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Abstract

Communities are one of the most important structural elements of a
network. They frequently influence network behavior, which makes their
identification especially useful. As a result, community detection has been
a popular topic within network science in recent decades. Even more re-
cently, fostered by an increasing availability of time stamped datasets and
a pressing realization that most empiric networks are dynamic in nature,
temporal networks have attracted increased attention. The time dimen-
sion introduces new network constructs and communities are not immune.
A community is no longer just a bunch of fixed nodes tightly clustered,
but have a life and activity of itself, shedding and gaining nodes, appear-
ing and disappearing on the network. We believe that these dynamic
constructs are still lacking a formal, consensual definition. In this article
we propose a robust taxonomy of life events for communities and a rules
based methodology to clearly parse these events.

Keywords: Complex systems, Networks, Clustering

1 Introduction

In static networks the ground truth of community structure is a surjection from
the node set to the community set, describing community node membership.
As we extend our study of networks exhibiting community structure into the
temporal domain, communities are no longer static. A community that is ob-
served at a given moment may be different later on. Representing the ground
truth of such a network as a time-sequence of surjections may faithfully rep-
resent the community structure overtime, but does not lead unequivocally to
the understanding of its lifecycle. For that we need an accepted taxonomy of
lifecycle events, and methods to correlate the changes in community structure
to those events. This is not a new topic as it has been covered in the literature
by several authors, but we believe the emerging consensus is problematic. Clas-
sifying events is not a closed problem and formalization is lacking. Furthermore,
recovering lifecycle events may not be totally possible without information not
inherently present in the network topology, which compounds the problem. In
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this article we present a simple formalized taxonomy and propose a method to
track community evolution complemented by external input.

Communities are a challenging network concept. Although in this article
we loosely define community as a set of nodes that are more densely connected
among themselves than to the rest of the network, the fact is that, given a net-
work, determining if and how many communities exist in that network may not
have a single, clear answer [3]. Extending these concepts to temporal networks
obviously brings in an additional layer of complexity, which, nevertheless, has
not deterred many authors from trying. In fact, expanding the ground truth
of community structure to include events of a temporal nature is not a new
topic as it has been covered in the literature by several authors. Barabási in his
book Network Science [1] summarizes current consensus on what these events
should be. It documents six elementary events: Growth, Contraction, Merging,
Splitting, Birth and Death.

We believe however that this consensus is not without its problems. For
instance when defining a community split, where do you draw the line between
a split and a contraction? Is losing one node, a split? If not, how many? And
how would you classify an event of a community that fully fragments, shedding
nodes to multiple communities, which in turn receive nodes from several other
communities? In our work we came to believe that topology alone cannot answer
these questions. Depending on subject domain, a community may cease to exist
as a separate entity when none of its nodes are seen after a given time T or
when a given fraction of its members disappear. Here, the network topology
does not shed any light. Examples from the real world abound, just consider
the minimum quorum for a shareholder assembly or indicator species in biology.

We also find that it is easier to reason about community events anchored
on the community and not on the event. So, for example, a community may
experience a fragmentation while other communities in the same network may
grow in size by acquiring some of its fragments.

In support of this approach we define three simple top level community
events: Birth, Continuation and Death. That is, once born into existence,
a community either continues or dies. To determine continuation, we use a
similarity measure, adjusted to chance, supported by an external threshold. If
the similarity measure between any two communities taken from community sets
at T and T+ε exceeds the threshold then the oldest continues in the most recent.
Note that a community may continue in multiple other communities depending
on their similarity. That multiplicity together with time orientation further
classifies the continuation event. For example: community At1 can continue
in community Ct2 and Dt2 (a split), while community Ct2 is a continuation
of community At1 and Bt1 (a merge). This simplifies the model, catering for
the complexity of the multiple types of events that can occur in the clustering
of a temporal network, defining events from a cluster point of view, allowing
for domain specific external input that further characterizes the community
lifecycle.
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2 Related Work

Community events have been defined by several authors [10] and there seems
to be an emergent consensus around events like birth, merge, split, growth,
expansion, contraction and death. Some authors propose additional events like
continuation (i.e. no growth or expansion) and resurgence (communities that
appear periodically). As discussed before, we think that these definitions require
meta information not intrinsically present in the network topology.

One of the issues that must be addressed when determining lifecycle events
is how to compare communities overtime and determine how they are related.
There have been two major approaches: spectral analysis and discrete distance
measures across time steps. An example of the former is [2] where the authors
expand the matrix representation of a static network into a tensor by adding the
time series as an additional axis and recover community structure and activity
by tensor decomposition. This approach however forces the tensor size to expand
to all nodes that ever existed in the network. Distance measures can save space
by comparing only successive network states down to the temporal resolution
of the network. Distance measures vary from ratio of shared nodes between
successive timesteps [8], the Jaccard Index [7] in [10], [5], [9]:

J(C t
i , C

t+ε
j ) =

|C t
i ∩ C

t+ε
j |

|C t
i ∪ C

t+ε
j |

(1)

and other similarity measures like in [6]

similarity(C t
i , C

t+ε
j ) = min

(
|C t
i ∩ C

t+ε
j |

|C t
i |

,
|C t
i ∩ C

t+ε
j |

|C t+ε
j |

)
(2)

that favours communities similarly sized with a high ratio of common nodes. We
adopted a similar approach to [5], [9], with slight modifications, while simplifying
the concept of community evolution, by anchoring it on the community itself
at a given point in time and not on the network. The authors in [9] propose
a mechanism to automatically define thresholds without meta-information to
determine community events, but it remains to be seen how closely that would
follow a judgment based on problem domain expertise.

3 Recovering Community Events

Clearly defining community events is useful for many reasons, such as the
development and testing of dependable temporal community detection algo-
rithms. We need to ensure that the temporal ground truth is not open to
mis-interpretation.

Our lifecycle identification approach should be able to address the problems
associated with the classification of complex events when nodes exit and enter
various communities as well as comprehensively cover most of the events relevant
in the various disciplines where temporal networks play a role.
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On this basis we created a multi-level classification scheme, based on the
following rules:

� Once born into existence, a community either continues or dies.

� A community continues in another community if their similarity exceeds an
externally supplied threshold. A consequence of this rule is that remains
of a community that do not reach the threshold for continuation either
become a newly born community or contribute to the expansion of another.

� Depending on their multiplicity, continuation events can be further char-
acterized:

– From the standpoint of a community a multiple continuation event,
seen from the past, is subclassified as a split.

– From the standpoint of a community, multiple continuation events
seen from the future, is subclassified as a merge.

� Expansion and contraction are sub classifications of simple continuation
events with net acquisition or loss of nodes.

� Communities can die if their nodes are no longer seen on the network
(death by dissolution) or because it does not continue in any other commu-
nity (death by fragmentation). A community can experience loss of nodes
and fragmentation simultaneously and the proper classification would then
be dependent on their relative size.

� Communities can be born from new nodes (newborn) or fragments of
other communities (regenerated). Both can happen simultaneously and
classification follows the largest set.

� Communities can also reappear on the network, for example on cyclic
events. This is detected as a single continuation bridging a lapse of time
longer than the network temporal resolution and can potentially occur
on ”Newborn”, ”Regeneration”, ”Growth”, ”Contraction”, ”Split” and
”Merge” events.

A full taxonomic tree is depicted in figure 1. The method for community con-
tinuation analysis as presented ahead abides by the above categorization.

To compare community similarity many authors use the Jaccard Index (J)
[7], as mentioned previously. [10], call it the auto-correlation function and ex-
tend it to any time delta. The Jaccard Index varies from 0, when no elements
are common between communities, to 1

3 when communities share half of their
elements, to 1 when the communities are the same. We propose the usage of a
modified Jaccard Index as described ahead.

To be able to determine life cycle events the community membership ground
truth must be known at successive time steps. One of the tenets of community
structure is that a random network should not have any communities (this fact
is the basis of one of the most popular methods of community detection [4]).
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Figure 1: Events in the lifecycle of a community in a temporal network
Classification dependent on multiplicity of continuation events and relative set

sizes

However a random flow of nodes across time will result in Jaccard indexes (J)
greater than zero. We note that given a multiset of community sizes at time T
and T+ε, represented by S t, S t+ε, a random assignment of node flows results in
a null Jaccard Index model J̄(C t

i , C
t+ε
j ) between any two communities, before

discretization, given by:

s t+εi × s tj ×min
(

1,
∑
St+ε∑
St

)
∑
S t+ε × (s t+εi + s tj )− s t+εi × s tj ×min

(
1,

∑
S t+ε∑
St

) (3)

Although discretization could have a significant impact for small networks, we
believe it is still valuable to normalize to chance to extract meaning from the
index (even if on very large networks the impact of index normalization is
marginal), and thus we suggest the usage of an adjusted index J̃ as:

J̃ =
J(C t

i , C
t+ε
j )− J̄(C t

i , C
t+ε)
j

1− J̄(C t
i , C

t+ε
j )

(4)

where J̃ is negative if J ≤ J̄ varying up to 1 ∝ (J − J̄), with domain restricted
to 1 ≥ J(C t

i , C
t+ε
j ) ≥ 0. Thus the image of J̃ is:

im(J̃) =
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−

J̄(C t
i , C
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j

1− J̄(C t
i , C

t+ε
j )

, 1

]
(5)
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Normalization has a larger impact on community pairs with higher relative
size compared to the whole network. As the network grows in size and commu-
nities, random node dispersion leads to a general increase in source community
diversity which lowers the null model Jaccard Index and consequently approx-
imates J̃ to J , or J̃ → J as

∑
S → ∞. As an example, if we have |c t1 | = 200

flowing to |c t+ε1 | = 300 in a network with 500 nodes, we have J(|c t1 |, |c t+ε1 |) = 0.5
and J̃ = 0.34. In a network with 5000 nodes the same flow results in J̃ = 0.49.

The full method has the following steps:

1. A confusion (or contingency) matrix T , with size |Ct| × |Ct+ε|, is created
with entries tij = Cti ∩ C

t+ε
j

2. A simple Jaccard matrix (J) is created from T and the multiset of com-
munity sizes at time T and T + ε.

3. A null Jaccard matrix (J̄) is created from the sequence of community sizes
at T and T + ε.

4. J̃ is created from T and J̄ as described previously.

5. An external threshold θ is applied as a high-pass binary filter over J̃ re-
sulting in a continuation matrix H that identifies the continuation events.

6. The row and column sum of H results in two vectors, respectively S and
M that identifies a birth for Mi = 0, death for Sj = 0, split for Sj > 1
and merge for Mi > 1. The position in the matrix identifies the respective
communities.

7. For every aij = 1 there is a continuation event between communities Cti
and Ct+εj that can be simple if their size is equal and, if not, a growth or
contraction event, depending on their relative size.

8. for every Sj = 0, we have a death by dissolution on community C t
i if

|C t
i | ≥ 2×

∑|Ct+εj |
j=1 tij or by fragmentation otherwise.

9. for every Mi = 0 we have a newborn event in community C t+ε
i if |Ct+εj | ≥

2×
∑|Cti |
i=1 tij or a birth by regeneration otherwise.

10. The events {”newborn”, ”regeneration”, ”growth”, ”contraction”, ”split”
and ”merge”} can be further classified with a reborn attribute as soon as
a single continuation results when applying this method to older network
observations in a most recent order, i.e. between pairs (Ct−nεi , C+ε

j ), where

n varies from 1 to l
ε where l, ε stand respectively for the network longevity

and temporal resolution.

To illustrate the method consider the clustering sequences Ct = Ct+ε = {20, 20, 20, 20, 20}
at time T and T + ε, where the flow of nodes between communities is given by
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the following confusion matrix:

T =


0 0 10 0 5
2 0 0 2 2
5 0 0 5 5

10 0 10 0 0
0 20 0 0 0


This results in a simple Jaccard matrix:

J =


0 0 0.33 0 0.14

0.053 0 0 0.053 0.053
0.14 0 0 0.14 0, 14
0.33 0 0.33 0 0

0 1 0 0 0


As all communities have the same size, all elements of the corresponding null

Jaccard matrix J̄ are the same ( 1
9 ), and the adjusted Jaccard matrix becomes:

J̃ =


0 0 0.25 0 0.036

−0.066 0 0 −0.066 −0.066
0.036 0 0 0.036 0.036
0.25 0 0.25 0 0

0 1 0 0 0


Let’s take θ = 0.2 and we get the continuation matrix:

H =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
0 1 0 0 0


Resulting in vectors S = {1, 0, 0, 2, 1} and M = {1, 1, 2, 0, 0}. Applying the
method above we have continuation events between (Ct1, C

t+ε
3 ), (Ct4, C

t+ε
1 ), (Ct4, C

t+ε
3 ),

(Ct5, C
t+ε
2 ). Community Ct4 suffers a split and Ct+ε3 , a merge. Communities

Ct2, C
t
3 die, and communities Ct+ε4 , Ct+ε5 are born. As |C t

2 | = 20 and 2 ×∑5
j=1 t2j = 12, Ct2 death is by dissolution. As |C t

3 | = 20 and 2×
∑5
j=1 t3j = 30,

community Ct3 dies by fragmentation. Similarly, applying point 9) of the above

method, we can further classify Ct+ε4 as newborn and Ct+ε5 as regeneration.
We believe the meaning of J in the context of community lifecycle requires

external subject domain information, although authors in [9] used a dynamic
threshold that depends on the actual community structure at every timestep
transition: more specifically that threshold is the minimum of the set of maxi-
mum j per community of all cross-timestep community node flows, or using our
matrix, it is the minimum of the maximum of the J rows and columns entries.
This guarantees an increase of continuation events, but, in our view may distort
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network dynamics, for instance at change points where a lot of communities
collapse in the network.

Another example from a synthetic network generator can be seen in figure
2. The images show only part of the whole network to highlight a mixed split /
merge event. The required matrices for lifecycle determination and the resulting
temporal ground truth, as output by the synthetic temporal network generator
that implements the method presented in this article (code available on request),
is included in figure 3 and table 1.

4 Conclusion

In this article we presented an approach and simple taxonomy to characterize
community events in temporal networks. Temporal networks are pervasive in
many domains and community structure always generates a lot of interest, given
its potential applicability. Having a standardization of concepts, terminology
and analytic tools cannot but help advancing this field of study. Although our
suggested approach is based on one of many ways of comparing communities,
we believe the suggested principles generalize to other approaches as well.
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Community Lifecycle Event at the end of time T

3 Continues contracting in 3

10 Continues contracting in 10

2 Continues contracting in 2

6 Continues growing in 6

9 Continues growing in 9

8 Split into [12, 11]

8 Merged Into 11

1 Continues contracting in 1

4 Continues growing in 4

5 Continues in 5

7 Merged Into 11

Community Lifecycle Event at the beginning of time T + ε

12 Continued from Split 8

2 Continued contracting from 2

3 Continued contracting from 2

10 Continued contracting from 10

9 Continued growing from 9

6 Continued growing from 8

1 Continued contracting from 1

4 Continued growing from 4

5 Continued from 5

11 Continued from Split 8

11 Merged from [8, 7]

Table 1: Community events on timestep transition
Note community 8 as it splits into 12 and merges into 11 continuing in both
communities
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