1
2

, (2.81)
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and

Sn =
1

c(2 logn)
1
2

, (2.82)

where n is the number of observations.

Proof. Since Lµ (ti) follows approximately the same distribution as L̂µ (ti) ∼ N
(

0, 1
c2

)

when

there is no jump, the proof of this lemma is an extension of Section 2.3.2 of Galambros (1987)

and follows after applying Theorem 2.1.3 of Galambros (1987) for a normal distribution with

variance equals to 1
c2 , Zn := maxi∈An |Lµ (ti)|, an := Cn and bn := Sn.

Remark 2 In the paper of Lee and Mykland (2008), there is a typo in the numerator of the

second component of equation (2.81).

In a nutshell, the idea of selecting a rejection region is that if the observed test statistics

are not even within the usual region of maximums, it is unlikely that the realized return is

from the diffusion part of the jump-diffusion model. For instance, setting a significance level

of 1%, the threshold for
|Lµ(ti)|−Cn

Sn
is ς, such that P(ξ ≤ ς) = exp

(

−e−ς
)

= 0.99. Equivalently,

ς = − log (− log (0.99)) = 4.6001.Therefore, if
|Lµ(ti)|−Cn

Sn
> 4.6001, then the hypothesis of no

jump at time ti is rejected.

2.7. Misclassifications

In this subsection, we discuss the probability of misclassifications as a function of the frequency

of observations. For a single testing time, ti, there can be two kinds of misclassification:

1. Failure to detect the actual jump (FTDi) at time ti: There is a jump in the interval

(ti−1, ti], but the test fails to reveal its existence;

2. Spurious detection of the jump (SDi) at time ti: There is no jump in the interval (ti−1, ti],

but the test wrongly concludes there is one.

In the case that we do the test several times with time-series data, the global extension of

these concepts is straightforward:

1. Global failure to detect actual jump (GFTD): There are some jumps over the whole

interval [0,T ], but the test fails to detect any of them;

2. Global spurious detection of jump (GSD): There are some returns that are not due to

jumps, but the test wrongly declares any of them as due to a jump.
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Lee and Mykland (2008) show that P(GFTD|N) → 0 and P(GSD|N) → 0 as long as the

significance level of the test αn → 0 (alternatively, βn → ∞) and ∆t → 0, where N is the number

of jumps in [0,T ] and βn be the (1 −αn)th percentile of the limiting distribution of ξ in Lemma

9. The authors examined the effectiveness of the test using Monte Carlo simulation over one

thousand series of returns over one year at several different frequencies. For a series generation,

the authors used the Euler-Maruyama stochastic differential equation discretization scheme.

Figure 2.1 illustrates that increasing the frequency of observations reduces the probability of

spurious detection of jumps for the constant and stochastic volatility cases. Moreover, including

stochastic volatility in the model increases the probability of spurious detection of jumps by

one order of magnitude compared to the constant volatility cases.

Figure 2.2 shows the probability of success in detecting an actual jump. The authors

chose different jump sizes to illustrate that it is harder to detect smaller-sized jumps at low

frequencies. Notwithstanding, as the frequency of observations increases, the test enhances its

detection power even for very small-sized jumps.

In summary, the authors’ study confirms that if the frequency of observation increases, the

test improves its power of jump detection.
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Figure 2.1.: Probability of spurious detection of jump P(SDi) from Lee and Mykland (2008).

Figure 2.2.: Probability of detecting actual jump [1 −P(FTDi]) from Lee and Mykland (2008).
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3. Data and implementation of the LM

test

In this section, we discuss the data used for the study and describe the implementation of the

LM test.

3.1. The data

In order to assess the performance of the test as a function of the data frequency, we use low-

frequency (daily data) and high-frequency intraday data (one-hour, 30-minute, and 5-minute

data). The motivation for using these two sets is to assess whether the test can detect jumps at

times of high volatility (as seen in market crashes or market corrections) where big jump sizes

are expected, even when using low-frequency data since the probability of misclassification, as

described in Subsection 2.7 is low. We use daily data from the Wall Street Journal (WSJ)

and the Chicago Board Options Exchange (CBOE) databases for the SPX and VIX indexes,

respectively. The time span is 30 years, from 2nd January 1990 to 31st December 2020. On

the other hand, we use high-frequency data from the FirstRate Data LLC database for both

indexes. The time span covers 14 years, from 27th April 2007 to 31st December 2020.

To check the consistency of the test, we compare the jumps detected from the test with a

database created from the largest SPX daily percentage losses in each year of the study. Not

surprisingly, these losses are associated with market crashes and market corrections, as can be

seen in Table 3.1.
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Table 3.1.: Benchmark dates - Largest SPX daily percentage losses and associated events.
Date SPX Daily Change Event Source

6/8/1990 -3.1% Iraq-Kuwait crises The New York Times
15/11/1991 -3.7% Concerns about credit card legislation The New York Times
7/4/1992 -1.9% Indian stock market scam The New York Times
16/2/1993 -2.4% Slower US economy forecast Bloomberg
4/2/1994 -2.3% Federal Reserve raised interest rates The Washington Post

18/12/1995 -1.6% Victory of the communist party in Russia Bloomberg
8/3/1996 -3.1% Cut of interest rates Bloomberg

27/10/1997 -7.1% Economic crisis in Asia CNN Money
31/8/1998 -7.0% Russian financial crisis CNN Money
15/10/1999 -2.8% Signs of inflation CNN Money
14/4/2000 -6.0% Dot-com bubble crash CNN Money
17/9/2001 -5.0% Aftermath of 9/11 CNN Money
3/9/2002 -4.2% Weak economic data CNN Money
24/3/2003 -3.6% Iraq war concerns CNN Money
5/8/2004 -1.6% Increase in interest rates CNN Money
15/4/2005 -1.7% Weak economic data CNN Money
20/1/2006 -1.8% Disappointing results of big stocks CNN Money
27/2/2007 -3.5% Chinese stock bubble CNN Money
15/10/2008 -9.5% Global financial crises CNN Money
20/1/2009 -5.4% Inauguration of Obama term CNN Money
20/5/2010 -4.0% Flash crash in commodities Butler Research
8/8/2011 -6.9% USA credit-rating downgrade CNN Money
1/6/2012 -2.5% Fear of global slowdown The Guardian
20/6/2013 -2.5% Fear of global slowdown The Guardian
3/2/2014 -2.3% Weak economic data CNN Business
24/8/2015 -4.0% China’s economic slowdown CNN Business
24/6/2016 -3.7% Brexit CNN Business
17/5/2017 -1.8% President Trump’s allegations CNN Business
5/2/2018 -4.2% Increasing interest rates CNBC
5/8/2019 -3.0% Trump - China politics CNBC
16/3/2020 -12.8% COVID-19 crash CNN Business

Summary of the biggest daily losses of SPX in the years under study. For each date, we look
in different sources for an event that justifies the index’s loss. As can be seen in the table,
the major events related to market crashes and corrections are mapped, such as the dot-com
bubble crash (2000), subprime crisis (2008), and more recently, the market crash related to
COVID-19 (2020) to name a few. For our study period, there are a total of 31 dates on which
a jump is expected to be detected.

Finally, in order to retain the benefit of bipower variation on the test statistic, the window

size K must be large enough so that the effect of jumps on estimating instantaneous volatility

disappears, yet it must be smaller than the number of observations n. The condition K =

O(∆tα) with α ∈ ]−1,−0.5[ satisfies this requirement and since ∆t = 1
252×nobs where nobs is

the number of observations per day, the integers between
√

252 ×nobs and 252 × nobs are

candidates for K. The authors recommendation of window sizes for one-day, one-hour, 30-

minute, and 5-minute are 16, 78, 110, and 270, respectively. Notwithstanding, we found that

these candidates are quite small for our study. The test fails to detect jumps in key dates as the

effect of high volatility impact the instantaneous volatility estimation. Consequently, we use

different window sizes for our study. Table 3.2 illustrates the number of observations per day

(assuming 6h30min of daily trading), the window size candidates (K), and the total number of

observations (n).
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Table 3.2.: Nobs, K, and n for different frequencies.
Frequency nobs K n

Low High Average Authors SPX VIX

One-day 1 16 252 134 16 7,812 7,808
One-hour 7 42 1,764 903 78 27,488 34,565
30-minute 13 57 3,276 1,667 110 48,233 63,400
5-minute 78 140 19,656 9,898 270 274,596 362,835

Summary of the number of observations per day (nobs), the window size candidates (K), and
the total number of observations (n) for each of the data frequencies. As aforementioned, the
window size candidates range between

√
252 ×nobs and 252 × nobs; hence we have a low and

high value for each frequency. Moreover, we also included the average between the extremes of
the interval and the authors’ recommendation for window size candidates. The total number
of observations is associated with 30 and 14 years for one-day data and high-frequency data,
respectively.

3.2. Implementation of the LM test

The implementation of the LM test is described as follows:

1. Calculate the index returns by taking the difference of log index close prices;

2. Calculate the sampling frequency given by ∆t = 1
252×nobs , where nobs is the number of

observations per day;

3. Calculate the window size K. As K is given by K = ∆tα with α ∈ ]−1,−0.5[, the integers

between
√

252 ×nobs and 252 ×nobs are candidates for K;

4. Calculate the average rate of return (drift) and instantaneous volatility given in equation

(2.18) and by taking the square root of equation (2.19), respectively;

5. Calculate the test statistic given in Equation (2.17). It is noteworthy that the authors

recommend neglecting the drift term as its order, dt, is negligible compared to the diffusion

(of order
√

dt) and jump components (of order 1). Nevertheless, we include the drift term

in our study;

6. Calculate the selection region parameters Cn and Sn given in equations (2.81) and (2.82),

respectively;

7. Calculate the threshold parameter given by P(ξ ≤ ς) = exp
(

−e−ς
)

= 1−α = 0.95, where α

is the significance level (5% in our study);

8. Check the jump detection test: if
|Lµ(ti)|−Cn

Sn
> ς, then the hypothesis of no jump at ti is

rejected;

9. Once a jump is detected, we assume that the jump size dominates the return;

10. The test outcomes are: jump arrival date and jump size (equal to the return).

The MATLAB code written to run the LM test can be found in the Appendix.
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4. Discussion of the results

4.1. Low-frequency data

For the one-day data, our first approach was to assess the results using the window size suggested

by the authors, i.e., K = 16. In this run, we found that the SPX jumped 31 times, 9 (29%)

times upward, and 22 (71%) times downward, whereas the VIX jumped 46 times, 39 (85%)

times upward, and 7 (15%) times downward. The indexes co-jumped 16 times (8 times in

the benchmark dates) and in all cases in opposite directions. Indeed, every time that one of

the indexes jumped, the other showed a return in the opposite direction. Compared to the

benchmark dates, the test failed to detect jumps in dates when a jump was expected. For

instance, the test failed to detect key events such as the 9/11 aftermath (2001), the subprime

crises (2008), the COVID-19 crash (2020), among other moments where the market plumed.

Table 4.1 summarizes the test performance compared to the benchmark dates:

Table 4.1.: SPX and VIX jumps for K=16.
Date Event Jump

SPX VIX
6/8/1990 Iraq-Kuwait crises No No

15/11/1991 Concerns about credit card legislation Yes Yes
7/4/1992 Indian stock market scam No Yes

16/2/1993 Slower US economy forecast Yes Yes
4/2/1994 Federal Reserve raised interest rates Yes Yes

18/12/1995 Victory of the communist party in Russia No Yes
8/3/1996 Cut of interest rates No No

27/10/1997 Economic crisis in Asia Yes Yes
31/8/1998 Russian financial crisis No No

15/10/1999 Signs of inflation No No
14/4/2000 Dot-com bubble crash Yes No
17/9/2001 Aftermath of 9/11 No No
3/9/2002 Weak economic data No No

24/3/2003 Iraq war concerns No No
5/8/2004 Increase in interest rates No No

(continued)
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Table 4.1—continued
Date Event Jump

SPX VIX
15/4/2005 Weak economic data No No
20/1/2006 Disappointing results of big stocks No Yes
27/2/2007 Chinese stock bubble Yes Yes

15/10/2008 Global financial crises No No
20/1/2009 Inauguration of Obama term No No
20/5/2010 Flash crash in commodities No No
8/8/2011 USA credit-rating downgrade Yes Yes
1/6/2012 Fear of global slowdown No No

20/6/2013 Fear of global slowdown No No
3/2/2014 Weak economic data No No

24/8/2015 China’s economic slowdown No No
24/6/2016 Brexit Yes No
17/5/2017 President Trump’s allegations Yes Yes
5/2/2018 Increasing interest rates Yes Yes
5/8/2019 Trump - China politics No No

16/3/2020 COVID-19 crash No No

Summary of the jumps detected by the test for K = 16. "Yes" means that the index jumped,
whilst "No" means the index did not jump. The SPX and VIX jumped 10 and 11 times in the
benchmark dates, respectively. The indexes co-jumped 8 times in the benchmark dates.

Since the test only managed to detect 10 (SPX) and 11 (VIX) jumps of the 31 expected,

we decided to experiment with different window size candidates aiming to dilute the effect of

high volatility on the bipower variation calculation when using low-frequency data. Tables 4.2

and 4.3 depict the findings.
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Table 4.2.: One-day data - SPX and VIX jumps for different window sizes.
Date Event Jump (K=16) Jump (K=32) Jump (K=64) Jump (K=128) Jump (K=256)

SPX VIX SPX VIX SPX VIX SPX VIX SPX VIX
6/8/1990 Iraq-Kuwait crises No No No No No No No No No No

15/11/1991 Concerns about credit card legislation Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
7/4/1992 Indian stock market scam No Yes No No No No No No No No

16/2/1993 Slower US economy forecast Yes Yes Yes Yes Yes Yes Yes Yes No Yes
4/2/1994 Federal Reserve raised interest rates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

18/12/1995 Victory of the communist party in Russia No Yes No Yes No Yes No Yes No Yes
8/3/1996 Cut of interest rates No No No Yes No No Yes No Yes Yes

27/10/1997 Economic crisis in Asia Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
31/8/1998 Russian financial crisis No No Yes No Yes No Yes No Yes No

15/10/1999 Signs of inflation No No No No No No No No No No
14/4/2000 Dotcom bubble crash Yes No No No No No Yes No Yes No
17/9/2001 Aftermath of 9/11 No No Yes No Yes Yes No Yes No Yes
3/9/2002 Weak economic data No No No No No No No No No No

24/3/2003 Iraq war concerns No No No No No No No No No No
5/8/2004 Increase in interest rates No No No No No No No No No No

15/4/2005 Weak economic data No No No No No No No Yes No No
20/1/2006 Disappointing results of big stocks No Yes No Yes No No No No No No
27/2/2007 Chinese stock bubble Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

15/10/2008 Global financial crises No No No No No No Yes No Yes No
20/1/2009 Inauguration of Obama term No No No No No No No No No No
20/5/2010 Flash crash in commodities No No No No No No No No No No
8/8/2011 USA credit-rating downgrade Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
1/6/2012 Fear of global slowdown No No No No No No No No No No

20/6/2013 Fear of global slowdown No No No No No No No No No No
3/2/2014 Weak economic data No No No No No No No No No No

24/8/2015 China’s economic slowdown No No No No Yes No Yes Yes Yes Yes
24/6/2016 Brexit Yes No Yes Yes Yes Yes No Yes No Yes
17/5/2017 President Trump’s allegations Yes Yes Yes Yes Yes Yes Yes Yes No Yes
5/2/2018 Increasing interest rates Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
5/8/2019 Trump - China politics No No Yes Yes No No Yes Yes No Yes

16/3/2020 COVID-19 crash No No No No Yes No Yes No Yes No

Summary of the jumps detected by the indexes for the window sizes: 16, 32, 64, 128, and 256. "Yes" means that the index jumped, whilst
"No" means the index did not jump.
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Table 4.3.: One-day data - Summary of jump dynamics for different window sizes.
K Index # Jumps Up (%) Down (%) # Jumps in benchmark dates # Co-jumps # Co-jumps in benchmark dates
16 SPX 31 9 (29%) 22 (71%) 10 16 8

VIX 46 39 (85%) 7 (15%) 11
32 SPX 31 5 (16%) 26 (84%) 12 21 10

VIX 48 42 (88%) 6 (12%) 13
64 SPX 33 6 (18%) 27 (82%) 13 17 10

VIX 38 32 (84%) 6 (16%) 11
128 SPX 38 10 (26%) 28 (74%) 15 18 10

VIX 41 36 (88%) 5 (12%) 14
256 SPX 38 13 (34%) 25 (66%) 12 12 8

VIX 33 27 (82%) 6 (18%) 14

Summary of the jump dynamics for different window sizes: 16, 32, 64, 128, and 256. The number of jumps, jump direction, and the
number of jumps in benchmark dates are depicted for each index. Moreover, the total number of co-jumps and the number of co-jumps
in benchmark dates are also depicted.
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On average, the SPX jumped 34 times, 25% of the times upward, and 75% of the times

downward, whereas the VIX jumped 41 times, 85% of the times upward, and 15% of the times

downward. The indexes co-jumped in the opposite direction 100% of the time, regardless of

the window size. Moreover, every time one of the indexes jumped, the other showed a return

in the opposite direction in almost 100% of the cases. The run with the most number of jumps

in the benchmark dates uses a window size of 128 (very close to the average of the window

size candidate interval). From the 31 expected jumps, the test identified 19 jumps where at

least one of the indexes jumped, including key events such as the 9/11 aftermath (2001), the

subprime crises (2008), and the COVID-19 crash (2020).

Generally, there are no clear trends of enhancement by increasing the window size. Indeed,

using different window sizes resulted in different jump dates. Nevertheless, it is evident that

there is a tendency of opposite jumping directions of the indexes, and if a jump is detected on

a benchmark date, there is evidence that the indexes tend to co-jump. The SPX tend to jump

more frequently downward, whilst the VIX upward. Moreover, the VIX tend to jump more

than the SPX. In the next subsection, we further explore these pieces of evidence for the most

robust case using high-frequency data.

4.2. High-frequency data

The data covers only 14 years for the high-frequency case, from 27th April 2007 to 31st De-

cember 2020. In this case, we have 13 benchmark dates from 2008 to 2020. For the window

sizes, we use the average of the extremes of the window size candidate interval as depicted in

Table 3.2 and following our findings in the low-frequency case. Tables 4.4 and 4.5 summarize

the findings.
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Table 4.4.: SPX and VIX jumps for different frequencies.
Date Event Jump (One-day)K=128 Jump (One-hour)K=903 Jump (30-minute)K=1,667 Jump (5-minute)K=9,898

SPX VIX SPX VIX SPX VIX SPX VIX
15/10/2008 Global financial crises Yes No Yes No Yes No Yes Yes
20/1/2009 Inauguration of Obama term No No No No No Yes No Yes
20/5/2010 Flash crash in commodities No No Yes Yes Yes Yes Yes Yes
8/8/2011 USA credit-rating downgrade Yes Yes Yes Yes Yes Yes Yes Yes
1/6/2012 Fear of global slowdown No No Yes No Yes No Yes Yes

20/6/2013 Fear of global slowdown No No Yes No Yes Yes Yes Yes
3/2/2014 Weak economic data No No No No Yes Yes Yes Yes

24/8/2015 China’s economic slowdown Yes Yes Yes Yes Yes Yes Yes Yes
24/6/2016 Brexit No Yes Yes Yes Yes Yes Yes Yes
17/5/2017 President Trump’s allegations Yes Yes Yes Yes Yes Yes Yes Yes
5/2/2018 Increasing interest rates Yes Yes Yes Yes Yes Yes Yes Yes
5/8/2019 Trump - China politics Yes Yes Yes Yes Yes Yes Yes Yes

16/3/2020 COVID-19 crash Yes No Yes Yes Yes Yes Yes Yes

Summary of the SPX and VIX jumps for different high frequencies. "Yes" means that the index jumped, whilst "No" means the index did
not jump.

Table 4.5.: Summary of jump dynamics for different frequencies.
Frequency Index # Jumps Up (%) Down (%) # Jumps in benchmark dates # Co-jumps # Co-jumps in benchmark dates

One-hour SPX 365 166 (45%) 199 (55%) 11 121 8
VIX 271 184 (68%) 87 (32%) 8

30-minute SPX 605 297 (49%) 308 (51%) 12 200 10
VIX 515 334 (65%) 181 (35%) 11

5-minute SPX 2,162 1,170 (54%) 992 (46%) 12 904 12
VIX 1,884 1,390 (57%) 1,063 (43%) 13

Summary of the jump dynamics for different high frequencies. The number of jumps, jump direction, and the number of jumps in
benchmark dates are depicted for each index. Moreover, the total number of co-jumps and the number of co-jumps in benchmark dates
are also depicted.
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The results from the high-frequency runs are quite interesting and successfully answer the

queries of this work. First, from Table 4.5, we can conclude that in this case, the SPX jumped

more than the VIX as opposed to the finding on the low-frequency study. On average, the SPX

tends to jump slightly more often downward (51% of the cases), whereas the VIX tends upward

(63% of the cases) in agreement with the low-frequency study, although in different proportions.

Moreover, the runs show that every time one of the indexes jumped, the other showed a return

in the opposite direction in 88% of the cases. In all co-jump dates, the indexes jumped in

opposite directions in 99% of the cases, regardless of the intraday frequency. Naturally, as

we increased the frequency, the test enhanced its performance, as shown in Table 4.4. For the

5-minute case (the best performer run), at least one of the indexes jumped in all the benchmark

dates. Indeed, in 12 out of 13 dates, the indexes co-jumped in opposite directions, and since the

VIX jumped in all 13 dates, this shows that volatility spikes when a market crash or correction

event happen. Finally, another key finding is that the indexes tend to co-jump in ~45% of the

cases when one of the indexes jump.
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5. Conclusions

5.1. Remarks

This thesis utilizes the LM nonparametric test to look for evidence on jumps returns and

stochastic volatility, in bear market conditions, using low and high-frequency data. We use the

SPX and VIX indexes to analyze the jumps in returns and stochastic volatility, respectively. To

check the consistency of the test, we compare the jumps detected from the test with a database

created from the largest SPX daily percentage losses in each year of the study.

The results reveal several findings regarding the relationship between the SPX returns and

the changes in the VIX. For the low-frequency data, our first approach was to use the window

size suggested by the authors, but the results were not satisfactory as the test fails to detect

jumps in dates where historical events suggest that a jump must have happened. Thus, we

studied the impact of increasing the window size on the test’s potential to detect jumps. In

fact, there is an improvement trend up to the window size equal to 128 (very close to the average

of the extremes of the window size candidates) when comparing the jumps associated with the

benchmark dates. Notwithstanding, even with this improved run, the test fails to detect almost

50% of the expected jumps. On average, we find that the VIX jumps more frequently than

the SPX. In addition, there is a clear jumping trend associated with negative events. In fact,

the SPX jumps down 75% of the time and the VIX jumps up 85% of the time. The indexes

co-jumped in the opposite direction 100% of the time in the benchmark dates, regardless of the

window size. Moreover, every time one of the indexes jumped, the other showed a return in

the opposite direction in almost 100% of the cases.

For the high-frequency data, we used for our runs the average of the extremes of the window

size candidates, following our findings in the low-frequency data case. Indeed, our first approach

was to use the window sizes recommended by the authors but the results were not satisfactory

when compared to the average window size cases. The findings in this case are quite interesting

and successfully answer the queries of this work. First, we can conclude that the SPX jumped

more often than the VIX as opposed to the finding from the low-frequency study. On average,

the SPX tends to jump slightly more often downward (51% of the cases), whereas the VIX tends

upward (63% of the cases) in agreement with the low-frequency study and corroborating our
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hypothesis that the indexes’ jumps are more often associated to negative events in the market.

Furthermore, the runs show that every time one of the indexes jumped, the other showed a

return in the opposite direction in 88% of the cases. In all co-jump dates, the indexes jumped

in opposite directions in 99% of the cases, regardless of the intraday frequency. Naturally, as

we increased the frequency, the test enhanced its performance. For the 5-minute case (the best

performer run), at least one of the indexes jumped in all the benchmark dates. Indeed, in 12

out of 13 dates, the indexes co-jumped in opposite directions. The VIX jumped in all 13 dates,

and this shows that volatility spikes when a market crash or correction event happens. Finally,

another key finding is that the indexes tend to co-jump in ~45% of the cases when one of the

indexes jumps.

Finally, we can conclude that the LM test is a powerful tool to detect jumps but only when

high-frequency data is used. Returning to the questions raised in the objective of the thesis, we

can conclude that the SPX tends to jump more frequently than the VIX. When there is an event

related to a market crash or market correction, the indices co-jump in opposite directions. The

VIX, in our high-frequency study, jumped in all benchmark dates, which leads us to conclude

that, in fact, volatility spikes exactly when there is a market crash or correction.

5.2. Recommendations for future work

Our main recommendation for future work is to explore the existing improvements in the

literature on bipower variation as it is the fundamental component of the test. In fact, there

is evidence in the literature that the joint use of bipower variation and threshold estimation

enhances the power of jump detection of the test. This enhancement can be applied to both

low-frequency and high-frequency data.

Another recommendation for further work is to use other nonparametric tests and to check

if, with the same data, other tests can outperform the LM test.
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A. Appendix - Matlab
R©

Code

%Lee, Suzanne S., and Per A. Mykland (2007)

%Nomparametric Test

function[Summary_Table] = LM_test_drift(S,K,alfa)

% S is the asset price

% K is the window size

% alfa is the significance level

% Calculating the asset returns

r = [NaN;diff(log(S))];

% Calculating the realized bipower variation (bpv)

bpv = abs(r(1:end)).*abs([NaN;r(1:end-1)]);

bpv = [NaN;bpv(1:end-1)];

% Calculating the average rate of return (drift)

mi=movmean(r,[K-2 0]);

% Estimating the instantaneous volatily

sigma = sqrt(movmean(bpv,[K-3 0]));

% Calculating the L statistic

L = (r-mi)./sigma;

% Selection of rejection region

% Estimation of parameters

n = numel(r)-K; % Number of observations

c = (2/pi)^0.5; % Constant c=E|Ui|
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