

Exact Monte Carlo Sampling of Jump Diffusions

Luís Simão Almeida Ferreira

Master’s in Mathematical Finance

Supervisor:
PhD in Finance, José Carlos Gonçalves Dias, Associate
Professor with Aggregation,
ISCTE Business School

October, 2021

Department of Finance

Department of Mathematics

Exact Monte Carlo Sampling of Jump Diffusions

Luís Simão Almeida Ferreira

Master’s in Mathematical Finance

Supervisor:
PhD in Finance, José Carlos Gonçalves Dias, Associate
Professor with Aggregation,
ISCTE Business School

October, 2021

Dedicated to my parents and siblings, for all the support and for believing in me.

Acknowledgment

I would like to thank my supervisor, professor Doutor José Carlos Dias, for introducing

me to the world of Monte Carlo simulation and for the discussions, availability and support

provided during this undertaking.

iii

Resumo

O principal objetivo desta tese é explorar os fundamentos teóricos relativos ao método

proposto em [20] por Kay Giesecke e Dmitry Smelov e implementá-lo de modo a com-

parar a sua performance face a métodos mais tradicionais de elementos finitos, que geram

amostras enviesadas. O método aplica-se a uma grande parte dos modelos definidos por

um processo de difusão com saltos unidimensional, permitindo gerar simulações de Monte

Carlo exatas de um esqueleto, tempos de paragem e outros funcionais do mesmo, com

finalidades como a avaliação de path-dependent options, derivados de taxa de juro ou

outros instrumentos financeiros.

v

Abstract

The main objective of this thesis is to explore the theoretical foundations of the ex-

act method for sampling jump diffusions proposed in [20] by Kay Giesecke and Dmitry

Smelov, and implement it in order to compare the performance of the algorithm for pricing

purposes against more traditional finite element methods, which generate biased samples.

The method applies to a large class of models defined by a one-dimensional jump diffusion

process, allowing us to generate exact simulations of a skeleton, a hitting time and other

functionals of it, used for purposes like path-dependent option or interest rate derivatives

pricing.

vii

Contents

Acknowledgment iii

Resumo v

Abstract vii

Chapter 1. Introduction 1

1.1. Literature review 1

1.2. Structure of the thesis 2

Chapter 2. Stochastic calculus and risk neutral pricing 5

2.1. Stochastic processes 5

2.2. Jump processes 6

2.3. Lévy processes 8

2.4. One-dimensional jump diffusions 9

2.5. Risk neutral asset pricing 11

2.5.1. Pricing derivatives and exotic options 12

2.5.2. JDCEV model 13

2.5.3. Affine Jump Diffusion models 14

Chapter 3. Monte Carlo methods 17

3.1. Bias and error 17

3.2. General sampling 18

3.3. Sampling from specific distributions 20

3.3.1. Normal distribution 20

3.3.2. Gamma distribution 20

3.4. Brownian sampling 21

3.4.1. Exit times 22

3.4.2. Brownian meanders 22

3.5. Jump process sampling 24

3.6. Discretization methods for stochastic differential equations 25

3.6.1. Discretization of the JDCEV model 25

3.6.2. Discretization of the AJD model 26

Chapter 4. Building up the algorithm 29

4.1. Rejection sampling for diffusions 29

4.2. Localization 31

ix

4.3. Extension to jump diffusions 32

4.4. Acceptance test for Brownian skeletons 32

4.5. General algorithm for jump diffusion sampling 35

Chapter 5. Computational efficiency and implementation 37

5.1. Level selection 37

5.1.1. Convergence 40

5.2. Extensions 41

5.2.1. Sampling a skeleton 42

5.2.2. Sampling hitting times 42

5.2.3. Exponential of time-integrated jump diffusion 42

5.3. Implementation notes 43

Chapter 6. Numerical results and conclusions 45

6.1. JDCEV 45

6.1.1. European option 45

6.1.2. Exotic options 47

6.2. Affine Jump Diffusions 50

6.2.1. Zero coupon bond 50

6.2.2. Cap 51

6.3. Conclusions 52

Appendix A. Python code 53

A.1. Sampling methods 53

A.2. Level selection 58

A.3. JDCEV implementation 64

A.3.1. Exact method 64

A.3.2. Discretization method 69

A.4. AJD Implementation 70

A.4.1. Exact method 70

A.4.2. Discretization methods 86

Appendix. References 99

x

CHAPTER 1

Introduction

Monte Carlo methods are a broad class of computational algorithms that rely on repeated

sampling of random variables to obtain numerical results, and are mainly used in three

problem classes: optimization, numerical integration and sampling from given probability

distributions. In this thesis, we discuss the sampling problem for jump diffusions with ap-

plications to derivatives pricing, and implement the algorithm proposed by Kay Giesecke

and Dmitry Smelov in [20].

1.1. Literature review

We present here historical notes and references to the relevant literature leading us to the

analysis of [20].

The first landmark work in option pricing goes back to 1973, belonging to Fisher Black

and Myron Scholes [7] and Robert Merton [32]. In these papers, they provided the first

explicit equilibrium solution for simple puts and calls, with the underlying assumption

that the stock price follows a Geometric Brownian Motion. Even though some of the

assumptions are known not to hold, the Black-Scholes-Merton model opened a path to

understanding more complex contingent claims and built a language and framework for

option pricing theory and practice, which is still currently used.

Some of the shortfalls have since been addressed by a large class of extensions. For

instance, the Constant Elasticity of Variance models - CEV for short -, which were in-

troduced by Cox [13], try to incorporate the fact that the volatility tends to be inversely

proportional to the stock price. An alternative approach was given by Heston [22], in

1993, with a stochastic volatility model, where the variance of the asset is driven by a

square-root process. These new models exhibited desired features observed on the market,

such as a ’volatility smile’ across multiple strikes or volatility clustering and heteroscedas-

ticity. Under these assumptions, the processes are almost-surely path-continuous, and

extreme events are still unlikely. However, evidence shows shocks in prices do occur and

that the tails of the distributions are heavier than the ones implied.

Thus, models were extended to include the possibility of jumps, under a larger class

of Lévy processes. Carr and Linetsky [11] developed a Jump-to-Default Extended CEV

model (or JDCEV), where the stock price follows a CEV process up to a stochastic default

time with state-dependent intensity, in which the firm defaults. Other jump-diffusion

approaches to individual or portfolio credit risk include those of Arnsdorf and Halperin

[4], Ding et al. [14], Duffie and Singleton [18], among many others. We refer to [5] for

theoretical notes on Lévy processes.

1

With the need for more accurate and faster results and the advance in complexity of

both the option payoffs themselves and of the models used to price them, such that closed

form solutions are not feasible anymore, numerical methods have become widely popu-

lar. For instance, American options (and early-exercise options in general), due to their

implicit value, rarely lent themselves to analytical solutions. Unless the exercise frontier

is determined beforehand, partial differential equation based approaches are efficient at

dealing with this specification when the number of factors is low.

On the other hand, despite being a relatively recent field, the Monte Carlo approach

has grown in popularity. Even though Monte Carlo methods can also be extended to

provide estimators for early-exercise options, e.g. via least squares fitting [29], their

strength lies in the handling of path-dependent payoffs and multi-factor models. For a

classical introduction to the field, we refer to [21], whereas more recent developments can

be found in [19].

The most commonly used techniques for simulating paths of Lévy processes follow-

ing a pre-specified stochastic differential equation are Euler methods, which discretize

the equation and sample for the increments, analogously to the case of deterministic

ordinary differential equations. Nonetheless, these methods do not come without their

drawbacks. For instance, while certain stochastic differential equations have almost-surely

non-negative solutions, a naive discretization may return negative values, and if there is

state dependency, the fixed time increments and non-linearity may lead to biased results.

Exact simulation methods have since been developed in order to provide unbiased

estimates, especially for the case where estimation of the bias is not straightforward (if

there are no analytical solutions, for example). However, most of these rely on special

structures of the jump diffusions. The schemes of Beskos and Roberts [6], and Chen and

Huang [12] provide exact samples of a skeleton between jump times when the diffusion

has state dependent drift and volatility. For the cases where jump intensity is constant,

Ruf and Scherer [35] consider the exact sampling of hitting times, and Broadie and Kaya

[9] develop an alternative exact scheme for the two-dimensional Heston model with jumps

in both price and volatility.

In general, as stated in [20], if the jump intensity is state dependent, then the jump

times cannot be generated independently of the diffusion component. The acceptance/re-

jection scheme the authors provide, valid under nonrestrictive assumptions on the process

and for a large class of expectations, efficiently generates unbiased samples. We will

further discuss this method in this thesis.

1.2. Structure of the thesis

This thesis is structured as follows.

In section 2, we will introduce the needed notions to understand the approach shown

in [20]. We begin by presenting the tools from Stochastic Calculus, starting from the

Brownian Motion and up to jump processes and Lévy processes. We will also cover several

Monte Carlo techniques in chapter 3, including sampling from distributions, sampling

2

jump processes and jump times, and Euler methods for stochastic differential equations

needed for later comparison.

In chapter 4, we will analyse the conditions needed for the algorithm, building up from

simpler circumstances until we are able to state it in full generality, while in chapter 5 we

will deal with questions pertaining computational efficiency and the actual implementation

of the algorithm.

Finally, in chapter 6 we will compare the performance of the exact method against

more traditional Euler methods under distinct scenarios and for different assets, and

present conclusions.

An appendix is also available at the end, containing Python implementations of most

methods used.

3

CHAPTER 2

Stochastic calculus and risk neutral pricing

2.1. Stochastic processes

We begin by recalling definitions and tools regarding stochastic processes, which we will

make most use of later on. Our setting is a probability space (Ω,F ,P), equipped with a

filtration Ft.

Definition 2.1.1. A standard Brownian motion is a stochastic process Wt such that:

(1) W0 = 0;

(2) The increments Wt −Ws, Wt′ −Ws′, for 0 ≤ s′ < t′ ≤ s < t, are independent;

(3) Wt −Ws ∼ N (0, |t− s|).

Brownian motion has several other important properties; namely, it admits an almost-

surely continuous version. It is also useful to note how it behaves by re-scaling by θ > 0:

Wt
d
= θWt/θ2 . (2.1)

Throughout this thesis, we will also make extensive use of martingale theory, mainly

due to the two results presented next.

Definition 2.1.2. A martingale (in continuous time) is an integrable stochastic pro-

cess, adapted to the filtration Ft, such that for each s < t

E[Xt|Fs] = Xs. (2.2)

Proposition 2.1.1. (Novikov’s Condition) Assume Xt is a stochastic process adapted

to the filtration Ft. If the condition

E
[

exp

(
1

2

∫ T

0

|Xt|2dt
)]

< +∞, (2.3)

holds, then the process

Zt := exp

(∫ t

0

XsdWs −
1

2

∫ t

0

X2
sds

)
(2.4)

is a martingale under P.

Theorem 2.1.2. (Girsanov) Let Zt be the exponential defined in (2.4). If Zt is a

strictly positive martingale, then there exists a measure Q, equivalent to P, such that

dQ
dP

∣∣∣∣Ft = Zt. (2.5)

Furthermore, the process

W̃t = Wt − [W,W]t (2.6)

5

is a Brownian motion under Q.

Novikov’s condition is our main tool to show that the condition on Girsanov’s theorem

holds. Finally, we now recall a fundamental result in Stochastic Calculus, Itô’s lemma.

Theorem 2.1.3. (Itô’s Lemma) Suppose Xt is an Itô diffusion process satisfying

dXt = µtdt+ σtdWt. (2.7)

Then, for any twice-differentiable function f(t, x) and Yt = f(t,Xt), one has

dYt =

(
∂f

∂t
+ µt

∂f

∂x
+
σ2
t

2

∂2f

∂2x

)
dt+ σt

∂f

∂x
dWt. (2.8)

One final notion worth remembering, of major importance in stochastic calculus, is

that of stopping times.

Definition 2.1.3. (Stopping time) Let τ be a random variable in the filtered probability

space (Ω, (Ft)t∈I ,P). We say that τ is a stopping time, with respect to the filtration F , if

for any t ∈ I we have that

{τ ≤ t} ∈ Ft. (2.9)

This definition encompasses the idea of a random time where we stop the process,

according to some rule. A nice related example is that of hitting times (which may not be

stopping times, but this verifies in most cases), that track the instant a stochastic process

hits a certain barrier, i.e.

τ := inf{t > 0|Xt = B}. (2.10)

2.2. Jump processes

In order to introduce the concept of jumps, we present the Poisson distribution, which

can be seen as a discrete equivalent of the normal distribution, due to the properties of

its generating function.

Definition 2.2.1. We say a random variable X has a Poisson distribution with pa-

rameter λ > 0, X ∼ Poisson(λ), if its probability mass function is given by

fX(k;λ) =
λke−λ

k!
, (2.11)

and we have that

λ = E[X] = V ar(X). (2.12)

Definition 2.2.2. (Poisson process) Let (Ti)
+∞
i=1 be independent exponential random

variables with parameter λ. Let Tn := t1 + ...+ tn, with T0 = 0, and define

Ns = max{n : Tn < s}. (2.13)

Ns is called a Poisson process.

Note that no assumptions are made on the sum Tn := t1 + ...+ tn. Most of the time,

we will be assuming that Nt is non-explosive, that is, T∞ = +∞ almost surely. The

6

importance of Poisson processes, also called counting processes, stems from the following

proposition:

Proposition 2.2.1. Ns is a Poisson process if, and only if,

(1) N0 = 0;

(2) Nt+s −Nt ∼ Poisson(λs);

(3) Nt has independent increments.

Thus, a Poisson process can be thought of as a discrete analogue of the Brownian

motion, in the sense that it is memory-less and the increments are independent. We will

now define two extensions to this type of processes, which allow for vast generalization

and will be referred to later.

Definition 2.2.3. Let λ(t) be a deterministic integrable function. We say that Nt is

a non-homogeneous Poisson process with local intensity function λ(t) if

(1) N0 = 0;

(2) Nt has independent increments;

(3) Nt+s −Nt ∼ Poisson

(∫ t+s

t

λ(z)dz

)
.

Definition 2.2.4. Let λt ≥ 0 be an adapted stochastic process. We say that Nt is a

doubly stochastic Poisson process if

(1) N0 = 0;

(2) Nt has independent increments;

(3) Nt −Ns|(λz)z=tz=s ∼ Poisson

(∫ t

s

λzdz

)
.

Moreover,

P(Nt −Ns = k) = E
[

1

k!

(∫ t

s

λzdz

)k
exp

(
−
∫ t

s

λzdz

)]
. (2.14)

Definition 2.2.5. (Compound Poisson Process) Let Nt be a Poisson process with

parameter λ and Xi ∼ X be a sequence of i.i.d. random variables with parent distribution

X. We say that a stochastic process Jt is a compound Poisson process (or Poisson jump

process) with intensity λ and jump size distribution X if

Jt =
Nt∑
n=1

Xn. (2.15)

We will also consider more general compound Poisson processes, where the jump size

variables Xn are not i.i.d. but sampled locally, for instance, depending on some function

of another random process.

Another concept to have in mind is the compensator process

Ct =

∫ t

0

λsds. (2.16)

Let τ1 be the first jump time of a doubly stochastic Poisson process as above, and E be

an independent standard exponential random variable. Meyer [33] shows that through a

7

time change given by Ct, the process becomes a standard Poisson process. In turn, this

implies that

τ1
d
= inf{t ≥ 0|Ct ≥ E}, (2.17)

a fact that will be useful for us later to run simulations.

2.3. Lévy processes

Next, we will recall some definitions and important results in Lévy process theory, in

order to motivate our main object of study, jump diffusions. We will not delve in many

technical details, explaining only how we can characterize this type of processes. A full

exposition on Lévy processes can be found, for instance, in [36] and [5], where measure

theoretic results are properly treated.

Definition 2.3.1. A stochastic process Xt is a Lévy process if

(1) For any choice of n ≥ 1, and 0 ≤ t0 < t1 < ... < tn, the random variables Xt0,

Xt1 −Xt0, ..., Xtn −Xtn−1 are independent;

(2) X0 = 0 a.s.;

(3) The distribution of Xt+s −Xs does not depend on s;

(4) It is stochastically continuous1;

(5) There is Ω0 ∈ F with P[Ω0] = 1 such that, for every ω ∈ Ω0, Xt(ω) is right-

continuous and has left limits.

Definition 2.3.2. (Markov processes) An adapted continuous time stochastic process

Xt is said to be Markov if, for any Borel set B and each s < t, we have that

P[Xt ∈ B|Fs] = P[Xt ∈ B|Xs]. (2.18)

Definition 2.3.3. (Strong Markov property) For a stopping time τ , define

Fτ := {A ∈ F|∀t ≥ 0{τ ≤ t} ∩ A ∈ Ft}. (2.19)

Then, Xt is said to have the strong Markov property if, for each stopping time τ condi-

tioned on {τ < +∞}, Xτ+t|Xτ is independent of Fτ

Taking τ to be deterministic, we can easily see that the strong Markov property

implies that a process is Markov. In essence, the Markov property tries to capture mem-

oryless behavior, so that what happens in the future depends only on the present state,

independently of past information.

It is clear from the definitions that the Brownian motion and the Poisson process are

Lévy processes satisfying the strong Markov property. Thus, we can also later define

processes that behave like diffusions with jumps.

1A process Xt is said to be stochastically continuous if, for any ε > 0 and all t0 > 0, we have that
limt→t0 P{|Xt −Xt0 | > ε} = 0

8

Definition 2.3.4. (Infinite divisibility) A random variable Y is said to have an in-

finitely divisible distribution if for every n ≥ 0, we can write

Y ∼ Y
(n)

1 + ...+ Y (n)
n , (2.20)

with {Y (m)
j }j=1,...,n independent and identically distributed.

Fortunately, Lévy processes can be completely characterized via the Fourier transform,

or their characteristic function, as it is called in probabilistic language.

Theorem 2.3.1. (Lévy-Khintchine) A real valued random variable X has an infinitely

divisible distribution if there are parameters a ∈ R, σ2 ≥ 0 and a measure ν on R \ {0},

with

∫ +∞

−∞
(1 ∧ x2)ν(dx) < +∞, such that

E
[
eiλX

]
= eψ(λ), (2.21)

with

ψ(λ) = −iaλ+
1

2
σ2λ2 −

∫ +∞

−∞
(eiλx − 1− iλx1{|x|≤1})ν(dx). (2.22)

Definition 2.3.5. We call the parameters (a, σ2, ν) defining a Lévy process its Lévy-

Khintchine characteristics.

The theorem above means that we can characterize a Lévy process by specifying the

drift, volatility and a Lévy measure ν, which characterizes the jumps. In our context, we

will not need the full generality of a Lévy measure, which can be decomposed into ’small’

and ’big’ jumps and lead to a countable amount of jumps in any interval, and will only

make use of ’well behaved’ jump processes.

2.4. One-dimensional jump diffusions

We are now able to present our main object of study. Consider a process Xt, with a

connected state space DX ⊆ R. Then, we call Xt a jump diffusion if, up to the hitting

time of the boundary ∂DX , it is the unique weak solution to the stochastic differential

equation

dXt = µ(Xt)dt+ σ(Xt)dWt + dJt, (2.23)

where Jt is a jump process,

Jt =
Nt∑
n=1

∆(XT−n
, Zn). (2.24)

Here, Nt is a non-explosive counting process with event times Tn and intensity λt =

Λ(Xt−). Additionally, the variables Zn encode additional non-state dependent informa-

tion for the jumps, and are sampled from a given distribution Π. We also assume that

(µ, σ,Λ,∆,Π) satisfy suitable conditions for Xt to exist (uniquely), either as a weak or

strong solution. Necessary conditions can be found in [25], and the models we are con-

cerned about satisfy these.

9

Another useful tool to have in mind is the adaption of Itô’s Lemma to account for

jumps.

Theorem 2.4.1. (Itô for jump diffusions) Suppose Xt is a jump-diffusion process

satisfying

dXt = µtdt+ σtdWt + dJt (2.25)

Then, for any twice-differentiable function f(t, x) and Yt = f(t,Xt), one has

dYt =

(
∂f

∂t
+ µt

∂f

∂x
+
σ2
t

2

∂2f

∂2x

)
dt+ σt

∂f

∂x
dWt + (f(Xt)− f(Xt−))dNt. (2.26)

Note that the last ’differential’ is only in terms of Nt instead of the full jump process

Jt, as the jump size information is encoded in the difference f(Xt) − f(Xt−). One can

also formally build a differential multiplication table, similarly to classical Itô calculus,

where we have

(dNt)
2 = dNt, (2.27)

and allows us to generalize the product rule accordingly. This is true because Nt changes

only in increments of either 0 or 1.

In order to simplify the problem, we will consider jump diffusions with unit volatility.

This will not cause any loss of generality under our assumptions, as we make use of the

Lamperti transform, as it is called in [20]. There are not many references about the origin

of this transform or how it acquired its name.

Definition 2.4.1. The Lamperti transform of Xt is the process Yt = F (Xt), with

F (x) =

∫ x

X0

1

σ(u)
du.

Furthermore, we implicitly assume that it is well defined (and this is true for most

relevant models, as the volatility stays away from zero), so that the following proposition

holds:

Proposition 2.4.2. If Xt solves the stochastic differential equation (2.23), then its

Lamperti transform Yt = F (Xt) solves

dYt = µY (Yt)dt+ dWt + dJYt , (2.28)

with Y0 = 0 and drift function

µY (y) =
µ(F−1(y))

σ(F−1(y))
− 1

2
σ′(F−1(y)), (2.29)

provided that σ is differentiable. The jump process JYt =
∑Nt

n=1 ∆Y (YT−n , Zn) has the same

jump times as Jt, but jump size function

∆Y (y, z) = F (F−1(y) + ∆(F−1(y), z))− y. (2.30)

If ∂DX is absorbing, then so is ∂DY , and if it is only attainable through a jump, the same

is true for Y .

10

Equations (2.29) and (2.30) follow directly from Itô-Levi (2.4.1). With this in mind,

we now pay special attention to the two technical assumptions underlying the proposed

sampling method. Due to the nature of the technique, these are mostly local in nature,

and distinguish it from more commonly used ones.

Our first assumption is that, on the interior of DX , µ is C1, σ is C2 and Λ is locally

bounded2. While the first two points ensure that the previous proposition is valid, the

local boundedness of the jump intensity allows for the treatment of unbounded jumps, as

is the case of simple ones like in the JDCEV model.

Secondly, we assume that the boundary of DX is either unattainable or attainable

only through a jump, in which case we will also assume the boundary to be absorbing.

This is reasonable and in line with most equity models, with a state space [0,+∞): we

want the diffusion component to be positivity preserving (ensuring the stock price stays

above zero), and the value may only hit 0 after a default event.

This is the class of processes we will be studying. One last useful definition is the

integrated drift, which we will be referring to as a function A,

A(y) :=

∫ y

0

µY (x)dx. (2.31)

2.5. Risk neutral asset pricing

For the sake of brevity, we assume that the reader has some experience with the basic

notions of mathematical finance. For an overview, we refer to [24]. Let us, nevertheless,

recall some principles which will be of most use.

First, we expect our market models to be arbitrage free. That is, if you can replicate

(or hedge) a derivatives contract, then the value of the contract ought to be equal to the

value of the strategy that replicates it. This forms the basis of modern financial markets

nowadays, and is the principle by which market makers operate.

Secondly, we require that our (discounted) asset prices are martingales under a risk

neutral measure, which differs from the real world measure. This restriction allows us

to interpret the current value of a contract as an expected value of its terminal value

and, in turn, forms the basis of Monte Carlo financial simulations: if we want to compute

the value of an option, we ’only’ need to simulate enough paths under the risk neutral

measure and average over all of these.

It is also desirable that our markets are complete, which essentially means that we

have as many securities as sources of randomness (i.e. driving Brownian motions) and

allows us, in principle, to hedge every such source. This also implies that the so called risk

neutral measure is uniquely defined. Unfortunately, the presence of jumps in the stochastic

differential equations defining the models make our markets incomplete, making our choice

of risk neutral measure non-unique, and careful economic analysis is needed in order to

defined a reasonable ’price of risk’.

2We say that a function f is of class Ck if it is differentiable k times with continuous derivatives and
locally bounded if, for any x in its domain, there is an interval containing x where f is bounded.

11

2.5.1. Pricing derivatives and exotic options

Overall, a risk neutral specification allows us to compute the value of complex derivatives,

in terms of their payoffs and the value of the underlying St. Take, for instance, a European

vanilla call, a contract with maturity T and strike K, paying at time T the difference

ST − K, if positive. At this moment, we know exactly how much the option is worth,

as the value (ST −K)+|FT is deterministic. In this framework, we can then make use of

this knowledge and, in essence, propagate the price backwards, discounting and averaging

over all possible results, and write the present value of the option Vt as

Vt = e−r(T−t)E[(ST −K)+|Ft], (2.32)

and we can interpret Ft as the history up to time t. Note that, in most circumstances,

the Markov property is verified and this will be a function of only the parameters defining

the process and the present value.

More generally for equity models, if at time T a contract has a payoff given by a

function of the value of the underlying asset ϕ(ST), then we can compute the present

value as

Vt = E
[
ϕ(ST)

BT

∣∣∣∣Ft], (2.33)

with BT being our numeraire, commonly just the discounted time value of money. Recall

that a numeraire is defined as any tradeable asset with price process Bt such that Bt > 0,

for all times t. In other words, the relative price of an asset is its price expressed in the

units of the numeraire.

We will be interested in other types of derivatives, in order to replicate Giesecke and

Smelov’s experiments.

While a call option has a positive payoff when the asset value is above a certain strike,

a put option pays if it finishes below the strike. Another major important distinction is

between European and American options, as the latter allow for early exercise and thus

have an implicit value tied to them. However, these are far more complex to treat and

are not worth exploring much for our purposes. We can, however, find useful complexity

in Asian options.

First, we say that an option is path-dependent, and, hence, exotic, if its payoff depends

on the asset value at times before maturity. For instance, an Asian option is a contract

which depends on the average of the price over a certain time period. While continuous

time averages can be considered, even though the integral
∫ T

0
Xudu is much harder to

evaluate, it is more common for Asian options to be discretely monitored.

Thus, a discretely monitored Asian put can have its value computed as

Vt = e−r(T−t)E
[(
K − 1

N

N∑
i=1

Xti

)+∣∣∣∣Ft]. (2.34)

Another large class of option contracts suitable for the exact sampling method are the

barrier options, which require the tracking of a barrier hitting time. These can come in

12

many different flavors, where the barriers can be above or below the current underlying

value and can serve as a knock-in (the option only has value if the barrier is hit) or knock-

out (the option is terminated and loses its value if the barrier is crossed) barriers. For

instance, if B < X0 is our down barrier, a down-and-out call can be priced as

Vt = e−r(T−t)E[(XT −K)+1{inf0≤t≤T Xt>B}|Ft] (2.35)

As for interest rate models, even though the ’numeraire’ is not deterministic, the time

value of money can still be computed by an expectation to avoid arbitrage opportunities

and the price of a risk-less zero coupon bond is given by

B0 = E
[

exp

(
−
∫ T

0

Xsds

)∣∣∣∣F0

]
. (2.36)

More interesting payoffs can be treated this way as well. We will consider the cap,

which is nothing more than multiple calls on an interest rate, with different maturities

and same strike:

E
[N∑
i=1

exp

(
−
∫ ti

0

Xsds

)
(Xti −K)+

∣∣∣∣F0

]
. (2.37)

What is left for us to do is to define the dynamics and transition probability distri-

butions of the asset price process Xt, so that the expectations can be computed. Our

attention now turns to the two main models of interest that we will later use as bench-

marks for the exact method: the JDCEV and AJD models.

2.5.2. JDCEV model

In this section, we describe the jump-to-default extended CEV (JDCEV) model, intro-

duced by Carr and Linestky in 2006 [11].

We say Xt is a CEV process if its dynamics follow the stochastic differential equation

dXt = rXtdt+ aXβ+1
t dWt, (2.38)

with r and σ positive parameters, and β ∈ R. The major feature of such model, introduced

by Cox in 1975 [13], is the existence of a local volatility function, and the elasticity

parameter β determines its relation with the state Xt. When β < 0, we observe the so

called leverage effect, where the volatility is inversely proportional to the spot price. In

commodity markets, however, it is usual to observe the inverse. Note that β = 0 yields

precisely the Black-Scholes model.

The JDCEV model goes a step further, modelling the evolution of the spot price of

e.g. a stock as a CEV process, including the possibility of a default by an instantaneous

jump to 0. Thus, assuming an affine jump (default) intensity function depending on the

volatility, in accordance with experimental data,

Λ(x) = b+ ca2x2β (2.39)

13

and jump size function ∆(x, z) = −x, with b ≥ 0, c ≥ 1
2
, the risk neutral dynamics

become

dXt = (r + Λ(Xt))Xtdt+ aXβ+1
t dWt + dJt, (2.40)

where r is the continuous interest rate and the extra term Λ(Xt)Xtdt compensates the drift

for the jump process Jt and ensures that our discounted stock price is still a martingale.

Note that if the stock pays a dividend yield q, compounded continuously, we can adapt

the model by simply replacing r with r − q.
This model is a clear candidate to test the sampling algorithm. On one hand, it

surprisingly allows rather analytical solutions: the theory of squared Bessel processes

allows us to solve the CEV component of the process, and conditioning on default or

no-default yields the complete solution, for European vanilla options at least. Thus, we

can directly check how accurate our results are.

On the other hand, the unbounded default intensity leaves the model outside the scope

of most Monte Carlo methods, which motivates the work of Giesecke and Smelov. Due

to the way we define the default intensity, inversely proportional to the stock price as we

only consider β < 0, it can be proven that 0 is attainable only through a jump.

Regarding its specification as a unit volatility process, we note that

F (x) =
X−β0 − x−β

aβ
(2.41)

for x ∈ (0,+∞) and F (0) = X−β0 /(aβ), so that

F−1(y) = (X0 − yaβ)−1/β. (2.42)

As before we had DX = [0,+∞), we have that DY = [X−β0 /(aβ),+∞). According to

(2.29) and (2.30), the drift coefficient becomes

µY (y) =
1

a
(r + b)(X−β0 − yaβ) + a

c− (β + 1)/2

X−β0 − yaβ
(2.43)

and the jump size function

∆Y (y, z) = F (0)− y. (2.44)

Finally, we have that

A(y) =
1

a
(r + b)

(
X−β0 y − y2

2
aβ

)
− c− (β + 1)/2

β
log

(
1− yaβXβ

0

)
. (2.45)

2.5.3. Affine Jump Diffusion models

In this section, we describe the affine jump diffusion interest rate models (or simply

AJD), first presented by Duffie [18], [17]. Under a risk-neutral specification, the short

rate process Xt satisfies the stochastic differential equation

dXt = κ(θ −Xt)dt+ σ
√
XtdWt + dJt, (2.46)

14

with positive parameters initial condition X0, mean θ, mean-reversion speed κ and volatil-

ity σ. The drift and diffusion terms of the equation form what is known as a Feller

diffusion, the same process that the volatility in the Heston model follows.

Furthermore, the jump intensity function is given by

Λ(x) = Λ0 + Λ1x. (2.47)

Note that the model obtains its name from the affine structure in both the drift, the

volatility and the jump intensity in terms of Xt. Finally, the jump size is simply

∆(x, z) = z, (2.48)

with z being sampled from a distribution of our choice, without much technical restriction.

A common choice is the exponential distribution, but the authors of [20] choose to follow

the approach of Zhou [38], where a uniform distribution in a small interval is considered

and the parameters are estimated from weekly observations of the US federal funds rate

between 1954 and 1999.

As for the specification under the exact method, the Lamperti transform of the AJD

process is

F (x) =
2(
√
x−
√
X0)

σ
, (2.49)

so that

F−1(y) =

(
σ

2
y +

√
X0

)2

(2.50)

As we previously had DX = (0,+∞), we now have DY = (−2
√
X0/σ,+∞) and the

drift function is given by

µY (y) =
4κθ − σ2

2σ2(y + 2
√
X0/σ)

− κ

2
(y + 2

√
X0/σ). (2.51)

Finally, the jump size function takes the form

∆Y (y, z) =
2

σ

[(
(
√
X0 + σy/2)2 + z

) 1
2

−
√
X0

]
− y (2.52)

and compute

A(y) =
4κθ − σ2

2σ2
log

(
1 + yσ/(2

√
X0)

)
− κ

2

(
y2

2
+ 2y

√
X0/σ

)
. (2.53)

15

CHAPTER 3

Monte Carlo methods

Monte Carlo methods (MCM) were first based on the correspondence between volume

and probability. Consider the quantity

α =

∫ 1

0

f(x)dx, (3.1)

for some integrable function f . If U is a random variable with uniform distribution in

the [0, 1] interval, then we can write the expression above as α = EP[f(U)]. As such, if

we generated n independent samples of U , (U1, ..., Un), by the central limit theorem, the

estimator

α̂ =
1

n

n∑
j=0

f(Uj), (3.2)

is asymptotically normally distributed, with mean α and standard deviation σU√
n
. While

the square-root convergence is relatively slow, making MCM inefficient in few variables,

it is in fact independent of the number of dimensions and allows for high-dimensional

numerical integration. This type of error bounds hold in general for most MCM.

Generating uniform random variables is the basis for Monte Carlo simulation. Even

though true random number generation is not possible, pseudo-random generators like

linear congruential generators work very well for most purposes, granted that their draw-

backs and lattice structure is taken into consideration. We refer to [21] for an extensive

treatment of such methods.

3.1. Bias and error

Let us explain possible origins of bias in Monte Carlo sampling.

Bias is a well known phenomenon in statistical theory. Recall first that an estimator

of an unknown parameter θ, which may be, for instance, the mean or standard deviation

of a distribution, is a function θ̂ = θ̂n = θ̂(X1, ..., Xn) of n samples of our true random

variable X that somehow allows us to infer the value of θ, with increasing accuracy as n

grows to infinity. We are being intentionally vague, as this ’definition’ encompasses many

different estimation methods, and we may omit the dependency in n.

More precisely, we say that an estimator is centered if

E[θ̂] = θ, (3.3)

and it is biased if this does not hold. An estimator is asymptotically centered if

lim
n→+∞

E[θ̂n] = θ. (3.4)

17

The main causes of bias are non-linearity and approximation errors. While the latter

may come, for instance, from the discretization of integrals, which comes up when dealing

with stochastic interest rate models, people are usually more familiar with the former.

Suppose that X is a normal random variable with standard deviation σ and mean zero,

for the sake of simplicity. As usual, consider the following estimator for the variance σ2

σ̂2 =
1

n

n∑
k=1

X2
n, (3.5)

which is centered. However, if we wish to estimate the standard deviation itself, we

already have a bias, as a consequence of Jensen’s inequality:

E[σ̂] = E
[√√√√ 1

n

n∑
k=1

X2
n

]
≤

√√√√E
[

1

n

n∑
k=1

X2
n

]
= σ. (3.6)

In this ’toy’ example, we know that the bias can be corrected by a factor of
√

n
n−1

, but we

are not so lucky in most situations. We refer to [34] for more information on this topic,

as our goal with exact sampling is to avoid these computations entirely.

In general, our measurement of error will be the root mean square error (RMSE),

defined as

RMSE =
√
SE2 +Bias2, (3.7)

with SE, the standard error of the sample, being the standard deviation of the sample

output divided by the square root of the number of trials.

3.2. General sampling

In this section, the two most general techniques for generating samples from given distri-

butions are presented, assuming we can generate a sequence U1, U2, ..., of i.i.d. standard

uniform random variables - most MCM can be broke down up to this point.

We begin with the inverse transform method. Recall that an α-quantile of a distri-

bution is the value xα such that P[X ≤ xα] = α. Under suitable assumptions, it is easy

to see that xα = F−1(α). By definition, the sample quantiles are uniformly distributed -

that is, the probability that a sample is less then the α-quantile is exactly α.

Formally, let U be a uniform random variable and Y := F−1(U). We then compute

P[Y ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F (x)] = F (x) (3.8)

and the proposition below follows:

Proposition 3.2.1. (Inverse transform method) Suppose U ∼ U(0, 1), F (x) = P[X ≤
x] for some random variable X, and let Y = F−1(U). Then we have that P[Y ≤ x] =

F (x), that is, Y has the same distribution as X.

Thus, if we know the distribution of X, and we can invert it (even if numerically),

then we can generate samples of X. The applications are immediate. For instance, if we

18

consider the exponential distribution, that is,

P[X ≤ x] = 1− e−λx, (3.9)

then the inverse transform yields

X = −1

λ
log(1− U). (3.10)

For discrete distributions, the method is even simpler, since no inversion is needed

and we only need to lookup the table of discrete values of F .

One benefit of this approach is that it also allows us to sample from conditional

distributions. By setting V = F (a) + (F (b)−F (a))U , the inverse transform on V has the

same distribution as X ∼ F , conditional on a < X ≤ b.

The second technique, which we will make the most use of, is called the acceptance-

rejection method, and allows us to sample from a given distribution by sampling from

another one, hopefully less complex, rejecting a random subset.

Let f be the density we want to sample from, defined in some Ω, and g be such

that f(x) ≤ cg(x), ∀x ∈ Ω, for some constant c. The idea is as follows: we start by

sampling from the ’larger’ distribution - the inequality assures us that we can re-scale

the distributions such that g is always ’more likely’. We can then turn to point-wise

comparison, and use the ratio f(X)/cg(X) ≤ 1 as a measure of how likely it is that our

initial sample X from g is a sample from f . In practice, we can proceed as follows

Algorithm 1: Acceptance/Rejection

Result: Generates X from f

1 while no sample is accepted do

2 Sample X from g;

3 Sample U ∼ U(0, 1);

4 if U ≤ f(X)/cg(X) then

5 Accept X as a sample from f ;

6 else

7 Reject X;

The following proposition assures us that this method returns a sample from the

required distribution.

Proposition 3.2.2. Let Y be the sample returned by the acceptance-rejection algo-

rithm. Then Y ∼ f .

Proof. Given an event A, we first observe that

P[Y ∈ A] = P[X ∈ A|U ≤ f(X)/cg(X)] =
P[X ∈ A,U ≤ f(X)/cg(X)]

P[U ≤ f(X)/cg(X)]
(3.11)

and

P[U ≤ f(X)/cg(X)] =

∫
Ω

f(x)

cg(x)
g(x)dx =

1

c
. (3.12)

19

Combining both equations, we have that

P[Y ∈ A] = cP[X ∈ A,U ≤ f(X)/cg(X)] = c

∫
A

f(x)

cg(x)
g(x)dx =

∫
A

f(x)dx (3.13)

which proves that Y has f as its density. �

3.3. Sampling from specific distributions

As we have saw in equation (3.10), we already know how to sample directly from an

exponential distribution. While logarithms are computationally expensive and should in

general be avoided, since the sample is immediate we will not be concerned about this.

However, most distributions do not allow for fast inversion, and we need alternative

methods, adapted to the density in question. This is a very deep topic with immense

material for discussion, so we will discuss only some of the most common methods.

3.3.1. Normal distribution

We first consider the normal distribution, which is effectively one of the building blocks

of financial simulation. Given that we have an expression for its density, there are a

wide variety of methods relying on both techniques shown previously. However, specific

methods available for this distribution are usually more efficient, as is the case of the

Box-Müller method:

Algorithm 2: Box-Müller method

Result: Z1, Z2 i.i.d. standard normal random variables

1 Generate independent uniform random variables U1, U2 ∼ U(0, 1);

2 Set Z1 =
√
−2 logU1 sin(2πU2), Z2 =

√
−2 logU1 cos(2πU2).

Another slightly better alternative is Marsaglia’s polar method, which avoids the com-

putation of the sine/cosine transcendental functions and essentially adapts the Box-Müller

method with acceptance-rejection on the unit square.

In practice, however, we will make use of the Numpy package in Python to generate

Gaussian samples with the polar method, as its implementation favours efficiency. One

could, in theory, implement even faster Gaussian generators with adaptions of the Ziggurat

algorithm, which we will not discuss. We refer to [31] for an overview on the topic.

3.3.2. Gamma distribution

One other distribution worth focusing on is the Gamma distribution, and generating

samples is much more involved in this case. As before, we will make use of the Numpy

package to generate Gamma distributed random variables, but we will briefly discuss how

this can be implemented.

First, recall that a random variable X is said to be Gamma distributed with shape

parameter α > 0 and rate parameter β (or equivalently a scale parameter θ = 1/β) if its

probability density function is given by

ρ(x;α, β) :=
βαxα−1e−βx

Γ(α)
(3.14)

20

By the scaling property of the Gamma distribution, we only need to focus on the

standard case. That is, given β > 0 and X ∼ Gamma(α, 1), then 1
β
X ∼ Gamma(α, β).

Now, let α = n+ δ, with n an integer and 0 < δ < 1.

If Uk is uniformly distributed in [0, 1], then − logUk is Gamma(1, 1) (or, equivalently,

standard exponential) distributed. By the additive property, we have that

−
n∑
k=1

logUk ∼ Gamma(n, 1). (3.15)

Thus, what is left for us to generate is a sample of Gamma(δ, 1), which is considerably

harder. For this purpose, we can use acceptance-rejection via the Ahrens-Dieter method

[1].

Algorithm 3: Ahrens-Dieter acceptance-rejection method

Result: ξ Gamma(δ, 1)-distributed

1 Generate independent uniform random variables U, V,W ∼ U(0, 1);

2 if U ≤ e
e+δ

then

3 Set ξ = V 1/δ, η = Wξδ−1;

4 else

5 Set ξ = 1− log V , η = We−ξ;

6 if η > ξδ−1e−ξ then

7 Return to step 1;

8 Return ξ.

Overall, we then have that

1

β

(
−

n∑
k=1

logUk + ξ

)
∼ Gamma(n+ δ, β). (3.16)

3.4. Brownian sampling

As we saw that Wt−Ws ∼ N (0, |t− s|), sampling the path of a Brownian motion can be

reduce to simply sampling from a normal distribution.

A closely related and more complicated process of interest is the Brownian bridge Bt

on [0, T], defined by

Bt := (Wt|WT = 0). (3.17)

In essence, it is a Brownian motion that begins and ends at 0, and it admits several

representations in terms of paths of Brownian motions, reducing the problem of sampling

from a Brownian bridge to sampling from a normal distribution. In particular, we have

that

Bt = Wt −
t

T
WT . (3.18)

Thus, if we need to generate values of a Brownian bridge along several points, we only

need to simulate a Brownian path and apply the transformation above.

21

3.4.1. Exit times

Consider the exit time τ := inf{t : |Wt| = 1}. Note that, by property (2.1), we can

re-scale our Brownian motion, with τθ
d
= θ2τ , and do not lose any generality.

Burq and Jones [10] show, using the Laplace transform and the martingale stopping

theorem, that the density h(t) of τ is given by

h(t) :=
e−

1
2t

√
2πt3

+
+∞∑
j=1

(−1)j√
2πt3

[
(2j + 1) exp

(
− (2j + 1)2

2t

)
− (2j − 1) exp

(
− (2j − 1)2

2t

)]
,

(3.19)

and we can use acceptance/rejection to sample from it, as it is bounded above by a

Gamma distribution:

h(t) ≤ ag(t; b; γ) :=
aγb

Γ(b)
tb−1e−γt, (3.20)

with Γ being the Gamma function, a = 1.243707, b = 1.088870 and γ = 1.233701.

Thus, we sample ν from g(t; b; γ) and accept it as from τ if, given U ∼ U(0, 1):

aUg(ν; b; γ) ≤ h(ν). (3.21)

We cannot explicitly compute the value of h(ν) as it is defined as an infinite sum. How-

ever, due to the oscillating nature of the sum, Burk and Jones proved that, if aUg(ν; b; γ) <

hn+1(ν) < hn(ν) for some n, then aUg(ν; b; γ) < h(ν), where hn denotes the n-th partial

sum. Analogously, if aUg(ν; b; γ) > hn+1(ν) > hn(ν), then aUg(ν; b; γ) > h(ν).

A sequence an is called oscillating if there exists a positive N such that, for i ≥ N ,

0 < −ai+1 − ai
ai − ai−1

< 1. (3.22)

Granted that the partial sums satisfy this relation, the condition to terminate the sum

early follows. The authors also concluded that only a finite number of terms has to be

computed to determine this N .

3.4.2. Brownian meanders

Suppose now we have sampled an exit time τ and correspondingly Wτ , which is just θ or

−θ with equal probability, and wish to sample for a value of Wt, with t < τ , conditional

on (τ,Wτ). As τ is the first time the Brownian process hits ±θ, we want to sample from a

Brownian process that stays away from θ until τ . For this purpose, consider the following

definition:

Definition 3.4.1. Let τ ′ := sup{t ∈ [0, 1] : Wt = 0} be the last time before t = 1

when Wt visits 0. A Brownian meander W+
t is defined by:

W+
t :=

1√
1− τ ′

|Wτ ′+t(1−τ ′)|. (3.23)

In essence, a Brownian meander results from ignoring the trajectory before τ ′, the

last time the Brownian walk hits 0, and re-scaling the remaining part. Thus, W+
t is a

22

Brownian walk that stays away from 0. Transition density functions are known for this

process, but we will not focus on them.

Williams [37] shows that, given (τ,Wτ), Wt behaves like a time-reversed Brownian me-

ander, while Imhof [26] proves that a Brownian meander can be decomposed as a function

of 3 independent Brownian bridges over [0, τ]. We will follow the acceptance/rejection

approach described in Chen and Huang [12], where they make use of both of these facts.

Again, by the re-scaling property of Brownian motion (2.1), we will consider the case

where θ = 1, and τ1 is the corresponding hitting time. Now, given (τ1,Wτ1), let

Vt :=

1−Wτ1−t, if Wτ1 = 1

1 +Wτ1−t, if Wτ1 = −1
(3.24)

and

Bt :=
√

(t/τ1 +B1
τ1−t)

2 + (B2
τ1−t)

2 + (B3
τ1−t)

2, (3.25)

the decomposition suggested by Imhof, with Bi
t three independent Brownian bridges.

Chen and Huang show that the likelihood ratio between these two variables satisfies

P(Vt1 ∈ dy1, ..., Vtn ∈ dyn|τ1,Wτ1)

P(Bt1 ∈ dy1, ..., Btn ∈ dyn)
∝

n∏
i=1

p(ti, yi; ti+1, yi+1)q(t1, y1)1(0,2)(yi), (3.26)

with

p(s, x; t, y) :=
1−

∑+∞
j=1(θj(s, x; t, y)− ϑj(s, x; t, y))

1− exp(−2xy/(t− s))
, (3.27)

q(s, x) = 1− 1

x

+∞∑
j=1

(ρj(s, x)− %j(s, x)), (3.28)

and

θj(s, x; t, y) := exp

(
− 2(2j − x)(2j − y)

t− s

)
+ exp

(
− 2(2(j − 1) + x)(2(j − 1) + y)

t− s

)
,

(3.29)

ϑj(s, x; t, y) := exp

(
− 2j(4j + 2(x− y))

t− s

)
+ exp

(
− 2j(4j − 2(x− y))

t− s

)
, (3.30)

ρj(s, x) := (4j − x) exp

(
− 4j(2j − x)

s

)
, (3.31)

%j(s, x) := (4j + x) exp

(
− 4j(2j + x)

s

)
. (3.32)

23

As discussed in the previous section, the authors take advantage of the oscillating

nature of these sums in order to perform the required acceptance test with a finite number

of summands, under the same condition as before, and prove that this can be done with

probability one. With these facts in mind, the algorithm for sampling (Wt1 , ...,Wtn) given

(τ,Wτ) can be stated as:

Algorithm 4: Brownian meander sampling

Result: Skeleton (Wt1 , ...,Wtn) given (τ,Wτ)

1 while no skeleton is accepted do

2 Sample τ1 as in section 3.4.1, and Wτ1 , P(Wτ1 = 1) = P(Wτ1 = −1) = 1
2
;

3 Sample (Bi
t1
, ..., Bi

tn)i=1,2,3, independent Brownian bridges from 0 to 0 on

[0, τ1], as in section 3.4;

4 Transform these samples into samples of (Bτ1−t1 , ..., Bτ1−tn);

5 if

Uj ≤ p(τ1 − tj, Bτ1−tj , τ1 − tj+1, Bτ1−tj+1
), 1 ≤ j ≤ n (3.33)

Un+1 ≤ q(τ1 − tn, Bτ1−tn). (3.34)

then

6 Accept (Bτ1−t1 , ..., Bτ1−tn) as a sample of (Vτ1−t1 , ..., Vτ1−tn);

7 Transform Vτ1−t to Wt, and re-scale by θ;

8 else

9 Reject the proposal skeleton;

One might ask if we could not simply sample Brownian paths and reject those that

cross the intended boundary. While this method would certainly yield Brownian mean-

der paths, it does not do so with the right frequency or probability and is biased. To

understand why we need a more convoluted method, picture a Brownian bridge which we

sample at discrete times and suppose that at two consecutive instants it is close to the

barrier. While our sample is an exact sample of the Brownian path at these points, we

have no information about what happens between them, and there is a small probability

that it did cross the barrier in the meanwhile. An acceptance-rejection scheme is thus

needed, so that we reject the right amount of paths that are ’too close’ to the barrier.

3.5. Jump process sampling

Since the Poisson process has independent increments, inter arrival times are independent

and exponentially distributed with parameter λ. Thus, we can sequentially generate ar-

rival times by sampling the increments, using, for instance, the inverse transform method.

If, however, we want to sample from non-homogeneous or even doubly stochastic

Poisson processes, we can still do this exactly through a so called thinning procedure.

Thinning a Poisson process refers to classifying each random point independently, into

one of a finite number of different types. The random points of a given type also form

Poisson processes, and these processes are independent. We call Ñt a p-thinning of Nt

24

if points from Nt are accepted with probability 0 < p < 1. In general, the following

proposition holds:

Proposition 3.5.1. Let Nt be a Poisson process with intensity λ > 0 and Ñt be the

p-thinning of Nt. Then, Ñt is a Poisson process with intensity λp.

This fact can be proven using generating functions, and more general versions hold

analogously when p is either a deterministic function or an adapted process. We omit the

proof and statements here, which can be found in [28].

We may proceed as follows. Let Vt be a doubly stochastic Poisson process with inten-

sity λt, satisfying 0 ≤ λt ≤ λ, for all t a.s.. We obtain the samples of jump times of Vt by

first sampling jump times τj of a Poisson process with intensity λ, and accepting/rejecting

each one with probability equal to the ratio λτj/λ.

It is important to remind ourselves that this method relies on a boundedness assump-

tion over the jump rates, which is a barrier we will overcome later.

3.6. Discretization methods for stochastic differential equations

Discretization methods approximate the evolution of a stochastic process over a discrete

grid, considering small increments instead of continuous integration. Instead of develop-

ing general approximation theory for stochastic differential equations, we will focus on

particular methods for the two models described before in section 2.5.

3.6.1. Discretization of the JDCEV model

To approximate the stochastic differential equation (2.40) over an interval [0, T], we first

consider a discrete time grid of N segments of length h = T
N

.

Before a jump time, the evolution of the process is described only by the diffusive

and drift terms of the equation. By integrating the equation over a small time step and

approximating the integrals up to first order, we obtain a first order approximation of the

diffusion equation:

X̂i+1 = X̂i + (r + Λ(X̂i))X̂ih+ aX̂β+1
i Ni, (3.35)

with X̂ being our estimator, and {Ni}i a sequence of i.i.d. N (0, h) random variables, for

i ∈ {0, ..., N − 1}.
Higher order methods may be obtained by interpolating the integrals over a larger

number of points, which may also lead into implicit methods. We will not discuss them

here, and refer to [23] for an exposition.

We now need to determine the jump time. By discretizing the compensator of the

jump process

Ct =

∫ t

0

Λ(Xs)ds (3.36)

up to first order, we obtain the estimator

Ĉi+1 = h
i∑

k=0

Λ(X̂k). (3.37)

25

Thus, recalling section 2.2, we can sample an independent standard exponential random

variable E , and take as a jump time the index i when we first have E ≤ Ĉi+1. However,

as the process hits 0 only through default, we have to avoid negative values and take the

moment the process turns negative through diffusion as a jump time.

We can then write our estimate for the first jump time as

T̂1 = inf{ih : E ≤ Ĉi+1} ∧ inf{ih : X̂i+1 ≤ 0}. (3.38)

Note that a jump implies the default of the firm and the value stays at 0 from then on.

3.6.2. Discretization of the AJD model

Previously, we did not need to pay much attention to the positivity of the process, as

the process ’died’ when reaching 0. However, to simulate the AJD model we need to be

careful about how we ensure that the process stays positive, and there are several issues

to address.

Discretizing as before, we could obtain the following scheme

X̂i+1 = X̂i + κ(θ − X̂i)h+ σ

√
X̂iNi. (3.39)

Unfortunately, our estimator X̂i can turn negative with positive probability, and it would

leave the next time step undefined. A good first step to take is avoiding the negative

square root by substituting X̂+
i for X̂i, with X̂+

i := max(0, X̂i).

Once again, there is still a positive probability that the estimator turns negative, even

though it will deterministically drift up afterwards. Due to the affine structure of the jump

intensity, this may lead to negative intensities, which is not well defined. Resampling when

we get negative values is not helpful eather, as that introduces more bias, and a simple

approach is to take Λ(x) = Λ0 + Λ1x
+.

One final substitution leads us to the scheme

X̂i+1 = X̂i + κ(θ − X̂+
i)h+ σ

√
X̂+
i Ni. (3.40)

In the context of the Heston model, where the volatility process follows a Feller diffusion

equal to the AJD model, Lord et al. [30] observe that (3.40) leads to the smallest

discretization error among several other schemes, reliant on truncating or reflecting the

process to deal with negative values, and converges strongly as well.

To avoid all the nuances above, one might settle for an alternative first order scheme

such as

X̂i+1 =

[
(1− κh/2)

√
X̂i +

σNi
2(1− κh/2)

]2

+ (kθ − σ2/4)h, (3.41)

which ensures positivity and converges strongly if 4kθ > σ2 and kh 6= 2, or even a second

order one, for higher precision:

X̂i+1 = e−κh/2
{(

(θκ− σ2/4)
1− e−κh/2

κ
+ e−κh/2X̂i

) 1
2

+
σNi

2

}2

+ (κθ− σ2/4)
1− e−κh/2

κ
.

(3.42)

26

Both of these methods were introduced by Alfonsi [2], [3], which we refer to for in depth

details related to the derivation.

The jump times may be treated using the compensator method described before, and

we need only to re-sample a mark variable E and reset the compensator after jumping.

Interest rate models and related payoffs also may force us to compute the time-

integrated exponential of the process,

exp

(∫ T

0

Xtdt

)
. (3.43)

For this purpose, we will approximate

∫ T

0

Xtdt using the trapezoidal rule, a second order

method of numerical integration, given by∫ T

0

Xtdt ≈
N−1∑
n=0

XnT/N +X(n+1)T/N

2
. (3.44)

27

CHAPTER 4

Building up the algorithm

This chapter presents step by step, alongside [20], how to sample from jump diffusions

via a rejection sampling mechanism, with increasing complexity until we meet the full

generality of section 2.4. Our objective is to generate samples of a skeleton Σ of the

process,

Σ = ((Xt)t∈S, (Nt, Jt)t∈S, ξ ∧ T,Xξ∧T), (4.1)

with T > 0 being the time horizon, S a set of fixed times up to T and ξ an exit time. If

our samples are exact - that is, do not rely on approximations or ’cheat’ non-linearities,

we will also have unbiased Monte Carlo estimates of expectations

V = E[v(Σ)], (4.2)

for some function of interest v. Note that this encompasses cases where V is a statistic of

our process, the value of a contingent claim or probability of default. This method also

allows for unbiased estimation of more general expectations of the form

E
[

exp

(
−
∫ T

0

Xsds

)
u(Σ)

]
, (4.3)

which are of interest in credit rates and fixed-income securities.

Our goal for this chapter is to make it clear how on each step the difficulties arising

from relaxed assumptions are handled.

4.1. Rejection sampling for diffusions

We now begin building the acceptance/rejection mechanism that will allow us to draw

exact samples from the jump diffusion, by first presenting a method for obtaining exact

samples of YT , when Yt is a unit-volatility diffusion with no jumps.

Let

A(y) :=

∫ y

0

µY (s)ds, (4.4)

and consider the proposal density g(y) := exp(A(y)− y2/2T)/C, with

C :=

∫ +∞

−∞
exp(A(y)− y2/2T)dy < +∞, (4.5)

under suitable assumptions on µY . Suppose as well that µY satisfies Novikov’s condition,

that is

E
[

exp

(
1

2

∫ T

0

µ2
Y (Wt)dt

)]
< +∞. (4.6)

Beskos and Roberts [6] show that, under the conditions stated above, g(y) satisfies

29

fYT (y)

g(y)
∝ E

[
exp

(
−
∫ T

0

φ(Ws)ds

)∣∣∣∣WT = y

]
:= H(y), (4.7)

with

φ(y) :=
1

2
(µ′Y (y) + µ2

Y (y)). (4.8)

While we might have no tools to compute the transition density fYT , since the ratio

satisfies H(y) ≤ 1, after generating a sample Y from g, we can then accept or reject it

based on a Bernoulli random variable with probability H(Y) to obtain a sample from f .

The expectation is not straightforward to compute, and trying to numerically compute the

integral will lead to biased results. However, this can be avoided by a clever interpretation

of this value.

Consider a doubly stochastic Poisson process Vt, with intensity φ(Wt), assuming φ ≥ 0.

It is clear that

P[VT = 0|WT = y] = E
[

exp

(
−
∫ T

0

φ(Ws)ds

)∣∣∣∣WT = y

]
= H(y). (4.9)

The required Bernoulli indicator can then be generated by sampling jump times of Vt

conditioned on WT = Y , and accepting the sample if no jump occurs before the instant

T . We will see later that this method is also valid under more general assumptions on φ.

Even though the sampling of arrival times for a doubly stochastic Poisson process is

itself another challenge, this can be done exactly if 0 ≤ φ(x) ≤ λ for some constant λ, by

thinning a Poisson process with intensity λ, as we explained in section 3.5.

Candidate arrival times ν are then accepted with probability φ(Wν)/λ, with Wν sam-

pled from a Brownian bridge with endpoint WT = Y .

Summarizing, the algorithm for generating exact samples of YT can be stated as:

Algorithm 5: Diffusion sampling

Result: Generates YT from fYT
1 while no sample is accepted do

2 Sample Y from g;

3 Generate candidate jump times ν1, ..., νl < T from a Poisson process with

intensity λ;

4 Sample (Wν1 , ...,Wνl) from a Brownian bridge with endpoint WT = Y ;

5 Set i = 1;

6 while i ≤ l do

7 Generate U ∼ U(0, 1);

8 if U ≤ φ(Wνi)/λ then

9 Accept νi as a jump time and reject Y as a sample from fYT ;

10 else

11 Set i = i+ 1;

12 Accept Y as a sample from fYT .

30

4.2. Localization

The previous section is built upon the assumptions of boundedness for µY and φ, and

Novikov’s condition, which are quite stringent and limit the scope of models suitable for

the algorithm. In order to lift these restrictions, Chen and Huang [12] have developed

a localization technique, which has much milder conditions on local boundedness and

integrability.

The idea is as follows: instead of trying to sample for the horizon T , we will decompose

the range of Y into bounded segments, ensuring that no explosion occurs. Sampling for

exit times using the acceptance/rejection mechanism developed previously is possible with

minor changes to the algorithm. This is one of the most versatile insights provided, as

it vastly simplifies the treatment of, for instance, barrier options, as hitting times are

obtained directly.

To illustrate, we present the steps for the first segment, as the process can be continued

with simple adjustments. We first choose the level to consider, selecting θ > 0 such that

[−θ, θ] ⊂ int DY , and consider the exit time ζ := inf{t > 0 : |Yt| > θ}. Further details

about level selection can be found in section 5.1, which develops on the relation between

this choice and performance.

Our goal is then to generate the pair (ζ, Yζ) via an appropriate acceptance-rejection

mechanism. For this purpose, we will consider now a proposal Brownian pair (τ,Wτ),

with τ := inf{t > 0 : |Wt| > θ}. By the symmetry of Brownian motion, we have that

Wτ is either θ or −θ with equal probability, while τ can be generated by the method we

present in section 3.4.1.

The required likelihood ratio can be derived by means of Girsanov’s theorem, as this

gives us the weight under which our diffusion Yt is a Brownian motion. We will not develop

the details here and instead provide the formula for this ratio, leaving the computations

to be carried out later on for the general case:

exp(A(Wτ))E
[

exp

(
−
∫ τ

0

φ(Ws)ds

)∣∣∣∣τ,Wτ

]
. (4.10)

Once again, assuming φ > 0, we can think of the expectation as the probability that

no arrivals occur until time τ for a Poisson process with intensity φ(Wt), given τ and Wτ ,

and we can use a thinning method as before.

Thus, a proposal pair (τ,Wτ) is accepted as a sample of (ζ, Yζ) if no arrivals of Vt

occur during the interval [0, τ], and if U < exp(A(Wτ))/K, with U uniformly distributed

in [0, 1].

Once a proposal pair is accepted, we select a new level θ, this time such that [Yζ −
θ, Yζ + θ] ⊂ int DY and repeat the previous steps. We continue until τ ≥ T , where we

will instead consider a proposal pair (τ,WT) for (ζ, YT), with likelihood ratio

exp(A(WT))E
[

exp

(
−
∫ T

0

φ(Ws)ds

)∣∣∣∣τ,WT

]
. (4.11)

31

4.3. Extension to jump diffusions

The extension of the algorithm to diffusions with jumps is based on the following obser-

vation:

Lemma 4.3.1. Let Ȳt be a solution of

dȲt = µY (Ȳt)dt+ dWt, (4.12)

and let T1 be the first jump time of Yt. Then Ȳt
d
= Yt for 0 ≤ t < T1. Additionaly, we

have that

YT1 = ȲT1 + ∆Y (ȲT1 , Z1). (4.13)

Define ζ := inf{t ≥ 0 : |Ȳt| ≥ θ}. If ζ < T1, then Yζ and Ȳζ are equal in distribution,

and we can sample directly from Ȳ instead. On the other hand, if a jump occurs before

ζ, equation (4.13) allows us to compute YT1 from ȲT1 . Thus, we only need to be more

incisive on the sampling of jump times.

Suppose we generated pair (τ,Wτ), with τ ≤ T , for some level θ, as in section 4.1.

To determine if a jump occurs before τ , we use the same thinning argument as we did in

section 4.2.

By localizing as before, we guarantee the existence of λ > 0 such that Λ(F−1(y)) ≤ λ

for all y ∈ [−θ, θ], as Λ is assumed locally bounded. Thus, we can generate candidate

jump times ν1, ν2, ..., νa from a Poisson process with intensity λ, and accept a candidate

νn with probability Λ(F−1(Wνn))/λ, with Wνn drawn from a Brownian meander given

(τ,Wτ).

If no jump time is accepted, we generated a skeleton (τ,Wν1 , ...,Wνa ,Wτ); otherwise, if

νl is the first jump time, we consider (νl,Wν1 , ...,Wνl) instead. These skeletons, composed

of multiple frames, fall outside of the scope of the previously presented acceptance tests,

and we show on the next section how one such test can be derived.

4.4. Acceptance test for Brownian skeletons

As the acceptance test we want to derive has Brownian paths as candidates, we are

interested in the likelihood ratio between the true measure and a martingale measure.

We will consider the more general scenario where, fixing Ys = y for some s ≥ 0, we

want to sample Ȳt, from t = s up to the exit time of the interval [y − θ, y + θ]. For

simplicity sake, we take DY = [y,+∞) for some y, θ is such that y < y − θ and the

exit time is ζ := inf{t ≥ 0 : |Ȳt − y| ≥ θ}. Notice that, for u ∈ [s, t ∧ ζ], we have that

Ȳu ∈ [y − θ, y + θ] ⊂ DY . Thus, by the local boundedness of µY , there is MY > 0 such

that |µY | ≤MY in this interval.

In order to illustrate the usefulness and versatility of Girsanov’s theorem, we need to

endure some more formality. Let (F̄t)t≥0 be the filtration generated by Ȳt, and let P̄ =

P̄(y;s,t) be the probability measure induced by {Ȳu∧ζ , s ≤ u ≤ t∧ ζ} on the stopped sigma-

algebra F̄t∧ζ . By Girsanov’s theorem, there exists an equivalent measure Q = Q(y;s,t)

under which {Ȳu∧ζ , s ≤ u ≤ t ∧ ζ} is the path of a standard Brownian motion.

32

In fact, consider the supermartingale Zt, defined by

Zt = exp

(
−
∫ t∧ζ

s

µY (Ȳu)dWu −
1

2

∫ t∧ζ

s

µ2
Y (Ȳu)du

)
. (4.14)

Again, by the local boundedness assumption, Zt > 0 almost surely and Novikov’s

condition (2.1.1) holds, since

E
[

1

2
exp

(∫ t

s

µ2
Y (Ȳu)du

)]
≤ exp

(
1

2
M2

Y (t− s)
)
< +∞, (4.15)

and we conclude that Zt is indeed a martingale. Now let Q be the equivalent measure to

P̄ defined by dQ = ZtdP̄. By Girsanov’s theorem, the process

W̄Q
t∧τ̄ = Wt∧ζ +

∫ t∧ζ

s

µY (Ȳu)du = Ȳt∧ζ (4.16)

is a standard Brownian motion under Q, started at W̄Q
s = Ys = y, and with

τ̄ = inf{t ≥ s : |W̄Q
t − y| ≥ θ} = ζ. (4.17)

Thus, Q is exactly the martingale measure we were looking for.

Now let B ∈ F̄t∧ζ . Since
dP̄
dQ

=
1

Zt
, (4.18)

we have that

P̄(B) = EP̄[1B] = EQ
[
1B

1

Zt

]
= EQ

[
1

Zt

∣∣∣∣B]Q(B), (4.19)

giving us
P̄(B)

Q(B)
= EQ

[
1

Zt

∣∣∣∣B]. (4.20)

What is left for us to compute is an expression for 1/Zt in terms of W̄Q
t∧ζ , as this is what

we will be sampling first.

From equation (4.16), we have

1

Zt
= exp

(∫ t∧τ̄

s

µY (W̄Q
u)(dW̄Q

u − µY (W̄Q
u)du) +

1

2

∫ t∧ζ

s

µ2
Y (W̄Q

u)du

)
(4.21)

= exp

(∫ t∧τ̄

s

µY (W̄Q
u)dW̄Q

u −
1

2

∫ t∧τ̄

s

µ2
Y (W̄Q

u)du

)
. (4.22)

The stochastic integral against dW̄Q
u poses another challenge, as it is not easily com-

putable. However, by applying Itô’s lemma to A(W̄Q
t∧τ̄), again with A(y) =

∫ y

0

µY (u)du,

we notice that

dA(W̄Q
t∧τ̄) =

1

2
µ′Y (W̄Q

t∧τ̄)dt+ µY (W̄Q
t∧τ̄)dW̄

Q
t∧τ̄ , (4.23)

from which we derive

A(W̄Q
t∧τ̄) = A(W̄Q

s∧τ̄) +

∫ t∧τ̄

s

µY (W̄Q
u)dW̄Q

u +
1

2

∫ t∧τ̄

s

µ′Y (W̄Q
u)du. (4.24)

33

Finally, with φ defined as in equation (4.8), we have

1

Zt
= exp

(
A(W̄Q

t∧τ̄)− A(W̄Q
s)−

∫ t∧τ̄

s

φ(W̄Q
u)du

)
. (4.25)

By the translation property, WQ
t := W̄Q

t − y is also a Brownian motion under Q,

starting at WQ
s = 0, and τ = inf{t ≥ s : |WQ

t | ≥ θ} = τ̄ holding almost surely. We have

then proved the following:

Proposition 4.4.1. Suppose Xt is a jump diffusion satisfying the assumptions de-

scribed in section 2.4. Then, for any event B ∈ F̄t∧ζ we have the formula

P̄(B)

Q(B)
= EQ

[
exp

(
A(y +WQ

t∧τ)− A(y)−
∫ t∧τ

s

φ(y +WQ
u)du

)∣∣∣∣B], (4.26)

with WQ
t being a Brownian motion under Q starting at WQ

s = 0, and τ = inf{t ≥ s :

|WQ
t | > θ}.

As in section 4.3, suppose we have generated either a skeleton (τ,Wν1 , ...,Wνa ,Wτ),

if τ > νl, or (νl,Wν1 , ...,Wνl) otherwise. By letting η = min{τ, νl, T − s}, we can just

write (η,Wν1 , ...,Wη) for the proposal skeleton, and our target skeleton is now (η, Yν1 −
Ys, ..., Ys+η− − Ys). By the previous proposition, the likelihood ratio between our pair is

proportional to

L := exp(A(Ys +Wη))E
[

exp

(
−
∫ η

0

φ(Ys +Wu)du

)∣∣∣∣η,Wν1 , ...,Wη

]
, (4.27)

where the expectation can again be interpreted as a probability of no arrivals. This re-

quires that φ > 0; however, we can ignore this restriction by rescaling. By our assumptions

on the coefficients, φ(y) is bounded in [Ys− θ, Ys + θ], and a minimum m and a maximum

M exist. Thus, we can instead consider

L = exp(A(Ys +Wη)) exp(−mη)E
[

exp

(
−
∫ η

0

(φ(Ys +Wu)−m)du

)∣∣∣∣η,Wν1 , ...,Wη

]
.

(4.28)

This factorization of the likelihood vastly simplifies the rejection sampling. Notice that

we can interpret it as three independent Bernoulli events. First, as we have

0 ≤ φ(Ys +Wu)−m ≤M −m, (4.29)

we can use the same previously used thinning principle to avoid computing the expecta-

tion, and reject the sample if arrivals do occur. Additionally, as the other two factors are

bounded by K := maxu∈[−θ,θ] exp(A(Ys + u)) and S := max{exp(−m(T − s)), 1}, we can

directly generate the three Bernoulli variables with the required probabilities.

34

4.5. General algorithm for jump diffusion sampling

We are now in conditions of stating the general sampling algorithm for a one-dimensional

jump diffusion Yt. Suppose its domain is DY = (y, ȳ).

Algorithm 6: Jump Diffusion sampling

Result: Generates YT from a unit-volatility jump diffusion

1 Set n = 1, y = Y0 = 0, s0 = 0;

2 while sn < T do

3 Choose θn > 0 such that y + θn < y < ȳ − θn;

4 Generate τ = inf{t : |Wt| ≥ θn};
5 Choose λ > 0 such that λ > Λ(F−1(y + z)), for |z| ≤ θn;

6 Generate jump times ν1 < ... < νa ≤ τ ∧ (T − sn−1) of a Poisson process with

rate λ;

7 Generate jump times κ1 < ... < κb ≤ τ ∧ (T − sn−1) of a Poisson process with

rate M −m, with M and m being the maximum and the minimum of

φ(y + z), |z| ≤ θn;

8 Sample (Wν1 , ...,Wνa ,Wκ1 , ...,Wκb ,Wτ ,Wτ∧(T−sn−1));

9 Set i = 1;

10 while i ≤ a do

11 Draw Ui ∼ U(0, 1);

12 if Ui ≤ Λ(F−1(y +Wνi))/λ then

13 Set l = i;

14 Leave while loop;

15 else

16 Set i = i+ 1;

35

(17)

(18) if i = a+ 1 then
(19) Accept/reject the proposal skeleton

(sn−1 + τ, y +Wν1 , ..., y +Wνa , y +Wτ∧(T−sn−1)) as a sample of the
skeleton (ζn, Ysn−1+ν1 , ..., Ysn−1+νa , Y(sn−1+τ)∧T) using the arrival times κj;

(20) if the proposal is accepted and T ≤ sn−1 + τ then
(21) Return YT ;
(22) if the proposal is accepted and sn−1 + τ < T then
(23) Set y = Ysn−1+τ , sn = sn−1 + τ , n = n+ 1;
(24) else
(25) Return to step 2;
(26) else
(27) Accept/reject the proposal skeleton (sn−1 + τ, y +Wν1 , ..., y +Wνl) as a

sample of the skeleton (sn−1 + νl, Ysn−1+ν1 , ..., Ysn−1+νl−1
, Y(sn−1+νl)−) using

the arrival times κj;
(28) if the proposal is accepted then
(29) Sample Z from Π;
(30) Set sn = sn−1 + νl, y = Y(sn−1+νl)− + ∆Y (Y(sn−1+νl)− , Z), n = n+ 1;
(31) else
(32) Return to step 2;

36

CHAPTER 5

Computational efficiency and implementation

This chapter is dedicated to discussing topics relating to computational efficiency and

implementation of the algorithm. More precisely, we will first specify a method for picking

θ in order to maximize efficiency, and will then discuss extensions of the algorithm in order

to adapt it to a number of situations.

5.1. Level selection

The constraints on θ in the previous algorithms are very non-stringent, and we thus

have some freedom in this choice. The authors of [20] propose the number of skeletons

generated before reaching the desired horizon T as a measure of efficiency, as minimizing

the number of skeletons might lead to a very short time increment, and maximizing the

time increment might require many tries at generating skeletons until one is accepted. As

such, at each step n, we pick a value of θ that maximizes the time increment per skeleton

generated instead.

While this measure might seem challenging to compute, we can establish favourable

lower bounds, and the tower property of iterated expectations allows us to vastly simplify

the problem.

First, let K = Kn(θ) be the number of proposal skeletons generated before one is

accepted during step n. This a random variable that, given Ys, depends on θ and s, but

not on previous level choices θj, j 6= n, by the strong Markov property of Y , and the

same is true for the time increment η. Furthermore, given τ , νl, Wη and Ys, K has a

simple geometric distribution with success parameter p(θ, s; τ, νl,Wη, Ys), the conditional

probability of accepting a skeleton, and the normalized likelihood (4.28) we computed in

section 4.4 gives us the expression for this parameter, conditional on τ , νl, Wν1 , ..., Wη

and Ys:

p(θ, s; τ, νl,Wν1 , ...,Wη, Ys) =
exp(A(Ys +Wη))

K

exp(−mη)

S
(5.1)

× P(Vη − V0 = 0|τ, νl,Wν1 , ...,Wη, Ys),

with V being a doubly stochastic Poisson process with intensity φ(Ys +Wt)−m.

In these terms, our efficiency measure M becomes

M(θ, s, Ys) := E[η/K|Ys]. (5.2)

37

Unfortunately, the expectation above is hard to compute, especially without further

assumptions on the dynamics of Y . As our goal is to maximize this measure, let us derive

a lower bound on this value, more explicitly computable.

Now fix θ and s. By the properties of the geometric distribution, we have that

E[K|τ, νl,Wη, Ys] = 1/p(θ, s; τ, νl,Wη, Ys), (5.3)

and, by the tower property of conditional expectations, we also have

M(θ, s, Ys) = E[ηE[1/K|τ, νl,Wη, Ys]|Ys]. (5.4)

With an application of Jensen’s inequality, due to the convexity of 1
x
, we obtain our first

lower bound:

M(θ, s, Ys) ≥ E[η/E[K|τ, νl,Wη, Ys]|Ys] = E[ηp(θ, s; τ, νl,Wη, Ys)|Ys]. (5.5)

On the other hand, as in the thinning argument we have used before, V is dominated

by a Poisson process with intensity M −m, giving us

p(θ, s; τ, νl,Wν1 , ...,Wη, Ys) ≥
exp(A(Ys +Wη))

K

exp(−mη)

S
exp(−(M −m)η)

= exp(A(Ys +Wη)−Mη)/(KS). (5.6)

Thus, once again making use of the tower property to introduce more information, we

have

M(θ, s, Ys) ≥E[ηp(θ, s; τ, νl,Wη, Ys)|Ys]

=E[ηp(θ, s; τ, νl,Wν1 , ...,Wη, Ys)|Ys] (5.7)

≥E[η exp(A(Ys +Wη)−Mη)|Ys]/(KS) (5.8)

=
1

KS

∫
min(t, x, T − s) exp(A(Ys + ω)−M min(t, x, T − s))

× P(τ ∈ dt, νl ∈ dx,Wη ∈ dω|Ys). (5.9)

The inequality of most interest is (5.9), and we will now turn to the problem of

estimating this lower bound. Note that this choice of lower bound and approximations

introduced hereafter do not induce any bias, as they pertain only to the choice of a more

efficient value of θ.

In order to approximate the joint distribution of (τ, νl,Wη) given Ys, we first notice

that we can factor this measure as

P(τ ∈ dt, νl ∈ dx,Wη ∈ dω|Ys) = P(Wη ∈ dω|τ = t, νl = x, Ys)P(τ ∈ dt, νl ∈ dx|Ys)
(5.10)

= P(Wη ∈ dω|τ = t, νl = x, Ys)P(νl ∈ dx|Ys)P(τ ∈ dt).

38

While the distribution for the exit time of a Brownian motion, P(τ ∈ dt) = h(t)dt, was

discussed in section 3.4.1, the distribution of the jump time P(νl ∈ dx|Ys) is not easily

computable. However, if θ is not very large, we assume that Y jumps approximately as a

Poisson process with the largest intensity in this segment:

c(Ys) := max
|z|≤θ

Λ(F−1(Ys + z)), (5.11)

which gives

P(νl ∈ dx|Ys) ≈ c exp(−cx)dx. (5.12)

Finally, as for the distribution of Wη, if min(t, x, T−s) = t, we have that P(Wτ = θ) =

P(Wτ = −θ) = 1/2. If min(t, x, T − s) is either x or T − s, the conditional distribution

is more convoluted, and thus we approximate it by the true mean of the distribution,

δ(ω)dω. All together, we then write

P(Wη ∈ dω|τ = t, νl = x, Ys) =

1
2
(δ(ω + θ) + δ(ω − θ))dω, if min(t, x, T − s) = t

≈ δ(ω)dω, if min(t, x, T − s) = x, T − s
(5.13)

With these facts in mind, and recalling equation (5.9), our estimator M̃L(θ, s, Ys) for

the lower bound can be defined as

M̃L(θ, s, Ys) =
c

KS

∫ T−s

0

(∫ t

0

x exp(A(Ys)−Mx− cx)dx

)
h(t)dt

+
c

KS

∫ T−s

0

(∫ +∞

t

1

2
(eA(Ys+θ) + eA(Ys−θ))e−cxdx

)
e−Mtth(t)dt

+
c

KS

∫ +∞

T−s

(∫ T−s

0

x exp(A(Ys)−Mx− cx)dx

)
h(t)dt

+
c

KS

∫ +∞

T−s

(∫ +∞

T−s
exp(A(Ys)−M(T − s)− cx)dx

)
(T − s)h(t)dt. (5.14)

It is important to note that most of the dependency in θ is hidden in the above

expression, as M , c and τ are functions of this choice. Apart from this fact, the estimation

involves only computing the above integrals and maximizing with respect to θ. The

authors suggest to ignore the dependency in s, as this computation is costly and we

avoid performing it at the beginning of each step, and compute only for a range of values

y ∈ DY , at s = 0. During the algorithm execution, we can then interpolate between

the optimal values θ∗(y) previously determined. The integration itself can be performed

efficiently with some quadrature method.

We now turn to implementing the procedure above. Here, we used h to denote the

probability density function of τ = τθ, whereas in section 3.4.1 we only evaluated the

density of τ1. If we now let h denote this density previously studied, by the change of

variables formula and using the fact that τθ
d
= θ2τ1 we see that

P(τ ∈ dt) =
1

θ2
h(t/θ2)dt. (5.15)

39

Setting Ys = y and s = 0, notice that we can factor some terms and compute all of

the integrals in terms of x exactly. With some manipulation, we then have that

M̃L(θ, 0, y) =
c exp (A(y))

KS(M + c)2θ2

(∫ T

0

h

(
t

θ2

)
dt− (M + c)

∫ T

0

te−(M+c)th

(
t

θ2

)
dt (5.16)

−
∫ T

0

e−(M+c)th

(
t

θ2

)
dt

)
+

exp(A(y + θ)) + exp(A(y − θ))
2KSθ2

∫ T

0

e−Mtth

(
t

θ2

)
dt

+
c exp(A(y))

KS

(
1− 1

θ2

∫ T

0

h

(
t

θ2

)
dt

)(
1− e−(M+c)T

M + c
+
Te−(M+c)T

c

)
.

This reduces the amount of integrals we have to compute, and they are all now defined

over a finite interval. For practical purposes, we employ the scipy package, which allows

us to compute both the required optimizers via the optimize.minimize_scalar function

and integrals using integrate.quad at each step, as well as the optimal θ.

All that is left to do is optimize the target function above over a list of values of y,

spread out through the domain DY . Linear interpolation for values of y outside this list

suffices to determine a choice of θ.

5.1.1. Convergence

While we now have a way to quantify the computational efficiency of our algorithm and

maximize the expected time increment per skeleton generated, we have to be cautious

about the nature of η1 + η2 + ..., and ensure that there is some kind of convergence.

Fortunately, in [20] the authors manage to provide conditions that guarantee that any

finite horizon can be reached in a finite amount of steps.

Proposition 5.1.1. Suppose the jump-diffusion X satisfies the assumptions described

in 2.4. In addition, suppose that θn = θ(Ysn−1) for a deterministic function θ, and that

one of the following holds:

• DY = (−∞,+∞) and there are θ < θ such that θn ∈ [θ, θ] for all n; or

• DY = (y,+∞) and there exist ε > 0, 0 < α < 1, θ, θ such that θn(y) = α(y − y)

for y ∈ (y, y + ε), θn(y) ≤ α(y − y) for y ≥ y + ε, θn(y) ∈ [θ, θ] for y ≥ y + ε.

Then, for any finite time horizon T ,

P
[+∞∑
n=1

ηn < T

]
= 0. (5.17)

The proof is shown in the appendix of the original paper due to its length.

Let us, however, examine the assumptions of the proposition regarding the choice

function. As in the method described before, we assume that the choice at step n depends

only on the value of Y at the previous time sn−1.

40

In the case where the domain is the real line, we only have to further assume that

our choice function is uniformly bounded, that is, there is a minimum and maximum step

size, independent of n.

If our domain is restricted by some lower bound (say, zero when our process is strictly

positive), we need to restrict the behaviour near the boundary as well. Close enough to

y, the step size choice has to be a fixed fraction of the current distance from it.

Now consider the set E = {ω ∈ Ω|
∑+∞

n=1 ηn(ω) < T}, for a fixed time horizon T .

Since, for each ω ∈ Ω, we have that ηn(ω) < T − sn−1 for all n, otherwise the sum would

be larger than T. Thus, we assume without loss of generality that

ηn = min(τn(θn), νl, T − sn−1) = min(τn(θn), νnl). (5.18)

The goal is then to show that P(E) = 0. To do this, the authors define the sets

Ek =

{
ω ∈ Ω : ηk(ω) <

1

k

}
, (5.19)

so that E ⊆ lim supk Ek, and thus P(E) = P(E ∩ lim supk Ek). Furthermore, by using a

localization argument, it also suffices to show that

P(E ∩ lim sup
k

Ek ∩Bm) = 0 (5.20)

for each m ∈ N, where Bm is the set of events where Yt is contained in the localized interval

[lm, rm], converging monotonously to the entire domain DY . This observation allows us to

use the local boundedness assumptions on the function parameters defining the process.

The final observation needed before the proof becomes largely computational, is that

P(E ∩ lim sup
k

Ek ∩Bm) = P(lim sup
k

(E ∩ Ek ∩Bm)) ≤ P
(+∞⋃
n=k

(E ∩ En ∩Bm)

)
, (5.21)

for each k. Thus, if

P
(+∞⋃
n=k

(E ∩ En ∩Bm)

)
−−−−→
k→+∞

0, (5.22)

the result is proven. As previously noted, we refer to the appendix of the original paper

for this computation.

5.2. Extensions

In this section, we will discuss how the algorithm can be further extended in order to

encompass a larger amount of situations.

Before we move on to more delicate questions regarding the algorithm itself, note

that we omitted many dependencies for the sake of simplicity, but due to the sequential

nature of the algorithm have no influence and could easily be included, with immediate

adaptations. For instance, the jump intensity may also be a function of time, the current

state of the process and the number and size of previous jumps. This allows to model

conditions like seasonal behaviour or trading restrictions.

41

5.2.1. Sampling a skeleton

Let S be a discrete set of fixed times in [0, T], and suppose that we wish to generate

the values (Xt)t∈S (or (Yt)t∈S, equivalently), e.g. when dealing with discretely monitored

options.

To do this, we only have to additionally sample the values (Wt)t∈S alongside with the

Wνj and Wκj . These values do not interfere with the likelihood (4.28), as no t ∈ S is equal

to a proposed jump time a.s., and thus we can use the same acceptance test as before.

Therefore, there is little to none extra computational burden when sampling for a

single value at the horizon T or for a range of values in-between.

5.2.2. Sampling hitting times

There are times when it is useful to keep track of certain hitting times, such as when

considering the possibility of a defaulting firm or when dealing with barrier options. The

versatility of the algorithm makes it very easy to adapt to this type of problem, with an

adequate choice of θ.

Suppose we want to generate a sample of ξ ∧ T , for ξ = ξ(xd, xu) = inf{t ≥ 0 : Xt 6∈
(xu, xd)}. If θn(y) is the choice of θ described in 5.1, then at each step n we can take

θ∗n(y) := min(θn(y), y − xd, xu − y). (5.23)

If the process hits one of the barriers via drift, we immediately obtain the hitting time

by the algorithm; if the process jumps through one of the barriers, we take the hitting

time as the last jump time Tn = sn−1 + νl.

5.2.3. Exponential of time-integrated jump diffusion

The algorithm may also be modified to allow the treatment of expectations of the type

B(T) = E
[

exp

(
−
∫ T

0

Xsds

)
u((Xt)t∈S, (Jt)t≤T)

]
, (5.24)

under some interest rate model, for instance. Unfortunately, it is not possible for us to

simulate a complete path of Xt, and using some discrete approximation to the integral∫ T

0

Xsds will induce a bias.

Nevertheless, we can still obtain exact samples by making use of the special exponential

structure. For this, take u = 1, so that we can interpret the expectation as the probability

that no arrivals occur for a doubly stochastic Poisson process with intensity Xt. Note that

X need not be positive, as we can re-scale the exponential, neither uniformly bounded.

In this case, if we have (localized) bounds x, X̄, we can sample jump times εk of a

Poisson process with intensity X̄ − x. Reasoning similarly to the thinning argument we

previously used, we can show that

e−xT
n∏
k=1

(
1− Xεk − x

X̄ − x

)
(5.25)

42

is an exact estimator for exp

(
−
∫ T

0
Xsds

)
. To see this, note that

Xεk
−x

X̄−x is the probability

of accepting the k-th jump as a jump from our doubly stochastic process, and thus the

product
∏n

k=1

(
1 − Xεk

−x
X̄−x

)
is the probability of rejecting every jump, and thus that no

arrivals occur, for this particular path.

We conclude that, for a general function u, our estimator of the value inside the

expectation is simply

e−xT
n∏
k=1

(
1− Xεk − x

X̄ − x

)
u((Xt)t∈S, (Jt)t≤T). (5.26)

The algorithm can easily be adapted to account for these jump times εk, as they

are generated independently from the other considered times, and have no part in the

acceptance/rejection. We only have to be careful regarding our stopping time (whether

it is an exit or jump time is irrelevant), and include the εk up to this instant at each step

until we reach the horizon T .

5.3. Implementation notes

There are still a few details needed to be cleared up before we implement this method.

One such question is how to determine the optimizing bounds needed to do the accep-

tance tests. In both cases, we need to compute K := maxu∈[−θ,θ] exp(A(Ys + u)), S :=

max{exp(−m(T − s)), 1}, constants m, M and λ such that 0 ≤ φ(Ys + z)−m ≤M −m,
and Λ(F−1(Ys + z)) ≤ λ for all z ∈ [−θ, θ].

For the JDCEV case, noting that F−1 is increasing and Λ decreasing, we can take λ

as Λ(F−1(Ys− θ)). Furthermore, as µY is always positive, A(y) is increasing, and we then

have K = exp(A(Ys + θ)).

The behaviour of the function φ = 1
2
(µ′Y + µ2

Y) is non-trivial but one can determine

that it is monotonically increasing. Note that, close to the boundary of DY , the value of

M−m might become too large due to the singularity present and slow down computations.

We use smaller values of θ near this point. Note that, in the JDCEV case, the default

intensity becomes very large and we are more likely to accept a default and, in the AJD

case, the drift ensures we stay away from the boundary.

For the AJD model, we can only skip the optimization of the value of λ, as its the

only one we determine explicitly. The scipy package would allow us to determine the

optimizers through the optimize.minimize_scalar function, we can make use of the

method="bounded" option for an improve in performance. We may, however, avoid this

computation. By observing that the functions A(y) and φ(y) have a single extrema (a

maximum and a minimum, respectively), we can efficiently determine optimizers in an

interval [y − θ, y + θ].

43

CHAPTER 6

Numerical results and conclusions

Now with a good theoretical understanding of the method, we move on to the numerical

results. In this section, we implement the exact and discretization methods discussed

previously, in order to replicate in Python the results obtained by Giesecke and Smelov.

All code was programmed in Python 3.8 and computations were performed in a Intel(R)

Core(TM) i9-10900 CPU computer, with 64 GB of RAM (63.7 accessible).

The exact method always has a bias of 0, while the biases of the discretization methods

were computed by the authors of the method using either closed-form solutions when

available, as is the case of the European put under the JDCEV model, or a large number

of trials of the exact method to determine the true value, and performing 10 million trials

of the discrete methods, given a number of steps, to estimate their expectations.

The choice of number of steps for the discrete methods follows as well the approach

described by Duffie and Glynn in [16]. These methods rely on a good choice of number

of steps. While increasing the number of trials reduces the standard error of the sample,

the step size determines how good of an approximation the discrete grid is to the true

process, and a smaller step size induces less bias. However, there is a trade-off between

performance and bias, which does not happen with the exact method, and the authors

determine that the optimal trade-off breakpoint is when the number of steps is equal to

the square-root of the number of trials, for first order methods, and the fourth root for

second order methods.

6.1. JDCEV

We present the results we obtained from our simulations, beginning with the JDCEV

model. The chosen parameters, which we will also perturb, are the same as in [11]:

X0 = 50, β = −1, r = 0.05, a = 50/4, b = 0, and c = 1/2.

6.1.1. European option

First, we examine the behaviour of the algorithm when pricing a European put option

with strike K = 5 and maturity T = 1 year. The true value of this contract is 0.1491.

Table 1 showcases the obtained data under the previously defined parameters. While

we were able to obtain a much better (absolute) performance for the exact method, the

RMSE’s converge in a similar fashion to Giesecke and Smelov’s implementation.

Furthermore, as we expected, the exact method converges with the optimal square-

root rate, while the discrete method is far slower. Note that, while we need to increase

the computational budget non-linearly to increase precision for the discrete methods, the

45

exact method’s computation time is linear in the number of simulations, so it will always

eventually outperform.

Method Trials Steps Value Bias SE RMSE Time (sec)

Exact 10K N/A 0.1560 0 0.0089 0.0089 3.4
20K N/A 0.1603 0 0.0064 0.0064 6.77
40K N/A 0.1503 0 0.0044 0.0044 13.38
100K N/A 0.1552 0 0.0028 0.0028 34.11
500K N/A 0.1499 0 0.0012 0.0012 175.22

Discretization 10K 100 0.1379 0.0019 0.0084 0.0086 6.34
20K 140 0.1523 0.0018 0.0062 0.0065 17.53
40K 200 0.1519 0.0008 0.0044 0.0045 49.34
100K 310 0.1523 0.0005 0.0028 0.0028 194.71
500K 707 0.1516 0.0004 0.0012 0.0013 2187.45

Table 1. Simulation results under the JDCEV model for a European put
option with strike price K = 5 and expiration date T = 1 year.

We may now observe how different parameter values impact performance. Figure 1

showcases our results for the convergence of RMSE’s under different parameter values,

perturbing only one at a time, while figure 2 contains Giesecke and Smelov’s results for

comparison purposes. 1

The profiles obtained are very similar, and the square root convergence of the exact

method is verified. The differences in performance impact are worth being discussed. For

c = 1, X0 = 25 or β = −0.5, the changes are noticeable, but the exact method still

outperforms at (almost) every point in time.

However, for b = 0.2, the exact method is no longer able to overtake the discrete

method over the tested numbers of iterations. This seems to imply that the improvement

in performance from hardware is not strong enough to overcome the loss from increasing

the value of b.

One possible explanation for this is as follows. On one hand, the discrete method

is rather stable over parameter changes in terms of computational burden. There might

be an impact in the error, but goes largely unnoticed. The exact method is much more

sensitive, and the function φ has the most impact in performance, as the likelihood ratio

is proportional to e−φ. Larger values of φ lead to a large amount of rejected samples,

wasting a lot of computing time.

The value of 0.2 is also very large in relative terms, leading to such a large performance

loss. Recall that, in the formula for µY , b shows up added to the interest rate r = 0.05

and multiplied by some ’larger’ factor. When it changes from 0 to 0.2, this factor is now

5 times bigger than before. This impact is much bigger than when we consider X0 = 25,

1Note that the initial volatility does not remain constant. Given that σ(X) = aXβ , we first have
a volatility of 25%. Increases in volatility lead to larger sample standard deviations and thus larger
RMSE’s.

46

where we are much closer to the singularity. This is not as big of a concern in practice, as

this value is fairly unrealistic and inferred values range over much lower values (see, for

instance, [15]).

Figure 1. Convergence of RMSE’s for the discrete and exact methods
when one parameter is perturbed. The title of each figure indicates which
parameter was changed and to which value.

6.1.2. Exotic options

We turn our attention to the pricing of exotic options, which is one of the main strengths

of the exact method. If we move slightly away from simpler payoffs similar to those of

European vanilla options, closed-form solutions are no longer available and controlling for

bias is significantly more expensive.

Table 2 contains the results relative to the pricing of an Asian put with semiannual

monitoring, strike K = 5 and maturity T = 1, whose true value is 0.0745, while table

3 shows the case of a down-and-out call with strike K = 65, down barrier B = 5 and

maturity T = 1, whose true value is 1.2794.

We achieve performances similar to those of the European put, being much faster than

the discrete method and obtaining RMSE’s comparable to or somewhat smaller than the

ones of the discretization.

47

Figure 2. RMSE convergence profiles obtained by Giesecke and Smelov,
taken directly from [20].

This fact, together with the previous sensitivity tests, showcase the importance of the

method for efficient pricing of exotic products and complex payoffs.

Method Trials Steps Value Bias SE RMSE Time (sec)

Exact 10K N/A 0.0694 0 0.0060 0.0060 4.4
20K N/A 0.0749 0 0.0044 0.0044 9.69
40K N/A 0.076 0 0.0019 0.0019 18.92
100K N/A 0.0734 0 0.0028 0.0028 47.2
500K N/A 0.0744 0 0.0009 0.0009 235.8

Discrete 10K 100 0.0723 0.0014 0.0061 0.0063 6.46
20K 140 0.0763 0.0008 0.0044 0.0045 18.26
40K 200 0.0763 0.0005 0.0031 0.0031 50.94
100K 310 0.0754 0.0004 0.0020 0.0020 197.4
500K 707 0.0748 0.0002 0.0009 0.0009 2172.99

Table 2. Simulation results under the JDCEV model for a semiannually
monitored Asian put option with strike price K = 5 and expiration date
T = 1 year.

48

Method Trials Steps Value Bias SE RMSE Time (sec)

Exact 10K N/A 1.3104 0 0.0388 0.0388 3.72
20K N/A 1.301 0 0.0272 0.0272 7.47
40K N/A 1.2917 0 0.0191 0.0191 14.99
100K N/A 1.2924 0 0.0121 0.0121 37.42
500K N/A 1.2836 0 0.0054 0.0054 188.05

Discrete 10K 100 1.2691 0.0221 0.0384 0.0443 6.37
20K 140 1.2356 0.0144 0.0257 0.0295 18.09
40K 200 1.2814 0.0094 0.0189 0.0211 49.43
100K 310 1.2862 0.0058 0.0120 0.0133 194.91
500K 707 1.2793 0.0013 0.0053 0.0055 2180.75

Table 3. Simulation results under the JDCEV model for a down-and-out
call option with strike price K = 65, down barrier B = 5 and expiration
date T = 1 year.

49

6.2. Affine Jump Diffusions

We now analyze how the method performs when dealing with interest rate models, namely

the AJD model, and how implementation can be adapted to account for time-integrated

exponentials.

6.2.1. Zero coupon bond

First, we observe how the method behaves against the pricing of a zero coupon bond with

maturity T = 3, with a true value of 0.879872. We will use again the same parameters as

Giesecke and Smelov, estimated by Zhou from weekly observations of the US federal funds

rate via a multivariate weighted nonlinear least square for jump diffusion (MWNLS-JD)

estimator [38]. These values are X0 = θ = 0.0422, κ = 0.0117, σ = 0.0130, Λ0 = 0.0110,

Λ1 = 0.1000, and the jump size is drawn from a uniform distribution U(0.0113, 0.0312).

The outcome of our experiments is presented in table 4.

The increase in performance is extremely noticeable, even when comparing to a fast

second order method, and we thus achieve much lower values of RMSE for any given

duration.

Method Trials Steps Value Bias SE RMSE Time (sec)

Exact 10K N/A 0.880702 0 1.312e-03 1.312e-03 2.12
20K N/A 0.879736 0 9.374e-04 9.374e-04 4.19
40K N/A 0.880501 0 6.600e-04 6.600e-04 8.31
100K N/A 0.879894 0 4.204e-04 4.204e-04 20.45
500K N/A 0.879712 0 1.886e-04 1.886e-04 103.5

Discrete I 10K 100 0.878773 1.137e-03 9.997e-05 1.141e-03 5.6
20K 140 0.879017 8.080e-04 7.060e-05 8.111e-03 15.6
40K 200 0.879271 5.637e-04 4.984e-05 5.659e-04 44.1
100K 310 0.879485 3.659e-04 3.114e-05 3.672e-04 175.03
500K 707 0.879733 1.677e-04 1.390e-05 1.683e-04 1941.23

Discrete II 10K 100 0.878851 1.141e-03 9.811e-05 1.145e-03 6.41
20K 140 0.879061 8.056e-04 7.029e-05 8.087e-04 17.84
40K 200 0.879198 5.673e-04 5.032e-05 5.695e-04 50.12
100K 310 0.879514 3.661e-04 3.121e-05 3.674e-04 197.94
500K 707 0.879715 1.652e-04 1.390e-05 1.658e-04 2209.05

Discrete III 10K 100 0.870707 1.131e-02 1.148e-04 1.131e-02 1.19
20K 140 0.871682 9.435e-03 7.842e-05 9.435e-03 2.54
40K 200 0.873880 8.094e-03 5.362e-05 8.094e-03 6.27
100K 310 0.875158 6.300e-03 3.385e-05 6.300e-03 18.74
500K 707 0.877427 4.206e-03 1.455e-05 4.206e-03 139.55

Table 4. Simulation results under the AJD model for a zero coupon bond
with maturity T = 3 years.

50

6.2.2. Cap

Finally, we will see how the algorithm handles the treatment of a cap with annual pay-

ments and maturity T = 3, whose true value is 0.001196324. According to the results in

table 5, our implementation loses some performance when compared to the evaluation of

a zero coupon bond, but still performs incredibly well.

There is a detail regarding this implementation that is worth discussing. As the

payoff of a multiple payment cap can be broke down in calls with different maturities, one

simple way to do this would be running the algorithm sequentially up to each maturity

(T = 1, 2, 3 in our case). This leads to a performance about 3 times worse than the bond

case, as we need to essentially run 3 times. Most of the time, the first sampled exit time

τ is larger than some of these stop points and we can treat them simultaneously in the

same execution.

Method Trials Steps Value Bias SE RMSE Time (sec)

Exact 10K N/A 0.001234 0 6.467e-05 6.467e-05 2.12
20K N/A 0.001223 0 4.534e-05 4.534e-05 4.49
40K N/A 0.001213 0 3.191e-05 3.191e-05 9.12
100K N/A 0.001202 0 1.982e-05 1.982e-05 18.21
500K N/A 0.001192 0 8.801e-06 8.801e-06 236.96

Discrete I 10K 100 0.001256 2.301e-05 6.542e-05 6.935e-05 5.74
20K 140 0.001159 1.223e-05 4.376e-05 4.544e-05 15.95
40K 200 0.001208 7.181e-06 3.104e-05 3.186e-05 45.37
100K 310 0.001180 5.544e-06 1.953e-05 2.030e-05 179.23
500K 707 0.001196 4.765e-06 8.774e-06 9.984e-06 1997.96

Discrete II 10K 100 0.001133 2.121e-05 6.030e-05 6.392e-05 6.45
20K 140 0.001136 1.452e-05 4.318e-05 4.556e-05 18.13
40K 200 0.001120 1.151e-05 2.917e-05 3.136e-05 50.92
100K 310 0.001183 7.445e-06 1.941e-05 2.079e-05 202.52
500K 707 0.001203 7.473e-07 8.833e-06 8.865e-06 2260.38

Discrete III 10K 100 0.001144 2.409e-04 6.411e-05 2.493e-04 1.13
20K 140 0.001072 1.461e-04 4.194e-05 1.520e-04 2.47
40K 200 0.001146 1.717e-04 3.137e-05 1.745e-04 6.1
100K 310 0.001088 9.891e-05 1.880e-05 1.007e-04 18.4
500K 707 0.001076 6.508e-05 8.423e-06 6.562e-05 138.02

Table 5. Simulation results under the AJD model for a caplet with ma-
turity T = 3 years, a strike K = 0.05 and yearly payments.

51

6.3. Conclusions

We began by exploring the needed tools, and built an exact method for progressively

more general models defined by stochastic differential equations, eventually arriving at

full generality.

The exact method’s convergence lives up to the theoretical expectations, and we were

able to replicate the results obtained by Giesecke and Smelov in 2013. It achieved the

optimal convergence rate, while we also illustrated that the existence of bias significantly

lowers the performance of classical discretization methods.

In terms of implementation, our results suggest that the exact method may be more

sensitive to hardware changes. Furthermore, while MATLAB is very efficient at dealing

with number arrays and linear algebra, it loses out to Python when the programs become

more complex and involve several loops, comparisons and calls. Thus, the performance

improvement for the exact method is larger than that of the discretization methods. The

numpy package also provides efficient linear algebra tools, rivaling those of MATLAB.

As prospects of future research, finding more optimal choices of θ, improving general

implementation and extending to multiple dimensions are among the possibilities. In

this approach, a particular measure for efficiency was chosen, and there were several

approximations and lower bounds leading to our final choice of θ. Our implementations

also favored the discrete methods, as they are far more straightforward, and there is a

lot of room for improvement in terms of code for the exact method, leading to possible

stronger results.

Ultimately, extending the result to multiple dimensions is of large interest. Many jump

models used nowadays are either multi-factor, allowing us to consider multiple dynamics

simultaneously, or include, for instance, stochastic volatility, where it is itself driven by

a mean-reverting process. One may also consider various combinations of models, where

we have simultaneously a stochastic interest rate and asset price.

A recent paper by Blanchet and Zhang provides the first generic exact simulation

algorithm for multivariate Itô diffusions, introducing new methods as the Lamperti trans-

form only works in one dimension [8]. There is, however, no extension yet to multivariate

jumps.

52

APPENDIX A

Python code

A.1. Sampling methods

Includes all of the needed methods, developed in the Monte Carlo section.

1 import sys

2 from matp lo t l i b import pyplot as p l t

3 import numpy as np

4 from s c ipy . s p e c i a l import gamma

5

6

7 def generate exp (lamb=1) :

8 # g e n e r a t e s an e x p o n e n t i a l random v a r i a b l e wi th the i n v e r s e transform

method

9 u = np . random . rand ()

10 sample = − np . l og (u) /lamb

11 return sample

12

13

14 def genera te po i s son jumps (lamb , T) :

15 # g e n e r a t e s po i s son jump times (up to T) wi th r a t e lamb

16 jump times = []

17 t = 0

18 while t < T:

19 tau = generate exp (lamb)

20 t += tau

21 i f t < T:

22 jump times . append (t)

23

24 return jump times

25

26

27 def generate bm (times) :

28 # g e n e r a t e s a f i n i t e sample path o f Brownian motion at the r e q u e s t e d

t imes

29

30 n = len (t imes)

31

32 z = np . random . normal ()

33 new step = np . s q r t (t imes [0]) ∗ z

34 path = [new step]

35

53

36 prev s t ep = new step

37 i = 1

38 while i < n :

39 z = np . random . normal ()

40 dt = times [i] − t imes [i −1]

41 new step = prev s t ep + np . s q r t (dt) ∗z

42

43 path . append (new step)

44 prev s t ep = new step

45

46 i += 1

47

48 return path

49

50

51 def g e n e r a t e b r i d g e (t imes) :

52 # g e n e r a t e s a sample path o f a Brownian b r i d g e from a sample path o f

brownian motion

53

54 n = len (t imes)

55 T = times [−1]

56

57 bm = generate bm (times)

58 br idge = []

59

60 for i in range (n) :

61 new step = bm[i] − t imes [i] ∗ bm[−1] / T

62 br idge . append (new step)

63

64 return br idge

65

66

67 def gamma dens (t , b , y) :

68 # pdf o f the gamma d i s t r i b u t i o n

69

70 g = y∗∗b ∗ t ∗∗(b−1) ∗ np . exp(−y∗ t) / gamma(b)

71 return g

72

73

74 def g e n e r a t e e x i t t i m e () :

75 # g e n e r a t e s a sample o f Brownian motion e x i t time f o l l o w i n g the

approach o f

76

77 a = 1.243707

78 b = 1.088870

79 y = 1.233701

80

54

81 tau = 0

82 r e j e c t e d = True

83

84 while r e j e c t e d :

85 v = np . random .gamma(shape=b , s c a l e=1 / y)

86 u = np . random . rand ()

87 t e s t v a l u e = a ∗ u ∗ gamma dens (v , b , y)

88

89 h = 1 / np . s q r t (2 ∗ np . p i ∗ v ∗∗ 3) ∗ np . exp(−1 / (2 ∗ v))

90 terminated = False

91 j = 1

92

93 while not terminated :

94

95 p term = (2 ∗ j + 1) ∗ np . exp(−(2 ∗ j + 1) ∗∗ 2 / (2 ∗ v))

96 n term = (2 ∗ j − 1) ∗ np . exp(−(2 ∗ j − 1) ∗∗ 2 / (2 ∗ v))

97 h next = h + (−1) ∗∗ j / np . s q r t (2 ∗ np . p i ∗ v ∗∗ 3) ∗ (p term

− n term)

98

99 i f t e s t v a l u e < h next <= h :

100 terminated = True

101 r e j e c t e d = False

102

103 tau = v

104

105 e l i f h <= h next < t e s t v a l u e :

106 terminated = True

107

108 h = h next

109 j += 1

110

111 return tau

112

113

114 def generate brownian meander (t imes) :

115 # g e n e r a t e s a sample path o f a Brownian meander at the g iven times ,

116 # where the l a s t e lement i s taken as the e x i t time

117

118 tau = times [−1]

119

120 meander = []

121 r e j e c t e d = True # s e t to True so t h a t we go through the loop at l e a s t

once

122 i n v a l i d = False

123

124 # i f on ly the e x i t time i s given , we re turn the f i n a l v a l u e (−1 or 1

wi th e q u a l p r o b a b i l i t y)

55

125 i f len (t imes) == 1 :

126 w tau = np . random . cho i c e ([−1 , 1])

127 return [w tau]

128

129 while r e j e c t e d or i n v a l i d :

130 i n v a l i d = False

131 r e j e c t e d = False

132

133 br idge s = [[] , [] , []]

134 candidate = []

135 w tau = np . random . cho i c e ([−1 , 1])

136

137 # genera te the 3 r e q u i r e d Brownian b r i d g e s

138 for i in range (3) :

139 br idge s [i] = g e n e r a t e b r i d g e (t imes)

140

141 # transform them i n t o a t e s t sample

142 for i in range (len (t imes)) :

143 t = times [i]

144 b = np . s q r t (((tau − t) / tau + br idge s [0] [i]) ∗∗ 2 + br idge s

[1] [i] ∗∗ 2 + br idge s [2] [i] ∗∗ 2)

145

146 i f b >= 2 :

147 # the sample i s i n v a l i d , and we break out o f the f o r loop

148 i n v a l i d = True

149 break

150

151 candidate . append (b)

152

153 # i f our sample i s i n v a l i d , we re turn to the beg inn ing o f the w h i l e

loop

154 i f i n v a l i d :

155 continue

156

157 # f i r s t par t o f the t e s t (acceptance / r e j e c t i o n a g a i n s t p)

158 for i in range (len (t imes) − 2) :

159 u = np . random . rand ()

160

161 s = tau − t imes [i]

162 x = candidate [i]

163 t = tau − t imes [i + 1]

164 y = candidate [i + 1]

165

166 denom = 1 − np . exp (2 ∗ x ∗ y / (t − s))

167 p = 1

168 terminated = False

169 j = 1

56

170

171 # only a f i n i t e number o f s t e p s i s needed f o r our v e r i f i c a t i o n

to terminate

172 while not terminated :

173

174 i f j % 2 == 0 :

175 j j = j // 2

176 nu = np . exp (2 ∗ j j ∗ (4 ∗ j j + 2 ∗ (x − y)) / (t − s))

+ np . exp (

177 2 ∗ j j ∗ (4 ∗ j j − 2 ∗ (x − y)) / (t − s))

178 p next = p + nu

179 else :

180 j j = j // 2 + 1

181 theta = np . exp (2 ∗ (2 ∗ j j − x) ∗ (2 ∗ j j − y) / (t − s

)) + np . exp (

182 2 ∗ (2 ∗ (j j − 1) + x) ∗ (2 ∗ (j j − 1) + y) / (t −
s))

183 p next = p − theta

184

185 i f denom ∗ u < p next <= p :

186 # the sum terminates and we don ’ t r e j e c t the sample

187 terminated = True

188

189 e l i f p <= p next < u :

190 # the sum terminates and we r e j e c t the sample

191 r e j e c t e d = True

192 terminated = True

193

194 p = p next

195 j += 1

196

197 # i f the sample was a l r e a d y r e j e c t e d , we break out o f the f o r

loop

198 i f r e j e c t e d :

199 break

200

201 # i f we r e j e c t the sample in the f i r s t t e s t s , we re turn to the

beg inn ing o f the w h i l e loop

202 i f r e j e c t e d :

203 continue

204

205 # second par t o f the t e s t (acceptance / r e j e c t i o n a g a i n s t q)

206 u = np . random . rand ()

207 t = tau − t imes [−2]

208 x = candidate [−2]

209

210 q = 1

57

211 j = 1

212 terminated = False

213

214 while not terminated :

215

216 i f j % 2 == 0 :

217 j j = j // 2

218 rho2 = (4 ∗ j j + x) ∗ np . exp(−4 ∗ j j ∗ (2 ∗ j j + x) / t)

219 q next = q + rho2 / x

220 else :

221 j j = j // 2 + 1

222 rho1 = (4 ∗ j j − x) ∗ np . exp(−4 ∗ j j ∗ (2 ∗ j j − x) / t)

223 q next = q − rho1 / x

224

225 i f u < q next <= q :

226 # the sum terminates and we do accep t the sample

227 terminated = True

228 e l i f q <= q next < u :

229 # the sum terminates and we r e j e c t the sample

230 terminated = True

231 r e j e c t e d = True

232

233 q = q next

234 j += 1

235

236 i f w tau == 1 :

237 meander = [1 − b for b in candidate]

238 else :

239 meander = [b − 1 for b in candidate]

240

241 return meander

A.2. Level selection

1 import numpy as np

2 import sampling

3 from s c ipy . opt imize import min im i z e s ca l a r

4 from s c ipy import i n t e g r a t e

5 import time

6 import matp lo t l i b . pyplot as p l t

7 import sys

8 import csv

9

10 T = 1

11 s t r i k e = 5

12 X 0 = 50

13 beta = −1

58

14 r = 0 .05

15 sigma = 50/4

16 b = 0

17 c = 1/2

18

19

20 def f (x) :

21 return (X 0 ∗∗ (−beta) − x ∗∗ (−beta)) / (beta ∗ sigma)

22

23

24 # i n v e r s e Lamperti transform

25 def f i n v (x) :

26 return (X 0 ∗∗ (−beta) − x ∗ sigma ∗ beta) ∗∗ (−1 / beta)

27

28

29 # d r i f t f u n c t i o n

30 def mu y(x) :

31 return ((r + b) / sigma) ∗ (X 0 ∗∗ (−beta) − x ∗ sigma ∗ beta) + sigma

∗ (c − (beta + 1) / 2) / (

32 X 0 ∗∗ (−beta) − x ∗ sigma ∗ beta)

33

34

35 def jump int (x) :

36 return b + c ∗ sigma ∗∗ 2 ∗ x ∗∗ (2 ∗ beta)

37

38

39 def d e l t a y (x) :

40 return X 0 ∗∗ (−beta) / (sigma ∗ beta) − x

41

42

43 def phi y (x) :

44 return 0 .5 ∗ (−(r + b) ∗ beta + sigma ∗∗ 2 ∗ beta ∗ (c − (beta + 1) /

2) / (

45 X 0 ∗∗ (−beta) − x ∗ sigma ∗ beta) ∗∗ 2 + mu y(x) ∗∗ 2)

46

47

48 # f u n c t i o n A(y) needed f o r the acceptance t e s t s

49 def i n t e g r a t e d d r i f t (x) :

50 return (r + b) / sigma ∗ (X 0 ∗∗ (−beta) ∗ x − x ∗∗ 2 / 2 ∗ sigma ∗
beta) − \

51 (c − (beta + 1) / 2) / beta ∗ np . l og (1 − x ∗ sigma ∗ beta ∗ X 0

∗∗ beta)

52

53

54 def h(t , p r e c i s i o n=1e −10, max i ter =100) :

55

56 h va lue = 1 / np . s q r t (2 ∗ np . p i ∗ t ∗∗ 3) ∗ np . exp(−1 / (2 ∗ t))

59

57 j = 1

58

59 p term = (2 ∗ j + 1) ∗ np . exp(−(2 ∗ j + 1) ∗∗ 2 / (2 ∗ t))

60 n term = (2 ∗ j − 1) ∗ np . exp(−(2 ∗ j − 1) ∗∗ 2 / (2 ∗ t))

61 summand = (−1) ∗∗ j / np . s q r t (2 ∗ np . p i ∗ t ∗∗ 3) ∗ (p term − n term)

62

63 h va lue += summand

64

65 while abs (summand) > p r e c i s i o n and j < max iter :

66

67 p term = (2 ∗ j + 1) ∗ np . exp(−(2 ∗ j + 1) ∗∗ 2 / (2 ∗ t))

68 n term = (2 ∗ j − 1) ∗ np . exp(−(2 ∗ j − 1) ∗∗ 2 / (2 ∗ t))

69 summand = (−1) ∗∗ j / np . s q r t (2 ∗ np . p i ∗ t ∗∗ 3) ∗ (p term −
n term)

70 h va lue += summand

71

72 j += 1

73

74 return h va lue

75

76

77 def o b j e c t i v e f u n c t i o n 2 (y , theta) :

78 phi max = −min im i z e s ca l a r (lambda x : −phi y (x) , bounds=(y − theta , y +

theta) , method=’ bounded ’) . fun

79 phi min = min im i z e s ca l a r (phi y , bounds=(y − theta , y + theta) , method=

’ bounded ’) . fun

80 c = −min im i z e s ca l a r (lambda x : −jump int (f i n v (x)) , bounds=(y − theta ,

y + theta) , method=’ bounded ’) . fun

81 K = −min im i z e s ca l a r (lambda x : −np . exp (i n t e g r a t e d d r i f t (x)) , bounds=(y

− theta , y + theta) , method=’ bounded ’) . fun

82 S = max(np . exp(−phi min∗T) , 1)

83

84 va l1 = i n t e g r a t e . quad (lambda t : h (t / theta ∗∗2) , 0 , T) [0]

85 va l2 = i n t e g r a t e . quad (lambda t : t ∗h(t / theta ∗∗2) ∗np . exp(−phi max∗ t) , 0 ,

T) [0]

86 va l3 = i n t e g r a t e . quad (lambda t : t ∗h(t / theta ∗∗2) ∗np . exp(−(phi max+c) ∗ t) ,

0 , T) [0]

87 va l4 = i n t e g r a t e . quad (lambda t : h (t / theta ∗∗2) ∗np . exp(−(phi max+c) ∗ t) ,

0 , T) [0]

88

89 term1 = c∗np . exp (i n t e g r a t e d d r i f t (y)) ∗(va l1 − (phi max+c) ∗ va l3 − va l4)

/(K∗S∗ theta ∗∗2∗(phi max+c) ∗∗2)

90 term2 = (np . exp (i n t e g r a t e d d r i f t (y+theta)) + np . exp (i n t e g r a t e d d r i f t (y−
theta))) ∗ va l2 /(2∗K∗S∗ theta ∗∗2)

91 term3 = c∗np . exp (i n t e g r a t e d d r i f t (y))∗(1− va l1 / theta ∗∗2) ∗((1−np . exp(−(

phi max+c) ∗T)) /(phi max+c)

60

92 + (T∗np . exp(−(

phi max+c) ∗
T)) /c) /(K∗S

)

93

94 return −(term1+term2+term3)

95

96

97 def main () :

98 t h e t a v a l u e s = []

99 y range = np . l i n s p a c e (−3.5 , 20 , 100)

100 for y in y range :

101 i f y < −2:

102 u bound = 4 + y

103 else :

104 u bound = 2

105 theta = min im i z e s ca l a r (lambda x : o b j e c t i v e f u n c t i o n 2 (y , x) , bounds

=(0.05 , u bound) , method=’ Bounded ’) . x

106 t h e t a v a l u e s . append (theta)

107 print (theta)

108 with open(’ j d c e v t h e t a s . txt ’ , ’w ’) as t e x t f i l e :

109 for theta in t h e t a v a l u e s :

110 t e x t f i l e . wr i t e (”%s \n” % theta)

111

112

113 main ()

1 import numpy as np

2 import sampling

3 from s c ipy . opt imize import min im i z e s ca l a r

4 from s c ipy import i n t e g r a t e

5 import time

6 import matp lo t l i b . pyplot as p l t

7 import sys

8 import csv

9

10 lamb0 = 0.0110

11 lamb1 = 0.1000

12

13 min jump = 0.0113

14 max jump = 0.0312

15

16 X 0 = 0.0422

17 mean = 0.0422

18 kappa = 0.0117

19 sigma = 0.0130

20

61

21 T = 3

22 T max = 3

23 s t r i k e = 0.05

24 pe r i od s = 3

25 c a p l i m i t s = [1 , 2 , 3]

26

27 # model f u n c t i o n s

28

29

30 # l a m p e r t i transform

31 def f (x) :

32 return 2∗(np . s q r t (x) − np . s q r t (X 0)) / sigma

33

34

35 # i n v e r s e l a m p e r t i transform

36 def f i n v (x) :

37 return (sigma∗x/2 + np . s q r t (X 0)) ∗∗2

38

39

40 # d r i f t f u n c t i o n

41 def mu y(x) :

42 return (4∗ kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) /(x+2∗np . s q r t (X 0) / sigma)

− kappa/2 ∗ (x+2∗np . s q r t (X 0) / sigma)

43

44

45 def jump int (x) :

46 return lamb0 + lamb1 ∗ x

47

48

49 def d e l t a y (x , z) :

50 return 2 ∗ (np . s q r t ((np . s q r t (X 0) + x∗ sigma /2) ∗∗2 + z) − np . s q r t (X 0)) /

sigma − x

51

52

53 def phi y (x) :

54 return 0 .5 ∗ (−(4∗kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) /(x+2∗np . s q r t (X 0)

/ sigma) ∗∗2

55 − kappa/2 + mu y(x) ∗∗2)

56

57

58 # f u n c t i o n A(y) needed f o r the acceptance t e s t s

59 def i n t e g r a t e d d r i f t (x) :

60 return (4∗ kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) ∗ np . l og (1 + x∗ sigma /(2∗
np . s q r t (X 0))) \

61 − kappa/2 ∗ (x∗∗2/2 + 2∗np . s q r t (X 0) ∗x/sigma)

62

63

62

64 def h(t , p r e c i s i o n=1e −10, max i ter =100) :

65

66 h va lue = 1 / np . s q r t (2 ∗ np . p i ∗ t ∗∗ 3) ∗ np . exp(−1 / (2 ∗ t))

67 j = 1

68

69 p term = (2 ∗ j + 1) ∗ np . exp(−(2 ∗ j + 1) ∗∗ 2 / (2 ∗ t))

70 n term = (2 ∗ j − 1) ∗ np . exp(−(2 ∗ j − 1) ∗∗ 2 / (2 ∗ t))

71 summand = (−1) ∗∗ j / np . s q r t (2 ∗ np . p i ∗ t ∗∗ 3) ∗ (p term − n term)

72

73 h va lue += summand

74

75 while abs (summand) > p r e c i s i o n and j < max iter :

76

77 p term = (2 ∗ j + 1) ∗ np . exp(−(2 ∗ j + 1) ∗∗ 2 / (2 ∗ t))

78 n term = (2 ∗ j − 1) ∗ np . exp(−(2 ∗ j − 1) ∗∗ 2 / (2 ∗ t))

79 summand = (−1) ∗∗ j / np . s q r t (2 ∗ np . p i ∗ t ∗∗ 3) ∗ (p term −
n term)

80 h va lue += summand

81

82 j += 1

83

84 return h va lue

85

86

87 def o b j e c t i v e f u n c t i o n 2 (y , theta) :

88 phi max = −min im i z e s ca l a r (lambda x : −phi y (x) , bounds=(y − theta , y +

theta) , method=’ bounded ’) . fun

89 phi min = min im i z e s ca l a r (phi y , bounds=(y − theta , y + theta) , method=

’ bounded ’) . fun

90 c = −min im i z e s ca l a r (lambda x : −jump int (f i n v (x)) , bounds=(y − theta ,

y + theta) , method=’ bounded ’) . fun

91 K = −min im i z e s ca l a r (lambda x : −np . exp (i n t e g r a t e d d r i f t (x)) , bounds=(y

− theta , y + theta) , method=’ bounded ’) . fun

92 S = max(np . exp(−phi min∗T) , 1)

93

94 va l1 = i n t e g r a t e . quad (lambda t : h (t / theta ∗∗2) , 0 , T) [0]

95 va l2 = i n t e g r a t e . quad (lambda t : t ∗h(t / theta ∗∗2) ∗np . exp(−phi max∗ t) , 0 ,

T) [0]

96 va l3 = i n t e g r a t e . quad (lambda t : t ∗h(t / theta ∗∗2) ∗np . exp(−(phi max+c) ∗ t) ,

0 , T) [0]

97 va l4 = i n t e g r a t e . quad (lambda t : h (t / theta ∗∗2) ∗np . exp(−(phi max+c) ∗ t) ,

0 , T) [0]

98

99 term1 = c∗np . exp (i n t e g r a t e d d r i f t (y)) ∗(va l1 − (phi max+c) ∗ va l3 − va l4)

/(K∗S∗ theta ∗∗2∗(phi max+c) ∗∗2)

100 term2 = (np . exp (i n t e g r a t e d d r i f t (y+theta)) + np . exp (i n t e g r a t e d d r i f t (y−
theta))) ∗ va l2 /(2∗K∗S∗ theta ∗∗2)

63

101 term3 = c∗np . exp (i n t e g r a t e d d r i f t (y))∗(1− va l1 / theta ∗∗2) ∗((1−np . exp(−(

phi max+c) ∗T)) /(phi max+c)

102 + (T∗np . exp(−(

phi max+c) ∗
T)) /c) /(K∗S

)

103

104 return −(term1+term2+term3)

105

106

107 def main () :

108 t h e t a v a l u e s = []

109 y range = np . l i n s p a c e (−29 , 40 , 100)

110 for y in y range :

111 i f y < −20:

112 u bound = 30 + y

113 else :

114 u bound = 10

115 theta = min im i z e s ca l a r (lambda x : o b j e c t i v e f u n c t i o n 2 (y , x) , bounds

=(0.005 , u bound) , method=’ Bounded ’) . x

116 t h e t a v a l u e s . append (theta)

117 print (theta)

118 with open(’ a j d t h e t a s . txt ’ , ’w ’) as t e x t f i l e :

119 for theta in t h e t a v a l u e s :

120 t e x t f i l e . wr i t e (”%s \n” % theta)

121

122

123 main ()

A.3. JDCEV implementation

We provide the implementation only for the put case, as the algorithm is easily adaptable

to the other tests.

A.3.1. Exact method

1 import numpy as np

2 import sampling

3 from s c ipy . opt imize import min im i z e s ca l a r

4 import time

5 import matp lo t l i b . pyplot as p l t

6

7

8 def monte car lo (n sim =1000 , s im frames =[1000] , T=1, s t r i k e =5, X 0=50, beta

=−1, r =0.05 , sigma =50/4 , b=0, c=1/2) :

9

10 # model f u n c t i o n s

11 # Lamperti transform

64

12 def f (x) :

13 return (X 0∗∗(−beta) − x∗∗(−beta)) /(beta ∗ sigma)

14

15 # i n v e r s e Lamperti transform

16 def f i n v (x) :

17 return (X 0∗∗(−beta) − x∗ sigma∗beta) ∗∗(−1/ beta)

18

19 # d r i f t f u n c t i o n

20 def mu y(x) :

21 return ((r+b) /sigma) ∗(X 0∗∗(−beta) − x∗ sigma∗beta) + sigma ∗ (c − (

beta+1)/2) /(X 0∗∗(−beta) − x∗ sigma∗beta)

22

23 def jump int (x) :

24 return b + c ∗ sigma ∗∗2 ∗ x∗∗(2∗ beta)

25

26 def d e l t a y (x) :

27 return X 0∗∗(−beta) /(sigma∗beta) − x

28

29 def phi y (x) :

30 return 0 .5 ∗ (−(r+b) ∗beta + sigma ∗∗2 ∗ beta ∗ (c−(beta+1)/2) /(X 0

∗∗(−beta)−x∗ sigma∗beta) ∗∗2 + mu y(x) ∗∗2)

31

32 # f u n c t i o n A(y) needed f o r the acceptance t e s t s

33 def i n t e g r a t e d d r i f t (x) :

34 return (r+b) /sigma ∗ (X 0∗∗(−beta) ∗x − x∗∗2/2 ∗ sigma ∗ beta) − \
35 (c − (beta+1)/2) / beta ∗ np . l og (1 − x∗ sigma∗beta ∗X 0∗∗ beta)

36

37 f i n a l s a m p l e s = []

38 d e f a u l t t i m e s = []

39 s im data = []

40 opt ima l the ta s = [f loat (theta . s t r i p ()) for theta in open(” j d c e v t h e t a s .

txt ” , ’ r ’)]

41 s t a r t t i m e = time . time ()

42

43 s im count = 0

44 while s im count < n sim :

45 # p r i n t (s im count)

46 y = 0

47 t = 0

48

49 # main w h i l e loop i t e r a t i n g over time segments

50 while t < T:

51 # c hoi ce o f t h e t a

52 y range = np . l i n s p a c e (−3.5 , 20 , 100)

53 i f −3.5 < y < 19 :

54 for i in range (len (y range)) :

55 i f y range [i] < y :

65

56 the ta opt = (opt ima l the ta s [i] ∗ (y range [i + 1] −
y) + opt ima l the ta s [i + 1] ∗ (

57 y − y range [i])) \
58 / (y range [i + 1] − y range [i])

59 theta = min(theta opt , (y − X 0 ∗∗ (−beta) / (sigma

∗ beta)) / 2)

60 break

61 else :

62 theta = min (1 . 5 , (y − X 0 ∗∗ (−beta) / (sigma ∗ beta)) / 2)

63

64 # sampling and acceptance w h i l e loop

65 r e j e c t e d = True

66 while r e j e c t e d :

67

68 # determinat ion o f the minimum and maximum of phi

69 # phi max = −m i n i m i z e s c a l a r (lambda x : −p h i y (x) , bounds=(y

−the ta , y+t h e t a) , method=’bounded ’) . fun

70 # phi min = m i n i m i z e s c a l a r (phi y , bounds=(y−the ta , y+t h e t a

) , method=’bounded ’) . fun

71

72 phi max = phi y (y+theta)

73 phi min = phi y (y−theta)

74

75 lamb = jump int (f i n v (y − theta))

76

77 # genera te the e x i t time f o r the i n t e r v a l [y−the ta , y+t h e t a

]

78 tau = theta ∗∗2 ∗ sampling . g e n e r a t e e x i t t i m e ()

79

80 # genera te the r e q u i r e d Poisson jump times

81 cand idate t imes = sampling . gene ra te po i s son jumps (lamb , min

(tau , T−t))

82 t e s t t i m e s = sampling . gene ra te po i s son jumps (phi max−
phi min , min(tau , T−t))

83

84 a l l t i m e s = sorted (cand idate t imes + t e s t t i m e s)

85 i f T−t < tau :

86 a l l t i m e s . append (T−t)

87 a l l t i m e s . append (tau)

88 # genera te a Brownian meander wi th e x i t time tau at a l l the

r e q u i r e d t imes and we r e s c a l e

89 c a n d i d a t e b r i d g e v a l u e s = sampling .

generate brownian meander ([i / theta ∗∗2 for i in a l l t i m e s

])

90 c a n d i d a t e b r i d g e v a l u e s = [x∗ theta for x in

c a n d i d a t e b r i d g e v a l u e s]

91

66

92 cand ida t e b r idge = { a l l t i m e s [i] : c a n d i d a t e b r i d g e v a l u e s [i

] for i in range (len (a l l t i m e s)) }
93

94 i = 0

95 a = len (cand idate t imes)

96 while i < a :

97 u = np . random . rand ()

98 i f u∗ lamb < jump int (f i n v (y + cand ida t e b r idge [

cand idate t imes [i]])) :

99 # a d e f a u l t time i s accepted and we break the loop

100 break

101 else :

102 i += 1

103

104 i f i == a :

105

106 # no jump time i s accepted and we t e s t the complete

s k e l e t o n

107 s topp ing t ime = t + min(tau , T − t)

108

109 u , v = np . random . rand (2)

110

111 # f i r s t B e r n o u l l i v a r i a b l e

112 K = i n t e g r a t e d d r i f t (y+theta)

113 t e s t f a c t o r 1 = (np . l og (u) < i n t e g r a t e d d r i f t (y +

cand ida t e b r idge [min(tau , T−t)]) − K)

114 # second B e r n o u l l i v a r i a b l e

115 S = max(np . exp(−phi min ∗(T−t)) , 1)

116 t e s t f a c t o r 2 = (v∗S < np . exp(−phi min∗min(tau , T−t)))

117

118 # t h i n n i n g t e s t pr oces s

119 t e s t f a c t o r 3 = True

120 j = 0

121 while j < len (t e s t t i m e s) :

122

123 w = np . random . rand ()

124 i f w ∗ (phi max−phi min) < phi y (y +

cand ida t e b r idge [t e s t t i m e s [j]])−phi min :

125

126 # one o f the t e s t jump times \ k ap pa j i s

accepted and we r e j e c t the s k e l e t o n

127 t e s t f a c t o r 3 = False

128 break

129 j += 1

130

131 i f t e s t f a c t o r 1 and t e s t f a c t o r 2 and t e s t f a c t o r 3 :

132

67

133 # the sample i s accepted

134 r e j e c t e d = False

135 i f s topp ing t ime < T:

136 y += c a n d i d a t e b r i d g e v a l u e s [−1]

137 t = stopp ing t ime

138

139 else :

140 y += cand ida t e b r idge [T−t]

141 f i n a l s a m p l e s . append (f i n v (y))

142 t = T

143

144 else :

145

146 # one o f the jump times was accepted and we t e s t the

s k e l e t o n up to the d e f a u l t time

147 s topp ing t ime = t + cand idate t imes [i]

148

149 u , v = np . random . rand (2)

150 K = i n t e g r a t e d d r i f t (y+theta)

151 S = max(np . exp(−phi min ∗ min(tau , (T−t))) , 1)

152 # f i r s t B e r n o u l l i v a r i a b l e

153 t e s t f a c t o r 1 = (np . l og (u) < i n t e g r a t e d d r i f t (y +

cand ida t e b r idge [cand idate t imes [i]]) − K)

154 # second B e r n o u l l i v a r i a b l e

155 t e s t f a c t o r 2 = (v∗S < np . exp(−phi min∗ cand idate t imes [

i]))

156

157 t e s t f a c t o r 3 = True

158 j = 0

159 while j < len (t e s t t i m e s) :

160

161 # we only need to t e s t up to d e f a u l t time

162 i f t e s t t i m e s [j] > cand idate t imes [i] :

163 break

164

165 w = np . random . rand ()

166 i f w ∗ (phi max−phi min) < phi y (y +

cand ida t e b r idge [t e s t t i m e s [j]])−phi min :

167 t e s t f a c t o r 3 = False

168 break

169

170 j += 1

171

172 i f t e s t f a c t o r 1 and t e s t f a c t o r 2 and t e s t f a c t o r 3 :

173

174 r e j e c t e d = False

175 f i n a l s a m p l e s . append (0)

68

176 d e f a u l t t i m e s . append (s topp ing t ime)

177 t = T

178 s im count += 1

179 i f s im count in s im frames :

180 o p t i o n r e s u l t s = [max(s t r i k e − x , 0) for x in f i n a l s a m p l e s] ∗
np . exp(−r)

181 o p t i o n p r i c e = np . mean(o p t i o n r e s u l t s)

182 sample std = np . std (o p t i o n r e s u l t s)

183 s t d e r r o r = sample std / np . s q r t (s im count)

184 t ime spent = time . time () − s t a r t t i m e

185

186 print (s im count)

187 s im data . append ([sim count , o p t i o n p r i c e , s t d e r r o r , t ime spent

])

188

189 return s im data

A.3.2. Discretization method

1 import numpy as np

2 import sampling

3 import time

4

5

6 def monte car lo (s im frames =[1000] , T=1, s t r i k e =5, X 0=50, beta=−1, r =0.05 ,

sigma =50/4 , b=0, c=1/2) :

7

8 def jump int (x) :

9 return b + c ∗ sigma ∗∗2 ∗ x∗∗(2∗ beta)

10

11 s im data = []

12

13 for n sim in s im frames :

14 r e s u l t s = []

15 N = int (np . s q r t (n sim))

16 h = T / N

17

18 s t a r t t i m e = time . time ()

19 s im count = 0

20 while s im count < n sim :

21 i = 0

22 X = np . z e ro s (N+1)

23 X[0] = X 0

24

25 compensator = h ∗ jump int (X[0])

26 d e f a u l t b r e a k p o i n t = sampling . generate exp ()

27

69

28 while i < N:

29 u = np . random . normal ()

30 X[i +1] = X[i] + (r + jump int (X[i])) ∗ X[i] ∗ h + sigma ∗(X[

i]∗∗ (beta+1)) ∗ np . s q r t (h) ∗ u

31

32 compensator += h ∗ jump int (X[i +1])

33

34 i f X[i +1] < 0 or compensator > d e f a u l t b r e a k p o i n t :

35 X[i +1] = 0

36 break

37

38 i += 1

39

40 r e s u l t s . append (X[−1])

41 s im count += 1

42

43 print (n sim)

44 o p t i o n r e s u l t s = [max(s t r i k e −x , 0) ∗np . exp(−r ∗T) for x in r e s u l t s]

45 o p t i o n p r i c e = np . mean(o p t i o n r e s u l t s)

46 sample std = np . std (o p t i o n r e s u l t s)

47 s t d e r r o r = sample std /np . s q r t (n sim)

48 t ime spent = time . time () − s t a r t t i m e

49

50 s im data . append ([n sim , o p t i o n p r i c e , s t d e r r o r , t ime spent])

51

52 return s im data

A.4. AJD Implementation

A.4.1. Exact method

A.4.1.1. Zero coupon bond

1 import numpy as np

2 from s c ipy . opt imize import min im i z e s ca l a r

3 import sampling

4

5 import time

6

7

8 # params

9

10 lamb0 = 0.0110

11 lamb1 = 0.1000

12

13 min jump = 0.0113

14 max jump = 0.0312

15

16 X 0 = 0.0422

70

17 mean = 0.0422

18 kappa = 0.0117

19 sigma = 0.0130

20

21 T = 3

22

23 # model f u n c t i o n s

24

25

26 # l a m p e r t i transform

27 def f (x) :

28 return 2∗(np . s q r t (x) − np . s q r t (X 0)) / sigma

29

30

31 # i n v e r s e l a m p e r t i transform

32 def f i n v (x) :

33 return (sigma∗x/2 + np . s q r t (X 0)) ∗∗2

34

35

36 # d r i f t f u n c t i o n

37 def mu y(x) :

38 return (4∗ kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) /(x+2∗np . s q r t (X 0) / sigma)

− kappa/2 ∗ (x+2∗np . s q r t (X 0) / sigma)

39

40

41 # jump i n t e n s i t y

42 def jump int (x) :

43 return lamb0 + lamb1 ∗ x

44

45 # jump s i z e

46 def d e l t a y (x , z) :

47 return 2 ∗ (np . s q r t ((np . s q r t (X 0) + x∗ sigma /2) ∗∗2 + z) − np . s q r t (X 0)) /

sigma − x

48

49

50 # phi = 0.5∗ (mu ’ + muˆ2)

51 def phi y (x) :

52 return 0 .5 ∗ (−(4∗kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) /(x+2∗np . s q r t (X 0)

/ sigma) ∗∗2

53 − kappa/2 + mu y(x) ∗∗2)

54

55

56 # f u n c t i o n A(y) needed f o r the acceptance t e s t s

57 def i n t e g r a t e d d r i f t (x) :

58 return (4∗ kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) ∗ np . l og (1 + x∗ sigma /(2∗
np . s q r t (X 0))) \

59 − kappa/2 ∗ (x∗∗2/2 + 2∗np . s q r t (X 0) ∗x/sigma)

71

60

61

62 def monte car lo (n sim =1000 , s im frames =[1000]) :

63 s im count = 0

64 s im data = []

65 b o n d r e s u l t s = []

66 opt ima l the ta s = [f loat (theta . s t r i p ()) for theta in open(” a j d t h e t a s .

txt ” , ’ r ’)]

67

68 # we s t a r t the t imer

69 s t a r t t i m e = time . time ()

70

71 # main s i m u l a t i o n loop

72 while s im count < n sim :

73

74 # i n i t i a l i z e the s i m u l a t i o n v a r i a b l e s

75 y = 0

76 t = 0

77 g = 1 # e s t i m a t o r o f the time−i n t e g r a t e d e x p o n e n t i a l

78

79 # loop u n t i l we reach our hor i zon T

80 while t < T:

81

82 # c hoi ce o f t h e t a

83 y range = np . l i n s p a c e (−29 , 40 , 100)

84 i f −29 < y < 40 :

85 for i in range (len (y range)) :

86 i f y range [i] < y :

87 the ta opt = (opt ima l the ta s [i] ∗ (y range [i + 1] −
y) + opt ima l the ta s [i + 1] ∗ (

88 y − y range [i])) \
89 / (y range [i + 1] − y range [i])

90 theta = min(theta opt , (y − f (0)) / 4)

91 break

92 else :

93 theta = min(3 , (y − f (0)) / 4)

94

95 # determinat ion o f the minimum and maximum of phi

96

97 # phi max = −m i n i m i z e s c a l a r (lambda x : −p h i y (x) , bounds=(y −
the ta , y + t h e t a) , method=’bounded ’) . fun

98 # phi min = m i n i m i z e s c a l a r (phi y , bounds=(y − the ta , y + t h e t a

) , method=’bounded ’) . fun

99

100 theta min = −2.9081943013559806

101 i f y − theta < theta min < y + theta :

102 phi min = −0.006002

72

103 phi max = max(ph i y (y − theta) , ph i y (y + theta))

104 e l i f y + theta < theta min :

105 phi max = phi y (y − theta)

106 phi min = phi y (y + theta)

107 e l i f theta min < y − theta :

108 phi max = phi y (y + theta)

109 phi min = phi y (y − theta)

110

111 lamb = jump int (f i n v (y + theta))

112

113 # bounds f o r sampling o f e s t i m a t o r

114 x up = f i n v (y + theta)

115 x down = f i n v (y − theta)

116

117 # main A/R scheme loop

118 r e j e c t e d = True

119 while r e j e c t e d :

120

121 # genera te the e x i t time f o r the i n t e r v a l [y−the ta , y+t h e t a

]

122 tau = theta ∗∗ 2 ∗ sampling . g e n e r a t e e x i t t i m e ()

123

124 # genera te the r e q u i r e d Poisson jump times

125 cand idate t imes = sampling . gene ra te po i s son jumps (lamb , min

(tau , T − t))

126 t e s t t i m e s = sampling . gene ra te po i s son jumps (phi max −
phi min , min(tau , T − t))

127 exponen t i a l t ime s = sampling . gene ra te po i s son jumps (x up−
x down , min(tau , T−t))

128

129 # s o r t a l l t imes and add T−t i f needed

130 a l l t i m e s = sorted (cand idate t imes + t e s t t i m e s +

exponen t i a l t ime s)

131 i f T − t < tau :

132 a l l t i m e s . append (T − t)

133 a l l t i m e s . append (tau)

134

135 c a n d i d a t e b r i d g e v a l u e s = sampling .

generate brownian meander ([i / theta ∗∗ 2 for i in

a l l t i m e s])

136 c a n d i d a t e b r i d g e v a l u e s = [x ∗ theta for x in

c a n d i d a t e b r i d g e v a l u e s]

137

138 cand ida t e b r idge = { a l l t i m e s [i] : c a n d i d a t e b r i d g e v a l u e s [i

] for i in range (len (a l l t i m e s)) }
139

140 i = 0

73

141 a = len (cand idate t imes)

142

143 while i < a :

144 u = np . random . rand ()

145 w = cand ida t e b r idge [cand idate t imes [i]]

146

147 i f u ∗ lamb < jump int (f i n v (y + w)) :

148 break

149 else :

150 i += 1

151

152 i f i == a :

153

154 # no jump time was accepted

155 s topp ing t ime = min(t + tau , T)

156

157 u , v = np . random . rand (2)

158

159 # f i r s t B e r n o u l l i v a r i a b l e

160 # K = −m i n i m i z e s c a l a r (lambda x : − i n t e g r a t e d d r i f t (x) ,

161 # bounds=(y−the ta , y+t h e t a) ,

method=’bounded ’) . fun

162

163 # p r e v i o u s l y computed l o c a t i o n o f g l o b a l maximum

164 K max = 1.382436647017447

165

166 i f y − theta < K max < y + theta :

167 K = 0.011016

168 else :

169 K = max(i n t e g r a t e d d r i f t (y − theta) ,

i n t e g r a t e d d r i f t (y + theta))

170

171 w = cand ida t e b r idge [min(tau , T − t)]

172 t e s t f a c t o r 1 = (np . l og (u) < i n t e g r a t e d d r i f t (y + w) −
K)

173

174 # second B e r n o u l l i v a r i a b l e

175 S = max(np . exp(−phi min ∗ (T − t)) , 1)

176 t e s t f a c t o r 2 = (v ∗ S < np . exp(−phi min ∗ min(tau , T −
t)))

177

178 # t h i n n i n g t e s t pr oces s

179 t e s t f a c t o r 3 = True

180 j = 0

181 while j < len (t e s t t i m e s) :

182

183 u = np . random . rand ()

74

184 w = cand ida t e b r idge [t e s t t i m e s [j]]

185 i f u ∗ (phi max − phi min) < phi y (y + w) − phi min

:

186

187 # one o f the t e s t jump times \ k ap pa j i s

accepted and we r e j e c t the s k e l e t o n

188 t e s t f a c t o r 3 = False

189 break

190

191 j += 1

192

193 i f t e s t f a c t o r 1 and t e s t f a c t o r 2 and t e s t f a c t o r 3 :

194

195 # the sample i s accepted

196 r e j e c t e d = False

197

198 i f s topp ing t ime < T:

199 for jump in exponen t i a l t ime s :

200 w = cand ida t e b r idge [jump]

201 g = g ∗ (1 − (f i n v (y + w) − x down) /(x up

− x down))

202

203 g = g ∗ np . exp(−x down ∗ tau)

204

205 y += c a n d i d a t e b r i d g e v a l u e s [−1]

206 t = stopp ing t ime

207

208 else :

209 for jump in exponen t i a l t ime s :

210 i f T − t < jump :

211 break

212 w = cand ida t e b r idge [jump]

213 g = g ∗ (1 − (f i n v (y + w) − x down) /(x up

− x down))

214

215 g = g ∗ np . exp(−x down ∗ (T−t))

216 b o n d r e s u l t s . append (g)

217 w = cand ida t e b r idge [T−t]

218 y += w

219 t = T

220

221 else :

222

223 # one o f the jump times was accepted and we t e s t the

s k e l e t o n up to the jump time

224 s topp ing t ime = t + cand idate t imes [i]

225

75

226 u , v = np . random . rand (2)

227

228 # f i r s t B e r n o u l l i v a r i a b l e

229

230 # f i r s t o p t i m i z a t i o n approach

231 # K = −m i n i m i z e s c a l a r (lambda x : − i n t e g r a t e d d r i f t (x) ,

232 # bounds=(y−the ta , y+t h e t a) ,

method=’bounded ’) . fun

233

234 # second o p t i m i z a t i o n approach

235 K max = 1.382436647017447 # p r e v i o u s l y computed

l o c a t i o n o f g l o b a l maximum

236

237 i f y − theta < K max < y + theta :

238 K = 0.011016

239 else :

240 K = max(i n t e g r a t e d d r i f t (y − theta) ,

i n t e g r a t e d d r i f t (y + theta))

241

242 w = cand ida t e b r idge [cand idate t imes [i]]

243 t e s t f a c t o r 1 = (np . l og (u) < i n t e g r a t e d d r i f t (y + w) −
K)

244

245 # second B e r n o u l l i v a r i a b l e

246 S = max(np . exp(−phi min ∗ (T − t)) , 1)

247 t e s t f a c t o r 2 = (v ∗ S < np . exp(−phi min ∗
cand idate t imes [i]))

248

249 t e s t f a c t o r 3 = True

250 j = 0

251 while j < len (t e s t t i m e s) :

252

253 # we only need to t e s t up to d e f a u l t time

254 i f t e s t t i m e s [j] > cand idate t imes [i] :

255 break

256

257 u = np . random . rand ()

258 w = cand ida t e b r idge [t e s t t i m e s [j]]

259

260 i f u ∗ (phi max − phi min) < phi y (y + w) − phi min

:

261 t e s t f a c t o r 3 = False

262 break

263

264 j += 1

265

266 i f t e s t f a c t o r 1 and t e s t f a c t o r 2 and t e s t f a c t o r 3 :

76

267 # we accep t the s k e l e t o n up to jump time

268 r e j e c t e d = False

269

270 for jump in exponen t i a l t ime s :

271 i f cand idate t imes [i] < jump :

272 break

273 w = cand ida t e b r idge [jump]

274 g = g ∗ (1 − (f i n v (y + w) − x down) / (x up −
x down))

275

276 g = g ∗ np . exp(− x down ∗ cand idate t imes [i])

277

278 # compute Y immediate ly b e f o r e the jump

279 w = cand ida t e b r idge [cand idate t imes [i]]

280 y += w

281 # compute Y a f t e r the jump

282 u = np . random . rand ()

283 z = min jump + (max jump − min jump) ∗ u

284 y += d e l t a y (y , z)

285 t = stopp ing t ime

286

287 s im count += 1

288 i f s im count in s im frames :

289 print (s im count)

290 bond pr i ce = np . mean(b o n d r e s u l t s)

291 sample std = np . std (b o n d r e s u l t s)

292 s t d e r r o r = sample std / np . s q r t (s im count)

293 t ime spent = time . time () − s t a r t t i m e

294 s im data . append ([sim count , bond pr ice , s t d e r r o r , t ime spent])

295

296 return s im data

A.4.1.2. Cap

1 import numpy as np

2 import pandas as pd

3 import matp lo t l i b . pyplot as p l t

4

5 from s c ipy . opt imize import min im i z e s ca l a r

6 import sampling

7

8 import time

9

10

11 # params

12

13 lamb0 = 0.0110

14 lamb1 = 0.1000

77

15

16 min jump = 0.0113

17 max jump = 0.0312

18

19 X 0 = 0.0422

20 mean = 0.0422

21 kappa = 0.0117

22 sigma = 0.0130

23

24 T = 3

25 s t r i k e = 0.05

26 pe r i od s = 3

27 c a p l i m i t s = [1 , 2 , 3]

28

29 # model f u n c t i o n s

30

31

32 # l a m p e r t i transform

33 def f (x) :

34 return 2∗(np . s q r t (x) − np . s q r t (X 0)) / sigma

35

36

37 # i n v e r s e l a m p e r t i transform

38 def f i n v (x) :

39 return (sigma∗x/2 + np . s q r t (X 0)) ∗∗2

40

41

42 # d r i f t f u n c t i o n

43 def mu y(x) :

44 return (4∗ kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) /(x+2∗np . s q r t (X 0) / sigma)

− kappa/2 ∗ (x+2∗np . s q r t (X 0) / sigma)

45

46

47 def jump int (x) :

48 return lamb0 + lamb1 ∗ x

49

50

51 def d e l t a y (x , z) :

52 return 2 ∗ (np . s q r t ((np . s q r t (X 0) + x∗ sigma /2) ∗∗2 + z) − np . s q r t (X 0)) /

sigma − x

53

54

55 def phi y (x) :

56 return 0 .5 ∗ (−(4∗kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) /(x+2∗np . s q r t (X 0)

/ sigma) ∗∗2

57 − kappa/2 + mu y(x) ∗∗2)

58

78

59

60 # f u n c t i o n A(y) needed f o r the acceptance t e s t s

61 def i n t e g r a t e d d r i f t (x) :

62 return (4∗ kappa∗mean − sigma ∗∗2) /(2∗ sigma ∗∗2) ∗ np . l og (1 + x∗ sigma /(2∗
np . s q r t (X 0))) \

63 − kappa/2 ∗ (x∗∗2/2 + 2∗np . s q r t (X 0) ∗x/sigma)

64

65

66 def monte car lo (n sim =1000 , s im frames =[1000]) :

67

68 s im count = 0

69 s im data = []

70 c a p r e s u l t s = []

71 opt ima l the ta s = [f loat (theta . s t r i p ()) for theta in open(” a j d t h e t a s .

txt ” , ’ r ’)]

72

73 # we s t a r t the t imer

74 s t a r t t i m e = time . time ()

75

76 # main s i m u l a t i o n loop

77 while s im count < n sim :

78 print (s im count)

79 y = 0

80 t = 0

81 g = 1

82 cap va lue = 0

83 cap counter = 0

84

85 # loop u n t i l we reach our hor i zon T

86 while t < T:

87 # c hoi ce o f t h e t a

88 y range = np . l i n s p a c e (−29 , 40 , 100)

89 i f −29 < y < 40 :

90 for i in range (len (y range)) :

91 i f y range [i] < y :

92 the ta opt = (opt ima l the ta s [i] ∗ (y range [i + 1] −
y) + opt ima l the ta s [i + 1] ∗ (

93 y − y range [i])) \
94 / (y range [i + 1] − y range [i])

95 theta = min(theta opt , (y − f (0)) / 4)

96 break

97 else :

98 theta = min(3 , (y − f (0)) / 4)

99

100 # determinat ion o f the minimum and maximum of phi

101 # phi max = −m i n i m i z e s c a l a r (lambda x : −p h i y (x) , bounds=(y −
the ta , y + t h e t a) , method=’bounded ’) . fun

79

102 # phi min = m i n i m i z e s c a l a r (phi y , bounds=(y − the ta , y + t h e t a

) , method=’bounded ’) . fun

103

104 theta min = −2.9081943013559806

105 i f y − theta < theta min < y + theta :

106 phi min = −0.006002

107 phi max = max(ph i y (y − theta) , ph i y (y + theta))

108 e l i f y + theta < theta min :

109 phi max = phi y (y − theta)

110 phi min = phi y (y + theta)

111 e l i f theta min < y − theta :

112 phi max = phi y (y + theta)

113 phi min = phi y (y − theta)

114

115 lamb = jump int (f i n v (y + theta))

116

117 # bounds f o r sampling o f e s t i m a t o r

118 x up = f i n v (y + theta)

119 x down = f i n v (y − theta)

120

121 # main A/R scheme loop

122 r e j e c t e d = True

123 while r e j e c t e d :

124

125 # genera te the e x i t time f o r the i n t e r v a l [y−the ta , y+t h e t a

]

126 tau = theta ∗∗ 2 ∗ sampling . g e n e r a t e e x i t t i m e ()

127

128 # genera te the r e q u i r e d Poisson jump times

129 cand idate t imes = sampling . gene ra te po i s son jumps (lamb , min

(tau , T − t))

130 t e s t t i m e s = sampling . gene ra te po i s son jumps (phi max −
phi min , min(tau , T − t))

131 exponen t i a l t ime s = sampling . gene ra te po i s son jumps (x up −
x down , min(tau , T − t))

132

133 # s o r t a l l t imes and add T−t i f needed

134 a l l t i m e s = cand idate t imes + t e s t t i m e s +

exponen t i a l t ime s

135

136 i f T − t < tau :

137 a l l t i m e s . append (T − t)

138 # we add the necessary cap c h e c k p o i n t s

139 cap t imes = [t cap − t for t cap in c a p l i m i t s i f t < t cap

< min(T, t + tau)]

140 a l l t i m e s = a l l t i m e s + cap t imes

141 a l l t i m e s . append (tau)

80

142 a l l t i m e s = sorted (a l l t i m e s)

143

144 # genera te a Brownian meander wi th e x i t time tau at a l l the

r e q u i r e d t imes and we r e s c a l e

145 c a n d i d a t e b r i d g e v a l u e s = sampling .

generate brownian meander ([i / theta ∗∗ 2 for i in

a l l t i m e s])

146 c a n d i d a t e b r i d g e v a l u e s = [x ∗ theta for x in

c a n d i d a t e b r i d g e v a l u e s]

147

148 cand ida t e b r idge = { a l l t i m e s [i] : c a n d i d a t e b r i d g e v a l u e s [i

] for i in range (len (a l l t i m e s)) }
149

150 i = 0

151 a = len (cand idate t imes)

152

153 # i t e r a t i n g over the jump times to t h i n the jump pro ces s

154 while i < a :

155 u = np . random . rand ()

156 w = cand ida t e b r idge [cand idate t imes [i]]

157

158 i f u ∗ lamb < jump int (f i n v (y + w)) :

159 # one o f the jump times was accepted

160 break

161 else :

162 i += 1

163

164 i f i == a :

165

166 # no jump time was accepted

167 s topp ing t ime = min(t + tau , T)

168

169 u , v = np . random . rand (2)

170

171 # f i r s t B e r n o u l l i v a r i a b l e

172 # K = −m i n i m i z e s c a l a r (lambda x : − i n t e g r a t e d d r i f t (x) ,

173 # bounds=(y−the ta , y+t h e t a) ,

method=’bounded ’) . fun

174

175 # p r e v i o u s l y computed l o c a t i o n o f g l o b a l maximum

176 K max = 1.382436647017447

177

178 i f y−theta < K max < y+theta :

179 K = 0.011016

180 else :

181 K = max(i n t e g r a t e d d r i f t (y−theta) , i n t e g r a t e d d r i f t

(y+theta))

81

182

183 w = cand ida t e b r idge [min(tau , T − t)]

184 t e s t f a c t o r 1 = (np . l og (u) < i n t e g r a t e d d r i f t (y + w) −
K)

185

186 # second B e r n o u l l i v a r i a b l e

187 S = max(np . exp(−phi min ∗ (T − t)) , 1)

188 t e s t f a c t o r 2 = (v ∗ S < np . exp(−phi min ∗ min(tau , T −
t)))

189

190 # t h i n n i n g t e s t pr oces s

191 t e s t f a c t o r 3 = True

192 j = 0

193 while j < len (t e s t t i m e s) :

194

195 u = np . random . rand ()

196 w = cand ida t e b r idge [t e s t t i m e s [j]]

197 i f u ∗ (phi max − phi min) < phi y (y + w) − phi min

:

198

199 # one o f the t e s t jump times \ k ap pa j i s

accepted and we r e j e c t the s k e l e t o n

200 t e s t f a c t o r 3 = False

201 break

202

203 j += 1

204

205 i f t e s t f a c t o r 1 and t e s t f a c t o r 2 and t e s t f a c t o r 3 :

206

207 # the sample i s accepted

208 r e j e c t e d = False

209

210 i f s topp ing t ime < T:

211 c u r r e n t t = t

212 for jump in exponen t i a l t ime s :

213

214 while cap counter < len (c a p l i m i t s) − 1 :

215 t cap = c a p l i m i t s [cap counter] − t

216 i f c u r r e n t t < t + t cap < t + jump :

217 w = cand ida t e b r idge [t cap]

218 cap va lue += g ∗ max(f i n v (y + w) −
s t r i k e , 0) ∗ np . exp(−x down ∗

t cap)

219 cap counter += 1

220 else :

221 break

222

82

223 w = cand ida t e b r idge [jump]

224 g = g ∗ (1 − (f i n v (y + w) − x down) /(x up

− x down))

225 c u r r e n t t += jump

226

227 while cap counter < len (c a p l i m i t s) − 1 :

228 i f c a p l i m i t s [cap counter] < s topp ing t ime :

229 t cap = c a p l i m i t s [cap counter] − t

230 w = cand ida t e b r idge [t cap]

231 cap va lue += g ∗ max(f i n v (y + w) −
s t r i k e , 0) ∗ np . exp(−x down ∗ t cap)

232 cap counter += 1

233 else :

234 break

235

236 g = g ∗ np . exp(−x down ∗ tau)

237

238 y += c a n d i d a t e b r i d g e v a l u e s [−1]

239 t = stopp ing t ime

240

241 else :

242 c u r r e n t t = t

243

244 for jump in exponen t i a l t ime s :

245

246 i f T − t < jump :

247 break

248

249 # the w h i l e loop covers m u l t i p l e cap

payments between jumps

250 while cap counter < len (c a p l i m i t s) − 1 :

251 t cap = c a p l i m i t s [cap counter] − t

252 i f c u r r e n t t < t + t cap < t + jump :

253 w = cand ida t e b r idge [t cap]

254 cap va lue += g ∗ max(f i n v (y + w) −
s t r i k e , 0) ∗ np . exp(−x down ∗

t cap)

255 cap counter += 1

256 else :

257 break

258

259 w = cand ida t e b r idge [jump]

260 g = g ∗ (1 − (f i n v (y + w) − x down) /(x up

− x down))

261 c u r r e n t t += jump

262

263 while cap counter < len (c a p l i m i t s) − 1 :

83

264 # we i t e r a t e over the miss ing cap payments

between the l a s t jump and the s t o p p i n g

time

265 t cap = c a p l i m i t s [cap counter] − t

266 w = cand ida t e b r idge [t cap]

267

268 cap va lue += g ∗ max(f i n v (y + w) − s t r i k e ,

0) ∗ np . exp(−x down ∗ t cap)

269 cap counter += 1

270

271 w = cand ida t e b r idge [T−t]

272 y += w

273 g = g ∗ np . exp(−x down ∗ (T − t))

274 t = T

275

276 cap va lue += g ∗ max(f i n v (y)−s t r i k e , 0)

277

278 else :

279 # one o f the jump times was accepted and we t e s t the

s k e l e t o n up to the jump time

280 s topp ing t ime = t + cand idate t imes [i]

281

282 u , v = np . random . rand (2)

283

284 # f i r s t B e r n o u l l i v a r i a b l e

285 # K = −m i n i m i z e s c a l a r (lambda x : − i n t e g r a t e d d r i f t (x) ,

286 # bounds=(y−the ta , y+t h e t a) ,

method=’bounded ’) . fun

287

288 # p r e v i o u s l y computed l o c a t i o n o f g l o b a l maximum

289 K max = 1.382436647017447

290

291 i f y − theta < K max < y + theta :

292 K = 0.011016

293 else :

294 K = max(i n t e g r a t e d d r i f t (y − theta) ,

i n t e g r a t e d d r i f t (y + theta))

295

296 w = cand ida t e b r idge [cand idate t imes [i]]

297 t e s t f a c t o r 1 = (np . l og (u) < i n t e g r a t e d d r i f t (y + w) −
K)

298

299 # second B e r n o u l l i v a r i a b l e

300 S = max(np . exp(−phi min ∗ (T − t)) , 1)

301 t e s t f a c t o r 2 = (v ∗ S < np . exp(−phi min ∗
cand idate t imes [i]))

302

84

303 t e s t f a c t o r 3 = True

304 j = 0

305 while j < len (t e s t t i m e s) :

306

307 # we only need to t e s t up to d e f a u l t time

308 i f t e s t t i m e s [j] > cand idate t imes [i] :

309 break

310

311 u = np . random . rand ()

312 w = cand ida t e b r idge [t e s t t i m e s [j]]

313

314 i f u ∗ (phi max − phi min) < phi y (y + w) − phi min

:

315 t e s t f a c t o r 3 = False

316 break

317

318 j += 1

319

320 i f t e s t f a c t o r 1 and t e s t f a c t o r 2 and t e s t f a c t o r 3 :

321 # we accep t the s k e l e t o n up to jump time

322 r e j e c t e d = False

323

324 c u r r e n t t = t

325 for jump in exponen t i a l t ime s :

326 i f cand idate t imes [i] < jump :

327 break

328

329 while cap counter < len (c a p l i m i t s) − 1 :

330 t cap = c a p l i m i t s [cap counter] − t

331 i f c u r r e n t t < t + t cap < t + jump :

332 w = cand ida t e b r idge [t cap]

333 cap va lue += g ∗ max(f i n v (y + w) −
s t r i k e , 0) ∗ np . exp(−x down ∗ t cap)

334 cap counter += 1

335 else :

336 break

337

338 w = cand ida t e b r idge [jump]

339 g = g ∗ (1 − (f i n v (y + w) − x down) / (x up −
x down))

340 c u r r e n t t += jump

341

342 while cap counter < len (c a p l i m i t s) − 1 :

343 i f c a p l i m i t s [cap counter] < s topp ing t ime :

344 t cap = c a p l i m i t s [cap counter] − t

345 w = cand ida t e b r idge [t cap]

85

346 cap va lue += g ∗ max(f i n v (y + w) − s t r i k e ,

0) ∗ np . exp(−x down ∗ t cap)

347 cap counter += 1

348 else :

349 break

350

351 g = g ∗ np . exp(− x down ∗ cand idate t imes [i])

352

353 # compute Y immediate ly b e f o r e the jump

354 w = cand ida t e b r idge [cand idate t imes [i]]

355 y += w

356

357 # compute Y a f t e r the jump

358 u = np . random . rand ()

359 z = min jump + (max jump − min jump) ∗ u

360 y += d e l t a y (y , z)

361 t = stopp ing t ime

362

363 c a p r e s u l t s . append (cap va lue)

364 s im count += 1

365 i f s im count in s im frames :

366 print (s im count)

367 c a p p r i c e = np . mean(c a p r e s u l t s)

368 sample std = np . std (c a p r e s u l t s)

369 s t d e r r o r = sample std / np . s q r t (s im count)

370 t ime spent = time . time () − s t a r t t i m e

371 s im data . append ([sim count , cap pr i c e , s t d e r r o r , t ime spent])

372 return s im data

A.4.2. Discretization methods

A.4.2.1. Zero coupon bond Discretization method 1:

1 import numpy as np

2 import sampling

3 import time

4

5

6 # model parameters

7

8 lamb0 = 0.0110

9 lamb1 = 0.1000

10

11 min jump = 0.0113

12 max jump = 0.0312

13

14 X 0 = 0.0422

15 mean = 0.0422

86

16 kappa = 0.0117

17 sigma = 0.0130

18

19

20 def jump int (x) :

21 return lamb0 + lamb1 ∗ max(x , 0)

22

23

24 T = 3

25

26

27 def monte car lo (s im frames =[1000]) :

28

29 s im data = []

30

31 for n sim in s im frames :

32 s im count = 0

33 r e s u l t s = []

34

35 N = int (np . s q r t (n sim))

36 h = T/N

37

38

39 s t a r t t i m e = time . time ()

40

41 while s im count < n sim :

42 i = 0

43 g = 0

44

45 compensator = 0

46 tau = sampling . generate exp ()

47

48 X = X 0

49

50 while i < N+1:

51 u = np . random . normal ()

52 X next = X + kappa ∗(mean − max(X, 0)) ∗h + sigma∗np . s q r t (h∗
max(X, 0)) ∗u

53

54 compensator += h ∗ jump int (X next)

55 i f compensator > tau :

56 u = np . random . rand ()

57 z = min jump + (max jump − min jump) ∗u

58 X next += z

59

60 tau += sampling . generate exp ()

61

87

62 g += h∗(X + X next) /2

63 X = X next

64 i += 1

65

66 bond re su l t = np . exp(−g)

67 r e s u l t s . append (bond re su l t)

68 s im count += 1

69

70 print (n sim)

71 bond pr i ce = np . mean(r e s u l t s)

72 sample std = np . std (r e s u l t s)

73 s t d e r r o r = sample std /np . s q r t (n sim)

74 t ime spent = time . time () − s t a r t t i m e

75

76 s im data . append ([n sim , bond pr ice , s t d e r r o r , t ime spent])

77

78 return s im data

Discretization method 2:

1 import numpy as np

2 import sampling

3 import time

4

5

6 # model parameters

7

8 lamb0 = 0.0110

9 lamb1 = 0.1000

10

11 min jump = 0.0113

12 max jump = 0.0312

13

14 X 0 = 0.0422

15 mean = 0.0422

16 kappa = 0.0117

17 sigma = 0.0130

18

19

20 def jump int (x) :

21 return lamb0 + lamb1 ∗ max(x , 0)

22

23

24 T = 3

25

26

27 def monte car lo (s im frames =[1000]) :

28

88

29 s im data = []

30

31 for n sim in s im frames :

32 s im count = 0

33 r e s u l t s = []

34

35 N = int (np . s q r t (n sim))

36 h = T/N

37

38 s t a r t t i m e = time . time ()

39

40 while s im count < n sim :

41 i = 0

42 g = 0

43

44 compensator = 0

45 tau = sampling . generate exp ()

46

47 X = X 0

48

49 while i < N+1:

50 u = np . random . normal ()

51 X next = ((1 − kappa∗h/2) ∗np . s q r t (X) + sigma∗np . s q r t (h) ∗u

/(2∗ (1 − kappa∗h/2))) ∗∗2 + h∗(kappa∗mean − sigma ∗∗2/4)

52

53 compensator += h ∗ jump int (X next)

54 i f compensator > tau :

55 u = np . random . rand ()

56 z = min jump + (max jump − min jump) ∗u

57 X next += z

58

59 tau += sampling . generate exp ()

60

61 g += h∗(X + X next) /2

62 X = X next

63 i += 1

64

65 bond re su l t = np . exp(−g)

66 r e s u l t s . append (bond re su l t)

67 s im count += 1

68

69 print (s im count)

70 bond pr i ce = np . mean(r e s u l t s)

71 sample std = np . std (r e s u l t s)

72 s t d e r r o r = sample std /np . s q r t (n sim)

73 t ime spent = time . time () − s t a r t t i m e

74

89

75 s im data . append ([n sim , bond pr ice , s t d e r r o r , t ime spent])

76

77 return s im data

Discretization method 3:

1 import numpy as np

2 import sampling

3 import time

4

5 # model parameters

6

7 lamb0 = 0.0110

8 lamb1 = 0.1000

9

10 min jump = 0.0113

11 max jump = 0.0312

12

13 X 0 = 0.0422

14 mean = 0.0422

15 kappa = 0.0117

16 sigma = 0.0130

17

18

19 def jump int (x) :

20 return lamb0 + lamb1 ∗ max(x , 0)

21

22

23 T = 3

24

25

26 def monte car lo (s im frames =[1000]) :

27

28 s im data = []

29 for n sim in s im frames :

30 r e s u l t s = []

31 N = int (n sim ∗∗(1/4))

32 h = T / N

33

34 s t a r t t i m e = time . time ()

35 s im count = 0

36 while s im count < n sim :

37 i = 0

38 g = 0

39

40 compensator = 0

41 tau = sampling . generate exp ()

42

90

43 X = X 0

44

45 while i < N + 1 :

46 u = np . random . normal ()

47 X next = np . exp(−kappa ∗ h / 2) ∗ (np . s q r t ((mean ∗ kappa −
sigma ∗∗ 2 / 4) ∗

48 (1 − np . exp(−
kappa ∗ h /

2)) / kappa +

49 np . exp(−kappa ∗
h / 2) ∗ X) +

sigma ∗ np .

s q r t (h) ∗ u /

2) ∗∗ 2 \
50 + (kappa∗mean − sigma ∗∗2/4) ∗(1 − np . exp (kappa∗h/2)

) /kappa

51

52 compensator += h ∗ jump int (X next)

53 i f compensator > tau :

54 u = np . random . rand ()

55 z = min jump + (max jump − min jump) ∗ u

56 X next += z

57

58 tau += sampling . generate exp ()

59

60 g += h ∗ (X + X next) / 2

61 X = X next

62 i += 1

63

64 bond re su l t = np . exp(−g)

65 r e s u l t s . append (bond re su l t)

66 s im count += 1

67

68 print (n sim)

69 bond pr i ce = np . mean(r e s u l t s)

70 sample std = np . std (r e s u l t s)

71 s t d e r r o r = sample std / np . s q r t (n sim)

72 t ime spent = time . time () − s t a r t t i m e

73

74 s im data . append ([n sim , bond pr ice , s t d e r r o r , t ime spent])

75

76 return s im data

A.4.2.2. Cap Discretization method 1:

1 import numpy as np

2 import sampling

3 import time

91

4

5

6 # model parameters

7

8 lamb0 = 0.0110

9 lamb1 = 0.1000

10

11 min jump = 0.0113

12 max jump = 0.0312

13

14 X 0 = 0.0422

15 mean = 0.0422

16 kappa = 0.0117

17 sigma = 0.0130

18

19

20 def jump int (x) :

21 return lamb0 + lamb1 ∗ max(x , 0)

22

23

24 T = 3

25 s t r i k e = 0.05

26 c a p l i m i t s = [1 , 2 , 3]

27

28

29 def monte car lo (s im frames =[1000]) :

30

31 s im data = []

32 for n sim in s im frames :

33 r e s u l t s = []

34 N = int (np . s q r t (n sim))

35 h = T/N

36

37 s t a r t t i m e = time . time ()

38 s im count = 0

39 while s im count < n sim :

40 i = 0

41 g = 0

42 cap counter = 0

43 bond re su l t = 0

44 compensator = 0

45 tau = sampling . generate exp ()

46 X = X 0

47

48 while i < N:

49 u = np . random . normal ()

92

50 X next = X + kappa ∗(mean − max(X, 0)) ∗h + sigma∗np . s q r t (h∗
max(X, 0)) ∗u

51

52 compensator += h ∗ jump int (X next)

53 i f compensator > tau :

54 u = np . random . rand ()

55 z = min jump + (max jump − min jump) ∗u

56 X next += z

57

58 tau += sampling . generate exp ()

59

60 i f i+1 >= N∗ c a p l i m i t s [cap counter] / 3 :

61 bond re su l t += np . exp(−g) ∗max(X next−s t r i k e , 0)

62 cap counter += 1

63

64 g += h ∗ (X + X next) / 2

65 X = X next

66 i += 1

67

68 r e s u l t s . append (bond re su l t)

69 s im count += 1

70

71 print (n sim)

72 bond pr i ce = np . mean(r e s u l t s)

73 sample std = np . std (r e s u l t s)

74 s t d e r r o r = sample std /np . s q r t (n sim)

75 t ime spent = time . time () − s t a r t t i m e

76

77 s im data . append ([n sim , bond pr ice , s t d e r r o r , t ime spent])

78

79 return s im data

Discretization method 2:

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3 import sampling

4 import time

5

6

7 # model parameters

8

9 lamb0 = 0.0110

10 lamb1 = 0.1000

11

12 min jump = 0.0113

13 max jump = 0.0312

14

93

15 X 0 = 0.0422

16 mean = 0.0422

17 kappa = 0.0117

18 sigma = 0.0130

19

20

21 def jump int (x) :

22 return lamb0 + lamb1 ∗ max(x , 0)

23

24

25 T = 3

26 s t r i k e = 0.05

27 c a p l i m i t s = [1 , 2 , 3]

28

29

30 def monte car lo (s im frames =[1000]) :

31 s im data = []

32 for n sim in s im frames :

33

34 s im count = 0

35 r e s u l t s = []

36

37 N = int (np . s q r t (n sim))

38 h = T/N

39

40 s t a r t t i m e = time . time ()

41

42 while s im count < n sim :

43 i = 0

44 g = 0

45 cap counter = 0

46 bond re su l t = 0

47 compensator = 0

48 tau = sampling . generate exp ()

49

50 X = X 0

51

52 while i < N:

53 u = np . random . normal ()

54 X next = ((1 − kappa∗h/2) ∗np . s q r t (X) + sigma∗np . s q r t (h) ∗u

/(2∗ (1 − kappa∗h/2))) ∗∗2 + h∗(kappa∗mean − sigma ∗∗2/4)

55

56 compensator += h ∗ jump int (X next)

57 i f compensator > tau :

58 u = np . random . rand ()

59 z = min jump + (max jump − min jump) ∗u

60 X next += z

94

61

62 tau += sampling . generate exp ()

63

64 i f i+1 >= N∗ c a p l i m i t s [cap counter] / 3 :

65 bond re su l t += np . exp(−g) ∗max(X next−s t r i k e , 0)

66 cap counter += 1

67

68 g += h ∗ (X + X next) / 2

69 X = X next

70 i += 1

71

72 r e s u l t s . append (bond re su l t)

73 s im count += 1

74

75 print (s im count)

76 bond pr i ce = np . mean(r e s u l t s)

77 sample std = np . std (r e s u l t s)

78 s t d e r r o r = sample std /np . s q r t (n sim)

79 t ime spent = time . time () − s t a r t t i m e

80

81 s im data . append ([n sim , bond pr ice , s t d e r r o r , t ime spent])

82

83 return s im data

Discretization method 3:

1 import numpy as np

2 import matp lo t l i b . pyplot as p l t

3 import sampling

4 import time

5

6

7 # model parameters

8

9 lamb0 = 0.0110

10 lamb1 = 0.1000

11

12 min jump = 0.0113

13 max jump = 0.0312

14

15 X 0 = 0.0422

16 mean = 0.0422

17 kappa = 0.0117

18 sigma = 0.0130

19

20

21 def jump int (x) :

22 return lamb0 + lamb1 ∗ max(x , 0)

95

23

24

25 T = 3

26 s t r i k e = 0.05

27 c a p l i m i t s = [1 , 2 , 3]

28

29

30 def monte car lo (s im frames =[1000]) :

31

32 s im data = []

33 for n sim in s im frames :

34 s im count = 0

35 r e s u l t s = []

36

37 N = int (n sim ∗∗(1/4))

38 h = T/N

39

40 s t a r t t i m e = time . time ()

41

42 while s im count < n sim :

43 i = 0

44 g = 0

45 cap counter = 0

46 bond re su l t = 0

47 compensator = 0

48 tau = sampling . generate exp ()

49

50 X = X 0

51

52 while i < N:

53 u = np . random . normal ()

54 X next = np . exp(−kappa ∗ h / 2) ∗ (np . s q r t ((mean ∗ kappa −
sigma ∗∗ 2 / 4) ∗

55 (1 − np . exp(−
kappa ∗ h /

2)) / kappa +

56 np . exp(−kappa ∗
h / 2) ∗ X) +

sigma ∗ np .

s q r t (h) ∗ u /

2) ∗∗ 2 \
57 + (kappa ∗ mean − sigma ∗∗ 2 / 4) ∗ (1 − np . exp (

kappa ∗ h / 2)) / kappa

58

59 compensator += h ∗ jump int (X next)

60 i f compensator > tau :

61 u = np . random . rand ()

96

62 z = min jump + (max jump − min jump) ∗u

63 X next += z

64

65 tau += sampling . generate exp ()

66

67 i f i+1 >= N∗ c a p l i m i t s [cap counter] / 3 :

68 bond re su l t += np . exp(−g) ∗max(X next−s t r i k e , 0)

69 cap counter += 1

70

71 g += h ∗ (X + X next) / 2

72 X = X next

73 i += 1

74

75 r e s u l t s . append (bond re su l t)

76 s im count += 1

77

78 print (n sim)

79 bond pr i ce = np . mean(r e s u l t s)

80 sample std = np . std (r e s u l t s)

81 s t d e r r o r = sample std /np . s q r t (n sim)

82 t ime spent = time . time () − s t a r t t i m e

83

84 s im data . append ([n sim , bond pr ice , s t d e r r o r , t ime spent])

85

86 return s im data

97

References

[1] Ahrens, J. H. and Dieter, U. (1982), “Generating gamma variates by a modified rejection technique”,

Communications of the ACM, 25 (1), 47-54

[2] Alfonsi, A. (2005), “On the discretization schemes for the CIR (and Bessel squared) processes”,

Monte Carlo Methods Appl., 11 (4), 355–384

[3] Alfonsi, A. (2010), “High order discretization schemes for the CIR process: Application to affine

term structure and Heston models”, Math. Comput., 79 (269), 209–237

[4] Arnsdorf, M. and Halperin, I. (2008), “BSLP: Markovian Bivariate Spread-Loss Model for Portfolio

Credit Derivatives”, Journal of Computational Finance, 12, 77-100

[5] Bertoin, J. (1996), “Lévy Processes”, Cambridge University Press, 0-521-56243-0

[6] Beskos, A. and Roberts, G. O. (2005), “Exact Simulation of Diffusions”, The Annals of Applied

Probability, 15 (4), 2422-2444

[7] Black, F. and Scholes, M. (1973), “The pricing of options and corporate liabilities”, Journal of

Political Economy, 81 (3), 637-654

[8] Blanchet, J. and Zhang, F. (2020), “Exact Simulation for Multivariate Itô Diffusions ”, Advances in

Applied Probability, 52 (4), 1003-1034

[9] Broadie, M. and Kaya, O. (2006), “Exact simulation of stochastic volatility and other affine jump

diffusion processes”, Operations Research, 54 (2), 217–231

[10] Burq, Z. and Jones, O. (2008), “Simulation of Brownian motion at first-passage times”, Mathematics

and Computers in Simulation, 77, 64–81

[11] Carr, P. and Linetsky, V. (2006), “A Jump to Default Extended CEV Model: An Application of

Bessel Processes”, ”Finance Stoch., 10, 303–330

[12] Chen, N. and Huang, Z. (2013), “Localization and exact simulation of Brownian motion-driven

stochastic differential equations”, Operations Research, 38 (3), 591–616

[13] Cox, J. (1975, 1996), “Notes on Option Pricing I: Constant Elasticity of Variance Diffusions”,

reprinted in The Journal of Portfolio Management, 23, 15–17

[14] Ding, X., Giesecke, K. and Tomecek, P. (2009), “Time-changed birth processes and multiname credit

derivatives”, Operations Research, 57 (4), 990–1005

[15] Diop, S. and Pascucci, A. (2018), “CDS calibration under an extended JDCEV model”, International

Journal of Computer Mathematics, 96 (9), 1-22

Sidy Diop Andrea Pascucci

[16] Duffie, D. and Glynn, P. (1995), “Efficient Monte Carlo simulation of security prices”, Annals of

Applied Probability, 5 (4), 897-905

[17] Duffie, D., Pan, J. and Singleton K. (2000), “Transform analysis and asset pricing for affine jump-

diffusions”, Econometrica, 68, 1343–1376

[18] Duffie, D. and Singleton, K. J. (1999), “Modeling term structures of defaultable bonds”, Review of

Financial Studies, 12, 687–720

[19] Gerstner, T. and Kloeden, P. (2012), “Recent Developments In Computational Finance: Founda-

tions, Algorithms And Applications”, World Scientific, 978-981-4436-42-7

[20] Giesecke, K. and Smelov, D. (2013), “Exact Sampling of Jump Diffusions”, Operations Research, 61

(4), 894-907

99

[21] Glasserman, P. (2003), “Monte Carlo Methods in Financial Engineering”, Springer-Verlag New York,

978-0-387-21617-1

[22] Heston, S. (1993), “A closed-form solution for options with stochastic volatility with applications to

bond and currency options”, Review of Financial Studies, 6 (2), 327-343

[23] Higham, D.J. (2006), “An Algorithmic Introduction to Numerical Simulation of Stochastic Differen-

tial Equations”, SIAM Review, 43 (3), 525–546

[24] Hull, J. C. (2014), “Options, Futures and Other Derivatives”, Pearson

[25] Ikeda, N. and Watanabe, S. (1989), “Stochastic Differential Equations and Diffusion Processes”,

North Holland Publishing Company, New York

[26] Imhof, P. (1984), “Density factorizations for Brownian motion, meander and the three-dimensional

Bessel process”, Journal of Applied Probability, 21, 500–510

[27] Jeanblanc, M., Yor, M., and Chesney, M. (2009), “Recent Developments In Computational Finance:

Foundations, Algorithms And Applications”, Springer Finance, 10.1007/978-1-84628-737-48

[28] Last, G. and Penrose, M. (2017), “Lectures on the Poisson Process”, Cambridge University Press

[29] Longstaff, F. and Schwartz, E. (2001), “Valuing American Options by Simulation: A Simple Least-

Squares Approach”, Review of Financial Studies, 14, 113-147

[30] Lord, R., Koekkoek, R. and Van Dijk, D. (2010), “A comparison of biased simulation schemes for

stochastic volatility models”, Quantitative Finance, 10 (2), 177–194

[31] Marsaglia, G. Tsang, W. W. (2000), “The Ziggurat Method for Generating Random Variable”,

Journal of Statistical Software, 5 (8)

[32] Merton, R.C. (1973), “Theory of Rational Option Pricing”, Bell Journal of Economics and Man-

agement Science , 4 (1), 141-183

[33] Meyer, P-A. (1971), “Démonstration simplifée d’un théorème de Knight”, Séminaire de Probabilités

V. Lecture Notes in Mathematics, Vol. 191 (Springer-Verlag, Berlin), 191–195

[34] Ribeiro, C. Webber, N. (2006), “Correcting for Simulation Bias in Monte Carlo Methods to Value

Exotic Options in Models Driven by Lévy Processes”, Applied Mathematical Finance, 13 (4)

333-352

[35] Ruf, J. and Scherer, M. (2011), “Pricing corporate bonds in an arbitrary jump-diffusion model based

on an improved Brownian bridge algorithm”, Journal of Computational Finance, 14 (3), 30–45

[36] Schoutens, W. (2003), “Lévy Processes in Finance: Pricing Financial Derivatives”, John Wiley Sons,

Ltd., 0-470-85156-2

[37] Williams, D. (1970), “Decomposing the Brownian path”, Bulletin of the American Mathematical

Society, 76, 871–873

[38] Zhou, H. (2003), “Jump-diffusion term structure and Ito conditional moment generator”, Journal of

Financial Econometrics, 1 (2), 250–271

100

	Acknowledgment
	Resumo
	Abstract
	Chapter 1. Introduction
	1.1. Literature review
	1.2. Structure of the thesis

	Chapter 2. Stochastic calculus and risk neutral pricing
	2.1. Stochastic processes
	2.2. Jump processes
	2.3. Lévy processes
	2.4. One-dimensional jump diffusions
	2.5. Risk neutral asset pricing
	2.5.1. Pricing derivatives and exotic options
	2.5.2. JDCEV model
	2.5.3. Affine Jump Diffusion models

	Chapter 3. Monte Carlo methods
	3.1. Bias and error
	3.2. General sampling
	3.3. Sampling from specific distributions
	3.3.1. Normal distribution
	3.3.2. Gamma distribution

	3.4. Brownian sampling
	3.4.1. Exit times
	3.4.2. Brownian meanders

	3.5. Jump process sampling
	3.6. Discretization methods for stochastic differential equations
	3.6.1. Discretization of the JDCEV model
	3.6.2. Discretization of the AJD model

	Chapter 4. Building up the algorithm
	4.1. Rejection sampling for diffusions
	4.2. Localization
	4.3. Extension to jump diffusions
	4.4. Acceptance test for Brownian skeletons
	4.5. General algorithm for jump diffusion sampling

	Chapter 5. Computational efficiency and implementation
	5.1. Level selection
	5.1.1. Convergence

	5.2. Extensions
	5.2.1. Sampling a skeleton
	5.2.2. Sampling hitting times
	5.2.3. Exponential of time-integrated jump diffusion

	5.3. Implementation notes

	Chapter 6. Numerical results and conclusions
	6.1. JDCEV
	6.1.1. European option
	6.1.2. Exotic options

	6.2. Affine Jump Diffusions
	6.2.1. Zero coupon bond
	6.2.2. Cap

	6.3. Conclusions

	Appendix A. Python code
	A.1. Sampling methods
	A.2. Level selection
	A.3. JDCEV implementation
	A.3.1. Exact method
	A.3.2. Discretization method

	A.4. AJD Implementation
	A.4.1. Exact method
	A.4.2. Discretization methods

	References

