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Abstract: The rise of global attention toward sustainability and sustainable development (SD) has
provided increased incentives for research development and investment in these areas. Food systems
are at the center of human needs and global population growth sustainability concerns. These drives
and the need to provide quantified support for related investment projects led to the proliferation
of sustainability metrics and frameworks. While questions about sustainability definition and
measurement still abound, SD policy design and control increasingly need adequate quantified
support instruments. This paper aims to address this need, contributing to a more consistent and
integrated application of food system sustainability metrics and quantified management of the
implemented solutions. After presenting the relationships between sustainability, resilience, and
robustness and summarizing food system sustainability quantification developments so far, we
expose complexity sciences’ potential contributions toward SD quantified evaluation, addressing
prediction, intangibles, and uncertainty issues. Finding a paramount need to make sense and
bring existing sustainability metrics in context for operational use, we conclude that the articulated
application of multiple and independent modeling approaches at the micro, meso, and macro
levels can better help the development of food SD policies and implemented solution quantified
management, with due regard to confidence levels of the results obtained.

Keywords: sustainability; food system; metrics; indicators; quantification; policy; complexity;
resilience; uncertainty; prediction

1. Introduction

The rise of international major concern and global attention toward sustainability
and sustainable development (SD) in the recent years, including the United Nations (UN)
Agenda 21, in 1992 [1], the establishment of the 17 UN SD Goals, in 2015 [2], and the
European Commission Green Deal, in 2019 [3], has provided increased incentives for the
development of research and investment in these areas of knowledge. With food at the
base of human needs in a world of an increasing global population, food systems are at the
heart of integrated governance and management sustainable solutions, as reflected in the
2020 European Commission Farm to Fork Strategy for a fair, healthy, and environmentally
friendly food system [4].

Together with the higher focus placed in SD, the UN call for the development and
use of SD indicators [1], and the need to provide quantified support for related investment
projects and evaluation of their accomplishments, a plethora of indicators have been
identified and strategies to select the most relevant set of them developed [5]. In 2003,
more than 500 efforts related to the development of SD quantitative indicators were already
recorded [6]. Despite all these efforts, some authors underline that “although most indices
are imputed to be concise and transparent—they fail to meet scientific requirements” [7]
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and that “politically desired sustainability indices are inherently inconsistent and therefore
useless if not misleading with respect to concrete policy advice even for certain aspects of
sustainability that they have been predominantly built for” [7].

Some of the works undertaken also stress an underlying lack of consensus about
what constitutes sustainability [8] and that even though the need for a holistic approach
when developing methodologies for sustainability assessment has been widely recognized,
existing data reveal disciplinary fragmentation of this assessment [9]. Hand in hand with
these efforts, multiple and overlapping definitions of sustainability, resilience, and robust-
ness still require clarification, especially considering the importance of their alignment for
global change policy [10]. Moreover, and in spite of the importance of objective quantifica-
tion to promote unambiguous evidence-based policy making, control, and improvement,
questions are raised on whether sustainability can be measured [11] and why resilience
assessment quantification misses the point [12].

All these challenges are heightened when the system’s complex longer-term dynamics
with nonlinear feedbacks, interacting at multiple cross-scales and cross-levels [13] within
an uncertain context, and with possible critical tipping points leading to undesirable regime
shifts, or even system collapse, need to be considered. Additionally, as social-ecological
systems (SESs)—in which social includes the economic, political, technological, and cultural
elements [14]—food systems are complex adaptive systems [14] that are not sustainable in
the current overall regime [15], operating on a planet with tight-coupled boundaries whose
subsystems often react in abrupt ways when threshold levels are reached [16]. Moreover,
considering food systems’ and food security’s key impact on livelihood security and social
welfare, food system sustainability requires raised and urgent attention.

Food systems are coupled SESs, in which institutions mediate between social and
ecological processes and resources [17] while keeping food security at the core of food
system sustainability efforts [18]. In face of all these circumstances, adequate instruments
to support quantified approaches to the design of food system SD institutional policies and
management of their implementation are eventually more needed than ever.

This paper aims to: (1) provide a contribution toward the clarification of the oper-
ational relationships between sustainability, resilience, and robustness; (2) share a back-
ground picture on the road traveled so far toward the quantification of food system
sustainability, highlighting the challenges faced; (3) present the important role that com-
plexity theory and tools can play in the quantified evaluation of SD policy implementation
and food system sustainability; (4) elaborate on the applicable tools to address prediction,
intangibles, and uncertainty; and (5) illustrate how complexity theory and tools, used in
conjunction with other available frameworks through multiple independent modeling
approaches, can better help the development of informed SD policies and the quantified
congruent management of the corresponding implemented solutions. More specifically and
besides addressing the wide-range and essential transdisciplinary matters that are key to
food system sustainability quantification, this work’s contributions focus on: (1) providing
an integrated and articulated approach to existing quantified measures of resilience and
their relationship with sustainability; (2) presenting a developed and more encompassing
quantified definition of sustainability; (3) highlighting the important role complexity sci-
ence theories and tools can play in modeling the middle path addressing multiple scales
and levels typically involved in food systems; and (4) illustrating in a very elementary
and simple fashion the application of the presented quantified definitions of resilience and
sustainability to a case study, addressing the different (micro, meso, and macro) levels in
connection with an agent-based model, together with a macro-level mathematical model.

2. Sustainability Definition and Measuring Challenges
2.1. SD and Sustainability Definitions

As reflected in different definitions, sustainability is about maintaining (or even en-
hancing) something over time [19,20]. As a minimum and at its essence, sustainability
requires staying within limits [21,22]. In the case of SESs, (anthropocentric) sustainability
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aims at not crossing environmental systems’ thresholds, related to the planet’s carrying ca-
pacity, while fostering sustained and, desirably, improved, social well-being and economic
conditions. The intended development, while respecting global and transgenerational
needs and limitations, is reflected in the 1987 Bruntland Report, SD concept: “development
that meets the needs of the present without compromising the ability of future genera-
tions to meet their own needs” [23]. In this sense, SD encompasses development within
sustainable conditions.

The wide array of distinct systems (composed of systems of systems) interacting in
an SES, their complex dynamics, multiple and varied stakeholders, coupling, space and
time considerations tend to add serious challenges to the required understanding of the
SES behavior and the proper setting of sustainable integrated operation limits. From a
broader perspective, while acknowledging the tightly coupled nature of different planetary
processes’ boundaries and the nonlinear and abrupt reaction of many Earth subsystems
around specific key variables, Rockström et al. [16] proposed a set of process-specific safe
operating boundaries for humanity. In the same vein of thought, other authors [24,25]
expressed concern with a planetary-scale tipping point, associated with reaching critical
thresholds whose values are often not known in advance, highlighting the need to improve
biological forecasting and detection of early-warning signals. In particular, Folke et al. [14]
exemplified the intertwined nature of SESs, regarding them as complex adaptive systems
with frequently unpredictable agent interactions, and using a social-ecological resilience
approach to study their dynamics.

The design of adequate models that allow us not only to better understand the studied
system but also to infer the expected outcomes of a specific policy implementation is an
increasingly challenging task as we expand the scope of analysis and range of complex
adaptive systems involved. Despite these challenges, the identification and tracking of
parameters that allow us to gain an improved indication of where we are, and how we are
moving along, is a relevant helping step. In fact, the major worldwide focus on SD efforts,
the ample government support to associated initiatives, and the corresponding political
drive toward progress-monitoring measures, as well as the UN Agenda 21 wide call to
the development and identification of SD indicators, has led to a multitude of indicator
lists [7].

2.2. Sustainability Frameworks, Indices, Indicators, and Metrics

Considering the large number of variables involved in a holistic social-ecological
approach to a complex reality with multi- and cross-scale and cross-level dynamics [13],
it should not be surprising the appeal of simple monitoring information elements that
can provide a quick and intuitive overall picture about how SES policies are progressing.
While composite indicators—or indices, in the sense of a compounded value of multiple
weighted indicators [26]—are subject to debate regarding their reliability, quality, and
consistency [8,26,27], with some authors stating that scientific rules for compounding the
indices they reviewed are typically not followed [7], their popularity in connection with
the defined SD goals is indisputable. Examples include the UN Global SDG Indicators
Database [28] or the Eurostat sustainable development indicators tables [29]. The possibility
of a quick global and general view of the progress toward the SDGs is also illustrated by
the corresponding dashboard developed by the UN [30].

Given the profusion of possible indices, indicators, and metrics, various frameworks
and methods have been presented regarding how to formulate, compare, and select
them [5,31–35], including a methodological framework that summarizes best practices in
their application at local scales [36]. Despite the enormous efforts and developments that
have taken place toward sustainable development, with multiple instruments available to
allow us to better monitor how we are progressing toward the defined goals, important
steps are seen as still missing and affecting other important contributions to sustainability-
oriented policy design and control. In particular, the abrupt ways SESs often react when
threshold levels are reached [16], with agents also frequently interacting unpredictably [14]
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in an increasingly anthropocentric hyperlinked world, should make us more aware that
past trends may not predict the future. While sustainability addresses the projection of
some attribute, or set of attributes, into the future, our indicator tools tend to only show
us the present and past. As stated by Parris and Kates, “characterizing and measuring
sustainability involves making choices about how to define and quantify what is being
developed, what is being sustained, and for how long” [6]. Without a model that provides
us with some informed predictive insight about how the quantity, or quantities, that we
need to track can be expected to evolve in the future, our assessment of sustainability will
tend to be seriously hampered. In line with the illustration provided by Bell and Morse [11]
(Figure 1.3), if we only have a representation of the system parameters of interest over
time and just look at their trends, we may be at odds to gauge the sustainability related to
those parameters.

On a more conceptual level and to properly proceed toward the adequate modeling of
our systems, including adequate and consistent metrics and their required quantification,
other interrelated and key issues need to be addressed. First, there is the need to have a
clear definition of sustainability. Without it, the establishment of policy goals and decision
making at any level is hampered [9]. However, besides the fragmentation of perspectives re-
garding sustainability assessment, in connection with the various disciplines studying it [9],
the debate about sustainability tends to focus on sustainable development matters rather
than distinguishing first the notion of sustainability and how to assess it. Additionally,
we need to answer how to handle the complex dynamics and the multitude of indicators
about what we need to sustain and develop. This paper aims to provide contributions to
both questions. However, before proceeding, we need to tackle a sustainability-definition-
related issue, which concerns the need for a coherent distinction between sustainability,
resilience, and robustness.

2.3. Robustness, Resilience, and Sustainability

While related, in different ways, to the notion of stability, the terms robustness, re-
silience, and sustainability abound in the literature, although not always reflecting the same
conceptual understandings. Acknowledging how the overlap of existing definitions and
unclear articulation of these concepts reduce their utility, Anderies et al. [10] provided a key
contribution to aligning them for global change policy. According to these authors, while
resilience “provides a framework to think about how multiple systems [. . . ] interact across
scales”, sustainability “provides a framework to translate the understanding [developed
through robustness-related concepts and tools] of feedback systems into meaningful action
through policy discourse” [10]. In this sense, the concept of sustainability appears closely
tied to the global SD challenges, as a “superstructure [or an] analytical framework to guide
action” [10], more than a quantifiable metric of a system’s dynamical performance, i.e.,
sustainability as the ability of a system to maintain (or sustain) something over time, as
reflected in a success probability over time.

As stated by Holling, in his seminal paper about the resilience and stability of ecologi-
cal systems, back in 1973 [37], while stability can be defined as the “ability of a system to
return to an equilibrium state after a temporary disturbance”, resilience “determines the
persistence of relationships within a system and is a measure of the ability of these systems
to absorb changes of state variables, driving variables, and parameters, and still persist”.
The property of resilience appears as a counter-balancing element to disrupting forces
that tend to drive the system out of its required persistence (even if mutable) boundaries.
In this context, higher resilience contributes to higher chances of persistence over time,
i.e., to higher sustainability. Resilience is a property and the system’s (desirably reduced)
probability of extinction, or sustainability, the result [37,38].

Various notions of resilience are, however, described in the literature. Anderies et al. [10]
distinguished between specified resilience (in the sense of “resilience of what to what” [39],
focusing on the definition of system boundaries [10]) and general resilience (referring to
“broader system-level attributes [including] the capacity for learning and adaptation” [10]).
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Davoudi and Porter [38], clarified the differences between engineering resilience (mea-
sured by the “resistance to disturbance and the speed by which the system returns to
equilibrium”), ecological resilience (acknowledging the “possibility of systems to flip into
alternative stability domains”), and evolutionary resilience, or socio-ecological resilience
(advocating that “the very nature of systems may change over time with or without an
external disturbance”). In this last sense, directed to the SES nature of food systems, re-
silience is the “ability of complex socio-ecological systems to change, adapt, and crucially,
transform in response to stresses and strains” [38,40]. This broader notion of resilience goes
beyond the system’s capability to absorb disturbance and reorganize [41]. It encompasses
also adaptability (“the capacity of actors in the system to influence resilience” [41]) and
transformability (“the capacity to create a fundamentally new system when ecological,
economic, or social structures make the existing system untenable” [41]).

Addressing the distinction between stability and robustness, Jen [42] argued that even
though both of them are “concerned with the persistence, or lack thereof, of the specified
features under the specified perturbations”, robustness is a broader concept than stabil-
ity. Robustness is described as appropriate for measuring feature persistence in systems
difficult to parametrize, subject to significant changes, or whose “behavior is generated
through adaptive dynamics coupled to strong organizational architecture” [42]. As she
also summarized, robustness is an approach to feature persistence in systems for which
we do not have the stability theory mathematical tools, as we must focus on perturbations
different from those already observed [42]. Anderies et al. [43], while providing a frame-
work to analyze the robustness of SESs from an institutional perspective, suggested that “a
SES is robust if it prevents the ecological systems upon which it relies from moving into a
new domain of attraction that cannot support a human population, or that will induce a
transition that causes long-term human suffering”. While robustness is expected to provide
system dynamics performance measures and resilience has evolved into an intellectual
framework [10], there is clear proximity between the notion of robustness provided [e.g.,
42, 43] and some of the presented characterizations of resilience. Like resilience, robustness
is expected to encompass change, including a system’s adaptive processes, which in some
contexts, are directed to the preservation of its identity [42]. Folke [44] suggested that
while engineering resilience is focused on constancy and recovery (in the vicinity of a
stable equilibrium), ecological resilience is focused on robustness (around multiple possible
equilibria), and social-ecological resilience is focused on adaptive capacity, learning, inno-
vation, and transformation. According to Anderies et al. [10], it is the precision required by
robust control and the corresponding need to have a clear grasp on the system’s boundaries
that limit its capacity to address learning, adaptation, and transformation (key elements
of resilience).

When considering both sustainability and resilience as frameworks [10], the ques-
tion arises as to how they relate to each other. Derissen et al. [45] addressed this is-
sue in the context of SESs, highlighting that while sustainability is a normative concept
(in line with the Bruntland Report concept of SD [23], aiming at intra- and intergener-
ational justice), resilience is a descriptive concept (including the notion that resilience
is not necessarily a good thing). They further illustrated with a model of two natural
capital stocks how the full set of four relationship combinations of the resilience of the
system being necessary (or not) and sufficient (or not) for sustainability may hold. In
face of the quite different conceptual understandings and applications of these terms,
Marchese et al. [46] performed a literature review of 37 journal articles proposing man-
agement frameworks for the joint implementation of sustainability and resilience. As
described by them, these frameworks could be grouped into three different sets describ-
ing: (1) resilience as a component of sustainability; (2) sustainability as a component of
resilience; and (3) resilience and sustainability as separate objectives, with their corre-
sponding approaches being either uncorrelated or positively, or negatively, correlated [45].
Addressing this same theme of the increasing literature with different uses of these terms,
Redman [47] contrasted adaptation versus transformation, and the prioritization of process
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versus outcome, as differences between resilience theory and sustainability science. He
concluded by stating that “we must rigorously pursue adoption of distinct resilience and
sustainability approaches, as well as combinations of the two, allowing each approach to
contribute in ways that reflect its strengths” [47].

When referring to the profusion of the sustainability and resilience terms in the
literature, it is important to note that the application of these terms tends to be more closely
used within the whole body of knowledge related to the still new sustainability science (as
a foundation for great change [48]), resilience theory, and (the complex) achievement of
the defined SDG than to the operational application of these concepts. As mentioned by
Carpenter et al. [39], although the use of resilience as a metaphor or theoretical construct
can be inspiring, “much more insight could be gained from empirical analyses, which
would require an operational, measurable concept of resilience”. Similar benefits can
be gained from the application of an operational, measurable concept of sustainability,
particularly if also articulated with the concept of resilience, and efforts in that direction
are seen as potentially very useful and needed.

Acknowledging the complexity of food systems, operating at multiple levels and
scales and embedded in larger SESs, as well as the challenges imposed by the high levels
of uncertainty that may be involved, should not deter us from taking the steps that allow
us to tackle those challenges. These steps include the development of the required tools
to gain a better, quantified, understanding (however limited it may initially be) of the
associated dynamics, making use of a clear and consistent set of definitions, including
sustainability- and resilience-related operational concepts and metrics, leveraged by robust
control, dynamical systems, and complexity science theory.

2.4. Quantifying Sustainability

In this subsection, we take the following steps: (1) distinguish the notions of weak
and strong sustainability; (2) present a proposed definition of sustainability that can
accommodate both of those notions; (3) address other works concerning the quantification
of sustainability, resilience and stability, the relationships between them, and how these are
affected by uncertainty; and finally, (4) elaborate on the quantification of resilience and its
quantified relationship with sustainability.

Within our first step, we must underline that, to guide decision making under uncer-
tainty, sustainability needs to be an ex ante assessment concept [45]. As Derissen et al. [45]
also suggested:

• Under those ex ante and uncertain conditions, the sustainability criterion can only be
met with some probability;

• Depending on whether this probability is associated with a notion of maintaining an
aggregate wealth or welfare or with the maintenance of separate critical stocks and
services above some minimum levels, we can speak, respectively, of a weak, or strong,
notion of sustainability.

Regarding the indicated second step, to quantify the sustainability SA of a set A
of features of interest on an SES at time tk (considering that all those features hold at
time t0), we elaborate on the degree of viability definition provided by Baumgärtner and
Quaas [49]. While the definition of viability provided by these authors can be subsumed,
under uncertainty, to the notion of strong sustainability (Neumayer 2003, cited in [49]),
providing a result of True/False to whether a project is sustainable, the degree of viability
provides a continuous (probability) measure of sustainability [49].

We developed this notion of a continuous measure of sustainability in two ways. First,
we expanded it to accommodate the possibility of measuring more than just the probability
of each of the system’s n relevant individual funds Gu (u = 1. . . . , n)—described by l ∈ N
different stock variables gh

u(t) ∈ R (h = 1, . . . , l)—and of each of the m relevant individual
types of services W j (j = 1, . . . , m)—which may be provided between funds Gx and Gy

as described by wj
xy(t) ∈ R—being kept within a corresponding sustainable threshold (a

strong sustainability requirement). The developed definition admits also that a possible
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desirable function fi (i ∈ N), including funds, services, or both as variables, can also be
considered, with a corresponding threshold f i associated with a specific 3i condition (either
≥ ,>,<, or ≤ ). This allows for the inclusion of more complex relationships between funds
and services, including eventually an aggregate stock (capital, welfare, etc.) associated
with the notion of weak sustainability. Second, we also contemplate the possibility that
sustainability-related relationships between these relevant funds, services, and thresholds
may change (i.e., depend on time t) throughout the period (from t0 to tk) of sustainability
analysis. This expansion of the definition scope allows for greater system dynamic behavior
considerations, including adaptive, innovative, and even transformative aspects.

SA(tk) = mini

{
Prob [ fi (gh

u(t), wj
xy(t), t) 3i f i(t)]

i ∈N,(h,j,u,x,y)∈H×J×U×X×Y,t∈[t0,tk ]
}

(1)

where U, X, Y ⊆ {1, . . . , n}, H ⊆ {1, . . . , l}, and J ⊆ {1, . . . , m}.
If specific probability thresholds are assigned to the satisfaction of each fi 3i f i

condition throughout the analyzed period (from t0 to tk), we also obtain a sustainability
True/False result as with the viable definition provided by Baumgärtner and Quaas [49].
Additionally, even though the sustainability measure is given by the function fi whose
probability to satisfy the condition 3i f i is the lowest, a broader sustainability analysis can
be performed by comparing the sustainability of all the remaining features (associated with
each of the remaining fi functions).

To better assess this sustainability over time, we need to model the applicable feature’s
system dynamics with its environment. The system’s current position in the corresponding
state space must be identified and the flows and potential disturbances (external and
internal) considered, including how the system and its environment respond, learn, and
reconfigure in face of those flows and disturbances. Even without considering the multiple
possible future scenarios and the challenges related to assessing the likelihood and impacts
of potential developments for which risk assessment data are missing, the complexity of
determining the sustainability of a system’s feature, or set of features, tends to become an
exponentially increasingly daunting (if feasible) task as the complexity of the system and
its interactions grows.

For our third step, we need to start by highlighting that several other important works
toward a mathematical quantification of resilience and sustainability, as well as toward
the quantification of stability in stochastic systems, have already been made available.
Highlighting the need for precise starting definitions, to allow a structural development of
a mathematical theory of resilience, Krakovská et al. [50] elaborated on several indicators
related to engineering and ecological resilience (e.g., reactivity, latitude in width and in
volume, distance to threshold). For this purpose, they started by reviewing the existing
indicators within the framework of continuous dynamical systems theory and the general-
ization of the definitions to general attractors, whenever possible. Using an example of a
classic one-dimensional population model, they applied the previously specified defini-
tions in terms of local indicators, basin shape indicators, nonlinear transient dynamics, and
variation of parameters [50].

Additionally, a key aspect to be considered when measuring the sustainability of a
system’s set of features concerns its relationship with the system’s stability and resilience
and how these are measured and affected by uncertainties and perturbations over time. To
overcome the potentially highly misleading systems’ behavior outcomes provided by the
application of linear stability analysis to situations where the systems are subject to contin-
uous stochastic perturbations, Nolting and Abbott [51] showed how the quasi-potential
concept from stochastic analysis more adequately quantifies stability in these situations,
including the relative stability of alternative stable states. Even though the quasi-potential
concept cannot provide complete information in cases where the system undergoes ex-
treme shocks, it operationalizes one aspect of resilience expressed by Holling [37] as “the
height of the lowest point of the basin of attraction [as] a measure of how much the forces
have to be changed before all trajectories move to extinction of one or more of the state
variables” (Holling, cited in [39]) [51]. Illustrating the differences between asymptotic
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stability, basin width, and quasi-potential stability metrics, the authors also elaborated on
how this last metric is useful for better putting in context other stability-related concepts,
such as reactivity, resistance, and persistence [51].

Moving toward the fourth step previously mentioned and concerning the quantifi-
cation of resilience, Anderies et al. [52] used a grazing management case of a fire-driven
rangeland system (to which we return in Section 5) to illustrate the measurement of re-
silience as the displacement the system can support while maintaining a given function. As
such, in this case, they represented the system’s resilience, for each grazing pressure, as the
distance (in terms of biomass) between the (desirable) system’s high biomass equilibrium
line and the biomass line of unstable equilibrium that can lead the system to the (undesired)
zero biomass equilibrium, until the bifurcation point is reached (where these two lines
meet and beyond which only the zero biomass equilibrium applies). Referring to that
most resilience-related studies focus on it as a theoretical construct and that only in a few
cases it has been operationally defined and applied, Martin [53] used a lake eutrophication
example and a viability approach [54] to define and illustrate a definition of resilience.
In line with the definition that resilience is “the capacity of a system to undergo distur-
bance and maintain its functions and controls”, resilience was measured as the inverse
of restoration cost (considering both an ecological and an economical cost) [53]. To this
end, a viability kernel (gathering all system states from which, applying the available
control measures, exists at least a trajectory allowing the system to remain within the stated
objectives until the specified time scale of interest) and a set-value map (that associates a
specific state x with all reachable states y from it after an anticipated disturbance D occurs)
were determined. The resilience of the system at state x facing a disturbance D was then
defined as the minimum value of the resilience of all possible reachable states y to which
the system jumped due to D (measured as the inverse of the minimal cost of restoration
among all trajectories starting at y) [53].

Leveraging the aforementioned work [53] and using the rangeland system manage-
ment case presented by Anderies et al. [52], Martin et al. [55] presented the limitations of
attractor-based measures of resilience (defined as the inverse of return time or as propor-
tional to the size of the attraction basin size) and provided a viability-based definition of
resilience. This viability-based approach accommodates the possibility that the desired
property of the system and respective states do not necessarily correspond to attractors. In
this sense, they considered the resilience of the desired property (rather than the resilience
of the system), defining a capture basin (including the points outside the viability kernel
that can go into it, such as an attraction basin in the case of an attractor), a resilience basin
(including the kernel and the capture basin), and a resilience value (associated with each
point in space, as the inverse of time to get to the viability kernel) [55]. Like the notion of
resilience as the inverse of cost of restoration [53], resilience is here presented with a value
associated with each point on the system’s state space and not as a global system metric. It
is also important to note that while the quasi-potential metric (corresponding to Holling’s
definition of resilience [51]) and other stability-related concepts focus on the strength of the
disturbances required to drive a system out of its current basin of attraction, the concept
of resilience as the inverse of the cost of restoration provides a measure of the strength of
effort required to bring back the system to a desired viability kernel (with resilience being
assessed as infinite within this kernel). This distinction relates closely with the concepts
of precursor resilience—“ability to accommodate change without catastrophic failure, or
a capacity to absorb shocks gracefully (Foster, 1993: 36)” (cited in [56])—and recovery
resilience—“ability to respond to singular or unique events (Kendra and Watchendorf,
2003: 42), bouncing back to a state of normalcy—presented by Boin and Etten [56].

In the context of quantifying economic sustainability, Goerner et al. [57] provided a
relationship between sustainability and resilience: sustainability is depicted as an inverted
U function of diversity/connectivity, whose apex (corresponding to a window of vital-
ity/viability) is achieved at an optimal mix between efficiency (pulling toward lower levels
of diversity and redundancy) and resilience (pulling in the opposite direction). Within
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this concept, a system’s sustainability is described as a single metric capturing the balance
between brittleness (insufficient resilience) and stagnancy (insufficient efficiency) [57].
Ulanowicz et al. [58] went a step further in the quantification of system sustainability (that
they also equated to robustness), using information theory concepts to define a single
metric that reflects a similar tradeoff allotment between a system’s effective performance
and reserve capacity. Multiplying total system throughput (T..) respectively to aggregate
system indeterminacy (H), average mutual constraint (X), and conditional entropy (Ψ)—in
which H = X + Ψ—they obtained the measure of system development capacity (C = T.. · H)
as the sum of system ascendency (A = T.. · X) and system reserve (φ = T.. · Ψ). This
development capacity (C = A + φ) reflects the notion that a system’s capacity to adapt and
overcome disturbances depends both on its ability to maintain its integrity (reflected in A)
as well as the required flexibility (reflected in φ) [58]. Providing also a definition of fitness
for evolution (F = −ka log(a), with a = A/C), they defined robustness, R, of the system
(R = T.. · F) [58].

One final note about sustainability quantification deals with the limitations of mod-
eling a system under conditions that are currently uncertain and were never observed
before and whose applicable system’s dynamics are unknown to us. While the concepts
and metrics of ascendency and system reserve provide us insights about the sustainability
of the system based on its current and past observed behavior, they are eventually limited
in informing us about the system’s capability to handle disturbances in case other (not
previously observed) behavioral or system organizational dynamics take place under those
specific conditions. Levine [12] stressed this point when he stated that “it is impossible
to say in advance how resilient people are until they are faced with a test”. One SES
example of this matter is provided by the study of coral-reef recovery [59] illustrating:
(1) how a “sleeping functional group”—such as the batfishes, not previously associated
with coral–algae interactions—reveals itself as capable of performing a particular function
but only under exceptional circumstances (in this case, only after the system’s phase shift
has occurred, driving the coral-reef recovery); and (2) how species of functional groups
that prevent phase shifts—in the studied case, parrotfishes or surgeonfishes (herbivores)—
contrary to previous expectations, may not be able to reverse phase shifts once they occur.

3. Sustainable Food System Policy Design and Control
3.1. Toward Sustainable Food Systems

A food system can be described as “a chain of activities from production (‘the field’)
to consumption (‘the table’), with particular emphasis on processing and marketing and
the multiple transformations of food that these entail” [17]. This chain of activities includes
interactions and feedback between human, biological, and geophysical environments [15].

The topic of sustainable SESs, and the transition to sustainable food systems that can
accommodate the challenges of ensuring healthy, nutritious, and high-quality food for
an increasing global population (from the current 7.6 billion to 9.8 billion in 2050 [60]),
respecting the environment and the economic needs of the intervening agents, has seen
increasing interest by multiple stakeholders, including the scientific community. Even
though the 17 UN SDGs of the 2030 Agenda of the UN address individual sustainable
development goals (including SDG2—zero hunger), food and agriculture themes are
pervasive elements among them [15]. They must, however, be addressed in an integrated
fashion, as each of them reflects only specific aspects of an underlying global complex
adaptive system. This complexity—global spread, critical nature (for human survival
and well-being), and potential impacts at the social-economic and ecological levels, with
prominent problems to tackle—makes the study of food system sustainability a daunting,
but most needed, endeavor. The UN Food and Agriculture Organization (FAO) strategic
framework 2022–2031 [61] highlights that “690 million people suffered from hunger even
before COVID-19, millions more are micronutrient deficient, and an alarmingly growing
number of people are overweight across all ages, classes and borders”. As stated in FAO’s
2020 report of the state of food security and nutrition in the world [62], “in a world that
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produces enough food to feed its entire population, more than 1.5 billion people cannot
afford a diet that meets the required levels of essential nutrients and over 3 billion people
cannot even afford the cheapest healthy diet”. Besides the essential role that food plays
in everyone’s life and the stresses agri-food systems place on the environment, it is also
important to consider (from an economical perspective) that they directly employ over
1 billion people worldwide and provide livelihoods to another 3.5 billion [61] (i.e., in total,
more than half of the human population).

The concern with the environment, and the need to move to sustainable growth, is
reflected in the European Commission Green Deal [3]—aiming at, among other aspects,
achieving no net emissions of greenhouse gases in 2050 and decoupling economic growth
from resource use—which includes as one of its key elements a “fair, healthy and envi-
ronmentally friendly food system”. This line of action was more recently presented in the
European Commission Farm to Fork Strategy [4] as “a new comprehensive approach to
how Europeans value food sustainability”. At the center of this strategy are the needs to
ensure sustainable food production and food security, stimulate sustainable food services
practices, promote sustainable food consumption (while facilitating the shift to healthy
diets), reduce food loss, and combat food fraud [4]. Food security—defined by FAO as the
situation “that exists when all people, at all times, have physical, social and economic access
to sufficient safe and nutritious food that meets their dietary needs and food preferences
for an active and healthy life” [63]—is a core goal of food system sustainability. However,
although there are different concepts and goals associated with food system sustainability,
often with specific narratives and distinct from the one of global environmental change,
there is an increased recognition of the need to address them together due to their close
interrelations [15]. Going a step further and mentioning the importance of humans to see
themselves embedded in a greater whole (the biosphere), not as separate agents from the
rest of nature, Folke et al. [14] underlined the need for a biosphere-based sustainability sci-
ence, reconnecting approaches and development perspectives in an Anthropocene in which
humanity must understand and act responsibly in view of its prominent and heightened
power to affect the biosphere.

Defining a sustainable food system as “one that achieves and maintains food security
under uncertain and dynamic social-ecological conditions”, Eakin et al. [18] identified in
the literature the following six overlapping domains of knowledge, broadly representing
existing approaches regarding the world’s food system sustainability: (1) individual food
security; (2) community food security; (3) human economic sustainability (at a national and
regional level); (4) agroecological integrity; (5) land change; and (6) global food democracy
(focused on transnational relationships). For the achievement of these knowledge domains’
food system sustainability goals, in a context of considerable complexity and high uncer-
tainty, they highlighted the importance of a system’s diversity, modularity, innovation,
congruence, and transparency attributes [18]. These attributes reflect clear linkages to the
seven basic elements (four properties and three mechanisms) that constitute a complex
adaptive system as defined by Holland [64]. In particular:

• The properties of diversity and fluxes relate to the diversity and transparency at-
tributes, allowing for timely and reliable access to information;

• The mechanism of building blocks (simple parts, or modules, that can be reused and
articulated in different ways) is closely linked to the modularity attribute;

• The mechanism of internal models provides a way for the exploration of alternatives,
leading to innovation;

• The previous properties and mechanisms and the additional properties of aggrega-
tion (facilitating the generation of meta-agents and model building) and nonlinearity
(resulting in more complex interactions), together with the tagging mechanism (un-
derlying the system’s organization), lead to the continuous search for fitness (or
congruence) of the system’s complex adaptive process.

Despite the need for a holistic perspective when addressing the sustainability of a
food system, approaching it as a complex adaptive system, paying due attention to the
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multiple ramifications with related matters, we must not disregard the complexity often
involved in each of those branches. For instance, when we look at the interaction of a food
system with the environment, the economy, or society and consider the corresponding
footprints, we are faced with a plethora of footprint definitions and related perspectives
and tools, with acknowledged challenges to get a comprehensive typology [65]. Mapping
footprint as a keyword in 4837 papers connected by 25,268 keywords, Fang et al. [65]
could depict their relationships in a network diagram of 135 nodes—with carbon foot-
print, life cycle assessment, water footprint, and ecological footprint acting as hubs—and
246 directed and weighted links, concluding with the conviction that in face of “the dy-
namic complexity of the footprint family [. . . ] no single classification should be considered
as the «golden standard»” [65]. Additionally, when addressing the impacts of food systems,
recent studies increasingly focus on the need to consider not only the indirect food impact
(environmental) but also its direct impact (allergies, toxins, nutritional properties), leading
to “nutritional sustainability”, with a focus on maintaining health through a balanced
nutritional diet [66]. However, as noted by Smetana et al. [66], “even though [most of the
studies, dealing with sustainability and nutrition] point out to [the] need to approach the
food system holistically, [they] rarely relate the findings of complex system analysis and
complex system control theories, thus suggesting niche solutions, not able to transform the
entire system”.

When considering food system sustainability within an SES framework, besides the eco-
logical and social aspects—including human well-being and nutritious food for all—another
important topic is the one of bioeconomy (“economic activities related to the development
of renewable resources and use of biological products and process” [67]). In this regard,
and besides the aspects later addressed in Section 3.2 about the multiple efforts that have
been undertaken in the scientific community concerning the quantification of food system
sustainability, we should succinctly refer here to some more recent efforts in the field
of sustainable bioeconomy. Considering that its main challenge relates to keeping the
global land footprint within a safe operating planetary boundary [16,67], with the need
to analyze this footprint in conjunction with the land biocapacity (“ecosystems’ capacity
to produce biological materials used by people, to absorb waste material generated by
humans, under current management schemes and extraction technologies and to provide
renewable resource-provisioning and climate-regulation ecosystem services” [67]), Lio-
bikiene et al. [67] performed an assessment of the trends in capacity and productivity of
bioeconomy in the European Union countries in the period from 1997 to 2013, providing
valuable information for policy makers. Circular bioeconomy (which “focuses on the sus-
tainable, resource efficient valorization of biomass in integrated, multi-output production
chains [..] while also making use of residues and wastes and optimizing the value of
biomass over time via cascading” [68]) is a related topic. However, it should be noted that
even though it “could contribute to improving the sustainability of the bioeconomy, the
concept is not inherently sustainable” [68].

When addressing the path toward sustainable food systems there are two more
essential issues that we need to address: (1) how system resilience can contribute to
food system sustainability, and (2) considering that the current overall food system is not
sustainable due to the negative externalities attached to it [15], how we will move toward a
different system’s state space by inducing a regime shift. In what concerns the first issue
and in line with our previously presented conceptualizations of sustainability and resilience,
Tendall et al. [69]—addressing sustainability as the capacity of the system to perform in a
way that preserves itself in the long run, while resilience as the capacity to face disturbances
over time (including robustness, redundancy, reactivity, and adaptability)—supported the
need to improve resilience from a whole cross-scale systems perspective. This holistic
approach improvement is required to properly handle the food system panarchy [69],
with the corresponding nested adaptive cycle functioning and intercommunication being
determinants of the system’s sustainability [70]. For that whole food-system-resilience-
building process, Tendall et al. [69] proposed entering one of the following three entry
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points (no matter which), integrating the other two in the following steps of that process:
(1) national or regional food systems; (2) individual food value chains (from local to global);
and (3) the individual’s perspective in the value chain. As a transition to a new regime
is pursued, the current system’s resilience elements that may counteract that objective
must be properly handled, reconfiguring the system’s parameters to drive it to the new
intended regime and sustaining it when it is achieved. This leads to the second issue,
the required current food system regime shift. Pereira et al. [71] argued that, in face of
the required food system transformation, there is the need to bring a political-economy
conceptualization of food regimes with a social-ecological perspective of regime shifts.
Presenting examples of previous food system regime shifts, they identified three phases
(preparation, transition, and consolidation) involved in innovations leading to a regime
shift [71]. Highlighting the major and complex challenges of transitioning to sustainable
food value chains, Kush-Brandt editorial [72] shared fourteen insights extracted from each
of the publications in the corresponding editorial special issue dedicated to that movement.
Acknowledging the complex nature of various components involved in food systems,
Smetana et al. [66] stated that “the estimation of safe operating boundaries of different
scales requires not only smart artificial intelligence algorithms, but a proper modeling of
complex systems [. . . ], dynamic multilayer networks [. . . ], and ecodesign principles”.

3.2. Food System Sustainability Quantification Developments

Like most of the initiatives toward the quantification of sustainable development mat-
ters, food system sustainability quantification and related efforts tend to focus on indicators
associated with developed frameworks [73–75], in some cases [74,75], explicitly structured
in terms of the distinct social, ecological, and economic dimensions. The proliferation of
sustainability indicators in the literature has led to multiple other publications addressing
them as a specific subject, as already alluded in Section 2.2.

Even though indicators tend to provide important information about present and
past system performance regarding elements that are most relevant to system behavior,
sustainability assessment, as defined in Section 2.4, requires information about how the
system is expected to behave in the future, in terms of compliance to predefined thresholds,
facing uncertainty. As it is well known, particularly in complex systems, the future is
not always a linear extension of the observed past trend. On the other hand, the fact
that we may not have sufficient information about a system’s future behavior does not
necessarily mean that nothing can be done. There are important symptoms that can
indicate that a system is close, or more prone, to a critical threshold, or tipping point,
corresponding to a system bifurcation [25]. Although the detection of these situations
may be challenging in real cases, among these symptoms are: (1) critical slowing down
(leading to three early-warning signals that the system is approaching a bifurcation: slower
recovery from perturbations, increased autocorrelation in the pattern of fluctuations, and
increased variance in this pattern); (2) skewness (increase of the fluctuations’ asymmetry);
and (3) flickering (in which the system oscillates between the two different basins of
attraction) [25]. Besides these empirical indicators of upcoming transitions, distributed
systems with heterogeneous components and more modular connectivity tend to adapt
and gradually change with stress, while homogeneous and highly connected systems tend
to resist change until a threshold is achieved, driving the system to collapse [76]. A later
study of different kinds of networks let Suweis and D’Odorico [77] arrive at the conclusion
that, in fact, the abruptness and predictability of critical transitions are not determined by
the network topology heterogeneity but by the type of node interactions, i.e., mutualistic
(++) versus mixtures of interaction types (+−, ++, −−).

To predict how a system will behave in the future, we need a model of that system’s
behavior that captures the relevant study parameters, in our case, first and foremost,
those that influence a system’s sustainability. When stressing the importance of such a
model (or desirably, several independent models, as addressed later in Section 4.2, we
are not stating that existing sustainability indicators, or other decision-making support



Sustainability 2021, 13, 12408 13 of 38

elements, such as information about early-warning signals for critical transitions, do not
matter. In fact, facing the dimension and complexity of the hurdles faced, we need to make
good use of and leverage all the helpful information and knowledge available. What we
defend is the need to take further steps to better understand food system sustainability
and help the design of related policies accordingly, even though the challenge may seem
immense and more modest contributions toward what is needed (future projections of a
system’s sustainability-related behavior) may appear essentially irrelevant (and eventually
misleading, if not carefully framed), particularly when high levels of uncertainty and
complexity are involved.

Ericksen [17] proposed a food system framework for global environmental change re-
search. In simple terms, the framework was conceptualized as a set of food system activities
(production, processing and packaging, distributing and retailing, and consuming) leading
to outcomes (that contribute to food security, environmental security, and other societal
interests), with both activities and outcomes being affected by drivers (environmental
and socioeconomic) and providing feedback to those driver-related systems [17]. As she
suggested, “with sufficient empirical evidence, this framework could be used to build a
database describing typologies of food system interactions [which, if] if organized by geo-
graphical or jurisdictional level [. . . ] would be useful for developing policy or institutional
interventions to improve food security” [17].

Stating that sustainability relates to the maintenance or improvement of key functions,
or outcomes, and that “food system sustainability can be viewed as the exante assessment
of potential change in its functioning, given external conditions and internal dialetic”,
Allen and Prosperi [78] acknowledged the “tremendous challenge [of] developing policy to
ensure sustainable food security” and proposed an integrated analytical vulnerability and
resilience approach to “think prospectively and identify the system elements that policy
can leverage”. Distinguishing the components of exposure, sensitivity, and resilience, they
defined mathematically the dynamic system’s output and transition function map as func-
tions of the system’s state variables, controllers, and external drivers. They also provided
a sustainability food system modeling example proceeding in four stages: (1) defining
the study area and scale of analysis; (2) identifying the essential drivers of change (water
depletion, biodiversity loss, food price volatility, and changing food consumption patterns);
(3) identifying essential food system outcomes (nutritional quality of the food supply,
affordability of food, dietary energy balance, and satisfaction of cultural preferences); and
(4) developing a causal model [78]. In what specifically concerns the vulnerability and
resilience (as sustainability-related elements) of farming systems, Sneessens et al.’s [79] re-
sults show that “diversity alone is not enough to cope with risks”, and Meuwissen et al. [80]
provided a framework that assesses specific resilience (following the questions of resilience
of what, to what, for what purpose, with what capacities, and to enhance what) as well as
general resilience (“farming system’s capacity to deal with the unknown, uncertainty and
surprise”). Despite all the great work undertaken and progress already achieved to deal
with the enormous challenges associated with food system sustainability understanding,
mostly from a broader, high-level perspective, while also addressing specific local studies,
we believe that important room and promising developments still lay in “the middle” and
in linking the macro and the micro in connection with the (quantified) dynamical modeling
of those systems’ sustainability (in conjunction with related concepts, such as resilience).

The quantification and use of metrics in the sustainability domain are not immune to
potential issues related to their inadequate conceptualization or eventual misuse, leading
to possibly negative and undesired results, contrary to the defined objectives. Mentioning
that metrics are being identified as a problem, without the need to refer to theorizations
and metrologies, Rosin et al. [81] cited Bell and Morse [11] as a good example when
“arguing that any attempt to measure sustainability is a ‘futile exercise of measuring the
immeasurable’”. On the opposite end, other views state that anything can be measured as
long as it is observable and, as such, available to some form of measurement, defined as “a
quantitatively expressed reduction of uncertainty based on one or more observations” [82].
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While addressing the existing arguments “surrounding the potentially negative outcomes
of pursuing sustainability via measurement”, Rosin et al. [81] highlighted the important
role of metrics in promoting sustainability practice, with metrics operating not just “as
measures (i.e., simple representations of uncontested values), and as tools (i.e., signifiers of
the power of the wider institutions or structures)” but also, as they argued, as “material
agents [exerting their own power] within economic networks”.

3.3. Policy Design and Control of Diverse, Complex, Multi-Scale, and Multi-Level SESs

The awareness of the profound role that adequate and congruent policy design and
control of food system sustainability initiatives play in the success of achieving the intended
outcomes is reflected in the European Commission Farm to Fork Strategy [4]. As it states,
“the Commission will make a legislative proposal for a framework for a sustainable food
system before the end of 2023 [to] promote policy coherence at EU and national level,
mainstream sustainability in all food-related policies and strengthen the resilience of food
systems” [4]. In fact, policies tend to be applied at different levels (e.g., regional, national,
municipal, etc.) and “understanding how policies interact either to reinforce one another
or, as is more often the case, confound or act at cross-purposes to one another is important
to identifying policy or decision strategies” [17].

Policy design requires not only a good understanding of the subject system’s policy
actionable drivers (directly or indirectly through incentives) but also of the dynamics
resulting from the systems’ ecological and socioeconomic feedback (in response to those
drivers) and following interactions within and between the system and its environment.
Additionally, to ensure the adequate control and adjustment of an implemented policy,
a comprehensive methodology based on transparent tools and quantitative metrics is
advisable. To get a grasp of the abovementioned dynamics and required control in terms
of a sustainable system’s policy, it is important to understand the challenges involved
in that system’s design. The U.S. Environmental Protection Agency’s Office of Research
and Development identified the following important challenges related to that designing
process: “addressing multiple scales over time and space; capturing system dynamics and
points of leverage or control; representing an appropriate level of complexity; managing
variability and uncertainty; capturing stakeholder perspectives in various domains; and
understanding system resilience relative to foreseen and unforeseen stressors” [83].

Acknowledging that “uncertainties and nonlinearities arising from sudden distur-
bances often result in complex interactions between structures and processes operating
at different scales in the rural SES”, Schouten et al. [84] provided a framework with nine
criteria (diversity, ecological variability, modularity, acknowledging slow variables, tight
feedback, social capital, innovation, different levels of governance, and unpriced ecosystem
services) to evaluate rural development policies’ contribution to rural resilience, consid-
ering future unpredictability and complexity challenges. With this framework acting as
a “first attempt to facilitate the implementation of the results of scientific research on
resilience into rural policy development”, an ex ante assessment of policy objectives was
presented and evaluated with three scores (0 = neglect, 1 = awareness, 2 = explicit aim)
in each of the equally weighted thirteen specifications. These specifications were, in turn,
linked to nine criteria defined regarding the scores of seven spending targets associated
with seven policy documents in a Netherlands case study of an agricultural production
policy transformation into a rural development policy [84]. While this kind of approach
provides us an important broad indication of the adherence of a policy to attributes that
are, in general terms, associated with system resilience, further efforts are needed if we
want to have a tool that allows us to be better informed and prepared in terms of policy
design and control.

Despite the eventually modest impact of the resulting outcomes, particularly consid-
ering the modeling challenges presented by food systems as diverse, complex, multi-scale,
and multi-level SESs, additional steps must be taken if we want to get closer to what is
needed. To properly support policy design and control, we need first an ex ante quantified
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assessment of how a policy is expected to perform, under uncertainty, in what concerns
predefined sustainability objectives. Second, we also need to know how, throughout the
policy’s implementation, we keep ex post evaluating its performance, confronting the
results obtained with the expected ones, and reviewing the underlying model(s) and policy,
as adequate.

Even though the preferred and often more well-suited policy models are small and
simple [85], when dealing with food systems, we tend to be driven toward large and
complex models. Although there are several ways to use these kinds of models, including
possible abstractions and empirically validated data, we must be aware that “without
thorough and systematic analysis of the uncertainty of the problem, we can not be sure that
the results of a model, especially a very large and complex one, mean anything at all” [85].

3.4. Prediction, Intangibles, and Uncertainty

Even though we retain today more knowledge and information than ever before,
no civilization has ever known so little about the future as ours [86]. As mentioned by
Alchian [87], “uncertainty arises from at least two sources: imperfect foresight and human
inability to solve complex problems”. When considering the question of foresight, or ability
to predict, when uncertainty is involved, the most favorable situation (for policy, or best line
of action, assessment purposes) happens when we can identify several possible outcomes,
the likelihood (or probability of occurrence) of each outcome, and the corresponding impact,
as reflected in the probability distribution function for each possible outcome. As such,
the choice of the best action relates to the one whose outcomes’ probability distribution
is considered the best, even though the specific outcome is still unknown [87]. This is the
concept underlying the ISO definition of risk as “the effect of uncertainty on objectives” [88].
However, when we consider more complex processes, the set of potential outcomes (or
future states, with associated net benefits, resulting from the present interaction of a
specific action, or set of actions, with a current state) is often unknown, much less their
probabilities [89]. This is an important distinction that should make us be cautious about
what is meant when referring to uncertainty.

As stated by Knight [90] (cited by Stirling [91]), “a measurable uncertainty, or ‘risk’
proper . . . is so far different from an unmeasurable one that it is not in effect an uncertainty
al all”. The degree of knowledge—unproblematic (U) or problematic (P)—that we have
about the probability (Pr) and of the possibilities (Po) associated with the occurrence can be
reflected in distinct notions involved. Stirling [91] called them risk (U-Pr, U-Po), uncertainty
(P-Pr, U-Po), ambiguity (U-Pr, P-Po), and ignorance (P-Pr, P-Po) while indicating quanti-
tative and qualitative methods to address each of them. Suggesting that “it is the single
definitive representations of science that are most vulnerable to political manipulation”,
he argued in favor of more plural and conditional expert advice [91]. In this context, he
highlighted the importance of looking at the reversibility of adopted paths, the flexibility
of commitments involved, and fostering the integration, articulation, and reconciliation of
different approaches, especially in the case of ignorance, in which “we don’t know what
we don’t know” [91].

In a similar vein, in order to be able “to make good decisions without full knowledge,
but using fully what is known at the time”, it is important, particularly in a context of
great uncertainty, to ponder iterated decision making; this iterated process may allow us
to better leverage the effects of present decisions with the corresponding learning and
added information obtained in support of following decisions [89]. Highlighting that for
environmental management (and in our view, fully applicable to food system management
as well), promising approaches tend to be highly interdisciplinary and used in combination,
Polasky et al. [89] mentioned the following ones:

• Decision theory (use of “available information to make optimal decisions under
uncertainty”);

• Threshold approach (“focusing attention on critical boundaries that have major conse-
quences if crossed” and thus of the utmost relevance to sustainability);
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• Scenario planning (based on “sets of plausible stories, supported with data and
simulations, about how the future might unfold”);

• Resilience thinking (which “focuses on critical thresholds for system performance,
[and] the capacity to adapt [and] transform”).

Some disciplines, such as robust control, have already in place well-established quan-
titative approaches applicable to sustainability science [92]. However, if we want to pay
due regard to uncertainty and to our knowledge gaps—while making the best use of all the
knowledge and instruments at hand—to ensure adequate policy making and management
of food system sustainability, we need to take further steps to quantify our knowledge
and the lack of it. For instance, as illustrated by Ulanowicz et al. [58], information theory
application can play a key role in better understanding and in quantifying what is missing.
Other important aspects that must be addressed relate to: (1) the identification and selection
of the relevant developments that may unfold and affect the system’s sustainability; (2) the
existing uncertainties concerning the probability of occurrence of the associated events;
and (3) the uncertainty about the adopted model.

As such, and first, possible future scenario development is a critical element underly-
ing any predictive model, or models, to be employed. In line with the focus on plurality
recommended by Stirling [91], the key point of scenario planning (previously mentioned) is
not to get the future right but to “allow us to think that any one of them might take place”,
exploring the future with a structured approach based on the identification of driving
forces, predetermined elements, and critical uncertainties [93]. While being aware of the
limits of complex adaptive systems’ behavior predictability, forecasting guidelines derived
from training systems exist that have been experimentally demonstrated and can lead to
better results [94].

Second, when available data or existing understanding do not allow the application
of conventional statistical techniques to obtain probability estimates, the use of expert
judgment information is a key resource to reduce our uncertainty [85]. However, to get
an indication of the reliability of experts assessing probabilities, it is critical that they are
calibrated, in the sense that their assessments of event probabilities correspond to what
empirical evidence reveals [82,85]. While the question of whether subjective probabilities
should be used in formal real-word problem analysis (subjectivists) or not (objectivists)
may still be subject to debate, we would stress the importance of transparency and a clear
description of assumptions, methods, and limitations while making the best use of the
information available and proper value–cost analysis of further uncertainty reduction
initiatives. When assessing the probabilities associated with potential effects resulting from
different circumstances that may affect the system’s sustainability, it is important that we
do not address them in isolation but by adopting an integrated quantitative approach,
as it can be provided by a Monte Carlo simulation considering all the different possible
developments identified, avoiding some of the key pitfalls attributed to commonly used
risk management practices [95], and using empirical information (test or real data) in
connection with Bayesian methods to update calibrated initial estimates [96].

Third, model uncertainty is also an important matter to address, as explored by
Brock et al. [97] in terms of a space of possible models with a specified distance of a defined
base model. Another important point relates to how we address the problems of arbitrary
structure, valuation, ignorance suppression, and lack of legitimacy (in connection with
the stakeholders involved) [98] when using a sustainability indicator. In response to this
issue, Landerrechte et al. [98] presented a probabilistic approach, with an interval of an SD
method, addressing all possible structures, employing economic, social, and environmental
variables, and providing a measurement confidence level.

4. Complexity Sciences’ Contributions to SD
4.1. Articulating the Macro, Meso, and Micro Levels

The challenges related to properly addressing the multiple scales and levels typically
involved in SESs are widely reflected in the literature ([17,18,41,83]). Defining scales as
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“spatial, temporal, quantitative, or analytical dimensions used to measure and study any
phenomenon” and levels as “the units of analysis that are located at different positions
on a scale”, Cash et al. [13] distinguished between cross-scale, cross-level, multi-scale,
and multi-level interactions. Focusing on the situations in which cross-scale or cross-level
interactions may undermine the human–environment system’s resilience, they highlighted
the challenges of ignorance (not recognizing those interactions, considering the complexity
of the system dynamics), mismatch (existing between levels and scales in those systems),
and plurality (not recognizing that the existing challenges are perceived and valued differ-
ently by different stakeholders). As possible responses to these challenges, they suggested
exploring institutional interplay, co-management solutions, and intermediation through
boundary or bridging organizations [13]. Suggesting that simple top-down (too insensitive
to local aspects) or bottom-up approaches (too insensitive to larger problems) are inade-
quate, they stressed the need to face the complexities of a middle path addressing multiple
scales and levels [13]. In connection with this required middle path, it is important to
consider also the potential role that complex adaptive systems can play in tackling it, as
“the complex adaptive social view of world allows us to explore the spaces between simple
and strategic behavior, between pairs and infinities of agents, between equilibrium and
chaos [. . . ]” [99].

The notion of micro, meso, and macro levels, as related hierarchical conceptual el-
ements of system dynamics processes’ theoretical explanation, is reflected in different
disciplines. Reviewing the original micro–macro Coleman Boat diagram [100] as a tool
for social scientific theorizing, Ylikosky [101] suggested that the diagram is flexible, al-
lowing for various macro facts at various levels, with room to introduce the “meso” label
in connection with some of them. With causal claims, linking (macro) social phenomena
that might influence individuals to properties of agents (at a micro level) that produce
(micro) behavioral outcomes, leading to (macro) social facts to be explained, several aspects
were elaborated and presented [101]. Various perspectives are provided in the literature
regarding the micro–macro link in sociology, as addressed by Schillo et al. [102], relating
interhuman behavior, social institutions, and the whole society with the micro, meso, and
macro levels, respectively. In the economics domain, Dofer et al. [103] presented an evolu-
tionary economic analysis framework with a micro–meso–macro architecture, in which a
meso trajectory links the micro-processes to the macro-consequences, with a view of an
economic system as a complex system of rules. Again, however, within the fractal nature of
resilience, as it manifests at various scales, Bergrström and Dekker [104] suggested a frame-
work for resilience studies of the health field, using the meso (organizational resilience)
level, to link the micro (human resilience) and macro (societal resilience) levels.

In line with the previous concepts presented, we use:

• The micro concept to characterize individual agent interactions, with specific and
fine-grain rules, providing detailed levels of description;

• The macro concept to address the higher-level overall aggregations of groups (of
groups) of agents, using whole encompassing and coarse concepts, providing the
more general and abstract level of description; and

• The meso concept to describe the intermediate individual and group of agents’ inter-
actions, using linking concepts related to observed patterns, behavioral regularities,
and shared rules, providing intermediate levels of description built through new
lenses applied to the micro-level interactions and incorporated at the more abstract
macro level.

Underlying the transitions from the micro to the macro is the concept of emergence.
Emergence involves persisting patterns of interactions (despite the turnover of the in-
dividual constituents) at one level of observation that can act as mechanisms (building
blocks, generators, etc.) for persistent patterns at still more complex levels, leading to
regularities, hierarchical organization, and perpetual novelty [105]. Emergence occurs
when “the activities of the parts do not simply sum to give activity of the whole”, i.e., “the
whole is indeed more the sum of its parts” [105].
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A relevant embodiment of the macro, meso, and micro concepts to sustainability
has been provided by Geels [106,107] with a multi-level perspective (MLP) as a “middle
range framework for analyzing socio-technical transitions to sustainability” [107] in which
the views of evolution as “a process of variation, selection and retention” as well as “a
process of unfolding and reconfiguration” are combined [106]. Recent applications of
the MLP—with novel configuration niches (at the micro level) that may change patch-
works of socio-technical regimes (meso level), leading to landscape developments and
transformation (macro level)—to food systems include its use: (1) to study the transition
toward sustainability in the Bosnian agro-food system [108]; and (2) to operationalize the
characterization of food systems’ diversity with the aim of identifying the one with more
promising features in terms of a transition toward sustainable solutions [109].

4.2. The Role of Multiple and Independent Modeling Frameworks

The high levels of complexity and uncertainty that need to be considered in an SES
predictive model recommend that multiple and independent approaches and assessment
perspectives are congregated so that better-informed solutions may be adopted. The many
frameworks that have already been developed illustrate the rich potential that should be
leveraged to model food system sustainability.

Predictive models involve the challenging task of forecasting. The notion that “the
average predictions of forecasters are generally more accurate than the majority of fore-
casters from whom the averages are computed” [110] is quantitatively reflected in the
diversity prediction theorem, which leads to the point that “given any collection of diverse
predictive models, the collective prediction is more accurate than the average individual
predictions” [111]. Multiple and diverse independent predictive models play an important
role in making us more aware of the different perspectives involved and minimizing larger
discrepancies that may be associated with a single model adoption. In particular, and as
sustainability matters tend to involve a significant quantity of stakeholders, it becomes
even more relevant that researchers, as stated by Fiksel [83], “explore the simultaneous use
of multiple models that reflect different interpretations of stakeholder perspectives”.

4.3. The Contribution of Complexity Sciences’ Theories and Tools

As mentioned by Norberg and Cumming [112], complexity theory, providing a trans-
disciplinary, value-neutral body of ideas, could “provide the basis for a quiet revolution in
the theory and management of natural resources”, facing our need to “understand [the]
properties of complex adaptive systems and to develop tools for communication between
scientists, policy makers, and appropriators”. Besides its theoretical key elements, includ-
ing dynamical systems, complex networks, and information theory, complexity science
includes the application of a significant set of powerful tools that could support us to better
tackle the linking aspects between the cross-, and multiple, scales and levels that lie within
the different dimensions of analysis and the granularity levels within them. Juarrero [113]
stated that “only complex dynamical systems theory and its related disciplines and tools
[. . . ] provide the appropriate prism through which interdependent systems such as social
groups can be understood, and coherent, integrated policy recommended”. Despite those
powerful tools at our disposal and the relevance of complexity sciences when dealing with
matters pervaded by multiple agents with nonlinear interdependencies, it is essential to
understand that “the more we know the more we become aware of how much we do not
know” and that “scientific theories do not answer all the questions, because the information
pertinent to many questions fall through the cracks of approximation and modeling” [114].
Additionally, it is also important to stay aware of “the risk of falling prey to [those tools . . .
and], turning scientists into calculators” [114].

As mentioned by Mitchell [115], common properties of complex systems include
signaling and information processing, adaptation (via learning or evolution), and complex
collective behavior, resulting from networks of agents typically following relatively simple
rules, leading to self-organization (not centrally controlled) and emergent (nontrivial



Sustainability 2021, 13, 12408 19 of 38

macroscopic) behavior. Steering complex adaptive systems (i.e., complex systems in which
adaptation plays a more prominent role) requires an understanding of the origin and
coevolution of the involved object boundaries and the matching signals that facilitate the
interactions [116], which are at the core of complex systems behavior. However, studies
tend to focus on the easier collection of data related to the components of a system rather
than capturing those components’ interaction information [117]. The importance of those
interactions is even more striking as they include feedback that “embody context-sensitive
dependencies [leading to the point that those systems] origin and trajectory constrains
their future development and evolution” [113]; that is, complex adaptive systems are
path-dependent and sensitive to their initial conditions.

Besides other complex systems’ related tools, as reflected in diverse literatu-
re [99,118,119], as well as some specific works addressing complexity approaches to sus-
tainability [120], we highlight the potential contribution to the study of food systems that
can be provided by the application of a cellular automaton (CA) and agent-based modeling
(ABM) in connection with multiple other predictive models. Both CA and ABM are simula-
tion methods, usually in the form of computer programs. With the purpose of deriving the
future state of the defined system specification, they have over analytical methods (which
apply reasoning, using logic or mathematics) the ability to overcome these methods’ diffi-
culty, or even the impossibility, to handle complex models, particularly when nonlinearity
is involved in the specification [119]. While a CA represents the interacting space as a
regular grid (typically in one or two dimensions) of cells, with time evolving in a stepwise
fashion, with a common set of shared rules that defines the state of each cell at each time
step based on that cell’s and its neighbors’ previous states, ABM involves automata (agents)
that are more complex in their internal processing and consequent behavior [119].

ABM provides the required freedom of detail to facilitate microsimulation, modeling
heterogeneous agents and interactions at multiple scales and levels, reflecting the system’s
diversity and interwoven nature of the modeled relationships. They can be more easily
designed to address the system’s micro, meso, or macro levels, as well as several, or all,
of them, in an integrated fashion. However, there is always the need for a balancing act
between added predictive power and model complexity, comprehensiveness (related to
transparency), and cost (including the model’s life-cycle management). With the modeling
freedom provided by ABM, come also higher risks of developing overcomplex models
(which should be as simple as possible) and incurring model programming errors that
can be harder to detect and correct. Notwithstanding this, “if there is any one technique
associated with complex systems science, it is agent-based modeling” [118].

Even though ABM tends to be applied to more complex models than cellular automata,
it is important to note that, as shown by Von Neumann, a CA is equivalent to a universal
Turing machine, i.e., capable of universal computation, which is “an upper limit on the
complexity of computation in nature” [115]. The potential and richness of a CA is reflected
in diverse literature addressing mathematical analysis and cellular automata in biology,
physics, computation theory, etc. [121], or even as the base tool for the development of a
new kind of science [122]. An example of a CA-based model for the simulation of plant
population dynamics was provided by Bandini and Pavesi [123].

Several other complexity sciences tools, like the ones related to the study and mod-
elling of complex networks, or fitness landscapes, can also provide important insights to
the study of food systems sustainability. Our purpose should be to bring out the best of all
the available methods and techniques to overcome the existing challenges to quantitatively
characterize the expected outcomes of alternative policies, under uncertainty conditions.
Besides macro-level analysis with stochastic mathematical analysis tools, CA and ABM can
allow us to progressively incorporate in our models, as desired, the steps towards the pecu-
liar, diverse, and nonlinear, nuances that characterize the micro level interactions between
the relevant individual agents. This can be reflected in simpler CA or more elaborate ABM
platforms, including the possible design of agents that interact ‘intelligently’ with their
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environment, leveraging the existing knowledge in the Distributed Artificial Intelligence
domain [119].

ABM platforms can also allow us to incorporate uncertainty in the corresponding
models and run them multiple times to obtain probability distributions, and information
about the confidence levels of the observed outcomes. Even though in a very elementary
and simple fashion, the application of an ABM to the case-study included in the following
section should help gain a better view of this kind of tools modelling potential.

5. Case-Study: Sheep Grazing Policymaking and Management of a Rangeland System

Using the case-study of sheep grazing management, included in previous wor-
ks [49,52,55], the main goal of this section is to illustrate how different computational
approaches and tools can be explored to enquire and assess the sustainability properties of
a system under different scenarios and uncertainty. Due to the nature of this paper, the
reach and depth of this section, when compared to the set of goals previously identified,
is necessarily limited, in terms of the system under study, methodologies and tools used.
Anyway, while different management options are evaluated in this case study, the same
base methodology can be followed when considering policymaking alternatives.

The sheep grazing management system’s relevant study elements are described in
Figure 1 using the concepts of funds, stock variables, services, and flows [49], introduced
in Section 2.4. Using these concepts as the cornerstones of the modelling process allows
the creation of relevant models and experiments from which quantitative insights on
the systems’ sustainability—using Equation (1)—and resilience can be obtained. In the
reminder of this section we present: (i) an illustrative model of a rangeland, (ii) two
different computational implementations and explorations of this model: at macro level,
focusing on the dynamics of the system, and at micro level, focusing on the behavior of
agents in the system and its impact on the system properties, including management driven
meso-level patterns.
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Figure 1. Sheep grazing management system model (funds, stock variables, and service flows). Note:
the relation between variables within a fund, although represented in the figure, is only relevant and
considered at a later modeling stage.

Within the context of the food production realm, the service considered is the supply
of dry matter (DM) equivalents from three different funds (a grass field, silage, and external
sources) to manage a sheep herd in a rangeland. Tables 1 and 2 describe in detail the
components of the system depicted in Figure 1.
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Table 1. Description of funds and stock variables in the sheep grazing management system model.

Fund, Gu Stock Variables, gh
u

G1, grass
Rangeland grazed by sheep and

harvested for silage.

g1
1, crowns and roots. Rangeland crowns’ and roots’
available biomass. Measured in dry matter (DM)

kilogram equivalents available per unit area and epoch.
g2

1, shoots. Rangeland shoots’ available biomass.
Measured in dry matter (DM) kilogram equivalents

available per unit area and epoch.

G2, sheep
Herd to be raised.

g1
2, number of sheep. Herd, measured by the number of

adult sheep in the herd.

G3, silage g1
3, silage reserve. Dry matter (DM) kilogram

equivalents available from silage.

G4, external funds. External funds (e.g., dry pellets) that may need to be acquired for herd
nutritional needs. Modeled in the simplified system as an inexhaustible fund, thus having no

associated variables.

Table 2. Description of services and flows in the sheep grazing management system model.

Services, Wj Flow Variables, wj
x−y

W1, dry matter (DM) equivalents
Provision of the required dry matter
equivalents in order to meet the
herd’s feed requirements.

w1
1−2, grazing. Dry matter equivalents grazed by the

herd. Measured in DM kilograms grazed per unit area
and epoch.
w1

1−3, harvesting. Dry matter equivalents harvested for
silage. Measured in DM kilograms harvested per unit
area and epoch.
w1

3−2, silage consumption. Dry matter equivalents of
silage consumed by the herd. Measured in DM
kilograms consumed per epoch.
w1

4−2, external feeding. Dry matter equivalents of food
from external sources (e.g., pellets) consumed by the
herd. Measured in DM kilograms consumed per epoch.

5.1. Macro-Level Modeling of System Dynamics

Permeating the different definitions of sustainability and resilience, one finds the
concepts of “system state” and “time”, expressed in combination as “duration” or “varia-
tion over time”. A system of ordinary differential equations (ODE) models the system’s
dynamics by describing the variation over time of the system’s variables (the system’s
macro-level variables or state), namely, how their time derivative depends on the variables’
values and system parameters. The dynamics of the sheep grazing management system
depicted in Figure 1 can be modeled at the macro level via the ODE system composed of
Equations (2) and (3).

For illustrative purposes on the possible usage of these tools, we take the grass fund
subsystem represented in Figure 2, which is comparable to the system used in [52]. The
macro variables considered, c(t) and s(t), are the crowns’ and shoots’ biomass values at
time t, corresponding to the grass fund variables g1

1 and g2
1 in Figure 1 that define the state

of the G1 “grass fund” subsystem. Flows w1
1−2 and w1

1−3 are considered in combination via
the total shoots’ consumption in the system.
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The relations between the different variables in Figure 2 are expressed via the system
of ordinary differential Equations (2) and (3). A detailed description and justification for
this system of ODE are provided in [56].

∂c
∂τ

=
.
c = rc·s− c (2)

∂s
∂τ

=
.
s = c·(ac + rs·s)·

( s
s̃

)
− γgh·s (3)

Here, τ is a time unit that in this system is measured in epochs, rc and rs are the crown
and shoots’ intrinsic growth rate, ac is the shoots’ tillering potential, s̃ is the maximum shoot
biomass per area unit, and γgh is the total shoot consumption pressure (from grazing and
harvesting) expressed as a fraction of the available shoots. Similarly to [52], we consider a
constant value for γgh, resulting from a perfectly reactive combined grazing and harvesting
management (in [52], only perfect grazing management was considered, an issue that is
further discussed later within the agent-based model’s topic).

Using appropriate computational tools, the dynamics of the system state (expressed
by its variable values) can be studied. For this paper, we used the phaseR R package [124]
to explore the ODE system under different shoot consumption scenarios.

The values obtained in the ODE system for each point of the system’s state space
characterize the intensity and direction of variation driving it (gray arrows in Figures 3–5,
representing vectors with components

.
c and

.
s). Points in the system state where all the

differential equations in the ODE are zero correspond to stationary points, i.e., where
there is no intrinsic variation affecting the system. These points occur at the interception
of the system’s nullclines. A nullcline is the geometric shape composed of all the points
corresponding to a zero value on one of the ODE equations (see the blue and cyan lines in
Figure 3a), and that usually divides the system space into subspaces with different change
signs (+/−) in the associated variable (see the blue and cyan arrows in Figure 3a).

Depending on their local derivatives, stationary points can be stable, or saddle, points
(a detailed description of these concepts can be found in [51], and its application to a
grazing system in [52]). In the context of sustainability and resilience, these differences are
of paramount importance as any perturbation drives the system state away from a saddle
point, whilst stable points function as attractors within a corresponding system’s basin of
attraction. That is, if perturbed within specified limits, the system will return, after some
time, to the stable point. As mentioned previously, in assessing sustainability and resilience,
the actual values for stable points as well as the amount of perturbation required to take
the system state from one stable point to another or the time elapsed before returning
to the stable point are aspects of capital relevance. Computational implementations and
experimentations of the system ODE can provide answers to these questions.
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Figures 3a, 4a and 5a represent the values taken by these concepts under different
shoot consumption scenarios (for all scenarios, the following coefficient values are used:
rs = 4, rc = 0.1, ac =1, and s̃ = 0.6). In the cases considered, there is one saddle point
(represented as a triangle ∆) and two stable points (represented as squares � and �), one
(�) corresponding to the null/collapsed system state (s = 0, c = 0), i.e., with zero biomass,
and the other (�) to a desirable system state, possibly with enough shoot biomass to
support the herd’s nutritional needs. Figures 3b, 4b and 5b show the system’s trajectory
(represented in blue and yellow, depending on the corresponding stable point) from
four initial states (p1 to p4) represented as circles (o) and the separatrix (represented in
green), separating the basins of attraction associated with the two stable points (�, �) and
including in it the system’s saddle point (∆).
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(a) S and C nullclines and variable variation (blue and cyan arrows), saddle and stable points; (b) system state separatrix
and p1 to p4 initial state trajectories.

Changes in the system’s parameters result in changes in local variation’s intensity and
direction over the system space and, consequently, in its other characteristics. Figures 3–5
illustrate the implications of increasing the total shoot consumption pressure (γgh), notably,
a decrease in the values of the desirable stable point and a shorter margin between it and
the saddle point (which integrates the separatrix). In line with [52] and mentioned in
Section 2.4, the Euclidian distance between the desirable stable point and the separatrix
gives us a measure of system resilience under those parameters, in the sense of precursor
resilience [56]. Informed changes in parameter values can be used to manage the system’s
behavior. To exemplify the notion of recovery resilience [56], we may consider the initial
state p3 and a consumption pressure γgh of 0.81 (Figure 5). By temporarily changing γgh
to 0.73 (Figure 4), we may allow the system to evolve into a state where it gets into the
previous (γgh = 0.81) desirable basin of attraction. For this action (changing γgh to 0.73),
the inverse of the time required (or associated cost, as sheep will have less rangeland grass
during that period) for the system to return to a state within the γgh = 0.81 desired basin of
attraction provides a measure of (recovery) resilience for state p3, under those parameters,
as presented in [55] and mentioned in Section 2.4.

Scenarios where the system state is close to the separatrix draw our attention to the
fact that besides the “deterministic skeleton” of the system behavior provided by the
ODE, another key sustainability element previously addressed (particularly in Section 3.4)
needs to be considered: modeling uncertainty. A mathematical model for considering
perturbations to the system is realized by accommodating those perturbations in sets of
stochastic differential equations (SDE), where changes in the system variables are affected
by a stochastic component [51]. For the running example, the equations governing the
different state variables are rewritten as:

∂c
∂τ

=
.
c = rc·s− c + σ1·

∂W1

∂τ
(4)

∂s
∂τ

=
.
s = c·(ac + rs·s)·

( s
s̃

)
− γgh·s + σ2·

∂W2

∂τ
(5)

Here W1 and W2 are two independent Wiener processes, each one affecting each
of the system state variables with (“noise”) intensity σ1 and σ2, respectively (affecting
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the otherwise deterministic system). The other variables and parameters have the same
meaning as in Equations (2) and (3).

Different realizations of the system dynamics can be obtained using computational
tools, for example, the QPot R package [125] used in this paper. Figures 6 and 7 show
the values obtained in realizations in scenarios with different initial states (so, co) and
“noise” intensities.
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realization parameters: rs = 4, rc = 1, ac = 0.1, s̃ = 0.6, γgh = 0.54, initial state (so, co) = (0.2, 0.2). (a) Variable values
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variables S (C) are represented by the red (blue) line in (a,c) and x (y) axis in (b,d).

In both scenarios (σ1 = σ2 = 0.005 and σ1 = σ2 = 0.105), even with a “high” noise
intensity (σ1 = σ2 = 0.105), the system state evolves toward and stays within a neigh-
borhood around the stability point found in the deterministic skeleton of the system.
Although different noise intensity values lead to significantly different areas and shapes
of the neighborhood due to the distance between the initial and trajectory states to the
separatrix, the high-density areas are around the same attraction point. In a nutshell, the
uncertainty on the future state of the system is “confined” to an area around the attraction
point. In the scenario leading to the realizations shown in Figure 7, we explore the possible
consequences of having an initial system state (so, co) = (0.2, 0.2) closer to the separatrix,
with γgh = 0.54 (see Figure 3b, p3), even under “low” noise intensity, σ1 = σ2 = 0.005. In
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both realizations (Realization #27 and #33), the same parameter values are used. However,
noise alone can lead to quite different system behaviors.

The proximity of the initial system state to the separatrix lead, in Realization #33, even
with a “low” noise intensity (σ1 = σ2 = 0.005), suggests that the system evolved toward
the “null”, zero biomass, stable point. As illustrated in Figure 7, the proximity of the initial
trajectory to the tipping line (separatrix) leads to possible significantly different system
behaviors, even when subject to small disturbances. Running multiple realizations with
the same parameters and time period allows us to assess the probabilities of the system to
stay within the desired basin of attraction throughout the period considered, providing
us a measure of the corresponding sustainability, in line with Equation (1). This was the
methodology used for determining strong sustainability in connection with the rangeland
management system, as later detailed.

A related question refers to the stability of the different equilibrium (or stable) points,
or how much the system must be perturbed to shift between them. One of the metrics [51]
relates closely to the notion of resilience provided by Holling [37] and refers to the concept
of quasi-potentials, introduced in Section 2.4, which allows the assessment of the potential
of each system state with respect to a reference point. Figure 8 shows the results of comput-
ing the quasi-potential, U(s, c), of the system state space using the QPot R package [125]
for two different consumption pressure values. Figure 8a,b show the general aspect of the
quasi-potential (with its saddle and two stable points), whilst the perspective in Figure 8c,d
highlights the quasi-potential difference between the non-null stable and saddle points, ∆U.
As expected from previous results, the scenario with the greater consumption pressure can
be driven out of the non-null stable point to and across the saddle point with lower levels
of disturbance. Using the quasi-potential as a measure of precursor resilience, we can see
that the system with γgh = 0.51 is 9.25 times (52.7/5.7) more resilient than the same system
with γgh = 0.81. The SDE modeling tools and associated computational tools enable the
estimation of the sustainability metric, SA, as defined in Section 2.4. For the simplicity of
the illustration example, a strong sustainability scenario is used considering only the fund
variable, g2

1, shoot biomass. The sustainability condition is that the shoot biomass up to the
time horizon, tk, is always above a threshold value, sth, i.e.,

SA(tk) = Prob
[

g2
1(t) > sth

]t∈[t0,tk ]
(6)
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This quantity can be estimated for different system scenarios (i.e., parameter, initial
state and noise intensity values) by computing the relative frequency of realizations of the
system for which the condition s(t) > sth is met.

In Figure 9 are represented the values of SA(tk) for threshold value sth = 0.35 and
up to a time horizon of 30 epochs (i.e., 0 epochs ≤ tk ≤ 30 epochs). These values were
obtained from 50 realizations of the system with parameters rs = 4, rc =1, ac =0.1, s̃ = 0.6,
γgh ∈ [0.53, 0.83], and initial state (so, co) = (0.45, 0.2).

The following observations from Figure 9 can be made:

• A strong, nonlinear relation between the sustainability and consumption pressure
values (see Figure 9b);

• For the larger values of consumption pressure, the stability point is below the sus-
tainability threshold value, which leads to dramatically low values of sustainability,
even for short time horizons. On the other hand, for the smaller values of consump-
tion pressure of sustainability, it keeps close to one even with long time horizons
(see Figure 9c,d);

• The initial state of the system (with so = 0.45 above the sustainability threshold value
sth = 0.35) provides a “sustainability buffer” for the system for some (even if very
limited) time (see Figure 9c,d).
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5.2. Agent-Based Modeling of System Dynamics

Typically, ODE and SDE models describe the dynamic behavior of the system using
macro-level variables. In our running system, the biomass values of crowns and shoots
refer to their global mean field values for the entire rangeland, and the grazing pressure
on the rangeland results from the entire herd; that is, these are aggregation variables
that consider neither heterogeneity nor individual behavior. On the other hand, agent-
based models, accommodating heterogeneity in different dimensions, as well as specific
individual behavior at the micro level, allow a system to be studied at different abstraction
levels (the micro, meso, and macro levels), as mentioned in Section 4.3.

The running sheep grazing rangeland management system was modeled at the micro
level, with the following features:

• The rangeland of total area A is modeled via Na atomic area units of area a, in a
bidimensional grid;

• Each atomic area unit is defined by its coordinates (i, j) in the grid and their crowns’,
cij(t), and shoots’ biomass value sij(t), at time t;



Sustainability 2021, 13, 12408 30 of 38

• The rangeland field management is based on a sheep grazing patch rotation policy:
(1) the rangeland is divided in Np equally sized patches, each one including Na/Np
atomic area units; (2) at each time the herd is allowed to graze in a single patch;
(3) when the mean value of the shoots’ biomass is below a threshold value, spth, the
herd is moved to the patch with the highest shoots’ biomass mean value;

• The herd is composed of N sheep, with individual behavior;
• Each sheep has a nutritional requirement, bintake, that it tries to meet by grazing in

the current patch consuming shoot biomass until its nutritional requirement is met
or the shoot biomass at its current location (an atomic unit area) is below a threshold
value, smin; in the latter case, the sheep moves randomly within the limits of the
current patch.

Figure 10 shows the values of the crown and shoot biomass values for the individual
areas for different herd sizes at different times.
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(a) N = 35 sheep, 1 epoch; (b) N = 35 sheep, 5 epochs; (c) N = 35 sheep, 10 epochs; (d) N = 38 sheep, 1 epoch; (e) N = 38 sheep,
5 epochs; (f) N = 38 sheep, 10 epochs; (g) N=40 sheep, 1 epoch; (h) N = 40 sheep, 5 epochs; (i) N = 40 sheep, 10 epochs.
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The micro-level model and corresponding variables cij(t) and sij(t) unfold not only
global features (notably sustainability for different herd sizes) but also spatial patterns and
heterogeneity in the rangeland (notably the effects of the sheep’s individual roaming and
grazing behavior and the rotation policy in the rangeland management).

The results from experimenting with the ABM micro-level model can also be used at
other levels of abstraction, namely by considering macro-level variables that correspond to
the aggregation of micro-level features.

In our running example, the mean field values for the crown, c(t), and shoot biomass,
s(t), can be obtained by taking at each time t the spatial average for both variables. To
assess the spatial heterogeneity of the system, the variance for these variables can also
be computed. Figure 11 shows the mean and variance evolution of these aggregation
macro-level variables for three different herd sizes.
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for N = 35 sheep; (c) shoot biomass for N = 38 sheep; (d) crown/root biomass for N = 38 sheep; (e) shoot biomass for
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The ABM simulation results can also be used to study the system at the meso level,
either by extracting and analyzing patterns formed by variables at the micro level (e.g.,
spatial grazing patterns) or by defining and analyzing other system variables that pertain
to this meso level. The “rotation duration” between patches can be used as an illustration
of the latter in the context of the running system.

This agent-based model was implemented in the Netlogo [126] simulation computational
environment with one-day time steps (equivalent to 1/250 of an epoch) with the following
parameters: A = 10 ha, a = 1 m2, Np = 9, spth = 0.30 DMkg, bintake = 1.8 DMkg/day, and
smin = 0.06 DMkg.

Figure 12 presents, for three different sheep population sizes, the evolution of the
number of days the herd grazed in each patch (“rotation duration”). For all the sce-
narios, there is a common period at the beginning of the simulated time (consump-
tion of the shoot “excess” present in all patches), and this is followed by a “normal
regime” where there are clear differences. Of major relevance are the slowly growing
values for the 35-sheep scenario and the decaying values for the other two scenarios,
corresponding to one long-term sustainable and two unsustainable scenarios. Unsus-
tainable scenarios are characterized by decreasing “rotation durations” tending to the
minimum daily rotation period. In the 40-sheep scenario case, this value is reached be-
fore 15 epochs, and the unsustainability of the system is already clearly apparent in the
macro-level variables represented in Figure 11e,f. The 38-sheep scenario is more interesting
as this value is reached before 30 epochs whilst Figure 11c,d showed a slow decay of the
macro-level variables.

In Figure 13, the duration of the simulation is extended to 40 epochs showing the
38-sheep scenario unsustainability of the system beyond 35 epochs. Thus, values close to
one for the meso variable “rotation duration” can be used as an “early warning” for the
approaching collapse of the system.
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It is also important to note that ABM is not the only available tool to study a system at
the meso level as other tools, notably cellular automata, can also be used. In the running
example, each patch could have been represented as a cell in a cellular automaton, with
governing equations similar to the macro ODE or SDE model and interaction between cells
defined by the grazing rotation criterion.

6. Concluding Remarks

In the pursuit of a better understanding of sustainability and its congruent operational
definition, considering also other related concepts, such as resilience and robustness, and
corresponding quantified metrics, a wide range of relevant multiple and transdisciplinary
topics need to be considered. We addressed the notions of weak and strong sustainability,
providing a proposed definition that can encompass both. All this work is seen as essential
to more-informed policy design and control regarding a required transition toward a
sustainable food system. With that aim in mind, we shared challenges faced, insights gained
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from the vast number of developments already undertaken by the scientific community
in this matter, and possible ways ahead to overcome those challenges. As we tried to
convey, complexity sciences’ theory and tools, in conjunction with other multiple and
independent modeling approaches, can play an important role in the most needed move
forward. Besides their capability to model the micro and macro, they can be particularly
relevant in addressing the “middle”, i.e., providing a consistent articulation between the
micro, the meso, and the macro levels that pervade food systems as SESs characterized
by complex dynamics that involve nonlinear interactions at cross- and multiple scales
and levels.

Besides this complexity, and as sustainability essentially pertains to the maintenance
of some attribute, or set of attributes, into the future, we also highlighted the challenges
of prediction in an increasingly uncertain Anthropocene. Despite all these challenges, the
quantified comparison of the models’ projected sustainability results, and corresponding
probability distribution confidence levels, to quantified control measures of the imple-
mented policy solutions should provide management with more adequate instruments to
lead and adjust the process as needed.

Finally, we explored, in a very elementary and simple fashion, a case study to illustrate
the application of several of the concepts previously addressed and the potential benefits
resulting from the use of a system’s micro-agent-based model, together with a macro-level
mathematical model.

Despite the wide ground covered, typical of a transdisciplinary matter, we know
that we are just touching the “tip of the iceberg”. Further research toward food system
sustainability should take the presented concepts and issues to the next level. To this
end, the following research efforts are considered: (1) the conceptual and operational inte-
grated articulation of the different metrics linking resilience (e.g., precursor and recovery
resilience [60]) to sustainability; (2) the conceptualization of possible structures of models
that can provide a useful operational quantified response to connect the micro to the macro
via the meso; (3) the application of the developed concepts and tools, in conjunction with
empirical data and knowledge available, to real-world situations. All these initiatives,
despite how modest may be the contribution provided, should help the design and control
of more informed and congruent sustainability-related policies, in which food systems
are an undisputed priority. In particular, the application of the presented sustainability
and resilience quantified measures to specific food system policy design and control of
real-case situations, within research effort (3), should significantly contribute to the de-
velopment of the conceptual elements mentioned in the other two research topics and to
better identification of the focus of the following steps in the way forward.
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