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Pricing Longevity Derivatives via Fourier Transforms

Abstract

Longevity-linked derivatives are one of the most important longevity risk management solu-

tions for pension schemes and life annuity portfolios. In this paper, we decompose sev-

eral longevity derivatives—such as geared longevity bonds and longevity-spread bonds—

into portfolios involving longevity options. For instance, we show that the fair value of an

index-based longevity swap can be broken down into a portfolio of long and short posi-

tions in European-style longevity caplets and floorlets, with an underlying asset equal to a

population-based survivor index and strike price equal to the initial preset survivor sched-

ule. We develop a Fourier transform approach for European-style longevity option pricing

under continuous-time affine jump-diffusion models for both cohort mortality intensities and

interest rates, accounting for both positive and negative jumps in mortality. The model cal-

ibration approach is described and illustrative empirical results on the valuation of longevity

derivatives, using U.S. total population mortality data, are provided.

JEL Code: G13, G22, C63, G12.

Keywords: Longevity Swaps; Longevity caps and floors; Longevity bonds; Affine mortality

models; Fourier Transforms.



1. Introduction

Longevity increases and population ageing create challenges for all societal institutions, par-

ticularly those providing retirement income, health care, and long-term care services. Al-

though advances in longevity are not homogenous across socioeconomic groups, securing an

adequate, stable and predictable lifelong income stream and providing a cost effective and

efficient risk pooling mechanism that addresses the (individual) uncertainty of death through

the provision of a lifetime annuity are some of the main mechanisms pension schemes use to

redistribute income in a welfare-enhancing manner—see, for instance, Ayuso et al. (2020),

Sánchez-Romero et al. (2020) and Bravo and Herce (2020). Pension schemes and annuity

providers face long-run solvency challenges to provide guaranteed lifetime income due to

uncertain financial returns and systematic (non-diversifiable) longevity risk. The potential

size of the global longevity risk market exposure for pension liabilities has been recently

estimated at between $60trn and $80trn—Michaelson and Mulholland (2014).

For pension plans and annuity providers, traditional longevity risk management solu-

tions include loss control techniques (e.g., via product re-design or risk-sharing arrange-

ments between pensioners/policyholders and providers), natural hedging, liability selling via

an insurance or reinsurance contract (through pension buy-outs, pension buy-ins or bulk

annuity transfers) and insurance-based longevity swaps—D’Amato et al. (2018). Insurance-

based longevity (or survivor) swaps are typically long-maturity bespoke (customized) ar-

rangements, involving no asset transfer, by which the buyer seeking to hedge longevity risk

agrees to pay a pre-agreed fixed set of cash flows to the swap (hedge) provider at predeter-

mined future dates, in exchange for receiving a floating set of cash flows linked to the actual

mortality experience of the swap buyer—see Blake et al. (2006) or Blake et al. (2019). The

swap provides the pension plan a customized (i.e., with no basis risk) cash flow hedge of its

longevity risk, but that comes at the expense of a higher price when compared to alternat-

ive index-based structures, reduced liquidity and lack of transparency and attractiveness to

capital markets investors. Insurance-based solutions for longevity risk management are still

predominant in the market despite expensive reinsurance premia and significant counterparty

credit risk exposure to the hedge provider. A similar but more transparent and standardized

alternative to bespoke longevity swaps are index-based capital-market longevity swaps which

involve counterparties swapping fixed payments for floating payments linked to the actual

survival index of a given publicly available reference population at predetermined (sequen-

tial) future calendar dates, for a given fixed notional amount. Traditional reinsurance is not
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a definitive answer to the problem due to the undiversifiable nature of systematic longevity

risk, which cannot be eliminated by increasing the reinsurer’s portfolio size and appealing to

the law of large numbers. For reinsurers, the market is interesting only to the extent that the

hedge provider has the chance to explore natural hedging opportunities (across lines of busi-

ness or across time) or the possibility of a subsequent transfer of the risk to capital markets.

The reinsurance market capacity to absorb the massive longevity risk exposure currently

undertaken is limited and long-term mortality guarantees are costly since regulatory capital

charges are expected to increase for providers under Solvency II framework.

As a result, in recent years several (mostly index-based) capital-market-based solutions

for mortality and longevity risk management have been proposed and, some, successfully

launched. They include insurance securitization, mortality- or longevity-linked securities

such as CAT mortality bonds, survivor/longevity bonds (LBs)—Blake and Burrows (2001),

Dowd (2003) and Cairns et al. (2008)—, longevity-spread bonds—Hunt and Blake (2015)—

and derivatives with both linear and nonlinear payoff structures. The most common types

of index-based mortality and longevity derivatives discussed in the literature include longev-

ity swaps—Dowd et al. (2006)—, q-forwards—Coughlan et al. (2007)—, S-forwards—LLMA

(2010)—, K-forwards—Chan et al. (2014) and Biffis et al. (2017)—, mortality options—

Cairns et al. (2008)—, survivor options—Dowd (2003)—, survivor swaptions—Dawson et al.

(2009)—, longevity experience options (LEO), K-options—Li et al. (2019)—and call spread

options —Michaelson and Mulholland (2015) and Cairns and Boukfaoui (2019). An interest-

ing development in the market has been the issuance of mortality- and longevity-linked struc-

tured notes incorporating derivative contracts (options), enabling coupon and/or redemption

payments to depend on the performance of the underlying mortality or longevity index—see,

e.g., the Swiss Re VITA I mortality bond launched in 2003, the Swiss Re longevity-spread

bond (known as Kortis) issued in December 2010, or tail-risk protection instruments like the

geared longevity bond (also named longevity bull call spread), negotiated by Aegon in 2012

and 2013. The incorporation of mortality and longevity options into vanilla debt structures

provides hedgers of longevity risk and hedge providers a way to protect their death benefit

or annuity liability risks, to limit their risk exposure (and potential profits) or to express

their views on expected underlying asset developments, but requires proper valuation and

risk management tools.1

1The introduction of methodologies such as MCEV and Economic Capital and recent regulatory processes

(e.g., Solvency II, Swiss Solvency Test, IFRS) has led insurers to focus more closely on proper pricing and

risk assessment of long-term guarantees and embedded options in life insurance.
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In this paper, we focus on the valuation of index-based capital-market longevity (or sur-

vivor) options and swaps using Fourier transforms. The longevity swap can be financially

engineered as a portfolio of vanilla S-forwards with predetermined (sequential) future matur-

ity dates, whose payoff can be broken down into long and short positions in European-style

(call and put) longevity options (longevity caplets and floorlets) with an underlying asset

equal to a population-based survivor index and strike price equal to the initial preset (risk-

adjusted) survivor schedule. The embedded auto-executable longevity options give swap

counterparties the right to exchange payments based on the difference between the realized

and the expected survivor-index. Blake et al. (2006) proposed engineering a longevity bond

by decomposition. The pricing of longevity-linked securities via option decomposition was

pioneered by Bravo and de Freitas (2018), who discuss the valuation of longevity-linked life

annuities using a risk-neutral simulation approach, with longevity risk premium introduced

via the Wang distortion operator. In this paper, we follow an alternative route and develop

a Fourier transform approach for European-style longevity option pricing under continuous-

time affine jump-diffusion models for both cohort mortality intensities and interest rates.

Specifically, we assume that the mortality intensity of a given cohort is driven by an af-

fine jump-diffusion process with “double exponential” distributed jumps, allowing for both

(asymmetric) positive and negative mortality jumps of different sizes. In this setting, the

risk-adjusted survival probability can be expressed in closed-form, and, hence, an analytical

formula for the mark-to-market price of the S-forward can be obtained. Since the index-

based longevity swap is constructed as a basket of S-forwards, the price of a longevity swap

can easily be obtained as the sum of the individual S-forward prices. The affine jump-

diffusion framework proposed in this paper is quite general and flexible and accommodates

most short-rate and forward-rate mortality intensity models proposed in the literature.

The use of Fourier transforms for European option pricing and hedging was popularized

by Carr and Madan (1999) and has been already applied in the actuarial science field—

see, for instance, Chau et al. (2015) or Alonso-Garćıa and Ziveyi (2018)—but, up to our

knowledge, has never been used in the valuation of longevity-linked options. We derive an

analytic expression for the characteristic function of the underlying longevity index price

process, obtain the Fourier transform of the damped European longevity option price and

compute the corresponding Fourier inversion to recover the option price via a Gauss-Lobatto

quadrature scheme.

3



In order to price longevity-linked securities, the underlying stochastic mortality rate pro-

cess needs to be specified under a risk-neutral (equivalent-martingale) probability measure.

Following Cairns et al. (2006b), we use a risk-neutral valuation approach to incorporate the

market price of longevity risk. Although longevity derivatives are still traded in an incom-

plete market setting and it is not possible to replicate the payoffs of the contract dynamically

and to infer risk-neutral probabilities from market transaction data, the use of a risk-neutral

pricing measure guarantees that different longevity-linked securities are priced consistently.2

We provide illustrative empirical results on the pricing of longevity swaps (of different tenors)

using U. S. mortality data from 1960 to 2017 for representative cohorts.

In the literature, several continuous-time stochastic mortality models have been proposed

for modelling the dynamics of mortality rates—see, for example, Milevsky and Promislow

(2001), Dahl (2004), Biffis (2005), Cairns et al. (2006a,b, 2008), Biffis and Millossovich

(2006), Schräger (2006), Miltersen and Persson (2006), Ballotta and Haberman (2006), Lu-

ciano and Vigna (2008), Bravo (2007, 2011), Zhu and Bauer (2011), Luciano et al. (2012),

Fung et al. (2019) and references therein.3 The task of modelling (and managing) longev-

ity risk is challenging since the nature of the risk addressed is multivariate, encompassing

mortality trend uncertainty, longevity diffusion risk, mortality jump risk, as well as model

and parameter risk. Cox et al. (2006) argue that an appropriate stochastic mortality model

should incorporate mortality jumps since the rationale for trading mortality-linked securities

is to hedge or take (in some cases catastrophic) mortality or longevity risks. The authors

propose a one-time jump-diffusion model to describe mortality rate dynamics, combining a

Brownian motion and a single compound Poisson process for mortality jumps. Chang et

al. (2010) extend the model by considering mortality jumps and default risk simultaneously,

and use it to price vanilla survivor swaps. Luciano and Vigna (2008) investigate the empir-

ical performance of several single factor mean-reverting and non-mean reverting stochastic

2The pricing of longevity-linked securities using risk-neutral valuation can always be compared with

that obtained using alternative approaches proposed to approximate the prices of longevity-linked securities

in an incomplete market setting, namely the Wang transform—Wang (2002)—, the instantaneous Sharpe

ratio method—Milevsky et al. (2005)—, the Equivalent Utility Pricing Principle—Cui (2008)—, the Cost

of Capital approach—Levantesi and Menzietti (2006) and Zeddouk and Devolder (2019)—, multivariate

exponential tilting—Cox et al. (2006)—or the CAPM- (and CCAPM-) based approaches—Friedberg and

Webb (2005).
3Bravo et al. (2020) propose an alternative novel approach based on an adaptive Bayesian Model En-

semble (model combination) of heterogeneous stochastic mortality models, all of which can probabilistically

contribute towards projecting future mortality rates.
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mortality models (some including a single jump component) using UK cohort population

data, and conclude that non-mean reverting processes with a deterministic part that in-

creases exponentially seem to be appropriate to capture the dynamics of human mortality

with age. Typically, catastrophic mortality events have very low frequency, their occurrence

has the potential to severely affect human mortality, but its impact vanishes quickly with

time. Lin et al. (2010) propose a stochastic mortality model featuring both a trend reduction

jump component (to describe permanent longevity improvements) and a temporary mortality

jump process (to capture severe but transitory effects on death rates), along with a general

longevity trend, modelled using the classical age-period Lee and Carter (1992) model. Their

model also captures the asymmetrical effect of mortality events on different ages. Li and Liu

(2015) introduce a Lee–Carter variant that captures the age pattern of mortality jumps.

In this paper, we extend previous research and propose, as our “baseline model”, a

non-mean reverting square-root jump diffusion Feller process combined with a Poisson pro-

cess with double asymmetric exponentially distributed jumps—Kou and Wang (2004)—to

account for both negative (e.g., new rare medical breakthroughs resulting in sudden improve-

ments in mortality, healthier life styles that reduce important causes of death) and positive

jumps (e.g., wars, pandemics or natural disasters resulting in abrupt catastrophic episodes

in mortality) of different sizes. Previous research considering jump processes in stochastic

mortality modelling focused almost exclusively on the impact of negative mortality jumps to

describe longevity risk. Although long term mortality trends suggest that unexpected sur-

vival gains dominate catastrophic mortality episodes, we believe a rich and flexible mortality

approach should encompass both mortality improvement and deterioration jump factors.

The deterministic part of the model increases exponentially with age, as observed at adult

ages in most countries, and follows the Gompertz law in expected terms. The square-root

jump diffusion component guarantees positive mortality rates. The model is parsimonious,

offers analytical tractability, and has proven to fit accurately both historical and projected

mortality data—Luciano and Vigna (2008) and Bravo (2007)—, fulfilling the requirements

for a good mortality model listed by Cairns et al. (2006a). Compared to alternative ap-

proaches (for example, Monte Carlo simulation methods), the model allows for closed-form

expressions for longevity option prices and longevity-linked structured securities, permitting

efficient computation of prices and sensitivity measures (i.e., risk statistics or Greeks) that

are required to perform dynamic hedging.
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The valuation of longevity-linked derivatives with non-linear payoff structures (e.g., longev-

ity options) has received little attention in the literature compared to that of longevity deriv-

atives with a linear payoff but is attracting increasing interest. Some exceptions are Lin and

Cox (2007), who study the pricing of a longevity call option linked to a population longevity

index for older ages, Cui (2008), who discusses the valuation of longevity options (floors

and caps) using the Equivalent Utility Pricing Principle, Dawson et al. (2010), who derive

closed-form Black-Scholes-Merton-type prices for European swaptions, Boyer and Stentoft

(2013), who price European and American type survivor options using a risk neutral sim-

ulation approach, Wang and Yang (2013), who price survivor floors using an extension of

the Lee-Carter model, Yueh et al. (2016), who develop valuation models for mortality calls

and puts—employing the jump-diffusion model developed by Cox et al. (2006)—, Bravo and

de Freitas (2018) and Bravo (2019, 2020), who discuss the valuation of longevity options em-

bedded in longevity-linked life annuities, Fung et al. (2019), who derive closed-form solutions

for the price of longevity caps under a two-factor Gaussian mortality model resembling the

Black-Scholes formula for option pricing when the underlying stock price follows a geometric

Brownian motion, and Li et al. (2019) as well as Cairns and Boukfaoui (2019), who discuss

the valuation of K-options and call-spreads, respectively.

This paper contributes to the literature by first using a Fourier transform approach for

longevity option pricing under continuous-time affine jump-diffusion models for both cohort

mortality intensities and interest rates. We derive an analytic expression for the character-

istic function of the underlying asset price process, define the optimal integration contour

and dampening parameter, and recover the longevity option price via a Gaussian quad-

rature. Second, geared longevity bonds, longevity-spread bonds, and index-based survivor

swaps are decomposed into portfolios of long and short positions in European-style (call

and put) longevity options, which form the building blocks from which other more complex

longevity-linked securities and derivatives can be constructed and priced.4 Third, we develop

a tractable and biologically reasonable continuous time affine jump-diffusion stochastic mor-

tality model, considering for both positive and negative mortality jumps with sizes following

a double asymmetric exponential distribution. The analytical tractability of the model allows

4In opposition, previous research on, for instance, the marking to market and hedging of survivor swaps

typically follows a traditional valuation approach based on the discounted difference between the realized

survival probability and some preset survival rate—see, e.g., Dowd et al. (2006), Lin and Cox (2005), Dahl et

al. (2008), Chang et al. (2010), Dawson et al. (2010), Dahl et al. (2011), Boyer and Stentoft (2013), Zeddouk

and Devolder (2019) and Fung et al. (2019).
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us to derive closed-form solutions for the survival probability and quasi-explicit analytical

solutions for the price of option-type longevity derivatives (longevity caplets and floorlets, S-

forwards and longevity swaps). Finally, we successfully calibrate the model to U.S. mortality

data and present illustrative longevity swap valuation results.

The remainder of the paper is organized as follows. Section 2 presents the general frame-

work for the valuation of longevity derivatives with different payoff structures, using a Fourier

transform approach. The analysis covers option-type contracts (longevity caps and floors),

S-forwards and longevity swaps. Section 3 develops the analytical pricing model for longevity

derivatives under a risk-adjusted probability pricing measure, and comprises: the description

of the continuous-time affine jump-diffusion stochastic process proposed for both the mor-

tality intensity and interest rates, the derivation of an analytical expression for the relevant

characteristic function, and the estimation of the optimal dampening parameter. Section

4 describes the model calibration approach and provides illustrative empirical results on

the valuation of longevity derivatives using U.S. total population mortality data. Finally,

Section 5 concludes. All accessory results are relegated to a supplementary file available at

http://home.iscte-iul.pt/˜jpvn/weblinks/SFIME20.pdf.

2. Valuation of longevity derivatives using Fourier trans-

forms

In this section, we present the general framework for the valuation of longevity derivatives

with different payoff structures, using a Fourier transform approach. The analysis covers

option-type contracts (longevity caplets and floorlets), geared longevity bonds, longevity-

spread bonds, S-forwards and longevity swaps.

Hereafter, let τx denote a non-negative random variable representing the residual lifetime

of an individual aged x at present time t = 0. Following, e.g., Biffis (2005), Schräger (2006)

and Biffis et al. (2010), we consider the time interval [0, ω], with ω denoting the highest

attainable age, and define the stochastic force of mortality process on a filtered probability

space (Ω,G,P) with filtration G =(Gt)t∈[0,ω−x] (G0 = {∅,Ω}) and P denoting the real world

probability measure. More precisely, filtration G contains two strict subfiltrations D and

H. D =(Dt)t∈[0,ω−x], with σ-algebra Dt = σ
(
1{τx≤s} : 0 ≤ s ≤ t

)
, denotes the minimal sub-

filtration needed to generate τx as the first jump-time of a nonexplosive G-counting process
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(
1{τx≤s}

)
t≥0

, recording at each time t ≥ 0 whether the individual has died or survived. The

stopping time τx is said to admit an intensity µx if the compensator of the counting process

does. The subfiltration H = (Ht)t∈[0,ω−x] describes all information except whether the person

is alive up to time t, including information about the dynamics of the mortality intensity.

Under this setting, the remaining lifetime of an individual is a doubly stochastic stopping

time with intensity µx. Hereafter, Gt = Dt ∨Ht, with Ht = Mt ∨ Ft, and where Mt and Ft

contain the information concerning mortality and financial markets, respectively.

2.1. Engineering longevity-linked securities using longevity options

One of the possible ways to construct a longevity-linked security is by decomposing and finan-

cially engineering its cash flows combining conventional bonds, forward contracts, longevity

swaps and longevity options. For instance, Blake et al. (2006) discuss how to engineer a

longevity bond combining longevity zeros (LZ) and a longevity swap, or combining LZs with

a series of forward contracts, or combining a conventional bond with an option that hedges

the tail risk. A second example are the so-called geared longevity bonds (or longevity bull

call spreads) designed to deliver tail-risk protection and discussed in Blake et al. (2006) and

Blake et al. (2019). The bonds have payments contingent on the reference population sur-

vival index S (x, t) and make payments to the hedger provided that the underlying asset is

observed within a predetermined narrower band (corridor), say if S (x, t) ∈ [Sl (t) , Su (t)] ,

where Sl (t) and Su (t) denote attachment and exhaustion points, respectively, defined such

that the hedge is out-of-money at inception. The survival index, attachment point, and

exhaustion point determine whether the bond is triggered and if so, the maximum bond

payoff. The bond payoff at time t can be decomposed as

C (t) = 11{0<S(x,t)<Sl(t)} × 0 + 11{Sl(t)≤S(x,t)≤Su(t)} (S (x, t)− Sl (t)) (1)

+11{S(x,t)>Su(t)} (Su (t)− Sl (t))

= min [Su (t)− Sl (t) ;max (S (x, t)− Sl (t) , 0)] ,

or, equivalently, as

C (t) = (S (x, t)− Sl (t)) + (Sl (t)− S (x, t))+ − (S (x, t)− Su (t))
+ , (2)

where a+ := max (a, 0).
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From equation (2) we observe that the payoff at time t can be financially engineered

combining a long position in a forward contract, a long position in a longevity floorlet on

S (x, t) with strike price Sl (t) and a short position in a longevity caplet on S (x, t) with a

strike price Su (t). In the option terminology, the payoff in equation (2) resembles that of

a long “bull call spread”. By setting Sl (t) and Su (t) such that the value of the longevity

floorlet and the longevity caplet are equal, the geared longevity bond payoff resumes to that

of a portfolio comprising a long position in a longevity bond paying S (x, t) periodically and

a short position in a fixed rate bond paying Sl (t) .

A third example is the longevity-spread bond (Kortis bond) discussed in Hunt and Blake

(2015). The bond pays quarterly coupons at LIBOR + 5.0% but the redemption of principal

at maturity is at risk and contingent on a longevity divergence index value (LDIV) measuring

the divergence in mortality rates between the male populations in England & Wales (EW)

and the United States (US). The LDIV, LDIV
t , is calculated for year t as

LDIV
t = IEW

t − IUS
t , (3)

where Ip
t denotes, in population p ∈ {EW,US}, the average improvement in mortality rates

observed across the range of ages considered in the eight years of the bond. The reduction of

the principal amount of the Kortis bond is triggered if the LDIV
t value exceeds the attachment

point (AP) by a “principal reduction factor” (PRF) given by

PRF (t) = max

(
min

(
LDIV

t − AP

EP − AP
, 1

)
, 0

)
, (4)

with AP = 3.4%, while EP = 3.9% represents the exhaustion point.5 Equation (4) shows

that the bond was structured such that once the attachment point is exceeded, the reduction

in the principal amount increases linearly (between the attachment and exhaustion points)

until the divergence index exceeds the exhaustion point and the full principal is lost by the

bondholder. The PRF at time t can be rewritten as

PRF (t) =
1

EP − AP

[(
LDIV

t − AP
)
+
(
AP − LDIV

t

)+ −
(
LDIV

t − EP
)+]

, (5)

and resembles again the payoff of a long “bull call spread” on LDIV
t , i.e., it can be finan-

cially engineered—up to a constant multiple 1/ (EP − AP )—combining a long position in

a forward contract on LDIV
t with forward rate AP , a long position in a put option on the

longevity divergence index with strike price AP, and a short position in a call option on

LDIV
t with a strike price EP .

5A similar payoff function can be found in call spread options—see, e.g., Cairns and Boukfaoui (2019).
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A fourth example of financially engineering a mortality or longevity-linked security using

options is the Swiss Re mortality bond (Vita I) issued in 2003. The bond paid quarterly

coupons set at three-month U.S. dollar LIBOR+135 basis points but the principal was at risk

and contingent on what happened to a composite index qt constructed as a weighted average

of mortality rates over age and sex of five countries (US, UK, France, Italy, and Switzerland).

It can be shown that the principal payoff of the Swiss Re Bond can be written as that of an

Asian-type put option on the difference between qt and an attachment point (1.3 times the

base level q0) with strike price equal to q0. The principal would be completely exhausted

if the index exceeds 1.5 times the base level. A fifth example is the “longevity experience

option” introduced by Deutsche Bank in November 2013. The contract is structured as an

out-of-the-money call option spread on 10-year forward survival rates of the male and female

populations of England & Wales and the Netherlands derived from LLMA longevity indices

in five-year age cohorts (between 50 to 79).

A sixth example is the longevity-linked life annuities (LLLA) discussed in Bravo and

de Freitas (2018). The distinguishing feature of this contract is that the annuity benefit is

linked to a longevity index It0+k expressing the ratio between the best-estimate and the actual

probability of a given cohort aged x0 at time t0 to survive to age x0+k, k = 1, ..., ω−x0. The
authors show that LLLAs can be decomposed into conventional life annuities and baskets of

European-style longevity (call and put) options of different maturities with underlying asset

equal to It0+k with, for capped contract, some upper and lower barriers. For instance, for

capped LLLAs, annuity payments bt0+k can be expressed as a protective longevity collar,

i.e., a combination between the underlying, a long position in a longevity floorlet with strike

Imin
t0+k and a short position in a longevity caplet with strike Imax

t0+k:

bt0+k = It0+k +
(
Imin
t0+k − It0+k

)+ −
(
It0+k − Imax

t0+k

)+
. (6)

Alternatively, the annuity payoff can be represented by a long position in a longevity caplet

spread or by a short position in a longevity floorlet spread.6

Finally, this paper also shows—in Subsection 2.4—that the fair value of index longevity

swaps can be engineered by a portfolio comprising a long position in longevity caplets and a

short position in longevity floorlets with underlying equal to the actual survival probability

and strike price given by the preset risk-adjusted survivor schedule. Before that, we present

the building blocks from which any more complex longevity-linked security can be structured

and priced.

6Please, see Bravo and de Freitas (2018) for details.
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2.2. First building block: longevity caplets

A longevity cap is an option-type longevity-linked derivative instrument by which the buyer

receives payments at the end of each contractual period if the survival rate in a reference

population cohort exceeds the strike price agreed at the inception of the contract. Similarly

to an interest rate cap, the longevity cap can be broken down into a series of sequentially

maturing European-style call options (longevity caplets) with common underlying asset and

a preset strike price. Hence, the fair value of a longevity cap is the sum of these longevity

caplet prices.

To price a longevity caplet, let Tp
obs
x (T ) denote the T -year (observed) realized survival

rate of a reference population cohort aged x at time 0:

Tp
obs
x (T ) := exp

(
−
∫ T

0

µx+s (s) ds

)
, (7)

where µx+s (s) is the mortality intensity of an individual aged x+s at time s.7 The terminal

payoff of a longevity caplet on the realized survival rate Tp
obs
x (T ), maturing at time T , with

fixed strike K ∈ R+ and notional amount equal to one monetary unit is equal to

cT
(
Tp

obs
x (T ) , K, T

)
=

[
exp

(
−
∫ T

0

µx+s (s) ds

)
−K

]+
. (8)

The strike can be stated as some percentage of the T -year (real world) survival probability

of a cohort aged x at time 0 (G0 measurable), i.e.

K = κ× Tpx (0) , (9)

for κ ∈ R+. For instance, if the insurer (seller of longevity risk protection) demands a positive

market price of longevity risk premium, the risk-adjusted survival probability will be larger

than the “best estimate” P-survival probability, and, hence, κ > 1 for an at-the-money

option. The goal is to find the time-0 price for this contract, i.e.

c0
(
Tp

obs
x (T ) , K, T

)
= EQ

{
exp

(
−
∫ T

0

rsds

)
×
[
exp

(
−
∫ T

0

µx+s (s) ds

)
− κ× Tpx (0)

]+∣∣∣∣∣G0

}

= EQ

{
exp

(
−
∫ T

0

rsds

)
×
[
exp

(
−
∫ T

0

µx+s (s) ds

)
− κ× Tpx (0)

]+∣∣∣∣∣H0

}
, (10)

7Note that the mortality model follows a single cohort throughout time, which means that the forecasted

mortality intensity at future (older) ages (and calendar years) includes both an age effect and a period effect.
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where {rt : t ≥ 0} is the risk-free instantaneous interest rate process, Q is the equivalent

martingale measure that takes the “money-market account” as numeraire, and it is assumed

that τx > 0.

Changing the numeraire from the “money-market account” to the zero-coupon risk-free

bond with maturity at time T—and time-0 price P (0, T )—that is associated to the equivalent

forward measure QT , then equation (10) can be restated as

c0
(
Tp

obs
x (T ) , K, T

)
= P (0, T )EQT

{[
exp

(
−
∫ T

0

µx+s (s) ds

)
− κ× Tpx (0)

]+∣∣∣∣∣H0

}
.

(11)

Since Tp
obs
x (T ) only takes values in ]0, 1[, it is not possible to define the Fourier transform of

the expectation contained on the right-hand side of equation (11) with respect to the strike.

For this purpose, the option value can be rewritten as

c0
(
Tp

obs
x (T ) , K, T

)
= P (0, T ) Tpx (0) EQT

{
[Ix (0, T )− κ]+

∣∣H0

}
, (12)

where

Ix (0, T ) :=
exp

(
−
∫ T

0
µx+s (s) ds

)
Tpx (0)

(13)

is a longevity index defined as the ratio between the observed and the expected T -year

survival probability of a cohort aged x at time 0. The longevity index takes values in

R+ since Tp
obs
x (T ) , Tpx (0) ∈ ]0, 1[. The term P (0, T ) Tpx (0) denotes the usual actuarial

discount factor taking both the survival probability and the time value of money into account.

Moreover, and since both Ix (0, T ) and κ take values in R+, their logs will lie over the entire

real line, and equation (12) becomes

c0
(
Tp

obs
x (T ) , K, T

)
= P (0, T ) Tpx (0) V (0, T ;ω) , (14)

where

V (0, T ;ϖ) := EQT

{[
ezx(0,T ) − eϖ

]+∣∣∣H0

}
, (15)

with

zx (0, T ) := ln Ix (0, T ) , (16)

and

ϖ := lnκ. (17)
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Following Carr and Madan (1999) and Lee (2004), next proposition offers a quasi-explicit

solution for the expectation (15) in terms of the characteristic function of the log longevity

index, which is defined as

g
(
t, T ;ϕ;µx+t (t)

)
:= EQT

[
eiϕzx(t,T )

∣∣Ht

]
, (18)

for ϕ ∈ C.

Proposition 1 The time-0 fair value of the longevity caplet with terminal payoff (8) is given

by equation (14) with

V (0, T ;ϖ) (19)

= R (α) +
eϖ

π

∫ ∞−i(α+1)

0−i(α+1)

Re
[
e−izϖς (0, T ; z + i (α + 1) ;α)

]
dz,

where ϖ is defined by equation (17), α is any real number such that

g (0, T ;−i (1 + α) ;µx (0)) <∞,

ς (0, T ;u;α) :=
g (0, T ;u− i (1 + α) ;µx (0))

(α + iu) (α + 1 + iu)
, (20)

for u ∈ R, and

R (α) :=



g (0, T ;−i;µx (0))− eϖ ⇐= α < −1

g (0, T ;−i;µx (0))− 1
2
eϖ ⇐= α = −1

g (0, T ;−i;µx (0)) ⇐= −1 < α < 0
1
2
g (0, T ;−i;µx (0)) ⇐= α = 0

0 ⇐= α > 0

. (21)

Proof. Using the notation in Lee (2004), Proposition 1 follows from Lee (2004, Theorem 5.1)

when the payoff function G1 is considered and the (discounted) characteristic function f (z)

is replaced by g (0, T ; z;µx (0)). For more details, please see Section A of the supplementary

file.

The integral contained on the right-hand side of equation (19) will be computed using

a Gauss-Lobatto integration rule that is implemented through Matlab (R2017a) running on

an Intel Xeon 3.33 GHz processor with 12GB of RAM memory. For this purpose, and after

applying the change of variables z = u− i (α + 1), the integral boundaries [0,∞) of equation
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(19) are then mapped into the closed interval [0, 1] through a transformation similar to the

one proposed by Kahl and Jäckel (2005, Equation 41)—i.e. u = − lnx—, yielding

V (0, T ;ϖ) = R (α) +
eϖ−(α+1)ϖ

π

∫ ∞

0

Re
[
e−iuϖς (0, T ;u;α)

]
du (22)

= R (α) +
e−αϖ

π

∫ 1

0

Re
[
xiϖς (0, T ;− lnx;α)

]
dx. (23)

The Gauss-Lobatto integration rule employed—implemented with machine precision, and

based on the adaptive scheme proposed by Gander and Gautschi (2000)—is shown by Nunes

and Alcaria (2016) to offer the best speed-accuracy trade-off amongst different Gaussian

quadrature and discrete Fourier transform integration methods. Note, however, that the

integrand of equation (22) is not defined in Matlab for extremely large abscissas, even though

it vanishes at infinity. Therefore, the integral on the right-hand side of equation (23) is

computed not in the closed interval [0, 1] but rather on [10−16, 1]. Nevertheless, the associated

truncation error is found to be negligible: the same numerical results follow when computing

the integral on the right-hand side of equation (22) via discrete Fourier transform integration,

using a log-strike grid comprising 16, 384 prices (centered around ϖ), with a constant spacing

of size 0.01, and through the Davis (1973) style (midpoint) sampling scheme proposed by

Lee (2004, Equation 6.1 and Appendix C).

2.3. Second building block: longevity floorlets

Consider now a longevity floor, an option-type longevity-linked derivative by which the

buyer receives payments at the end of each contractual period if the survival rate in a

reference population cohort is below the strike price agreed at contract inception. Similarly

to an interest rate floor, the longevity floor can be decomposed into a series of sequentially

maturing European put options (longevity floorlets) with common underlying asset and

strike. Therefore, the fair value of a longevity floor is the sum of these longevity floorlet

prices.

The terminal payoff of a longevity floorlet on the realized survival rate Tp
obs
x (T ) , with

maturity at time T , fixed strike K ∈ R+ and notional amount equal to one monetary unit is

pT
(
Tp

obs
x (T ) , K, T

)
=

[
K − exp

(
−
∫ T

0

µx+s (s) ds

)]+
, (24)

where the strike is defined as in equation (9).
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Assuming that τx > 0, the time-0 value of this contract is

p0
(
Tp

obs
x (T ) , K, T

)
= EQ

{
exp

(
−
∫ T

0

rsds

)
×
[
κ× Tpx (0) − exp

(
−
∫ T

0

µx+s (s) ds

)]+∣∣∣∣∣H0

}

= P (0, T )EQT

{[
κ× Tpx (0) − exp

(
−
∫ T

0

µx+s (s) ds

)]+∣∣∣∣∣H0

}
, (25)

where the last line arises from the change of measure Q to QT .

Similarly to equation (12), the option value can be rewritten as

p0
(
Tp

obs
x (T ) , K, T

)
= P (0, T ) Tpx (0) EQT

{
[κ− Ix (0, T )]

+
∣∣H0

}
, (26)

where the longevity index Ix (0, T ) is still defined through equation (13). Therefore, and

using equations (16) and (17), equation (26) can be restated as

p0
(
Tp

obs
x (T ) , K, T

)
= P (0, T ) Tpx (0) U (0, T ;ω) , (27)

where

U (0, T ;ϖ) := EQT

{[
eϖ − ezx(0,T )

]+∣∣∣H0

}
(28)

is given by the following proposition.

Proposition 2 The time-0 fair value of the longevity floorlet with terminal payoff (24) is

given by equation (27) with

U (0, T ;ϖ) = V (0, T ;ϖ)− g (0, T ;−i;µx (0)) + eϖ, (29)

where ϖ is defined by equation (17), and g (·) is the characteristic function (18).

Proof. Using equations (15) and (28), then

V (0, T ;ϖ)− U (0, T ;ϖ)

= EQT

{[
ezx(0,T ) − eϖ

]+∣∣∣H0

}
− EQT

{[
eϖ − ezx(0,T )

]+∣∣∣H0

}
= EQT

[
ezx(0,T ) − eϖ

∣∣H0

]
= g (0, T ;−i;µx (0))− eϖ,

where the last line follows from definition (18) and yields equation (29).
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2.4. Longevity Swaps

An index-based capital-market longevity (or survivor) swap involves counterparties swapping

fixed payments (fixed leg) for payments linked to the actual survival rate of a given reference

population cohort (floating leg) at predetermined (sequential) future calendar dates t1 <

t2 < ... < tn, and for a given fixed notional amount N . Longevity swaps can be regarded as

a portfolio of sequentially maturing survivor forwards (or S-forwards) with common notional

amount and underlying asset. Compared to, e.g., longevity bonds, longevity swaps offer a

cheaper longevity risk hedging solution since they do not require initial capital disbursement

at contract inception.

At predetermined future calendar dates tk (k = 1, 2, ..., n), the hedger pays tkpx (0)×N

(fixed leg) and in exchange receives tkp
obs
x (tk)×N (floating leg). Hence, and using definition

(7), the time-tk payoff of the longevity swap, on the kth reset date, is

F S (tk) := N ×
[
exp

(
−
∫ tk

0

µx+s (s) ds

)
− tkpx (0)

]
, (30)

which corresponds to the (terminal) payoff of a S-forward contract maturing at time tk.

Assuming that τx > 0, the time-0 value of the longevity swap is equal to

V0 = EQ

[
n∑

k=1

exp

(
−
∫ tk

0

rsds

)
F S (tk)

∣∣∣∣∣H0

]
(31)

= EQ

{
n∑

k=1

exp

(
−
∫ tk

0

rsds

)
N

[
exp

(
−
∫ tk

0

µx+s (s) ds

)
− tkpx (0)

]∣∣∣∣∣H0

}
. (32)

Next proposition provides a closed-form solution for index-based longevity swaps and is

based on the traditional pricing approach, as proposed, for instance, in Dowd et al. (2006),

but under a Fourier transform setting.

Proposition 3 The time-0 fair value of the longevity swap with time-tk payoff (30) is equal

to

V0 = N ×
n∑

k=1

P (0, tk)× tkpx (0) × [g (0, tk;−i;µx (0))− 1] , (33)

where g (·) is the characteristic function (18).

Proof. Using equation (32), and changing from measure Q to the forward measure Qtk ,

then

V0 = N ×
n∑

k=1

P (0, tk)×
{
EQtk

[
exp

(
−
∫ tk

0

µx+s (s) ds

)∣∣∣∣H0

]
− tkpx (0)

}
, (34)
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because tkpx (0) is H0-measurable.

Moreover, equations (13), (16) and (18) imply that

g (0, tk;−i;µx (0)) = EQtk

[
ezx(0,tk)

∣∣H0

]
= EQtk

[Ix (0, tk)|H0]

=
EQtk

[
exp

(
−
∫ tk
0
µx+s (s) ds

)∣∣∣H0

]
tkpx (0)

. (35)

Therefore, equation (33) arises after combining equations (34) and (35).

Alternatively, and following the longevity option decomposition approach developed by

Bravo and de Freitas (2018) for the valuation of longevity-linked securities, the fair value of

a fixed-rate payer longevity swap can be engineered as a portfolio of long positions in vanilla

S-forwards with predetermined (sequential) future maturity dates. The terminal payoff of

each S-forward is equivalent to a portfolio comprising a long position in a European-style

longevity caplet (call option) and a short position in a European-style longevity floorlet (put

option), with an underlying asset equal to the realized survival probability and strike price

equal to the preset risk-adjusted survivor schedule. Recall that, by construction, the put-call

parity requires a close relationship between European-style option prices and the forward

contract premium maturing at the same time as the options. In the current example, a

portfolio comprising a long position in a longevity caplet and a short position in a longevity

floorlet (with the same maturity) has a value equal to the present value of a fixed leg payer

in a S-forward contract maturing at the same time as the options. Therefore, and combining

equations (9), (14), (27) and (29), it follows that

Remark 1 The time-0 fair value (33) of the longevity swap with time-tk payoff (30) can

also be written as

V0 = N ×
n∑

k=1

P (0, tk)× tkpx (0) × [V (0, T ; 0)− U (0, T ; 0)] (36)

= N ×
n∑

k=1

[
c0
(
tkp

obs
x (tk) , tkpx (0) , tk

)
− p0

(
tkp

obs
x (tk) , tkpx (0) , tk

)]
,

where c0 (·) and p0 (·) are given by equations (14) and (27), respectively.

As shown in Subsection 2.1, the importance of the longevity option decomposition ap-

proach for pricing index-based longevity swaps and other longevity-linked securities is that
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S-forwards, q-forwards, longevity caplets and longevity floorlets constitute the basic building

blocks from which any more complex longevity- or mortality-related derivative security can

be structured and priced. Although indexed-based longevity hedges based on a broad-based

reference population longevity index carry some basis risk, when appropriately designed to

closely match the mortality experience of the liability portfolio, a series of S-forwards (i.e.,

a portfolio of longevity caplets and floorlets) can be used to hedge the longevity exposure

of an annuity book or of a pension liability with greater liquidity and transparency than

bespoke insurance-based hedging solutions.

More generally, some investors may be interested in speculating against future longevity

developments by entering into a longevity swap. For example, an investor who expects

survival rates of a given cohort to increase more (less) than what is currently anticipated

should enter into a long (short) longevity swap position, leading to positive cash flows over

time if the actual survival rates turn out to be higher (lower) than expected.

2.5. Characteristic function

The implementation of Proposition 1 only requires two ingredients: the knowledge of the

characteristic function (18) and the identification of the optimal dampening parameter α.

Concerning the first ingredient, next proposition is inspired on Lamberton and Lapeyre

(1996) and Cont and Tankov (2004), and shows that the characteristic function (18) can be

always obtained as the solution of a partial integro-differential equation (PIDE).

Proposition 4 Assume that the mortality intensity of an individual aged x + t at time t,

µx+t (t), is driven, under the forward probability measure QT , by the jump-diffusion process

dµx+t (t) = m
(
t, µx+t (t)

)
dt+ n

(
t, µx+t (t)

)
dWQT

t + dJQT
t , (37)

where m
(
t, µx+t (t)

)
∈ R and8 n

(
t, µx+t (t)

)
∈ R satisfy the usual Lipschitz and growth

conditions,
{
WQT

t : t ≥ 0
}
is a QT -measured standard Brownian motion, and

JQT
t =

N
QT
t∑

i=1

Y QT
i (38)

8The analysis could be easily extended for n
(
t, µx+t (t)

)
∈ Rn×n with n > 1, that is for the case where

the mortality intensity is driven by n (> 1) Brownian motions.
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is a compound Poisson process such that
{
NQT

t : t ≥ 0
}
is a QT -measured standard Poisson

process with intensity η̄ ∈ R, and the jump sizes
{
Y P
i

}∞
i=1

are independent and identically

distributed (i.i.d.) random variables with density fY and mean ζ ∈ R. All Wiener, Poisson

and jump size processes are taken as independent from each other. Then, the characteristic

function (18) solves the PIDE

0 = −iϕµx+t (t) g̃
(
t, T ;ϕ;µx+t (t)

)
+
∂g̃
(
t, T ;ϕ;µx+t (t)

)
∂t

(39)

+m
(
t, µx+t (t)

) ∂g̃ (t, T ;ϕ;µx+t (t)
)

∂µx+t (t)
+

1

2
n2
(
t, µx+t (t)

) ∂2g̃ (t, T ;ϕ;µx+t (t)
)

∂µx+t (t)
2

+η̄

∫ ∞

−∞

[
g̃
(
t, T ;ϕ;µx+t (t) + y

)
− g̃

(
t, T ;ϕ;µx+t (t)

)]
fY (y) dy,

subject to the terminal condition

g̃
(
T, T ;ϕ;µx+T (T )

)
= 1, (40)

and where

g̃
(
t, T ;ϕ;µx+t (t)

)
:= g

(
t, T ;ϕ;µx+t (t)

)
× (T−tpx+t (t))

iϕ . (41)

Proof. Please see Section B of the supplementary file.

Furthermore, and following, for instance, Björk (1998) or Duffie et al. (2000), the PIDE

(39) can be decomposed into a simpler system of ordinary differential equations (ODEs)

if both the drift and the squared diffusion of the stochastic differential equation (37) are

specified as affine functions of the mortality intensity µx+t (t).
9

Proposition 5 Under the assumptions of Proposition 4, and if

m
(
t, µx+t (t)

)
= b̄+ āµx+t (t) , (42)

and

n
(
t, µx+t (t)

)
=
√
d+ cµx+t (t), (43)

for ā, b̄ ∈ R and c, d ∈ R+, then the characteristic function (18) is equal to

g
(
t, T ;ϕ;µx+t (t)

)
=

exp
[
θ (t, T ;ϕ) + β (t, T ;ϕ)µx+t (t)

]
(T−tpx+t (t))

iϕ
, (44)

9Note that the jump intensity η̄ is already assumed to be a constant.
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where θ (t, T ;ϕ) , β (t, T ;ϕ) ∈ C solve the complex-valued ODEs

∂β (t, T ;ϕ)

∂t
= iϕ− āβ (t, T ;ϕ)− 1

2
cβ2 (t, T ;ϕ) , (45)

and

∂θ (t, T ;ϕ)

∂t
= −b̄β (t, T ;ϕ)− 1

2
dβ2 (t, T ;ϕ)− η̄

∫ ∞

−∞

[
eβ(t,T ;ϕ)y − 1

]
fY (y) dy, (46)

subject to the boundary conditions

θ (T, T ;ϕ) = 0, (47)

and

β (T, T ;ϕ) = 0. (48)

Proof. Please see Section C of the supplementary file.

The Riccati differential equation (45) can be numerically solved through, for instance, a

Runge-Kutta method—as described in Press et al. (1994, Section 15.2)—, and then function

θ (t, T ;ϕ) follows by numerical integration of the ordinary differential equation (46). Never-

theless, Proposition 6 will soon offer a much more efficient alternative: a closed-form solution

for both complex-valued functions β (t, T ;ϕ) and θ (t, T ;ϕ).

3. Analytical pricing of longevity derivatives

Given the reduced liquidity of the longevity derivatives market, any mortality model must

be calibrated to mortality data. Hence, the mortality model (37), (42) and (43) will be now

specified under the real world (or physical) measure P, and a rather general density of jump

sizes is also adopted.

3.1. Mortality model

Hereafter, and under the physical probability measure P, the mortality intensity of an indi-

vidual aged x+ t at time t, µx+t (t), is driven by the affine jump-diffusion process

dµx+t (t) =
[
b+ aµx+t (t)

]
dt+

√
d+ cµx+t (t)dW

P
t + d

 NP
t∑

i=1

Y P
i

 , (49)
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where µx (0) > 0, a, b ∈ R, c, d ∈ R+,
{
W P

t : t ≥ 0
}
is a P-measured standard Brownian

motion, and
{
NP

t : t ≥ 0
}
is a P-measured standard Poisson process with intensity η. The

jump sizes
{
Y P
i

}∞
i=1

are i.i.d. random variables with the asymmetric double exponential

density of Kou and Wang (2004):

f (y) :=
π1

v1
e
− y

v1 11{y≥0} +
π2

v2
e

y
v2 11{y<0}, (50)

where π1, π2 ≥ 0, 1
v1
> 1, v2 > 0, and π1 + π2 = 1. The variables π1 and π2 represent,

respectively, the probabilities of a positive (with average size 1
v1
> 0) and negative (with

average absolute size 1
v2
> 0) jump in mortality. By setting π1 = 0 we are interested only

on the importance of longevity risk—see, e.g., Biffis (2005). When υ1 = υ2 and π1 =

π2 = 1
2
we get the so-called “first Laplace law”. All sources of randomness—

{
W P

t : t ≥ 0
}
,{

NP
t : t ≥ 0

}
, and

{
Y P
i

}∞
i=1

—are assumed to be independent.

In opposition to previous approaches that focused almost exclusively on describing longev-

ity risk, our model accounts for both negative and positive mortality jumps, offering a richer

and flexible approach for the valuation of any longevity-linked security. The negative jumps

in the process (49) represent mortality improvements (e.g., new rare medical breakthroughs),

whereas positive jumps represent a deterioration in the survival schedule.

The stochastic process (49) is very general and encompasses, as special cases, several mor-

tality models already proposed in the literature. Nevertheless, and based on economic and

demographic arguments, we advocate, as our “baseline model”, a non-mean reverting square-

root affine jump-diffusion process combined with a Poisson process with double asymmetric

exponentially distributed jumps, i.e., the process (49) subject to two restrictions: b = d = 0.

Under our “baseline model”, the deterministic part of the process (49) increases exponen-

tially with age, as observed at adult ages in most countries, and follows the Gompertz law in

expected terms. Moreover, the use of a non-mean reverting stochastic process is validated by

empirical studies—see, e.g., Luciano and Vigna (2008) or Bravo (2007, 2011)—and departs,

for instance, from Zeddouk and Devolder (2019), who consider two mean-reverting affine

stochastic processes with no jump component. Two additional advantages of our “baseline

model” are: first, the mortality intensity cannot become negative with positive probability,

provided that the starting point is nonnegative; and, second, that in calibration exercises
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(considering adult ages) the survival probability is decreasing at every age, a desirable bio-

logically reasonable feature.10

To price longevity derivatives, the stochastic differential equation (49) must be rewritten

under the pricing measure Q, i.e., under the equivalent martingale measure associated to

the numeraire “money-market account”. Such measure exists—since no-arbitrage is being

assumed—but is not unique—because the longevity market under analysis is incomplete

and, hence, there are no restrictions on the specification adopted for the market price of

longevity risk. Concerning the diffusive component of the longevity risk, and for analytical

convenience, we will assume that

dWQ
t = dW P

t + λd

√
d+ cµx+t (t) (51)

is a standard Brownian motion increment under the martingale measure Q, for λd ∈ R.

The jump component of the longevity risk is accounted for through a new Q-measured

standard Poisson process
{
NQ

t : t ≥ 0
}
with intensity η̄, and new i.i.d. jump sizes

{
Y Q
i

}∞
i=1

with a different asymmetric double exponential density

f (y) :=
π̄1

v̄1
e
− y

v̄1 11{y≥0} +
π̄2

v̄2
e

y
v̄2 11{y<0}, (52)

where π̄1, π̄2 ≥ 0, 1
v̄1
> 1, v̄2 > 0, and π̄1 + π̄2 = 1. Again, all sources of randomness—{

WQ
t : t ≥ 0

}
,
{
NQ

t : t ≥ 0
}
, and

{
Y Q
i

}∞
i=1

—are assumed to be independent. In summary,

and under the pricing measure Q, the mortality intensity of an individual aged x+ t at time

t is driven by the following affine jump-diffusion process (with finite activity):

dµx+t (t) =
[
b̄+ āµx+t (t)

]
µx+t (t) dt+

√
d+ cµx+t (t)dW

Q
t + d

 NQ
t∑

i=1

Y Q
i

 , (53)

with

ā := a− cλd, (54)

and

b̄ := b− dλd. (55)

10Although, in theoretical terms, the negative jumps in the stochastic process increase the likelihood of

the intensity to become negative, in empirical calibration exercises the probability of negative values can be

considered negligible.
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3.2. Financial markets

Since longevity derivatives can have long maturities, it is important to ensure a good model

fit to the current term structure of interest rates. Therefore, an Heath et al. (1992) model—

that guarantees an automatic fit to the observed yield curve—will be adopted hereafter.

Formally, we assume that

dP (t, T )

P (t, T )
= rtdt+ σ (t, T )′ · dZQ

t , (56)

where · denotes the inner product in Rn, and
{
ZQ

t ∈ Rn : t ≥ 0
}
is a n-dimensional stand-

ard Brownian motion, initialized at zero and generating the augmented, right continuous

and complete filtration F = {Ft : t ≥ 0}. The n-dimensional adapted volatility function

σ (·, T ) : [0, T ] → Rn is assumed to satisfy the usual mild measurability and integrabil-

ity requirements—as stated, for instance, in Lamberton and Lapeyre (1996)—as well as

the boundary condition σ (u, u) = 0 ∈ Rn,∀u ∈ [0, T ], and can be either deterministic or

stochastic since following, for instance, Schräger (2006), we assume independence between

financial markets and mortality:

Assumption 1 All sources of randomness—
{
WQ

t : t ≥ 0
}
,
{
NQ

t : t ≥ 0
}
,
{
Y Q
i

}∞
i=1

and{
ZQ

t ∈ Rn : t ≥ 0
}
— are independent.

Given that the characteristic function (18) is defined under the forward measure QT , our

pricing model must be specified under the same equivalent martingale measure. For this

purpose, and following, for instance, Nunes (2004, Equation 2.8), it is well known that the

Radon-Nikodym derivative of QT with respect to Q is equal to

dQT

dQ

∣∣∣∣Ft = exp

[∫ t

0

σ (s, T )′ · dZQ
s − 1

2

∫ t

0

∥σ (s, T )∥2 ds
]
, (57)

where ∥·∥ denotes the Euclidean norm in Rn. Therefore, Girsanov’s theorem implies that

dZQT
t = dZQ

t − σ (t, T ) dt, (58)

is a standard Brownian motion increment (in Rn) under the equivalent forward measure QT ,

while the stochastic differential equation followed by the mortality intensity under measure

QT is exactly the same as the one followed under measure Q—i.e. equation (53)—because

WQ
t = WQT

t , NQ
t = NQT

t , and Y Q
i = Y QT

i , for all t and i.

23



Longevity derivatives allow pension schemes and annuity providers to hedge longevity risk

but introduce bilateral counterparty credit risk to the extent that the risk is not mitigated or

eliminated by collateralization. In this paper we do not consider the impact of counterparty

risk and collateralization on longevity derivatives valuation.11

3.3. Analytical expression of the characteristic function

Even though we prescribe a restricted specification with b̄ = d = 0, next proposition shows

that it is possible to obtain an explicit solution for the ODEs (45) and (46) under the most

general affine jump-diffusion mortality (pricing) model proposed in this paper.

Proposition 6 Under the pricing model defined by equations (52), (53), (56) and (58) as

well as by Assumption 1, the characteristic function (18) is given by equation (44), where

β (t, T ;ϕ) =
[ā− h (ϕ)] {exp [h (ϕ) (T − t)]− 1}
c {1− q (ϕ) exp [h (ϕ) (T − t)]}

, (59)

and

θ (t, T ;ϕ) = θβ (t, T ;ϕ) + θβ2 (t, T ;ϕ) + θJ (t, T ;ϕ) , (60)

with

θβ (t, T ;ϕ) =
b̄ [ā− h (ϕ)]

c

[
q (ϕ)− 1

h (ϕ) q (ϕ)
ln

(
q (ϕ) exp [h (ϕ) (T − t)]− 1

q (ϕ)− 1

)
− (T − t)

]
, (61)

θβ2 (t, T ;ϕ) (62)

=
d [ā− h (ϕ)]2

2c2
{(T − t)

+

[
1− q2 (ϕ) + (q3 (ϕ)− q (ϕ)) eh(ϕ)(T−t)

]
ln
(

q(ϕ)eh(ϕ)(T−t)−1
q(ϕ)

)
+ 1− 2q (ϕ) + q2 (ϕ)

h (ϕ) q2 (ϕ) [1− q (ϕ) eh(ϕ)(T−t)]

−
[1− q2 (ϕ) + q3 (ϕ)− q (ϕ)] ln

(
q(ϕ)−1
q(ϕ)

)
+ 1− 2q (ϕ) + q2 (ϕ)

h (ϕ) q2 (ϕ) [1− q (ϕ)]

 ,

11For a detailed analysis on the impact of bilateral default risk and collateral rules on the marking to

market of longevity swaps see, for instance, Biffis et al. (2016).
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θJ (t, T ;ϕ) (63)

=

{
η̄π̄1c

c+ v̄1 [ā− h (ϕ)]
+

η̄π̄2c

c− v̄2 [ā− h (ϕ)]
− η̄

}
(T − t)

−η̄π̄1c

cq(ϕ)+v̄1[ā−h(ϕ)]
c+v̄1[ā−h(ϕ)]

− q (ϕ)

h (ϕ) {cq (ϕ) + v̄1 [ā− h (ϕ)]}

× ln
[c+ v̄1 (ā− h (ϕ))]− [cq (ϕ) + v̄1 (ā− h (ϕ))] eh(ϕ)(T−t)

c [1− q (ϕ)]

−η̄π̄2c

cq(ϕ)−v̄2[ā−h(ϕ)]
c−v̄2[ā−h(ϕ)]

− q (ϕ)

h (ϕ) {cq (ϕ)− v̄2 [ā− h (ϕ)]}

× ln
[c− v̄2 (ā− h (ϕ))]− [cq (ϕ)− v̄2 (ā− h (ϕ))] eh(ϕ)(T−t)

c [1− q (ϕ)]
,

h (ϕ) :=
√
ā2 + 2ciϕ, (64)

and

q (ϕ) :=
ā− h (ϕ)

ā+ h (ϕ)
. (65)

Proof. Please see Section D of the supplementary file.

3.4. Optimal integration contour

For models like the one specified in equation (53) that have an analytically available charac-

teristic function, Fourier inversion offers a fast and efficient computational method for pricing

plain vanilla options. In order to improve the numerical stability of the Fourier inversion,

Lord and Kahl (2007) suggest a method to find the optimal contour of integration. More

specifically, the dampening parameter α ∈ R must ensure that the integrand

ψ (u, α) := e−αϖ Re
[
e−iuϖς (0, T ;u;α)

]
(66)

in equation (22) is finite; that is, and since the maximum value of the integrand function

(66) occurs at u = 0, it is enough to ensure that ψ (0, α) <∞, i.e. that

EQT

[
Ix (0, T )

α+1
∣∣H0

]
<∞. (67)

Therefore, and following Lord and Kahl (2007), the optimal α∗ ∈ R that ensures the

stability of the integrand function (66) over the whole integration domain is found as

α∗ = arg min
α∈[αmin,αmax]

∣∣∣∣−αϖ +
1

2
lnRe [ς (0, T ; 0;α)]2

∣∣∣∣ , (68)
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where the interval [αmin, αmax] corresponds to the strip of regularity for the characteristic

function (18).

To define αmin and αmax, note that the compound Poisson process (38) and the Brownian

motion
{
WQT

t : t ≥ 0
}

are assumed to be independent, and, therefore, the characteristic

function offered by equations (44), (59) and (60) can be factorized into

g
(
t, T ;ϕ;µx+t (t)

)
=
gD (ϕ)× gJ (ϕ)

(T−tpx+t (t))
iϕ
, (69)

where

gD (ϕ) := exp
[
β (t, T ;ϕ)µx+t (t) + θβ (t, T ;ϕ) + θβ2 (t, T ;ϕ)

]
(70)

is the factor associated to the diffusion component of the model, and

gJ (ϕ) := exp [θJ (t, T ;ϕ)] (71)

is the factor related to the jump component of the pricing model. For each component (70)

or (71), the goal is to define the range of α ∈ R values that satisfies condition (67).

Using equations (18) and (44), condition (67) can be restated as

EQT

[
e(α+1)zx(t,T )

∣∣Ht

]
= g

(
t, T ;−i (α + 1) ;µx+t (t)

)
=

exp
[
θ (t, T ;−i (α + 1)) + β (t, T ;−i (α + 1))µx+t (t)

]
(T−tpx+t (t))

iϕ

< ∞. (72)

Starting with the diffusion component, and defining

τ := T − t, (73)

equation (45) implies that β (t, T ;−i (α + 1)) must be such that

∂β (t, T ;−i (α + 1))

∂τ
= − (α + 1) + āβ (t, T ;−i (α + 1)) +

c

2
β2 (t, T ;−i (α + 1))

=
c

2
h (β (t, T ;−i (α + 1))) (74)

and β (t, T ;−i (α + 1)) = 0, where the quadratic function h (y) := y2 + ãy + b̃ is defined as

in Andersen and Piterbarg (2007), while

ã :=
2ā

c
, (75)
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and

b̃ := −2 (α + 1)

c
. (76)

The stability of the integrand function (66) depends on the non-explosion of the Riccati

differential equation (74), and the range of values of τ (as a function of α+1) for which this

is accomplished is offered by Andersen and Piterbarg (2007, Proposition 3.1) that is now

summarized (for the sake of completeness):

Proposition 7 For

D (α + 1) := ã2 − 4b̃, (77)

condition (72) is met for all τ < τ ∗ (α + 1), where:

1. For D (α + 1) ≥ 0 and ã < 0, τ ∗ (α + 1) = ∞;

2. For D (α + 1) ≥ 0 and ã > 0,

τ ∗ (α + 1) =
2

c
√
D (α + 1)

ln

(
ã+

√
D (α + 1)

ã−
√
D (α + 1)

)
; (78)

3. For D < 0,

τ ∗ (α + 1) =
4

c
√

−D (α + 1)

(
π11{ã<0} + arctan

(√
−D (α + 1)

ã

))
. (79)

Proof. This result is borrowed from Andersen and Piterbarg (2007, Proposition 3.1).

Therefore, the optimal α ∈ R will be found through the minimization problem (68) but

subject to the stability condition

τ ∗ (α + 1) ≥ τ , (80)

and initialized at the level α such that τ ∗ (α + 1) = τ .

Concerning the factor (71) related to the jump component of the pricing model, and

as noted by Lord and Kahl (2007, Section 3.1.2), such factor is always finite; the only

problem being that it might exceed the largest finite number L representable on the computer

system.12 Hence, an additional constraint is added to the minimization problem (68) and

(80):

|θ (t, T ;−i (α + 1))| ≤ 1

4
ln (L) . (81)

12For instance, L is the largest finite floating-point number in IEEE double precision, denoted by “realmax”

in Matlab.
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4. Empirical results

This section describes the model calibration approach and provides illustrative results on

the valuation of longevity swaps, caplets and floorlets using U.S. mortality data.

4.1. Model calibration

To estimate the parameters that determine the dynamics of the mortality intensity process

(49), we follow a cohort approach and use the U.S. total population mortality data from

1950 to 2017, and for ages in the range 65-100. Mortality data is obtained from the Human

Mortality Database (2019). For the discretized stochastic process, we assume that the age-

specific forces of mortality are constant within yearly bands of time and age, i.e., within each

square of the Lexis diagram. Formally, given any integer age x and calendar year t, we assume

that µx+ξ (t+ τ) = µx (t) for any 0 ≤ ξ, τ < 1. Under this assumption, the mortality intensity

is approximated by the central death ratemx (t) and the one-year survival probability is given

by px (t) = exp (−mx (t)) . From the central death rates, we obtain empirical survival curves

for representative cohorts using

T−tp
obs
x+t (t) ≈ exp

(
−

T−1∑
j=0

mx+j (t+ j)

)
. (82)

To calibrate the mortality process (49) to data, it is convenient to consider the model

survival probabilities instead of the mortality intensity. For this purpose, the (T − t)-year

survival probability of an individual aged x+ t at time t can be stated as

T−tpx+t(t) := EP

[
exp

(
−
∫ T

t

µx+s (s) ds

)∣∣∣∣Gt

]
. (83)

The convenience of adopting the affine jump-diffusion process (49) in modelling the mor-

tality intensity comes from the fact that, under certain technical conditions—described, for

instance, in Duffie et al. (2000)—, the survival probability (83) is given by the closed-form

solution offered by Bravo (2007, 2011). More specifically, and comparing equations (18),

(41) and (83), it follows that the survival probability can be obtained from the analytical

solution offered in Proposition 6 for the characteristic function, after equating to zero all

market prices of risk, i.e.

T−tpx+t(t) = g̃
(
t, T ;−i;µx+t (t)

)∣∣
λd=0

. (84)
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Figure 1: Survival probabilities.

This figure shows the empirical (blue dots) and fitted (magenta line) survival probabilities for a

U.S. individual aged 65 in 1950, using U.S. mortality data from Human Mortality Database (2019)

and four model specifications estimated in Table 1: our baseline model (“Feller with jumps”), a

OU process without mean-reversion or jumps, a Vasiček (1977) process and a Cox et al. (1985)

process.
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For a given reference cohort x and calendar year t = 0, the parameters {a, b, c, d, η, π1, π2, v1, v2}
are then estimated by fitting the model survival curves to the empirical survival curves using least

squares estimation, i.e., by solving

{a, b, c, d, η, π1, π2, v1, v2} = argmin
a,b,c,d,η,π1,π2,v1,v2

(
ω−x∑
T=1

(
T−tp

obs
x+t (t)−T−t px+t(t)

)2)
. (85)

Besides our “baseline model”—a Feller process with jumps, as given by equations (49) and (50) but

with b = d = 0—, four other nested specifications are also calibrated to the same mortality data:

a Ornstein Uhlenbeck (OU) process without mean reversion, with a positive trend and constant

volatility (b = c = η = π1 = π2 = v1 = v2 = 0); the same OU process but with double exponential

jumps (b = c = 0); and the classical Vasiček (1977)—with c = η = π1 = π2 = v1 = v2 = 0—and

Cox et al. (1985)—with d = η = π1 = π2 = v1 = v2 = 0—models that assume time-homogeneous

mean reverting affine processes without jumps for the mortality intensity. The parameter estimates

for all these five affine specifications, as well as the initial value of µx+t(t)—µ65(0), that is chosen

to be equal to − ln (p65(0))—, are reported in Table 1 for cohorts aged 65 in 1950, 1960, 1970, 1980

and 1990. Additionally, Figure 1 plots the observed (blue dots) and fitted (magenta line) survival

probabilities of a U.S. individual aged 65 in 1950 for four of these affine models.

Similarly to previous studies, our results show that the time-homogeneous mean reverting affine

processes—the Vasiček (1977) and Cox et al. (1985) models—fail to fit observed survival probab-

ilities and to capture the rectangularization and expansion phenomenon, and should be discarded

in pricing and forecasting exercises. The mean square error of the Vasiček (1977) and Cox et al.

(1985) models is substantially higher than that of non-mean reverting processes because the force

of mortality shows no mean reversion at adult ages, but rather an exponential increase. In all non-

mean reverting processes, the mean square errors (MSE) are small, indicating a good fit to observed

survival curves. The Feller with jumps process (our “baseline model”) exhibits the smallest fitting

errors in the five cohorts considered in this study, followed closely by the OU and OU with jumps

models. Models with jumps generally fit better than models without jumps. We note, however,

that when we compare the maximum likelihoods attained by each model, it is natural for models

with more parameters (Feller and OU with jumps) to fit the data more closely. To balance between

quality of fit—which can be enhanced by adding in more parameters—and parsimony, we report

the BIC and AIC criterion for all models and periods. The results show that when we account

for possible overparameterization, the OU model overperforms the Feller model and the OU with

jumps in some cohorts. Note, however, that the main drawback of this OU process is that the

intensity can become negative with positive probability, although in empirical studies this probab-

ility has been found to be negligible—Luciano and Vigna (2008). Nevertheless, an exhaustive and

systematic comparison of the fitting and forecasting performance of affine jump diffusion models
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considering different populations and cohorts is beyond the scope of this paper and will be carried

out in a parallel paper.

We further note that in the baseline Feller model the decline in the observed mortality intensity

at age 65—µ65(0)—in younger cohorts is accompanied by an increase in the drift coefficient a,

which represents the relative rate of increase of the force of mortality of the underlying exponential

(Gompertz) model and provides a measure of the mortality trend as captured by the model. The

parameter estimates also show that the value of the diffusion coefficient c is very low, particularly

when compared with that of both positive and negative average size jumps. The average (absolute)

size of negative mortality jumps has been declining for younger generations, potentially signalling a

slowdown in longevity improvements, but in compensation the jump intensity estimates are higher

for younger cohorts.

4.2. Longevity derivatives prices

Table 2 reports the longevity swap price decomposition of Remark 1, for different tenors (in years)

and values of the market price of longevity risk premium, for the U.S. total population aged 65

in 1950, and using the parameters specified in Table 1 for our “baseline model”.13 Without loss

of generality, we assume the strike price K equals the fitted survival schedule and consider a flat

yield curve at 2% for discounting cash flows. Since the market for longevity derivatives is not

liquid enough to infer the values of the risk-adjusted model parameters, and in line with previous

studies on the magnitude of the market price of longevity risk premium—see, e.g., Zeddouk and

Devolder (2019)—we assume three layers for k = λd
√
c ∈ {0.25, 0.5, 0.75}. All prices are expressed

as a percentage of the notional amount (values in basis points). For every tenor and risk premium

level, we determine the optimal dampening parameter α and compute the S-forward price as the

fair value of a portfolio comprising a long position in a longevity caplet and a short position in the

corresponding longevity floorlet. Since the index-based longevity swap is constructed as a basket of

S-forwards, the price of the swap is obtained by summing up the individual S-forward prices. Note

that the optimal α values obtained are fairly constant for tenors up to 13 years (for each layer of

longevity risk premium) but are crucial to achieve accurate results for longer tenors.

13The full set of results for all cohorts studied can be obtained from the authors upon request.

33



T
ab

le
2:

D
ec
om

p
os
it
io
n
of

lo
n
ge
v
it
y
sw

ap
p
ri
ce
s
fo
r
th
e
U
.S
.
co
h
or
t
ag
ed

65
in

19
50
.

T
en
or

O
p
ti
m
al
α

L
on

ge
v
it
y
ca
p
le
t

L
on

ge
v
it
y
fl
o
or
le
t

S
-f
or
w
ar
d

(y
rs
)

k
:

0.
25

0.
5

0.
75

0.
25

0.
5

0.
75

0.
25

0.
5

0.
75

0.
25

0.
5

0.
75

1
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

52
.4

55
.5

58
.5

52
.1

54
.8

57
.4

0.
4

0.
7

1.
1

2
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

50
.9

54
.6

58
.1

49
.5

51
.8

54
.0

1.
4

2.
8

4.
2

3
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

50
.6

55
.3

59
.9

47
.5

49
.1

50
.6

3.
1

6.
2

9.
4

4
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

51
.9

58
.1

64
.1

46
.4

47
.0

47
.7

5.
5

11
.0

16
.5

5
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

55
.1

63
.1

71
.0

46
.5

46
.1

45
.6

8.
5

17
.0

25
.4

5-
ye
ar

lo
n
ge
v
it
y
sw

ap
19
.0

37
.8

56
.5

6
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

60
.6

70
.7

80
.8

48
.5

46
.5

44
.6

12
.1

24
.2

36
.1

7
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

68
.8

81
.0

93
.4

52
.6

48
.6

45
.1

16
.3

32
.4

48
.4

8
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

80
.0

94
.1

10
8.
9

59
.2

52
.7

46
.9

20
.8

41
.5

61
.9

9
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

93
.9

10
9.
8

12
6.
7

68
.1

58
.5

50
.2

25
.8

51
.3

76
.5

10
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

10
9.
6

12
7.
1

14
6.
4

78
.6

65
.4

54
.4

31
.0

61
.7

92
.0

10
-y
ea
r
lo
n
ge
v
it
y
sw

ap
12
5.
0

24
8.
8

37
1.
4

co
n
ti
n
u
es

o
n
th

e
n
ex

t
p
a
g
e

34



T
ab

le
2:

(c
on

ti
n
u
ed
)

T
en
or

O
p
ti
m
al
α

L
on

ge
v
it
y
ca
p
le
t

L
on

ge
v
it
y
fl
o
or
le
t

S
-f
or
w
ar
d

(y
rs
)

k
:

0.
25

0.
5

0.
75

0.
25

0.
5

0.
75

0.
25

0.
5

0.
75

0.
25

0.
5

0.
75

11
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

12
5.
1

14
4.
8

16
6.
6

88
.6

72
.4

58
.7

36
.4

72
.4

10
7.
9

12
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

13
8.
2

16
1.
2

18
6.
4

96
.4

78
.0

62
.3

41
.8

83
.2

12
4.
0

13
-2
9.
01
9

-2
7.
17
9

-2
5.
40
1

14
9.
1

17
5.
8

20
4.
7

10
1.
9

81
.9

64
.8

47
.2

93
.8

14
0.
0

14
-2
7.
27
3

-2
7.
17
9

-4
5.
80
4

15
8.
8

18
8.
7

22
2.
0

10
6.
4

84
.6

66
.7

52
.3

10
4.
1

15
5.
3

15
-2
2.
25
8

-2
3.
06
2

-2
3.
89
0

16
7.
0

20
0.
0

23
6.
3

10
9.
8

86
.3

66
.5

57
.1

11
3.
7

16
9.
7

15
-y
ea
r
lo
n
ge
v
it
y
sw

ap
35
9.
9

71
6.
1

1,
06
8.
5

16
-1
8.
33
5

-1
9.
04
6

-1
9.
77
9

17
3.
4

20
9.
4

24
9.
0

11
2.
0

87
.0

66
.2

61
.5

12
2.
4

18
2.
8

17
-1
5.
23
3

-1
5.
86
2

-1
6.
51
4

17
7.
9

21
6.
6

25
9.
3

11
2.
8

86
.6

65
.1

65
.2

13
0.
0

19
4.
3

18
-1
2.
75
4

-1
3.
31
3

-1
3.
89
3

18
0.
4

22
1.
4

26
6.
9

11
2.
2

85
.3

63
.3

68
.2

13
6.
1

20
3.
7

19
-1
0.
75
7

-1
1.
25
4

-1
1.
77
1

18
0.
8

22
3.
7

27
1.
6

11
0.
4

83
.0

60
.8

70
.4

14
0.
7

21
0.
8

20
-9
.1
35

-9
.5
78

-1
0.
04
0

17
9.
0

22
3.
4

27
3.
2

10
7.
3

79
.9

57
.7

71
.7

14
3.
5

21
5.
5

20
-y
ea
r
lo
n
ge
v
it
y
sw

ap
69
6.
9

1,
38
8.
8

2,
07
5.
5

T
h
is
ta
b
le
d
ec
om

p
os
es

lo
n
ge
v
it
y
sw

ap
p
ri
ce
s
fo
r
d
iff
er
en
t
te
n
o
rs

(i
n
y
ea
rs
)
a
n
d
va
lu
es

o
f
th
e
m
a
rk
et

p
ri
ce

o
f
lo
n
g
ev
it
y
ri
sk
,
w
h
ic
h
is
d
efi
n
ed

a
s
λ
d
=

k √
c
.

C
ol
u
m
n
s
2
to

4
d
is
p
la
y
th
e
op

ti
m
al

d
am

p
en
in
g
p
ar
am

et
er
s
o
b
ta
in
ed

a
s
d
es
cr
ib
ed

in
S
u
b
se
ct
io
n
3
.4

a
n
d
u
se
d
to

p
ri
ce

lo
n
g
ev
it
y
ca
p
le
ts

a
n
d
fl
o
o
rl
et
s.

T
h
e
an

al
y
si
s
is
ru
n
fo
r
th
e
U
.S
.
to
ta
l
p
op

u
la
ti
on

co
h
or
t
a
g
ed

6
5
in

1
9
5
0
,
u
si
n
g
th
e
“
b
a
se
li
n
e
m
o
d
el
”
p
a
ra
m
et
er
s
sp
ec
ifi
ed

in
T
a
b
le

1
,
a
fl
a
t
y
ie
ld

cu
rv
e

(w
it
h
co
n
ti
n
u
ou

s
co
m
p
ou

n
d
in
g)

at
2%

p
er

y
ea
r,

an
d
a
ss
u
m
in
g
st
ri
k
e
p
ri
ce
s
K

eq
u
a
l
to

th
e
fi
tt
ed

su
rv
iv
a
l
sc
h
ed
u
le

sh
ow

n
in

F
ig
u
re

1
.
A
ll
p
ri
ce
s
a
re

ex
p
re
ss
ed

in
b
as
is

p
oi
n
ts

an
d
as

a
p
er
ce
n
ta
ge

of
th
e
sw

a
p
n
o
ti
o
n
a
l
a
m
o
u
n
t.

35



Table 2 shows, as expected, that the prices of longevity swaps, S-forwards and longevity options

(caplets and floorlets) are increasing in the maturity of the contract and in the market price of

longevity risk premium. For instance, the fair value of a 5-year index-based longevity swap with

k = 0.25 is 19 basis points (0.19%) of the notional amount, whereas for a longer maturity (20-year)

contract the price increases to almost 7% (696.9 basis points) of the notional. If the longevity risk

insurer demands a higher compensation for taking the uncertainty regarding the future survival

prospects of the reference population cohort, e.g., for k = 0.75, the 5-year and 20-year survivor

swap prices increase to 0.565% and 20.755% of the notional amount, respectively.

To gather further insight on the mortality model proposed, Figure 2 exhibits the sensitivity,

for each cohort, of longevity swap prices (in basis points) of different maturities to changes in the

baseline model parameters. The top left plot shows, as expected, that the longevity swap price

increases with the market price of the diffusive longevity risk λd, with a more pronounced effect for

older cohorts. The top right plot shows that the higher the risk-neutral probability of a negative

jump in the mortality intensity (coefficient π̄2) the higher the survival probabilities and the higher

the longevity swap price. This effect is more significant for younger cohorts than for older cohorts.

The bottom left plot shows, as expected, that the higher the coefficient v̄2 the smaller the longevity

swap prices, particularly for older generations. This is because the higher the value of v̄2 the smaller
1
v̄2

will be, i.e. the smaller the expected average size of negative jumps in the mortality intensity

and, thus, the smaller the longevity improvements. Finally, the bottom right plot shows the impact,

for each cohort, on the price of the longevity swap due to changes in the diffusive volatility of the

mortality intensity. We can observe that due to the smaller magnitude of the c coefficient estimates,

the swap price is relatively insensitive to changes in the mortality intensity diffusive volatility.
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Figure 2: Simulation analysis of the baseline model
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The top left plot shows the impact, for each cohort, on the price (in basis points) of a 5-year

longevity swap when the parameter λd—measuring the market price of (diffusive) longevity risk—

is changed from zero to 3
√
c. The top right plot shows the impact, for each cohort, on the price

(in basis points) of a 20-year longevity swap when the parameter π̄2—measuring the risk-neutral

probability of a downward jump in mortality—is changed from zero to one. The bottom left plot

shows the impact, for each cohort, on the price (in basis points) of a 15-year longevity swap when the

parameter v̄2—measuring the inverse of the average absolute size of downward jumps—is changed

from zero to three times its current size. The bottom right plot shows the impact, for each cohort,

on the price (in basis points) of a 5-year longevity swap when the parameter
√
c—measuring the

instantaneous (diffusive) volatility of the mortality intensity—is changed from (almost) zero to

three times its current size.
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Finally, and since Table 1 shows that the simpler OU process (with no jumps) can yield lower

AIC and BIC statistics than our baseline model, Table 3 reports longevity swap prices for selected

U.S. total population cohorts (aged 65) and maturities (in years), and for different values of the

market price of longevity risk premium, under both setups. For all maturities and longevity risk

premium values, the fair value of index-based survivor swaps has been declining for U.S. individuals

completing the 65th anniversary in more recent decades. In relative terms, this decline is slightly

more significant for shorter-term contracts than for longer arrangements. This is essentially ex-

plained by a general decline in mortality rates at all ages, particularly at older ages, with a switch

from reducing premature deaths to extending the premature age range, by the rectangularization

and compression of the survival curve under which life expectancy gains can only be generated by

a decrease in lifespan variability (as evidenced by a small decline in the volatility coefficient of the

mortality intensity) and by the progress in mean lifespan relative to progress in maximum lifespan.

The results in Table 3 for the five cohorts considered in this study show that, for all tenors

and values of the market price of longevity risk, the longevity swap prices obtained using the

baseline model are higher than those computed using the calibrated OU process. This suggests

that the addition of the jump component to the random part of the stochastic process increases the

survival rate of the population and, consequently, the longevity swap price. This is consistent with

previous literature showing that higher randomness in the stochastic mortality intensity produces

an improvement in the cohort survival probabilities—see, e.g., Luciano and Vigna (2008). Table

3 also shows that the longevity swap price difference between the two models is generally small,

ranging between a minimum of 0.406% for the 5-year contract and a maximum of 14.238% for the

20-year swap, and increases with the maturity of the contract and the market price of longevity

risk. The relative price differences are generally higher for younger cohorts when compared to older

cohorts, with the exception being the cohort aged 65 years old in 1970 for which the differences are

high. This result may be explained by the relatively weak fitting performance of the OU model in

this cohort when compared to that of the Feller model and that obtained in other cohorts. Note

also that the pricing solutions proposed are highly efficient: the 60 swap contracts are priced in

only 0.06 seconds, under the baseline model, or 0.03 seconds, under the OU process.14

14Alternatively, solving the Riccati differential equation (45) through the fifth order Runge-Kutta method

described in Press et al. (1994, Section 15.2), and computing the complex-valued function θ (t, T ;ϕ) by

numerical integration of the ordinary differential equation (46)—using the (efficient) Gauss-Kronrod quad-

rature scheme provided by the Matlab built-in function “quadgk”—would yield a CPU time of 27.02 seconds

for the whole set of 60 contracts (and under our baseline specification).
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5. Conclusion

Traditional (Re)Insurance-based solutions for longevity risk management are expensive, entail sig-

nificant bilateral counterparty credit risk exposure and are not an ultimate answer to the problem

due to the undiversifiable nature of systematic longevity risk. The (re)insurance industry seems

to be arriving to a point where natural hedging strategies are increasingly scarce and additional

capacity to absorb longevity risk will only be possible by bringing in new capital and new investors

from capital markets. As a result, in recent years, several capital-market-based solutions for mor-

tality and longevity risk management have been proposed and, some, successfully launched. They

comprise mortality- or longevity-linked debt instruments such as mortality and longevity bonds,

and derivatives with both linear and nonlinear payoff structures, such as index-based longevity (or

survivor) swaps, mortality and survivor options and survivor swaptions. A notable development

in the market has been the issuance of longevity-linked structured notes incorporating derivative

contracts (options), enabling coupon and/or redemption payments to depend on the performance

of the underlying mortality or longevity index.

This paper is focused on the valuation of index-based capital-market longevity options and

swaps using Fourier transforms. We apply a Fourier transform approach for European-style longev-

ity option pricing under a continuous-time affine jump-diffusion model for both cohort mortality

intensities and interest rates. Specifically, we propose a baseline model where the mortality intens-

ity of a given cohort is driven by an affine jump-diffusion process featuring a non-mean reverting

deterministic trend, a square-root diffusion component and a double exponential compound Poisson

process, allowing for both (asymmetric) positive and negative mortality jumps of different sizes.

We derive an analytic expression for the characteristic function of the underlying longevity in-

dex price process, obtain the Fourier transform of the dampened European longevity option price

and compute the corresponding Fourier inversion to recover the option price via a Gauss-Lobatto

quadrature scheme.

The affine jump-diffusion framework proposed in this paper is quite general and flexible and

accommodates most short-rate and forward-rate mortality intensity models proposed in the lit-

erature. The valuation approach allows us to derive closed-from analytical expressions for the

survival probability and for the characteristic function, and to price any longevity-linked security,

such as q-forwards, S-forwards, longevity swaps, longevity options, endowments, longevity-linked

life annuities, variable annuities and other structured contracts. The use of Fourier transforms for

the valuation of longevity-linked options, which form the building blocks from which other more

complex longevity-linked securities and derivatives can be constructed and priced, offers a new and

efficient alternative to traditional pricing approaches such as the Black-Scholes-Merton framework,

the martingale approach, tree-based methods and simulation-based approaches.
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We describe in detail the model calibration approach and empirically investigate the fitting per-

formance of five time-homogeneous affine jump diffusion specifications—including mean reverting

and non-mean-reverting processes—using selected cohorts in the age range 65-100 from the U.S.

total population (from 1950 to 2017). We provide empirical results on the valuation of index-based

longevity swaps for different tenors and values of the market price of longevity risk premium. To

gather further insight on the mortality model proposed, we investigate the sensitivity of longevity

swap prices to changes in the baseline stochastic mortality model parameters and provide price

results for an alternative model, the simpler Ornstein-Uhlenbeck process with no jumps.

The results obtained for the selected U.S. total population cohorts and tenors show that, for all

maturities and longevity risk premium values, the fair value of index-based survivor swaps has been

declining for U.S. individuals completing the 65th anniversary in more recent decades, particularly

for shorter-term contracts. This is explained by a general decline in mortality rates at all ages

observed during this period, by a switch in the composition of longevity improvements from reducing

premature (younger ages) deaths to extending the premature age range, by the rectangularization

and compression of the survival curve and by the progress in mean lifespan relative to progress in

maximum lifespan. The results also show that for all tenors: (i) the longevity swap price increases

with the market price of the diffusive longevity risk, with a more pronounced effect for older cohorts;

(ii) the higher the risk-neutral probability of a negative jump in the mortality intensity and the

higher its average size the more expensive longevity swap prices will be; (iii) the swap price is

relatively insensitive to changes in the mortality intensity diffusive volatility; and (iv) the longevity

swap prices obtained using the baseline Feller with jumps model are higher than those computed

using the calibrated OU process for all cohorts, tenors and values of the market price of longevity

risk considered in this study, suggesting that higher randomness in the stochastic mortality intensity

produces an improvement in the cohort survival probabilities and, consequently, higher longevity

swap prices.

Index-based longevity swaps and other capital market longevity-linked securities and derivatives

offer pension schemes and annuity providers an efficient alternative to manage their longevity risk

exposure but bring in bilateral counterparty credit risk to the extent that the risk cannot be partially

or fully mitigated by collateralization. Further research is needed, under the Fourier transform

valuation approach developed in this paper, to analyze and quantify the impact of bilateral credit

risk on the marking-to-market of longevity swaps. The derivation and computation of the sensitivity

measures (Greeks) that are required to perform dynamic hedging is also in the agenda for future

research. Further investigation is also needed to assess the fitting and forecasting performance of

alternative affine jump diffusion models considering different populations and cohorts.
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