
DevOps Dashboard

Francisco João Lúcio Bruno

Master’s in Computer Science and Business

Supervisor:
PhD Ruben Filipe de Sousa Pereira Pereira, Assistant Professor
ISCTE-IUL

Co-Supervisor :
Rafael Saraiva Almeida

November, 2021

DevOps Dashboard

Francisco João Lúcio Bruno

Master’s in Computer Science and Business

Supervisor:
PhD Ruben Filipe de Sousa Pereira Pereira, Assistant Professor
ISCTE-IUL

Co-Supervisor :
Rafael Saraiva Almeida

November, 2021

Direitos de cópia ou Copyright
©Copyright: Nome Completo do(a) candidato(a).

O Iscte - Instituto Universitário de Lisboa tem o direito, perpétuo e sem limites geográficos,

de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel

ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o

divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com

objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao

autor e edição

i

Resumo
DevOps é uma cultura que combina desenvolvimento e operação e que tem como principais

objectivos reduzir o tempo de chegada ao mercado, fazer mudanças incrementais em resposta

à mudança das condições, e construir um processo de desenvolvimento mais racionalizado.

DevOps é adotado em todo o mundo, e com a adoção em massa, vêm as diferentes

implementações e padronizações.

Contudo o software responsável por agregar métricas não é de fácil implementação a nível de

negócio e tem sido um problema para várias organizações.

Com o intuito de medir e monitorizar software, existe a premissa de utilizar um painel de

maneira a simplificar a forma como o DevOps pode interagir com as métricas.

Esta tese centra-se no desenvolvimento de um painel de DevOps focado nas boas praticas de

visualização com o objetivo principal de apoiar as equipas DevOps na tomada de decisões.

A fim de continuar a desenvolver o painel, foi escolhida a metodologia Design Science

Research (DSR) com o objectivo de construir um artefacto e o avaliar.

Foi identificado que os dashboards utilizados na comunidade DevOps carecem de uma

perspectiva mais ampla de todo o ecossistema de forma ajudar as partes interessadas na tomada

de decisões.

A contribuição desta investigação é o painel de DevOps que monitoriza um sistema de DevOps,

que segue as melhores praticas de visualização, utilizando categorias de métricas de maneira a

mais facilmente navegar e interpretar os dados, a fim de melhorar a experiência do utilizador e

tomada de decisão.

Keywords: Métricas de DevOps; DevOps KPI; Painel de DevOps .

ii

iii

Abstract
DevOps stands for development and operations. DevOps is a culture that empowers both

development and operations teams to reduce time to market, make incremental improvements

in response to changing conditions, and create a more efficient development process.

Software development and delivery is a very complex practice, and managing it is even harder.

Any kind of system or process needs to gather data and metrics to understand how it is

performing.

Understandably, measuring is essential in creating valuable software. However, measuring

software is not easy and has been a problem for several organizations. There is the notion of

utilizing a dashboard to ease the way DevOps teams interact and respond to data collected from

systems to aid stakholders measure and monitor.

The Design Science Research (DSR) methodology was chosen to build an artefact – the

DevOps dashboard - and evaluate its value to the DevOps community. Several versions of the

artifact were developed as part of an improvement process, with each iteration validated

through interviews.

It was identified that the dashboards generally accessible in the DevOps community are

extremely specialized and lack a broader perspective of the entire ecosystem to help

stakeholders in decision-making.

The contribution of this research is the developed dashboard that allows more significant

monitoring of a DevOps system employing metric categories that follow visualization best

practices to improve user experience and impact the user decision process positively.

Keywords: DevOps metrics; DevOps KPI; DevOps dashboard.

iv

v

Index
Resumo i
Abstract iii
Index v
Index of tables vii
Index of figures ix
Listo of Abbreviations and Acronyms 11
Chapter 1 - Introduction 1
Chapter 2 – State of the art 3

2.1. DevOps and its importance 3
2.2. Metrics in a Development Environment 3
2.3. Dashboard 4
2.4. Related Work 6
2.4.1. Outlining Systematic Literature Review 7
2.4.2. Conducting a Systematic Literature Review 8
2.4.3. Reporting the SLR 10
2.5. Literature Review Synthesis 17

Chapter 3 – Research Methodology 19
Chapter 4 - Proposal and Evaluation 23

4.1 . First DSR Iteration 23
4.1.1. Proposed Dashboard 23
4.1.2. Research and Analysis 23
4.1.3. Dashboard elaboration 24
4.1.4. Guidelines 24
4.1.5. Demonstration 25
4.1.6. Evaluation 27
4.2. Second DSR Iteration 29
4.2.1. Proposal 29
4.2.3. Demonstration 29
4.2.4. Evaluation 30
4.3. Third DSR Iteration 31
4.3.1. Proposal 31
4.3.2. Demonstration 31
4.3.3. Evaluation 34
4.4. DSR Synthesis 35

Chapter 5- Conclusion 37
5.1. Contributions 38
5.2. Limitations 38
5.3. Future Work 39

References 41
Appendices 45

Appendix A – Questionaire - 1st Iteration 45
Appendix B – Questionaire - 2nd Iteration 46
Appendix C – Questionaire - 3rd Iteration 47

vi

vii

Index of tables

Table 1- Stephen Few Color Rules [28] 5

Table 2- Gestalt principles [19] 6

Table 3- Outlining Systematic Literature Review 7

Table 4- Filters used in the SLR 7

Table 5- Article percentage per year 8

Table 6- SLR filters application and results 10

Table 7- Metrics per article and categories 12

Table 8- Metrics and respective description 13

Table 9- Articles vs Dashboard Criteria 14

Table 10- Articles with dashboards vs Stephen Few color rules 15

Table 11- Articles with dashboards vs Gestalt Principles 16

Table 12- Design science research principles 20

Table 13- Design Science Research Guidelines 20

Table 14- Key Evaluating Questions 21

Table 15- Evaluation prototype structure 21

Table 16-Improvements prototype structure 21

Table 17- Interviewee Data 23

Table 18 - Evaluation of the prototype - 3rd Iteration 34

Table 19- Proposed improvements by Iterations 35

viii

ix

Index of figures

Figure 1- State of the Art selection diagram 6

Figure 2- Articles focus keyword 9

Figure 3- Articles that are related to dashboards 9

Figure 4- Dashboard criteria by percentage 15

Figure 5- DRSM Model followed in the research 19

Figure 6- Productivity Dashboard 26

Figure 7- Performance Dashboard 26

Figure 8 - Quality Dashboard 27

Figure 9- Dashboard homepage 29

Figure 10- Quality vs Performance Dashboard 32

Figure 11-Quality vs Productivity Dashboard 33

Figure 12- Performance vs Productivity 33

x

xi

List of abbreviations and acronyms
DSR – Design Science Research

IT – Information Tecnology

DORA – Devops Research and Development

SLR – Systematic Literature Review

UI – User Interface

xii

1

Chapter 1 - Introduction

Organizations have been using technology for competitive advantage, create value for their

customers and reach them in an improved way [1]. Information Technology (IT) driven

enterprises like Apple, Facebook and Oracle have shown that by investing in developing their

software technologies, companies can build a stronger lead across several market domains [2].

However, it can be difficult for a corporation to keep up with the rate of how technology

changes nowadays [3].

According to a report published by Tricentis, software failures caused more than $1.7

trillion in financial losses in 2017 [4]. Therefore, having the ability to deliver reliable software

in a safe manner quickly is core to a successful technology transformation [5], [6]. As a result,

there is an increasing need to manage software quality (SQ), and companies should strive to

avoid software failures and aim at progressively improving software [7]. However, most

companies still have trouble orchestrating their developers and operations teams, which leads

to several software problems [6]. To decrease these problems, Debois [8] enforced a closer

relationship between Development and Operations, which is now designated as DevOps. Since

then, numerous corporations have started to shift into a DevOps approach [9].

According to Hemon [10], improving the collaboration between different technology

branches is a prerequisite for survival. For instance, companies such as Netflix, Amazon and

Facebook have adopted DevOps within their business organizations. One of the substantial

benefits of DevOps is the commitment to deliver software at a quicker pace, provided by the

faster deployment rate, which means a faster time to market [11]. Complementary to the

increase in the software deployment speed, the quality of the software is also targeted. This

methodology includes de automation and constant monitoring of all stages of the build process

[12].

The increasing adoption of DevOps [13] is driving value into organizations across all

industries quicker and in a more sustainable manner than ever before. However, the ability to

evaluate and measure the impact of DevOps within corporations has been one of the problems

at hand. After all, you cannot manage what you cannot measure [11]. Many companies want to

embrace DevOps, however owing to IT system complexity already implemented, gathering

metrics that offer insight across the pipeline is difficult. Diagnosing a problem requires

inspecting all the information collected, including log statements, memory consumption,

system metrics [14], all of which can be very lengthy, consuming a significant portion of the

developer time [15].

2

DevOps is being more and more adopted worldwide as its benefits spread in practical and

scientific forums [16]. However, measuring and monitoring DevOps adoption is not clear and

deserves further investigation. Some institutions, like Devops Research and Assessment

(DORA), are now focused on that specific goal. Considering that monitorization helps

determine the main problems with a system [18], it can be asserted that teams need an integrated

view of metrics to respond to problems quicker. One criticism commonly seen in the many

dashboards used in the literature is the amount of irrelevant data and visualizations utilized

without a practical purpose and without taking the end-user into account. [17].

Based on the preceding assertions, the purpose of this research is to propose the creation of

a DevOps dashboard that adheres to best practices in data visualization to assist stakeholders in

monitoring their systems and making decisions.

This research is structured in the following way: The next chapter introduces the State of

the Art, which is mainly focused on introducing the theoretical background and emphasizing

the related work and how DevOps is being researched, followed by the third chapter where the

focus is the Research Methodology that was applied during the research.

The fourth chapter is dedicated to the presentation of the proposal, which includes the

results of the developed iterations.

Finally, the conclusion in Chapter five serves to highlight the major findings of the

research, research limits, lessons learned, and future work.

3

Chapter 2 – State of the art

This chapter will present a review of the literature.

2.1. DevOps and its importance
DevOps was introduced to address the bottleneck created by Operation teams that were setting

back Development teams from delivering in a more agile manner [6]. DevOps allows the

software community to be cross-disciplinary [3], allowing them to build more resilient software

and also be able to deliver and evolve in a faster way. This paradigm can be condensed in the

phrase “You build it, you run it” [5].

For instance, developers need to understand the production environment where their code

is released. In the same way, Operations need to work compatibly with the code developed [3].

There is a rising necessity for code changes to be delivered rapidly to satisfy the always

increasing requirements in such a way as to stay relevant in such a competitive market [20].

Nowadays, companies and teams are faced with constant changes and new requirements. Teams

need to work in an agile manner to reduce the whole development cycle by orchestrating both

development and the operations team [18].

DevOps seeks to reduce the time between changing a software and deploying it into

production environments while keeping quality standards[19]. Being able to profit from

DevOps has been an evident differentiator in vying for end-user awareness and financing. [20]

It is important to understand that DevOps heavily rely on automation and tool support. The

ability to ease the deployment process and the whole way teams are working together is

essential to develop further their technical savviness and their culture [21].

2.2. Metrics in a Development Environment
A very important target in DevOps is to improve productivity to generate more value for their

customers. It is a consensus that productivity is essential. Productive employees work more

efficiently, allowing them to spend their working hours not just developing but also properly

documenting, refactoring or even delivering additional features [5].

According to Forsgren [3], productivity is "the capacity to perform difficult, time-

consuming jobs with minimum distractions and interruptions, It is not as simple to evaluate

productivity as it is to examine metrics such as lines of code, tickets finished, or problems fixed.

This puts the team's macro-goals in jeopardy. [22]

4

Organizations nowadays are keener on adhering to technology transformations with major

goals of improving their quality as a service or product. Measuring quality is difficult because

there is always a need to understand the context, and it can change from company to company

[23].

For a user, quality is one of the most important factors regarding its satisfaction with the

product or service, which is clearly related to business growth. One of the ways to measure

software quality is using software quality characteristics. These characteristics are a set of

attributes that a software product can be described and evaluated. Software quality is defined

as “the totality of characteristics of a software product that satisfy stated or implied needs” [24]

It is key to leverage software quality in order to increase customer satisfaction.

Corporations need to leverage DevOps to improve their overall product quality, and continuous

quality monitoring is directly related to continuous development or continuous deployment

[25].

The performance of the software can be characterized by numerous system properties that

have access to the system timeliness and the use of related resources [26]. Performance can be

measured by looking at the throughput of code and the stability of the system itself. Some

performance metrics are response time, resource utilization, lead time to state a few.

2.3. Dashboard
The volume of data available to corporations and teams is growing exponentially, with some

experts believing its growing by 60% every year [19]

There is a clear need to improve a company communication effectiveness the more a

company grows. Therefore, corporations have to resort to tools to monitor their systems and

products. Dashboards are a very common tool to improve the efficiency that the data output s

presented to the end-user [19]

Dashboards are able to aggregate in a single screen the data that the end-user has the

purpose of monitoring. Dashboards are often heavy on graphics and charts, and their aim is not

only to be visually appealing, but also because people grasp and consolidate information more

quickly from visuals than from words. [17].

A dashboard can be used as a tool to assist organizations in making decisions, such as

understanding and measuring a product sustainability and resource use levels [18]. However,

even though it is obvious that dashboards provide added value to those who use them, many

have failed to realize the full potential of a well-developed and designed dashboard; a common

5

mistake is not focusing on the way the data is displayed and not maximizing the visual keys the

way they are meant to pass on to the users [19].

It is clear that there is a significant gap between knowing the effectiveness of a dashboard

and how it is utilized in the field, which has frequently been employed as a strategy to simply

appeal to new potential clients [30].

In addition to the content of the dashboard, the manner in which it was created is a crucial

aspect in its efficacy and general use. It is also important to understand if the dashboards follow

industry best practices and rules. The evidence suggests, even the greatest dashboard software

will not be effective and will not reach its full potential if the visual element and design are not

taken into account [19].

According to [19], dashboards should adhere to a set of colour guidelines in order to convey

the objective of the dashboard as clearly as feasible. The colour guidelines and their

explanations may be found in Table 1. Furthermore, in order to standardize the way dashboards

are created, the Gestalt-Principles in Table 2 might aid in the provision of recommendations for

dashboard implementation.

Gestalt theory has the purpose of explaining how humans interpret visual elements and

aggregate them into groups and how individuals distinguish visual patterns. Previous authors

argued that the Gestalt principles could provide a framework with the capability of categorizing

visual guidelines [31].

Table 1- Stephen Few Color Rules [28]

Rule Description

Rule 1
If you want different objects of the same color in a table or graph to look the same, make

sure that the background-the color that surrounds them-is consistent

Rule 2 If you want objects in a table to be easily seen, use a background color that contrasts

Rule 3 Use color only when needed to serve a specific communication goal.

Rule 4 Use different colors only when they correspond to differences of meaning in the data.

Rule 5
Use soft, natural colors to display most information and bright and/or dark colors to

highlight information that requires greater attention.

Rule 6

When using color to encode a sequential range of quantitative values, stick with a single

hue (or a small set of closely related hues) and vary intensity from pale colors for lower

values to increasingly darker and brighter colors for higher values.

Rule 7 Non-data components of tables and graphs should be displayed just visibly enough to

perform their role

Rule 8 To guarantee that most people who are colorblind can distinguish groups of data

that are color coded, avoid using a combination of red and green in the same display.

Rule 9 Avoid using visual effects in graphs.

6

Table 2- Gestalt principles [19]

Principle Description

Proximity Objects that are physically close together are perceived as a group

Similarity
Objects thar are of similar color, shape, size, or orientation are perceived as

related or belonging to part of a group

Enclosure Objects that are enclosed create the idea of belonging to the same group

Closure
We tend to complete the form of objects that are open, incomplete or outside

the norm

Continuity We tend to group objects that are aligned or form some sort of continuity

Connection Objects that are interconnected create an idea of a group

2.4. Related Work
The present body of completed and documented work generated by academics, scholars, and

practitioners was synthesized using a systematic literature review (SLR) [29].

This SLR was based on the author Kitchenham's [29] criteria, and the procedures taken to

perform the review are depicted in Figure 1.

Figure 1- State of the Art selection diagram

7

2.4.1. Outlining Systematic Literature Review

Since DevOps as a culture has been striving in recent years, the quantity of research being

conducted is also being developed concurrently, which leads to a sizable number of articles and

therefore the search had to be integrated with the keywords “Metrics, “KPI”, “Indicators” and

“Dashboard”, which allowed the search to be more detailed. As previously stated, a SLR was

done with the goal of addressing the objective of this research. The actions required to carry

out this review may be seen in Table 3.

Table 3- Outlining Systematic Literature Review

Outlining Systematic Literature
Review

Conducting Systematic
Literature Review Reporting the Review

Identification of the need for a
review:

Lack of standardization in DevOps
metrics and monitoring practices

Applying filters and get final
articles:

54 articles

Report the findings:

Discussion related to how is
the DevOps community
measuring their systems and
teams and how they monitor
those metrics Objective of the review:

Research how DevOps
implementations are being measured

Perform data extraction and
analyse the sample:

Extract information about DevOps
metrics
Analysis of the sample Review Protocol:

Search String, filters, repositories,
and inclusion criteria

In the end, the following search string was applied with the Boolean OR and AND:

(DevOps" AND ("Metrics" OR "KPI" OR "Indicators" OR "Dashboard")).

The first query for the selected keywords was conducted without any filter and returned a

total of 463734 articles, which was too much to be examined. From this point moving forward,

there was a need to start using filters depicted in Table 4 to get a smaller range of articles to

study.

Table 4- Filters used in the SLR

Filter Name Criteria

1st Filter Keywords only in the article keywords, in the abstract or title

2nd Filter Discard duplicated articles and non-English

3rd Filter Remove news articles

4th Filter Manual review

The 1st filter that was applied is the search for the keywords only in the article keywords,

in the abstract or title; The 2nd filter was to discard article duplicates and non-English articles;

8

On the 3rd filter, all the news articles were removed; And finally, the 4th filter was the manual

review of the data set removing the articles where the thematic was not related to the research.

It had to be considered that all the repositories have their own search approach, and

therefore the search string had to be adapted accordingly.

To pursue the research, the following repositories were selected

• Google Scholar https://scholar.google.com

• IEEE https://ieeexplore.ieee.org/

• ACM https://dl.acm.org

• SpringerLink https://link.springer.com

• Web of Science https://apps.webofknowledge.com/

• EbcCohost https://search.ebscohost.com/

• DORA https://www.devops-research.com/research.html

2.4.2. Conducting a Systematic Literature Review

After applying all the filters in the chosen repositories, in Table 5 and Table 6, we can see that

the final set of articles ended up being 54.

There is the need to mention DORA a research centre focused on DevOps that publishes a

report every year regarding the best practices developed and analysed that year, which is very

specific to this research.

After applying the filters, an individual article analysis was done to identify how DevOps

was being implemented and practiced with or without dashboards. The year of the article, as

well as whether or not it was linked to the dashboard, were retrieved for further analysis for

each piece. As mentioned before, no date filters were applied. However, it is important to

understand how recent the data set is. Most of the articles are from 2016 onwards as it can be

seen in Table 5.

Table 5- Article percentage per year

Years Percentage Total
2011 7% 4
2013 4% 2
2014 6% 3
2015 4% 2
2016 13% 7
2017 9% 5
2018 15% 10
2019 15% 8
2020 22% 12
2021 4% 2

 54
It is certain that DevOps is still growing as a culture. According to [30], DevOps teams

increased 16% in 2014, 19% in 2015, 22% in 2016 and 27% in 2017. It is clear that research

9

has also been increasingly developed alongside the increasing number of DevOps teams that

are implementing the philosophy.

According to Figure 2, it is possible to see the distribution of the papers by keyword. There

is a clear discrepancy in the articles with most of the articles being related to either DevOps

Metrics or Dashboards. Has it can be seen in Figure 3, 28% of the articles mentioned the use of

a dashboard. By observing the data set, it can be found that dashboards applied to DevOps are

not researched as intensively as DevOps in their entirety

Figure 2- Articles focus keyword

Figure 3- Articles that are related to dashboards

.

28%

72%

31

0

1

13

Devops Metrics

Devops KPI

Devops Indicators

Devops
Dashboard

10

Table 6- SLR filters application and results

Source Keywords No filter 1 Filter 2 Filter 3 Filter 4 Filter

Google Scholar

DevOps Metrics 7130 12 3 4 4
DevOps KPI 827 0 0 0 0
DevOps Indicators 2680 0 0 0 0
DevOps Dashboard 2810 2 0 0 0

IEEE

DevOps Metrics 19 12 5 5 5
DevOps KPI 0 0 0 0 0
DevOps Indicators 2 2 0 0 0
DevOps Dashboard 4 1 1 1 1

ACM

DevOps Metrics 142242 10 5 5 7
DevOps KPI 1936 0 0 0 0
DevOps Indicators 297923 0 0 0 0
DevOps Dashboard 6091 1 1 1 1

SpringerLink

DevOps Metrics 724 43 43 43 7
DevOps KPI 71 0 0 0 0
DevOps Indicators 315 1 1 1 1
DevOps Dashboard 351 6 6 6 6

Web of Science

DevOps Metrics 28 19 19 19 9
DevOps KPI 0 0 0 0 0
DevOps Indicators 3 2 1 1 0
DevOps Dashboard 4 2 1 1 1

Scopus

DevOps Metrics 424 33 9 9 2
DevOps KPI 14 1 0 0 0
DevOps Indicators 70 5 0 0 0
DevOps Dashboard 40 9 5 5 4

EBSCO

DevOps Metrics 9 9 6 0 0
DevOps KPI 5 3 3 0 0
DevOps Indicators 1 0 0 0
DevOps Dashboard 5 4 4 0 0

DORA

DevOps Metrics 6 6 6 6 6
DevOps KPI 0 0 0 0 0
DevOps Indicators 0 0 0 0 0
DevOps Dashboard 0 0 0 0 0

 TOTAL 463734 183 119 106 54

2.4.3. Reporting the SLR

In this section, this research will focus on several types of dashboards and how metrics were

aborded in the related articles.

The objective of this chapter is to interpret and understand if the methodologies applied in

the selected articles are of aid to the DevOps teams. To analyze the articles, it was necessary to

determine what metrics were used in order to understand what is now standard practice and

whether there is any type of pattern or distribution. According to [36], a metric is a “standard

11

of measurement that defines the conditions and the rules for performing the measurement and

for understanding the result of a measurement”.

Harvesting measurements from the software pipeline that is of any use is difficult. The data

in question needs to be put through a process of quality assurance in order to be further utilized

as a way to drive business value [37].

Therefore, if corporations are willing to apply a system based in metrics it is relevant to

aggregate the metrics in sub-groups to further understand how metrics are being utilized and if

there is a pattern in the metrics corporations are mostly following [1], in Table 7 the metrics

were aggregated by Productivity, Performance and Quality and then understand what is the

focus of the applied metrics. However it is possible to understand that most of the times the

scope of the system is not well defined which makes it hard to track the needed metrics.

In Table 8 it is possible to verify what metrics were scanned from the literature analysis.

Furthermore, within software engineering, dashboards are utilized to provide teams with the

required information and give access to selected metrics on the product or the team itself,

having the bonus of being able to display information and support quicker decisions [38].

According to [2], they have identified four key metrics that should be an industry standard,

allowing corporations to drive their organizational performance and promote technology

transformation.

These four metrics are able to capture the efficacy of the development process and also the

delivery process, being able to measure the delivery process the main used metric is the Lead

Time of code changes, which is measured from the moment a feature is checked in to the point

of its release into production, in combination with Deployment Frequency [2]. After measuring

Software Development there is a need to validate the deployment which can be measured by

using Change Fail Rate and Time to Restore that can also be implied in measuring the overall

quality of not only the process but also the system that is in place [24].

According to Table 9, there are certain metrics that are found more often in the literature.

It is still feasible to confirm that dashboard drill-down is not commonly used, additionally, it

can be reported that there is still a lack of dashboards that are evaluated. To elaborate, a

dashboard that implements the use of drill-down will allow the user to explore a data set at a

more granular level [39]. The usage of correctly integrated filters that allow for simple and

effective drill down is not only a value-added to the dashboard but also a technique to engage

with the dashboard in a more effective manner [13].

Furthermore, as dashboards are always developing and being updated, having an evaluation

criterion based on its current relevance, efficiency, and usefulness is critical. [38].

12

Table 7- Metrics per article and categories

Metrics
categories

 Performance
 Quality

Productivity

Yea
r

Arti
cles

Nº of
request

s

Nº of
issue

s

Nº of
develo

pers

Nº of
pushes

Sprin
t

durat
ion

Nº of
develo

per
teams

Lines
of

Code
chang

ed

Deploy
ment

Freque
ncy

Proje
ct

dura
tion

Nº
of

depl
oys

Availabi
lity

Nº of
defec

ts

Code
Covera

ge

Me
an-
tim
e
to

Rep
air

Lead
time

Nº
of
fai
le
d

tes
ts

Activit
y

covera
ge

Lines of
Duplica

ted
Code

Latency

Nº
of

cras
hes
dete
cted

% of
CPU

utilizat
ion

Chang
e Fail
rate

Nº of
containe

rs

Packet
loss

202

1
[31

]
 ● ●

[32
]

 ● ●

202
0

[33
]

 ● ● ● ●
[34

]
 ● ● ● ●

[11
]

●

●

●

● ●

●

 ●

[35
]

●

●

●

●
[36

]
●

●

● ● ●

[37
]

●

●

●

●

 ●

[38
]

● ●

●

[2]

● ●

201
9

[39
]

●

● ●

● ●
[40

]

●

●

●

●

●

[41
]

●

●

●

●

[10
]

●

● ●

●

[42
]

●

●
[43

]

●

●

[3]

●

201
8

[44
]

● ● ●

●

● ●

 ●

[45
]

●

●

● ●

● ●

●
[22

]

●

●

●

 ●

[1]

●

●

● ●

●

[46

]

●

●

●

[47
]

● ●

 ●

[48
]

●

●

 ●
[49

]

●

●

●

[50
]

●

[51
]

●

201
7

[52
]

●

●

● ● ● ●

●

[30
]

●

●

●

 ●

[53
]

●

●

●
[54

]

●

201
6

[55
]

●

●

● ●

 ●

[56
]

●

●

[57
]

●

201
5

[58
]

● ●

●

●

● ●
 Tot

al
8 6 4 6 2 2 13 4 3 2 14 10 7 6 5 3 2 2 5 2 11 5 2 2

13

Table 8- Metrics and respective description

References Metrics Description
[10][55] Nº of developer teams Number of Developer teams in a Project

[10][44][49][52] Nº of developers Number of developers in a Project

[11][37][40][41][44][58] Nº of issues Number of issues that the teams have resolved or is solving

[35][36][39][42][45][48][53][58] Nº of requests Number of server requests made in a set period of time

[1][52] Sprint duration The set duration for the sprint

[11][40][41][44] Nº of pushes The number of pushes made to the code base

[11][37][40][41][10][3][44]
[45][49][51][53] Lines of Code Changed Lines of code changed in the repository per commit

[22][1][30][54] Deployment Frequency The frequency that there is a deployment of a system/application

[10][52] Project duration Number of hours a project is going to take or has taken

[39][52] Nº of Deploys Number of Deploys for an amount of time

[37][44] Lines of Duplicated Code Lines of code blocks found in the repository

[40][45] Activity coverage Participation in as many activities of DevOps as possible, particularly implementation and verification

[37][38][2][44]55][50]57] Code Coverage

While the automated tests are running, code coverage is a calculation of how many lines/blocks/arcs of the code are executed. Code

coverage is determined by using a specialized tool to instrument binaries with tracing calls and then running a comprehensive series

of automated tests against the instrumented product.

[11]52][2] [41][44]
[45][1][47][52]51] Nº of defects Number of defects found in a code source

[35][1][54][42][33] Mean-time to repair
Measures the average time required to troubleshoot and be able to repair a failed system and is calculated by dividing total

maintenance time by the number of repairs

[11][38][45][22] Nº of failed tests Number of failed tests that occurred in the system

[22][52][30][55][33] Lead time Is the elapsed time between the identification of a requirement and the actual fulfilment of a feature

[11][35][37][55][43][45][22][1]
[49][52][30][57][58][33] Availability

The percentage of time your service or configuration item is available is referred to as availability. It provides information about the

past and forecasts the future of service. It indicates how well a service is performed over a specified time span. A service's

availability indicators can also predict how well it will perform in the future.

[40][45] Nº of crashes detected Number of crashes detected in a certain system or application

[36][46][48][56] Latency
Latency is the time between a user's action and a web application's response to that action; it's also known as the cumulative round

trip time a data packet takes to move in networking terms.

[35][36][39][42][43][46][53][56]
[58][34][32] CPU utilization %

The total amount of work handled by a Central Processing Unit is known as CPU utilization. It's also used to predict how well a

device would do. Since certain tasks need a lot of CPU time while others need less, CPU utilization can vary depending on the type

and amount of computing task.

[36][39] Nº of containers Nº of containers utilized in the project/system

[36][48][58] Packet loss
When one or more packets of data travelling through a computer network fail to reach their destination, packet loss occurs. Packet

loss is caused by either data transmission errors, which are common in wireless networks, or network congestion.

[11][22][47][30][55] Change fail rate
The number of deployments that result in a product failure. It's time to re-establish service. How long it takes for a company to

rebound from a production loss.

14

Table 9- Articles vs Dashboard Criteria

Article Displays
Dashboard

DrillDown Data

Visualization
Identified

metrics

Scope

Was the dashboard
evaluated?

What graphics do the dashboards use?

Line Graph Pie Chart Bar graph Speedometer
[49] ✓ ✓

[44] ✓ ✓

[63] ✓ ✓ ✓ ✓

[11] ✓

[60] ✓ ✓ ✓ ✓ ✓

[15]	 ✓ ✓ ✓

[13] ✓ ✓ ✓ ✓
[64] ✓ ✓ ✓ ✓

[38] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

[46] ✓ ✓ ✓ ✓ ✓
[62] ✓ ✓ ✓ ✓ ✓ ✓

[49] ✓ ✓

[44]	 ✓ ✓ ✓

15

In Figure 4, we can further verify by using percentages what criteria is mostly utilized in

the selected articles.

Figure 4- Dashboard criteria by percentage

In Figure 4, we can analyse how charts are being used in the dashboard, being the line

charts the most adopted. Furthermore, with the intent to analyse the considered dashboards, it

was considered if they were compliant with the Stephen Few rules (Table 6) for applying colour

in charts, to analyse the dashboard, the set of articles used was smaller since some of the articles

in Table 5, did not display a dashboard making it impossible to verify their implementation,

therefore not being able to verify their compliance

In Table 10, we can see how color is used in the dashboards under consideration. With a

few exceptions, it is obvious that the majority of the regulations were obeyed.It is relevant to

state that colour should be used sparingly, and the dashboard target must be very clear because

colour has a different interpretation depending on cultural aspects.

Table 10- Articles with dashboards vs Stephen Few color rules

Article RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6 RULE 7 RULE 8 RULE 9

[63] ✓ ✓ ✓
[60] ✓ ✓ ✓ ✓ ✓ ✓
[15] ✓ ✓ ✓ ✓ ✓
[13] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[64] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[62] ✓ ✓ ✓ ✓ ✓ ✓ ✓
[49] ✓ ✓ ✓ ✓
[44] ✓ ✓ ✓ ✓ ✓ ✓ ✓

After analysing the colours there was a need to verify if the Gestalt principles were being

applied in the dashboard design as it can be noted in Table 11.

 Yes No
Nº (%) Nº (%)

Line chart 5 (38,4%) 8 (61,6%)
Pie chart 3 (23%) 10 (77%)

Bar Chart 4 (30,7%) 9 (69,3%)

Speedometer 2 (15,3%) 11 (84,7%)

Was the
dashboard
evaluated?

1 (7,7%) 12 (92,3%)

 Yes No
Nº (%) Nº (%)

Displays Dashboard 8 (61,6%) 5 (38,4%)
DrillDown 3 (23%) 10 (77%)

Data Visualization 10 (78,3%) 3 (21,4%)

Identified metrics 7 (53,9%) 6 (46,1%)

Scope 6 (46,1%) 7 (53,9%)

16

However, when comparing the Gestalt principle, it is apparent that most of the studied

articles did not implement the dashboard with regards to the principles. The Gestalt principles

are commonly used to tie data together, separate data or make data stand out in the dashboard.

Table 11- Articles with dashboards vs Gestalt Principles

Article Proximity Similarity Enclosure Closure Continuity Connection

[63] ✓
[60] ✓ ✓ ✓
[15] ✓ ✓ ✓ ✓
[13]	 ✓ ✓ ✓
[64] ✓
[38] ✓ ✓ ✓
[2] ✓ ✓ ✓
[66] ✓ ✓ ✓ ✓

According to [63] design-wise goes against some of Stephen Few rules, such as to have the

dashboard spread into several screens, which can increase the difficulty of usage to the end-

user, it is crucial that the dashboard can be seen from a single screen making it simple and

accessible to the final user. However, the way they brought innovation into the whole DevOps

environment with the integration of a user interface (UI) heatmap is a good way to understand

that dashboard development and DevOps metrics still is a growing area filled with innovation.

The article [64] has a more generic approach on the design of the dashboard where they use

Splunk, to generate the dashboard after capturing the metrics through an ElasticSearch stack.

ElasticSearch is an open-source search and analytics engine with the capability of ingesting

data from several sources concurrently.

Utilizing ElasticSearch has the advantage of accelerating the development process, with the

major drawback of having the design constrained to the tools available.

Commonly, in [15] also resorts to ElasticSearch however instead of utilizing Splunk for the

dashboard implementation resorts to the ElasticSearch native tool Kibana, which has the

particular ability to generate Dashboards with a very standardized design which is not just overall

a pleasing implementation regarding its colour schemes, but it also uses most of the Stephen

Few Rules of colour, and the Gestalt Principles are also present in most of its implementation.

As a result, in terms of open-source software, ElasticSearch has the capacity of building

dashboards while also supporting the whole data monitoring process, making it a frequent

implementation in data-intensive systems with the goal of monitoring their data. After

analyzing all of the articles, it can be stated that none of the data set articles go into depth on

how to design and implement the dashboard because it is mostly a feature of their study and not

17

its main focus, so there is a noticeable gap in the literature on how to properly design a DevOps

dashboard in order to retain the maximum value from its implementation.

2.5. Literature Review Synthesis
The work in this SLR had the purpose of understanding how the DevOps community is

leveraging dashboards in their work and trying to understand if there is any common practice

being utilized by the community. In Table 7, there is not a standardized group of metrics being

used across DevOps teams and that they are simply measuring key aspects of their system or

project, not considering what has been studied and targeted as the key metrics to follow within

the DevOps community. Although there should be a standardized range of metrics, it is also

important to understand each use case to not measure something irrelevant or pointless [67].

According to Figure 4 one can also perceive that not everyone is implementing a dashboard

to aid in visualizing software development or any monitoring. However, a big portion of those

that use dashboards are following design methodologies and best practices to aid their

organization and team.

The findings of this study are expected to help understand how to Monitor a Devops

environment, as well as a fundamental understanding that there is much space for improvement,

whether in terms of decision-making and understanding of what needs to be measured, whether

the emphasis is on efficiency, quality, or productivity of the systems in question.

The primary difference between what has already been researched and what will be

investigated in this study is how the best visualization approaches may assist in monitoring a

DevOps environment and how metrics can be divided into categories, allowing the monitored

data to be accessible and analyzed independently.

18

19

Chapter 3 – Research Methodology
Given the nature of this investigation, the Design Science Research (DSR) is the select research

methodology to achieve this research goal.

Design Science Research Methodology (DSRM) is defined as the goal of developing and

functionally researching an artifact or instruction [59], being regarded as a comprehensive

process aimed at developing artifacts with the goal of issue resolution [60].

Additionally, DSR is considered to be a new technique that enables the development of

research in several areas, being able to be utilized as a way to produce academic and

organizational knowledge [59].

The use of DSR has the capability of reducing the gap between theory and practice by not

only allowing to solve organizational and academic problems but also by producing knowledge

with the capability of improving theories [59]. Figure 5 depicts how the DSR approach was

implemented.

Figure 5- DRSM Model followed in the research

The principles of DSR are based on the engineering of artificial things, and information

systems (IS) are a perfect example of an artificial system when the goal is to increase the

Problem
Identification

and Motivation
Definition of
Solution and

Objective

Design and
Development

Demonstration Evaluation Communication

Lack of
standardization the
development of
DevOps
Dashboards

Develop a
dashboard that
follows good

practices defined
by the community

and provides
DevOps teams the
complete set off
metrics required
to monitor and

make better
decisions on their

systems

The lack of a
dashboard might
cause end users to
get overwhelmed
by the number of
metrics accessible,
which can lead to
incorrect
judgments or even
failure to notice
failures in the
system.

Develop a
DevOps

dashboard
following the

main guidelines

Choose a source
for the data
needed to

populate the
dashboard to

mock its
functionalities
allowing for a
better review

 Submission of
scientific
articles

Interviews with
experts

Possible Research Entry
points

20

organization's efficiency. Because of this reason, in Table 12, one can see how the principles

were adopted. Because the principles alone are insufficient to justify the added value and

consequent applicability that is useful in design science, we also adopted Hevner's DSR

Guidelines[61]. Table 13 shows how this research matches the seven DSR Guidelines

Table 12- Design science research principles

DSR Principles Explanation
Abstraction The research entails the creation of dashboards to monitor

the information acquired from a DevOps environment,
with the goal of assisting the many stakeholders in the
decision-making process. As a result, the author followed
industry best practices and then investigated widely
utilized techniques to further verify the concept.

Originality Dashboards are commonly used to monitor DevOps
Justification The dashboard's explanation is based on a solid technique

for its creation and being further assessed by industry
professionals.

Benefit This dashboard aggregates various scopes of DevOps in a
single instance, allowing stakeholders to make faster and
better decisions.

Table 13- Design Science Research Guidelines

Guideline 1: Design as an Artefact
The research artifact suggested is a DevOps dashboard
Guideline 2: Problem Relevance
There is a need to create an effective dashboard that enables the monitoring of productivity,
performance, and quality in a DevOps environment.
Guideline 3: Design Evaluation
Semi-structured interviews are conducted. Interviewees who must make decisions using
dashboards are assessed.

Guideline 4: Research Contributions
A novel artifact that does not exist in the body of knowledge.
Guideline 5: Research Rigor
The fundamental concepts, practices, and methods of DSR were used to improve the
credibility of the artifact and, as a result, the research's contribution. Stephen Few provides
practical Guidelines for using color in charts. Gestalt theory and visual perception formation
principles
Guideline 6: Design as a Search Process
The resulting outcome is the departure from the unknown. Combination of effective
visualization methods and other relevant prototype creation criteria.
Guideline 7: Communication of Research
Furthermore, the work is intended to be submitted to a journal/conference with a high
reputation and regard in the scientific community.

A questionnaire was to be used throughout the evaluation phase of the proposal. The

questions that were used to aid the questionnaire are present in Table 14, and with them, it was

21

possible to acquire the positive features, the negative aspects, and the recommended changes

for further improving the dashboard. The structure of the table is shown in Tables 15 and 16.

In Table 16, the advantages, cons, and suggested improvements parts are divided into four

columns and three rows. The first column specifies the three above-mentioned parts. The

second column is the identifier for the item. The third column is a short synthesis of what the

interviewee described. The fourth column is the whole interviewee opinion from what was

extracted during the interview.

Table 17 is where the suggested improvements are dissected to further improve the dashboard.

It was decided to divide this table into five categories as follows, the suggested improvement,

the type of improvement as it can be an improvement of information/context or visualization,

next there is a column where there is a verification if the improvement was implemented, and

who suggested the improvement and finally the figure where the improvement was

implemented

Table 14- Key Evaluating Questions

Questions
What are the positive aspects of the proposed dashboard?
What are the negative aspects of the proposed dashboard?
What improvements would you suggest for the suggested dashboard?

Table 15- Evaluation prototype structure

 ID Interviewee synthesis Interviewee Opinions

Pros
Cons
Suggested
Improvements

Table 16-Improvements prototype structure

Iteration
P1 Suggested

Improvement
Type of
improvement

Was it
implemented

Who
suggested

Figure

22

23

Chapter 4 - Proposal and Evaluation
The designed dashboard was the focus of an iterative DSR process that included three semi-

structured interviews with IT professionals. Each interview produced a DSR iteration that

assisted with validating, consolidating, and improving the dashboard. Table 17 lists the

interviewees who participated in this procedure. The interviewees' professional expertise varies

from interview to interview. Their experience, however, is mostly in the IT industry, working

in a day-to-day DevOps setting.

4.1 . First DSR Iteration
The prototype was improved over three iterations using the DSR technique. This was completed

using mock data to build a relevant dashboard.

In this section, there is a focus on the three phases of each iteration: the proposal, the

demonstration, and the evaluation.. To ensure that the mock data was not inappropriate, the

interviewers were provided a context with the goal of contextualizing the dashboard and its

scope with the main purpose of improving their input.

4.1.1. Proposed Dashboard
To create the dashboard, numerous processes were required, which are divided into three parts.

The initial step consisted of research and analysis, followed by the process of producing the

mock data, however in a production environment, a whole process of extraction, load, and

transformation (ETL) would be required and ultimately enable the use of the dashboard.

Table 17- Interviewee Data

DSR
Iteration

Age Role Years of experience
in IT

Graduation

1 40 Solutions
Architect

20 Computer Engineering

2 35 Software
Lead

10 N/A

3 29 Software
Developer

6 Computer Engineering

4.1.2. Research and Analysis
The research and analysis began with an evaluation of the previously implemented dashboards

in a DevOps environment within the scientific community to identify a gap in the studies so

that it could be addressed. And the result was that the dashboards did not adhere to the best

methodology or standards for data visualization and that the metrics applied to each dashboard

were very context-specific, with no discernible pattern. Prior to building the dashboard, it was

necessary to conduct more research into what metrics are typically utilized in a DevOps context.

24

Understanding how DevOps is measured across the community would allow for a better

approach to what metrics should be used in the dashboard implementation.

This metrics research led to the production of an artifact that enables understanding of

which metrics are more often used and whether there is any link to the best standards for

evaluating a DevOps environment. Furthermore, the metrics were categorized in order to

organize how they are connected and interpreted. According to the articles analyzed, the

categories chosen were productivity, quality, and performance, and this grouping has the ability

to improve the way metrics are utilized in a dashboard. To move on with the dashboard

implementation, it was necessary to mock the data so that it could not be tied to any specific

system or product. As a consequence, any issues linked to data privacy or any other issue related

to the method data is extracted are eliminated.

4.1.3. Dashboard elaboration
The dashboard's creation process began with dividing the entire collection of metrics into the

three discovered metric groupings. Then after selecting which metrics were to be used in each

group, there was a need to further choose the charts that were going to be used for each metric

by following the guidelines used to build effective and powerful dashboards. With three distinct

dashboards, there is a need to address how navigation is done between the dashboards.

Therefore a homepage was built to further simplify navigation between the dashboards. And

with that, the dashboard was finished.

4.1.4. Guidelines
The Gestalt principles should always be followed to improve data visualization so that the

reader has an easier time interpreting the charts and making sense of the material visually [62].

Gestalt's visual perception principles aid in understanding which aspects of training are critical

to information transfer and which elements are contaminants and/or enhancers. Several writers

approach these ideas, which can be examined in further depth in one of the publications listed

below [28].

In order to communicate through a dashboard, the use of color can be advantageous.

However, there is a need to be aware of how the color is perceived because there are underlying

issues in how colors can be used to communicate with an audience and with the purpose of

aiding in color usage [17].

There was a need to provide some type of context for the initial iteration so that the

interviewees could link the metrics presented with something they saw on a regular basis. As a

result, the notion of teams was created, and the dashboard is now connected with a project

where many teams operate within a DevOps environment, each with their own color. It helps

25

interviewees to become more familiar with the data sooner and assess the usefulness of the

suggested dashboards more quickly.

4.1.5. Demonstration
To show that the artefact implemented can be used in a real-world DevOps environment, the

data was dressed up to make it more perceptible and not just random data, so that individuals

who completed the survey could provide accurate and valuable comments.. The goal of the

dashboard demonstration is to show how to navigate between dashboards and how metrics are

shown in the form of charts and graphs, as well as how a simple drill-down allows for an

interactive approach on dashboards.

The dashboards are divided into three groups, each of which is distinguished by one of the

three metrics categories. The teams may be selected by using the filters above or by tapping on

the charts to choose a team to drilldown into the appropriate team; there is also the option of

filtering between time intervals to acquire a specific period for a more in-depth study. The

colors are chosen on purpose to distinguish amongst the working teams so that they can be

distinguished. The Gestalt Principles of Proximity, Similarity, Closing, and Connection were

attempted to be included in the dashboards.

The three dashboards in Figures 6, 7, and 8 were designed with the goal of allowing users

to quickly identify difficulties or problems that can be identified and comprehended in the

charts and graphs, as well as pinpointing where the problem exists so that remediation may be

implemented as soon as feasible.

26

Figure 6- Productivity Dashboard

Figure 7- Performance Dashboard

27

Figure 8 - Quality Dashboard

4.1.6. Evaluation

With the first interview, input was collected to further iterate the DevOps dashboard, the

feedback gained, and it can be further analysed in Table 18 contained four positive aspects and

three negative ones, resulting in three improvement recommendations, only two of which were

adopted in the second iteration.

The good reviews are mostly connected to how it allows stakeholders to quickly assess

DevOps and allow for more technical delivery since most deliveries do not include a

comprehensive technical delivery.

28

Table 18- Evaluation of the prototype 1st Iteration

 ID Stakeholder synthesis Interviewee Opinions

Pr
os

P1.1 “Without monitoring
DevOps, there is no
clear way of
validating any type of
DevOps
implementation.”

To determine if the adoption of various technologies is
meaningful, there must be quantitative evidence.
Validating our pipelines requires constant monitoring of
DevOps. Measuring is required. To get the most out of
DevOps, follow these steps.

P1.2 “The use of modern
technologies and the
simple drill down is
really beneficial for
the user experience.”

The usage of modern technology such as Tableau or even
Power BI allows for a highly current and relevant
implementation. The use of drilldown provides a very
user-friendly experience and interaction.

P1.3 “I found it
captivating to divide
the dashboard into
metric groups.”

It was well thought out to use groupings to better show
the metrics.

P1.4 “This dashboard
enables technical
validation of team
deliverables, allowing
for technical delivery,
which validates
deliverables on a
technical level.”

These dashboards will allow the quality/quantity of the
deliverables at a technical level since the deliverables
output is generally business related.

Co
ns

C1.1 “There is a need to
give more context in
order to further
relations with the
dashboard”

The dashboard display lacks context, such as the
construction of a story. It lacks context, which makes it
difficult to comprehend the graphics.

C1.2 “Some of the
measures employed
have an apparent lack
of coherence.”

Some indicators have no relationship with one another
and so become meaningless in the absence of a
connection.

C1.3 “There isn’t a need to
have the filter in the
top bar since you can
drill down”

With the added ability to drill down there isn’t a need to
implement a filter to select what team to choose

Su
gg

es
te

d
Im

pr
ov

em
en

ts

PI1.1 “Creation of a
narrative to provide
more perspective for
the dashboard
presentation.”

Create a story that allows stakeholders to connect the
experience of monitoring with the metrics so that they are
more than simply some visuals with data.

PI1.2 “Implement the
metrics in such a way
that they are more
coherent.”

Some indicators have no relationship with one another
and so lose significance in the absence of a link.

PI1.3 “Implementation of a
homepage for the
several dashboards”

Create a dashboard that provides stakeholders with a easy
to use a landing page that allows selecting what team you
want to drill down into.

29

4.2. Second DSR Iteration
After completing the first interview and analysing the comments received, all the advantages

and disadvantages were used to create a better dashboard iteration.

4.2.1. Proposal
The dashboard was updated with the first interviewee's enhancement suggestions to further

improve the second iteration. Table 19 presents the improvement ideas, which aids in having a

consolidated perspective of the improvements. As it is feasible to validate the two enhancement

recommendations that were applied during 4.2.2 Demonstration.

Table 19- Proposed improvements 1st iteration table

Iteration
P1 Suggested

Improvement
Type of
improvemen
t

Was it
implemented

Who
suggested

Figure

PI 1.1 Creation of a story so
that the dashboard
presentation has more
context

Information/
Context

Yes Interviewee 6
7
8

PI 1.2 Metric adjustment Visualization No Interviewee
PI 1.3 Homepage

implementation
Visualization Yes Author 9

4.2.3. Demonstration
The primary feature in the second iteration was the construction of the main menu, from which

it is possible to browse in-between dashboard implementations and have an overview of the

time of all current running projects, as shown in Figure 9. The primary goal of this solution was

to simplify navigation and make it extremely clear how to go from dashboard to dashboard.

Figure 9- Dashboard homepage

30

There was also a need to improve how the data presented on the dashboard is linked to aid

the presentation so that the statistics are consistent and the interviewer narrative telling abilites

are improved.

4.2.4. Evaluation

According to Table 20, the results of the second interview were two good aspects, two negative

aspects, and two suggestions for improvement.

The second interview positive aspects focused on how clean and effective the dashboard

can be. Still, there is also an opportunity to improve on how the metrics are used across the

dashboard. There should be a focus on connecting the way the data is shown and allowing for

cross-category analysis.

Table 20- Evaluation of the prototype 2nd Iteration

 ID Stakeholder synthesis Interviewee Opinions

Pr
os

P2.1 The dashboard displays basic quite
core and important technical metrics

The dashboard has the benefit of
presenting data from the different metric
groups, which is highly useful for
analysing information and making
decisions.

P2.2 This dashboard is extremely
beneficial not only for people
interested in technology but also for
those interested in the business side
of things.

It seems very relevant from a business
perspective the category differentiation
with a main emphasis in the productivity
category

Co
ns

C2.1 The number of features and metrics
are lacking

There is an obvious need to improve how
metrics are shown on the dashboard or to
try to obtain a larger picture on the
dashboard.

C2.2 It’s just and overviews, could be
clearly more detailed

There are methods to enhance the
dashboard's experience by emphasizing the
data that is being displayed.

Su
gg

es
te

d
Im

pr
ov

em
en

ts

PI2.1 Allow for a cross analysis in
between the categories

Allow for a cross-analysis of the
categories. There are undoubtedly
additional significant categories, but the
details and cross-analysis metrics on the
existing categories are the most important.

PI2.2 It’s just and overview, could be
clearly more detailed

Correlate the indicators more effectively
and avoid using basic numbers over time.

PI2.3 There could be more KPIs show in
the dashboard

Present more key performance indicators
in a way that allows the user to quickly
understand the state of the system in case

31

4.3. Third DSR Iteration
After completing the second interview and analysing the feedback received, all the advantages

and disadvantages were used to create a better dashboard iteration.

4.3.1. Proposal
The third iteration was created with the goal of increasing the dashboard's resilience to give a

more solid solution for DevOps dashboards. This third version of the concept includes the two

recommended modifications. Table 21 summarizes the implemented proposals, with a complete

discussion in section 4.3.2 Evaluation.

Table 21- Proposed improvements 2nd iteration

 Iteration
PI2 Suggested

Improvement
Type of
improvement

Was it
implemented

Who
suggested

Figure

PI2.1 Allow for a cross-
analysis in between the
categories

Information
/context

Yes Interviewee 10
11
12

PI 2.2 Correlate the metrics in
a better and avoid using
simple numbers across
time

Information /
context

Yes Interviewee
10
11
12

PI 2.3 Implement charts in a
way that allows the user
to read KPIs in a fast
manner

Information /
context

Yes Interviewee 12

 4.3.2. Demonstration
To continue with the implementation, three more dashboards were required to be able to cross-

analyse the metric categories, as recommended in the PI2.1. With the inclusion of these three

dashboards, the artifact became obviously more robust in its targeting of the metric categories,

allowing for a more in-depth examination of the system being monitored.

Firstly, the Quality and Performance dashboard was created in Figure 10, with a strong

focus on helping the end-user to rapidly identify which teams have a better overall outcome in

their development by understanding how the change fail rate connects with the lead time for

each team—and then being able to read how the system CPU % corresponds to the system's

availability. Secondly, the Quality vs Productivity dashboard implemented Figure 11, with an

32

emphasis on how the number of deploys in each team affects the mean time to repair, and

understand which team has a problem with the software that is deployed and if it increases the

time required to repair a defect. In addition, this cross-analysis dashboard allows users to watch

how the number of issues corresponds to the lead time per team and check if the teams can

handle the number of issues given without growing the lead time exponentially.

Finally, the Performance vs Productivity Dashboard presented in the Figure 12 was created

with the goal of being able to quickly understand if the systems and teams being monitored are

in a healthy state overall.

cross-analysis dashboards have a focus on providing more useful information to the end-

user.

Figure 10- Quality vs Performance Dashboard

To achieve that quick perception, both the metrics number of crashes and the deployment

frequency were approached in two different ways by utilizing a heatmap to get a perception.

Also, by utilizing Tableau calculation fields, it is possible to get a comprehensive view of

how those two measures are performing over a period. In this example, you can see how the

number of crashes and deploys has changed from a month or even a year ago, or you can set a

target for each of these metrics. All these scopes may be selected in the Performance and

Productivity left-side column.

33

With a focus on addressing PI2.2 and PI2.3, it can be seen in these newly implemented

dashboards that there was a major focus on increasing the depth of how the metrics were being

used to monitor the system and teams. By focusing less on quantity and more on detail, all these

Figure 11-Quality vs Productivity Dashboard

Figure 12- Performance vs Productivity Dashboard

34

4.3.3. Evaluation

According to Table 22, the results of the third interview were two good aspects, one bad aspect,

and one suggestion for improvement.

The positive elements are mostly focused on how the dashboard has the potential to offer a

more analytic approach to software development while also assisting DevOps and business

teams in identifying important components of what is being delivered and how to enhance them

further. And how categorizing DevOps metrics allows for easier and faster analysis.

One negative is the absence of further information about the labels, which would allow for

a more in-depth explanation of the measurements employed.

Table 22 - Evaluation of the prototype - 3rd Iteration

 ID Stakeholder synthesis Interviewee Opinions

Pr
os

P3.1 The ability to easily infer data and make
decisions based on the metrics categories

Because the data can tell you a lot
about the team's performance and
best practices, as well as the
frequency with which they
release versions and deploy their
systems.

P3.2 Simple to use and effective, the way the
charts interact allows for a better degree of
drill down

The user interface is
straightforward to use and
comprehend, and you can take a
lot of conclusions from what you
acquire.

P3.3 Allow teams to see a broader picture of the
software being built. Providing a more
analytical picture of the product and the value
of the team

It enables teams to learn from the
systems, reflect internally on the
systems, and have a feeling of the
product that we are generating. It
is indeed feasible, both as a
developer and as a project
manager, to measure the projects
that are currently in progress.

Co
ns

C3.1 Some of the charts might have more specific
measuring units.

Some of the units should be
clarified to speed up the way
metrics are displayed to the main
target.

Su
gg

es
te

d
Im

pr
ov

em
en

ts

PI3.1 Improve the way the metrics are labelled with
their respective unit

There is a need to improve the
way metrics and KPI are labelled

35

4.4. DSR Synthesis

We derived a set of improvement recommendations from the interviewees' responses, which

are given in Table 23. The interviewees made 6 of the 7 improvement suggestions, while the

author offered one. Five of the seven form improvement recommendations were adopted, with

the remaining two being filed for future enhancements.

Table 23- Proposed improvements by Iterations

Iteration 1
P1 Suggested

Improvement
Type of
improvement

Was it
implemented

Who suggested Figure

PI 1.1 Creation of a
story so that the
dashboard
presentation has
more context

Information/Context Yes Interviewee 6
7
8

PI 1.2 Metric adjustment Visualization No Interviewee 10
PI 1.3 Homepage

implementation
Visualization Yes Author 9

Iteration 2
PI2.1 Allow for a cross-

analysis in
between the
categories

Information /context Yes Interviewee 10
11
12

PI 2.2 Correlate the
metrics in a better
and avoid using
simple numbers
across time

Information / context Yes Interviewee
10
11
12

PI 2.3 Implement charts
in a way that
allows the user to
read kpis in a fast
manner

Information / context Yes Interviewee 12

Iteration 3
PI 3.1 Improve the way

the metrics are
labelled with their
respective unit

Information / context No Interviewee

36

37

Chapter 5- Conclusion

The proposed DevOps Dashboard went through numerous revisions with the purpose of

becoming a useful and resilient artifact, but it is apparent that there are other aspects that could

have been targeted, such as a financial approach throughout the dashboard.

The positive aspects of the proposed artifact are that it is very intuitive and user-friendly,

allowing users to analyse and easily make decisions based on the data provided in the

dashboard. The ability to drill down via the team name and filters allows the end-user to be

very incisive in the sort of metrics that they are looking for.

Secondly, utilizing metric groups to aggregate the way data is shown in DevOps was a

method of distinguishing itself from the rest of the existing data measurement tools for DevOps.

Thirdly, the Cross Analysis tabs allowed for a more in-depth comparison of how the systems

are produced, providing further insight

The negative aspect is the lack of real-world data, which would allow for a more in-depth

understanding and examination of how DevOps is performed in the field.

Almost all the respondents noted additional tools that supported DevOps monitoring, but

they are generally overly focused on one of the categories that we identified and seldom

connected to the other types of metrics that are available in a DevOps setup. They are either not

particularly interactive or user friendly, necessitating the end-user to be a technical member of

the team, leaving the business side in the shadows.

It is possible to infer that the suggested artifact adds value to the current collection of

accessible DevOps measurement tools by allowing users to have a better user experience and

presenting more than one group of relevant data. Furthermore, quantitative evidence is required

to determine whether the adoption of certain technologies is meaningful. Monitoring is critical

for getting the most out of DevOps.

The findings of the interviews suggest that implementing dashboards on productivity,

quality, and performance is beneficial to DevOps teams and organizations. Furthermore,

another key finding from the study is that the aid colour standards and Gestalt's visual principles

can help to increase the value of dashboards for stakeholders.

It is also worth noting that the prototype was adapted to the interviewees' project reality

where the presence of several teams working together with the purpose of improving each other

in a DevOps environment, which allowed stakeholders to get more comfortable with the data

and develop greater clarity about the information they want from dashboards. The deployment

38

of the dashboards meets all the requirements for success, as evidenced by the input of the

stakeholders polled.

Furthermore, the dashboard enables teams to satisfy a demand by delivering output that is

normally business-related in a more technical context. These dashboards will allow the quality

of the deliverables to be assessed at a technical level, enabling technical delivery, which

certifies deliverables on a technological level. To conclude, the proposed dashboard would

provide a macro perspective of performance, quality, and productivity. It focuses on assisting

teams in understanding how their systems are doing as well as improving the end-user

experience.

So far, DevOps monitoring solutions have been highly focused on very particular elements

of the systems, such as deployment or code quality of the created product. The developed

artifact provides teams with a tool that focuses on a larger setup while keeping to the finest

standards of visualization techniques and drill-down.

5.1. Contributions
The findings of this study provide a better understanding of how DevOps implementations use

metrics and dashboards, as well as a fundamental understanding that there is still much room

for improvement, whether in the decision of which metrics to use, whether performance,

productivity, or quality-related, or in how the dashboard itself is visually designed for the end

user. Nowadays, teams must first establish their purpose and then determine what metrics they

want to measure [34]. Then, focus on how they want to display and monitor those metrics in a

dashboard, always with the focus being the target of the dashboard, has end-user experience is

one of the major focuses of any dashboard software implementation.

The produced artifact enables stakeholders to get important information on productivity,

quality and performance, as well as to give a more quantitative analysis of the systems

developed by the organization, resulting in a more in-depth understanding of the product status.

The dashboard took into consideration good visualization practices and drill-down techniques

to aid decision making in a DevOps setting.

5.2. Limitations

The research has certain limitations. DevOps dashboards is a topic that is frequently

addressed in a closed corporate setting, making it hard to really appreciate the entire

community's awareness of this issue. As a result, over the course of this research, only the

scientific basis was investigated. Furthermore, no real data was included in the dashboard in

39

order to avoid the dashboard being tied to a single project and being too specific to be useful to

a larger audience.

Furthermore, only three interviews were conducted; more interviews would have allowed

for the collection of further dashboard-related improvements. However, these three interviews

were conducted with experts that work in a DevOps setting where this sort of artifact might

have a direct impact. Furthermore, owing to time constraints, it was not feasible to implement

all of the suggested changes.

5.3. Future Work
As a proposal for future work, It would be interesting to implement the created dashboard in a

real DevOps scenario with access to real-time data. This would allow the dashboard to be

evaluated in real-world scenarios, giving the opportunity to develop the artifact further with the

insights taken with the real data.

Another future work suggestion would be to provide the dashboard with a financial overview

of the three metric categories, providing for a clearer understanding of how a more

comprehensive system assists a team in minimizing resources used.

40

41

References
[1] N. Forsgren and M. Kersten, ‘DevOps metrics’, Commun. ACM, vol. 61, no. 4, pp. 44–48, Mar. 2018,

doi: 10.1145/3159169.
[2] G. Casale et al., ‘RADON: rational decomposition and orchestration for serverless computing’, SICS

Softw.-Intensive Cyber-Phys. Syst., vol. 35, no. 1–2, pp. 77–87, Aug. 2020, doi: 10.1007/s00450-019-
00413-w.

[3] N. Forsgren, D. Smith, J. Humble, and J. Frazelle, ‘2019, State of DevOps’, 2019.
[4] Tricentis, ‘Software fail watch: 5th edition’, 2018.
[5] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and DevOps: Building

and Scaling High Performing Technology Organizations. 2018.
[6] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation, 1st ed. Addison-Wesley Professional, 2010.
[7] P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm, ‘Towards better understanding of software

quality evolution through commit-impact analysis’, Aug. 2017, pp. 251–262. doi:
10.1109/QRS.2017.36.

[8] P. Debois, ‘Agile Infrastructure and Operations: How Infra-gile are You?’, presented at the Agile 2008
Conference, 2008. doi: 10.1109/Agile.2008.42.

[9] H. H. Olsson, H. Alahyari, and J. Bosch, ‘Climbing the “Stairway to Heaven” -- A Mulitiple-Case
Study Exploring Barriers in the Transition from Agile Development towards Continuous Deployment
of Software’, presented at the 2012 38th Euromicro Conference on Software Engineering and
Advanced Applications, Sep. 2012. doi: 10.1109/SEAA.2012.54.

[10] A. Hemon, B. Lyonnet, F. Rowe, and B. Fitzgerald, ‘From Agile to DevOps: Smart Skills and
Collaborations’, 2019, doi: 10.1007/s10796-019-09905-1.

[11] A. Capizzi, S. Distefano, L. J. P. Araújo, M. Mazzara, M. Ahmad, and E. Bobrov, Anomaly Detection

in DevOps Toolchain, vol. 12055 LNCS. 2020, p. 51. doi: 10.1007/978-3-030-39306-9_3.
[12] A. Balalaie, A. Heydarnoori, and P. Jamshidi, ‘Microservices Architecture Enables DevOps:

Migration to a Cloud-Native Architecture’, IEEE Softw., vol. 33, no. 3, pp. 42–52, May 2016, doi:
10.1109/MS.2016.64.

[13] G. Kim, P. Debois, J. Willis, and J. Humble, The DevOps Handbook: How to Create World-Class

Agility, Reliability, and Security in Technology Organizations. IT Revolution Press, 2016.
[14] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, ‘The making of cloud applications: an empirical study on

software development for the cloud’, 2015, pp. 393–403. doi: 10.1145/2786805.2786826.
[15] M. Traverso, M. Finkbeiner, A. Jørgensen, and L. Schneider, ‘Life Cycle Sustainability Dashboard’, J.

Ind. Ecol., vol. 16, no. 5, Oct. 2012, doi: 10.1111/j.1530-9290.2012.00497.x.
[16] W. Luz, G. Pinto, and R. Bonifacio, ‘Adopting DevOps in the Real World: A Theory, a Model, and a

Case Study’, J. Syst. Softw., vol. 157, Jul. 2019, doi: 10.1016/j.jss.2019.07.083.
[17] S. Few, Now You See It: Simple Visualization Techniques for Quantitative Analysis, 1st ed. Oakland,

CA, USA: Analytics Press, 2009.
[18] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri, ‘DevOps: Introducing

Infrastructure-as-Code’, presented at the 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), May 2017. doi: 10.1109/ICSE-C.2017.162.

[19] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective, 1st ed. Addison-Wesley
Professional, 2015.

[20] A. Ravichandran, K. Taylor, and P. Waterhouse, DevOps and Real World ROI. Berkeley, CA: Apress,
2016, p. 150. doi: 10.1007/978-1-4842-1842-6_9.

[21] L. Bass, ‘The Software Architect and DevOps’, IEEE Softw., vol. 35, no. 1, pp. 8–10, Jan. 2018, doi:
10.1109/MS.2017.4541051.

[22] ‘State of DevOps report 2018’.
[23] W. Gerald, Quality Software Management: Systems Thinking. 1991.
[24] ISO/IEC 9126, ‘Software Engineering—Software Product Quality. Part 1: Quality Model, ISO/IEC

9126-1, Geneva, Switzerland’, 2001.
[25] P. Perera, R. Silva, and I. Perera, ‘Improve software quality through practicing DevOps’, presented at

the 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer),
Sep. 2017. doi: 10.1109/ICTER.2017.8257807.

42

[26] R. Y. Al-Jaar, ‘Book review: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling by Raj Jain (John Wiley & Sons
1991)’, ACM SIGMETRICS Perform. Eval. Rev., vol. 19, no. 2, Sep. 1991, doi:
10.1145/122564.1045495.

[27] A. Brunnert et al., ‘Performance-oriented DevOps: A Research Agenda’, ArXiv, vol. abs/1508.04752,
2015.

[28] S. Few, ‘Common pitfalls in dashboard design’, 2006.
[29] B. Kitchenham, ‘Procedures for Performing Systematic Reviews’, 2004.
[30] ‘State of DevOps report 2017’.
[31] C. Castellanos, C. A. Varela, and D. Correal, ‘ACCORDANT: A domain specific-model and DevOps

approach for big data analytics architectures’, J. Syst. Softw., vol. 172, 2021, doi:
10.1016/j.jss.2020.110869.

[32] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, ‘Within-Project Defect Prediction of
Infrastructure-as-Code Using Product and Process Metrics’, IEEE Trans. Softw. Eng., pp. 1–1, 2021,
doi: 10.1109/TSE.2021.3051492.

[33] K. Maroukian and S. R. Gulliver, ‘The Link Between Transformational and Servant Leadership in
DevOps-Oriented Organizations’, in Proceedings of the 2020 European Symposium on Software

Engineering, Rome Italy, Nov. 2020, pp. 21–29. doi: 10.1145/3393822.3432340.
[34] Z. Ding, J. Chen, and W. Shang, ‘Towards the Use of the Readily Available Tests from the Release

Pipeline as Performance Tests. Are We There Yet?’, in 2020 IEEE/ACM 42nd International

Conference on Software Engineering (ICSE), Oct. 2020, pp. 1435–1446.
[35] M. A. López-Peña, J. Díaz, J. E. Pérez, and H. Humanes, ‘DevOps for IoT Systems: Fast and

Continuous Monitoring Feedback of System Availability’, IEEE Internet Things J., vol. 7, no. 10, pp.
10695–10707, Oct. 2020, doi: 10.1109/JIOT.2020.3012763.

[36] E. Kristiani, C.-T. Yang, C.-Y. Huang, Y.-T. Wang, and P.-C. Ko, ‘The Implementation of a Cloud-
Edge Computing Architecture Using OpenStack and Kubernetes for Air Quality Monitoring
Application’, Mob. Netw. Appl., 2020, doi: 10.1007/s11036-020-01620-5.

[37] M. Oriol et al., ‘Data-driven and tool-supported elicitation of quality requirements in agile
companies’, Softw. Qual. J., vol. 28, pp. 931–963, 2020, doi: 10.1007/s11219-020-09509-y.

[38] T. J. Wagner and T. C. Ford, ‘Metrics to Meet Security & Privacy Requirements with Agile Software
Development Methods in a Regulated Environment’, Feb. 2020, pp. 17–23. doi:
10.1109/ICNC47757.2020.9049681.

[39] T. Zheng et al., ‘SmartVM: a SLA-aware microservice deployment framework’, vol. 22, pp. 275–293,
2019, doi: 10.1007/s11280-018-0562-5.

[40] L. Diogo Couto, · Peter, W. V. Tran-Jørgensen, · René, S. Nilsson, and G. Larsen, ‘Enabling
continuous integration in a formal methods setting’, Int. J. Softw. Tools Technol. Transf., 2019, doi:
10.1007/s10009-019-00546-y.

[41] Storey Margaret-Anne and C. Treude, ‘Software Engineering Dashboards: Types, Risks, and Future’,
in Rethinking Productivity in Software Engineering, T. Sadowski Caitlin and Zimmermann, Ed.
Berkeley, CA: Apress, 2019, pp. 179–190. doi: 10.1007/978-1-4842-4221-6_16.

[42] M. Barisits et al., ‘Rucio: Scientific Data Management’, Comput. Softw. Big Sci., vol. 3, no. 1, pp. 11–
11, Dec. 2019, doi: 10.1007/s41781-019-0026-3.

[43] I. Dr Dragan et al., ‘A Scalable Platform for Monitoring Data Intensive Applications’, J Grid

Comput., vol. 17, pp. 503–528, 2019, doi: 10.1007/s10723-019-09483-1.
[44] F. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski, ‘Addressing problems with replicability

and validity of repository mining studies through a smart data platform’, Empir. Softw. Eng., vol. 23,
no. 2, pp. 1036–1083, Apr. 2018, doi: 10.1007/s10664-017-9537-x.

[45] N. Alshahwan et al., ‘Deploying search based software engineering with sapienz at facebook’, Sep.
2018, vol. 11036 LNCS, pp. 3–45. doi: 10.1007/978-3-319-99241-9_1.

[46] N. Herbst, ‘Quantifying Cloud Performance and Dependability’, ACM Trans. Model. Perform. Eval.

Comput. Syst., vol. 3, no. 4, pp. 1–36, Sep. 2018, doi: 10.1145/3236332.
[47] B. Snyder and B. Curtis, ‘Using Analytics to Guide Improvement during an Agile–DevOps

Transformation’, IEEE Softw., vol. 35, no. 1, pp. 78–83, Jan. 2018, doi: 10.1109/MS.2017.4541032.
[48] N. Asha and P. Mani, ‘Knowledge-based acceptance test driven agile approach for quality software

development’, Int. J. Recent Technol. Eng., vol. 7, no. 4, pp. 196–202, 2018.

43

[49] A. Rahman, ‘Characteristics of defective infrastructure as code scripts in DevOps’, May 2018, pp.
476–479. doi: 10.1145/3183440.3183452.

[50] D. A. Tamburri, M. M. Bersani, R. Mirandola, and G. Pea, ‘DevOps Service Observability By-Design:
Experimenting with Model-View-Controller’, 2018, pp. 49–64. doi: 10.1007/978-3-319-99819-0_4.

[51] A. Rahman, J. Stallings, and L. Williams, ‘Defect prediction metrics for infrastructure as code scripts
in DevOps’, May 2018, pp. 414–415. doi: 10.1145/3183440.3195034.

[52] H. Huijgens, R. Lamping, D. Stevens, H. Rothengatter, G. Gousios, and D. Romano, ‘Strong agile
metrics: mining log data to determine predictive power of software metrics for continuous delivery
teams’, 2017, pp. 866–871. doi: 10.1145/3106237.3117779.

[53] J. Cito, F. Oliveira, P. Leitner, P. Nagpurkar, and H. C. Gall, ‘Context-based analytics - Establishing
explicit links between runtime traces and source code’, 2017, pp. 193–202. doi: 10.1109/ICSE-
SEIP.2017.1.

[54] M. G. Jaatun, D. S. Cruzes, and J. Luna, ‘DevOps for Better Software Security in the Cloud Invited
Paper’, Aug. 2017, pp. 1–6. doi: 10.1145/3098954.3103172.

[55] Puppet and Dora, ‘State of DevOps report 2016’.
[56] D. Sun, M. Fu, L. Zhu, G. Li, and Q. Lu, ‘Non-Intrusive Anomaly Detection With Streaming

Performance Metrics and Logs for DevOps in Public Clouds: A Case Study in AWS’, IEEE Trans.

Emerg. Top. Comput., vol. 4, no. 2, pp. 278–289, Apr. 2016, doi: 10.1109/TETC.2016.2520883.
[57] R. Meissner and K. Junghanns, ‘Using DevOps principles to continuously monitor RDF data quality’,

2016, vol. 13-14-Sept, pp. 189–192. doi: 10.1145/2993318.2993351.
[58] E. Birngruber, P. Forai, and A. Zauner, ‘Total recall: Holistic metrics for broad systems performance

and user experience visibility in a data-intensive computing environment’, presented at the
Proceedings of HUST 2015: 2nd International Workshop on HPC User Support Tools - Held in
conjunction with SC 2015: The International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015. doi: 10.1145/2834996.2835001.

[59] A. G. L. Romme, ‘Making a Difference: Organization as Design’, Organ. Sci., vol. 14, no. 5, Oct.
2003, doi: 10.1287/orsc.14.5.558.16769.

[60] March and Storey, ‘Design Science in the Information Systems Discipline: An Introduction to the
Special Issue on Design Science Research’, MIS Q., vol. 32, no. 4, 2008, doi: 10.2307/25148869.

[61] A. R. Hevner, S. T. March, J. Park, and S. Ram, ‘Design Science in Information Systems Research’,
MIS Q., vol. 28, no. 1, pp. 75–105, 2004, doi: 10.2307/25148625.

[62] D. Chang and K. V. Nesbitt, ‘Developing Gestalt-Based Design Guidelines for Multi-Sensory
Displays’, AUS, 2006, pp. 9–16.

44

45

Appendices
Appendix A – Questionaire - 1st Iteration

Question 1 Do you consider this dashboard relevant?
 Yes
Question 2 Question If you answered yes, why you consider the dashboard important in this

matter?

 To determine if the adoption of various technologies is meaningful, there must be
quantitative evidence. Validating our pipelines requires constant monitoring of
Devops. Measuring is required. To get the most out of DevOps.

Question 3 Is the devops dashboard complete (Yes/No)?
 No
Question 4 If you answered no, what do you think is missing?
 The dashboard display lacks context, such as the construction of a story. It lacks

context, which makes it difficult to comprehend the graphics.
Question 5 Identify the positive aspects of the dashboard?
 The usage of modern technology such as tableau or even power bi allows for a

highly current and relevant implementation, and the use of drilldown provides for a
very user-friendly experience and interaction.

Question 6 Identify the negative aspects of the dashboard?
 Some indicators have no relationship with one another and so become meaningless

in the absence of a connection.
Question 7 Compared to other used devops dashboard/monitoring tabs, what are the positive

aspects?
 It was well thought out to use groupings to better show the metrics.
Question 8 Compared to other used devops dashboard/monitoring tabs, what are the Negative

aspects?
 None
Question 9 Do you think the implementation of this dashboard is an added value?
 Yes
Question 10 If so, could you justify?
 Yes, since these dashboards are what will keep the quality/quantity of the

deliverables at a technical level since the deliverables' output is generally business
related.
Allowing for technical delivery, which validates deliverables on a technical level

46

Appendix B – Questionaire - 2nd Iteration
Question 1 Do you consider this dashboard relevant?
 Yes
Question 2 Question If you answered yes, why you consider the dashboard important in this

matter?

 Because it displays basic quite core and important technical metrics
Question 3 Is the devops dashboard complete (Yes/No)?
 As an overview dashboard yes, but it could also be more detailed
Question 4 If you answered no, what do you think is missing?
 There certainly are other important categories but most importantly details and

cross analysis metrics on the current categories
Question 5 Identify the positive aspects of the dashboard?
 Clean, straight to the point
Question 6 Identify the negative aspects of the dashboard?
 It’s just and overview, could be clearly more detailed
Question 7 Compared to other used devops dashboard/monitoring tabs, what are the positive

aspects?
 It seems more relevant from a business perspective the productivity category
Question 8 Compared to other used devops dashboard/monitoring tabs, what are the Negative

aspects?
 The number of features/metrics are lacking
Question 9 Do you think the implementation of this dashboard is an added value?

 It depends on the cost of the implementation.
Question 10 If so, could you justify?
 From a business perspective I would have to always analyse the competitors and

understand how it would pane out with the competition

47

Appendix C – Questionaire - 3rd Iteration

Question 1 Do you consider this dashboard relevant?
 Yes
Question 2 Question If you answered yes, why you consider the dashboard important in this

matter?

 Because the data can tell you a lot about the team's performance / best practices, as
well as the frequency with which they release versions/deploys.

Question 3 Is the devops dashboard complete (Yes/No)?
 Yes
Question 4 If you answered no, what do you think is missing?
 The KPI data has to be more explicit
Question 5 Identify the positive aspects of the dashboard?
 It's easy to interact with the interface, and it's straightforward to understand, so it's

possible to remove a lot of the ilaciones we're dealing with.
Question 6 Identify the negative aspects of the dashboard?
 Measurements (Units) should be made easier in order to enhance reading speed.
Question 7 Compared to other used devops dashboard/monitoring tabs, what are the positive

aspects?
 It is very intuitive and easy to navigate and acesss
Question 8 Compared to other used devops dashboard/monitoring tabs, what are the Negative

aspects?
 N/A
Question 9 Do you think the implementation of this dashboard is an added value?

 Yes
Question 10 If so, could you justify?
 It enables teams to learn from the systems, reflect internally on the systems, and

have a feeling of the product that we are generating. It is indeed feasible, both as a
developer and as a project manager, to measure the projects that are currently in
progress.

