


 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

“Our greatest weakness lies in giving up.  

The most certain way to succeed is always to try just one more time.” 

Thomas Edison 
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Resumo 

 

O aumento das emissões de gases de efeito de estufa na atmosfera, e os seus efeitos negativos no 

ambiente veio instigar a procura de fontes de energia alternativas aos combustíveis fósseis. Uma das 

soluções que tem vindo a ganhar terreno, é a eletrificação de diversas atividades humanas, tais como 

o setor dos transportes. Esta tendência tem fomentado uma crescente necessidade por 

armazenamento de energia elétrica em baterias de lítio. Saber com exatidão o grau de degradação que 

este tipo de baterias acumula ao longo do seu tempo de vida útil, é uma necessidade que poderá trazer 

vantagens económicas, tanto para as empresas como para os cidadãos. 

O presente trabalho propõe duas perguntas de investigação sobre os veículos automóveis 

elétricos, para responder à necessidade existente: a primeira incide sobre hábitos praticados pelos 

donos de veículos elétricos, que poderão ter um efeito negativo na vida útil das baterias, e a segunda 

sobre fatores que poderão afastar os consumidores da compra deste tipo de veículos. Esta tese 

procurou responder a essas duas perguntas, recorrendo a uma metodologia da área da ciência dos 

dados, e a análise estatística, aplicadas a três inquéritos realizados a proprietários de veículos elétricos.  

Os resultados permitiram concluir que à exceção da variável Ano (Year), todos os outros 

fatores tiveram um efeito marginal na degradação da autonomia real dos veículos. No que respeita 

aos obstáculos à adoção de veículos elétricos, o maior obstáculo encontrado foi o da insuficiente 

cobertura da rede de postos de carregamento. 

 

Palavras-Chave: veículos elétricos, processo de carregamento, comportamento. 

 

  



  



 

v 

 

Abstract 

 

The increase in greenhouse gas emissions into the atmosphere, and their adverse effects on the 

environment, has prompted the search for alternative energy sources to fossil fuels. One of the 

solutions gaining ground is the electrification of various human activities, such as the transport sector. 

This trend has fueled a growing need for electrical energy storage in lithium batteries. Precisely 

knowing the degree of degradation that this type of battery accumulates over its useful life is necessary 

to bring economic benefits, both for companies and citizens. 

This paper aims to answer the current need by proposing two research questions about electric 

motor vehicles. The first focuses on habits EV owners practice, which could harm the battery life, and 

the second on factors that could keep consumers from purchasing this type of vehicle. This thesis 

sought to answer these two questions, using a methodology from data science and statistical analysis, 

applied to three surveys carried out on electric vehicle owners. 

The results allowed us to conclude that, except for the Year variable (Year), all other factors had a 

marginal effect on the vehicles' absolute autonomy degradation. About obstacles to the adoption of 

electric vehicles, the biggest obstacle encountered was the insufficient coverage of the network of 

charging stations. 

 

Keywords: electric vehicles, charging process, behavior. 
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1. Introduction 

 

The central topic of this thesis is aligned with the urgent need to electrify most of the human activities, 

which is an ongoing European and national policy. For example, the European Green Deal of 2020 [1] 

aims to reduce greenhouse gases (GHG) in 2030 to at least 55% of 1990 values. Likewise, the 

Portuguese National Plan for Energy and Climate PNEC 2030 (2019) [1] foresees until 2030 a reduction 

between 45% and 55% in greenhouse gas emissions of 2005 levels and a 20% incorporation of 

renewable energies in the transportation sector. 

Human activities have been emitting considerable amounts of GHG to the atmosphere, notably in 

the last century, from trade to transportation, industry, and even agriculture. The 2021 

Intergovernmental Panel on Climate Change (IPCC) [2] report recently stated with high confidence that 

there is a near-linear relationship between cumulative anthropogenic CO2 emissions and the global 

warming consequences. Therefore, the current living generations must take a decisive step to 

accelerate the transition to power our energy needs with renewable sources. 

Hence, the theme of this thesis focuses on a small part of the bigger problem, the transition to 

electric passenger vehicles. Any energy storage solution developed with optimization could diminish 

the importance of the current lackluster battery capacities. Moreover, this study aims to find the 

critical factors regarding the usage and charging of an electric vehicle (EV) that could most negatively 

influence its battery’s remaining useful life (RUL). 

To tackle this problem and answer its following research questions, which will be detailed in sub-

chapter 1.3.2 below, we adopted a Data Science oriented approach, applying the Cross-Industry 

Standard Process for Data Mining (CRISP-DM) methodology [3]. CRISP-DM was applied to one of the 

available data sources, a dataset with Tesla due to its volume of data. In addition, a more traditional 

exploratory statistical analysis was used on three surveys.  

Additionally, a systematic literature review was performed based on the Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology [4], which focused on 

Machine Learning (ML) classification models, later applied in our analysis. 

Regarding data collection, we started by retrieving data from a public inquiry to Tesla vehicles 

owners. This Tesla dataset was published on Elektrek [5], an electrical news website, on April 14, 2018. 

It depicted a downward trend curve for vehicle degradation that stabilized at a deficit of 10% of battery 

total capacity after one hundred and sixty thousand miles, which was promising news. Furthermore, 

confirming the Elektrek article findings, in early 2020, Tesla Inc. published a report stating their 

batteries would retain 90% of their original capacity after 200,000 miles of usage [6]. 
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Moreover, we applied the CRISP-DM methodology to the Tesla dataset by creating a classification 

model based on the variables available in the raw file obtained by the Elektrek article. The CRISP-DM 

method was adapted to create a labeling model based on the pertinent variables available in the raw 

file. The end goal was to analyze the distinct factors at play when operating or charging an EV.  

Additionally, three surveys were created in the thesis framework and shared online with current 

and prospective EV users to further enrich and diversify the Tesla dataset's answers. Data from these 

three surveys were merged with the Tesla dataset and were subject to statistical analysis with 

Statistical Product and Service Solutions (SPSS) software from IBM. The aim was to uncover valuable 

insight into the satisfaction degree of the current charging network in Portugal. 

The main results from the battery degradation analysis showed that factors like the frequency of 

charging an EV in fast-charging stations, such as the Tesla Supercharger network, might not have a 

measurable impact on battery degradation. Instead, based on the results of this sample, the car’s age 

might be the central factor. Future research could produce more precise and detailed models and 

better explain these factors' impact on car range. 

The statistical analysis results about the EV adoption obstacles allowed us to conclude that the 

insufficient coverage of the charging station network is a critical factor. A second factor is often 

mentioned and has a deterrent role: the cost of recharging at these same stations. 

 

1.1. Motivation 

The electrification of most human activities is nowadays a necessity. It is a crucial action towards 

reducing GHG emissions — targeting the larger goal of decarbonizing human society. The application 

of energy storage technology in the transportation sector, mainly adopted in electric passenger 

vehicles, is a strategic step towards the widespread adoption of this type of mobile technology and the 

subsequent decarbonization of society. This research on lithium-ion batteries aims to know more 

about a subject we understand is not as disseminated as it ideally should be. Also, it aims to collect 

and obtain insights into the most updated state-of-the-art research on the topic and extract 

information from data relinquished by EV (Electric vehicles) owners. This information is expected to 

discuss the satisfaction degree that electric vehicle users have with the current solutions in Portugal, 

potentially repel consumers from purchasing this type of vehicle. 

 

1.2. Problem Description 

In recent decades, the increase of erratic climatic changes has made it crucial to find alternative forms 

of energy conservation to conventional methods, such as fossil fuels, that significantly contribute to 
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greenhouse gas emissions. Therefore, it is of particular importance to adopt these alternatives with 

the utmost celerity. 

Fortunately, actions to reduce GHG emissions have been implemented, even before the covid-19 

pandemic, resulting in CO2 emissions decrease by 1.8 percent, from 2018 to 2019 [7]. The US 

Environmental Protection Agency explains that this result was primarily due to a drop in total energy 

use in 2019 compared to 2018, brought down by fossil fuel emissions reduction. In tandem with GHG 

emissions reduction, an ongoing shift from coal to natural gas (the most GHG-emitting fossil fuel) 

occurs in the energy sector. 

One alternative solution to the burning of fossil fuels in the transportation sector is adopting Li-

ion batteries. This type of battery is currently empowering EVs. Technological improvements have 

been implemented in the last ten years to increase these batteries' energy capacity and efficiency. 

However, because its capacity is finite, any factor that decreases its energy retention ability is crucial. 

The degradation of the energy capacity of this type of battery, which is observed, for instance, in cell 

phones, is one of the main problems faced by energy experts. 

Battery aging is currently a problem that crosscuts all sectors of activity that depend on it now or 

may depend on it soon. The transportation sector is one of the most affected sectors of activity, 

specifically in private vehicles. For example, electric mobility is an emerging, ever-growing mode of 

transport that causes an increased demand for Li-ion batteries in vehicles. However, these batteries 

have a limited useful life and are usually grouped in packs that make them difficult to replace. 

Additionally, the recycling of batteries’ toxic components has proven to be a hazard to the 

environment. Thankfully, there is a growing need to find methods that can extend the life of these 

battery packs to reduce their environmental footprint [8] and find non-toxic elements that can be 

favored in their manufacturing process. 

In the automotive industry, this premature aging of batteries is adverse in two other ways: firstly, 

it limits the range autonomy of the private vehicle. Moreover, it also affects its acceptance and 

adoption by the public in general. Therefore, knowing the exact pace of battery degradation is 

necessary and often motivates information campaigns for technology adoption, academic research, 

and industrial R&D to improve its performance and longevity [8]. 

Future potential owners of vehicles powered by Li-ion batteries are starting to require accurate 

information on how long their vehicle batteries will last [8]. Hence, consumers are interested in 

determining whether it is advantageous to invest in this new technology and pay extra fees for its early 

adoption. 

Battery early aging often depends on the Li-ion battery materials’ chemical composition, namely 

its anode, cathode, and electrolyte. In addition, external factors, such as voltage, discharge intensity, 

temperature, and the number of charging-discharging cycles performed, are also considered 
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important factors. However, the reference literature does not quantify how relevant these factors are 

to the overall battery longevity. For instance, the Tesla manufacturer applies solutions to mitigate 

premature battery aging; all its vehicles have a management system whose primary function is to 

control the battery’s temperature to remain below 55 degrees Celsius [8]. 

However, behavioral factors associated with the operation and charging of electric cars and their 

storage are significantly considered to impact the degradation of batteries [8].  As already observed 

with mobile phones, car batteries are subjected to premature aging if left unused. This concern regards 

that both cases use the same technology and materials. On the other hand, their continued use also 

leads to a progressively shorter service life. May [9] suggest that both technologies' similarities would 

not stop at that point, and the EV would be as prevalent as the mobile phone. May also envisions that 

one day, everyone would be able to have one. 

The evaluation of Li-ion batteries’ performance is still an ongoing process. This technology 

continues to be studied and matured iteratively by the scientific community that seeks different 

methods to measure its capacity, internal resistance, and voltages as well as its influence in charge and 

discharge cycles [10][11][12]. 

According to Yun, [11] the high complexity of practical solutions brings difficulty in measuring the 

variables mentioned above, especially in controlling the internal variables related to the consistency 

of the manufacturing quality of the various components of the batteries. Thus, it becomes necessary 

to assess batteries' health status or State of Health (SoH). 

The SoH of the battery, expressed as a percentage, represents its current capacity in Watts, 

concerning its original capacity. This value weighs various parameters of Li-ion batteries, such as their 

voltage, current, and capacity. Currently, few articles [13][14][15][16][17][18] can accurately predict 

the actual value of SoH.  

There are two types of battery capacity forecasting methods to determine the SoH: model-based 

methods and data-based methods. Model-based methods were always related to the chemical 

composition of batteries, and there is plenty of reference literature available on this subject.  

Regarding data-based prediction models, these sometimes use the parameters referred to earlier 

[13][14][15][16][17][18] to monitor the SoH and forecast the state of the RUL [19][20]. Compared to 

prediction methods based on chemical models, these data-based methods [21] are faster, more 

convenient, and less complex [22]. Moreover, Machine Learning (ML) methods can be used, resulting 

in improving the accuracy of these models. These prediction methods have raised a growing interest 

in verifying the SoH of batteries [23]. 
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1.3. Thesis Objectives 

The challenges humanity faces in sustainable mobility and the current European Union [24] and 

National policies [1] triggered innovative technologies to minimize fossil fuels in transport. To this end, 

intelligent computing techniques, such as ML, are advantageous to achieve this goal. The benefits of 

ML are especially relevant when it comes to alternative technologies such as battery-powered electric 

vehicles. However, this technology’s maturity has not yet been reached, as there is room for 

improvement in the quantity of energy stored and in recharging speed. These two significant 

disadvantages impact the vehicles’ autonomy and the convenience of their users, who may constitute 

additional barriers to their adoption, besides EV prices. 

 

1.3.1. Research Gap 

Regarding the systematic literature review (SLR), it was possible to identify a gap in the current state 

of the art: just a single article [25] refers to the degradation of batteries from the standpoint of EV user 

behavior and battery charging patterns. All other articles mention battery degradation solely from the 

point of view of the electrochemistry field, explaining in detail how the batteries’ components and the 

environmental conditions affected battery longevity. Furthermore, they also mention that Li-ion 

batteries lose capacity depending on the intensity of their use or even lack thereof. These drawbacks 

add to the list of disadvantages mentioned previously, may further deepen EV adoption hesitancy by 

consumers, which is an exciting topic discussed in sub-chapter 4.5.2. 

 

1.3.2. Research Questions 

After reviewing the literature, we found the following gaps: just one paper on battery degradation 

behavioral factors and none on existing dissuasive factors before purchasing electric vehicles that 

might dissuade potential buyers. The following two research questions address these lapses found in 

the reference literature were formulated: 

RQ1: Which behavioral habits from the electric vehicles may negatively impact lithium-ion battery 

capacity? 

RQ2: Which factors might present themselves as a hindrance to the adoption of EV vehicles by 

citizens? 

In Table 1-1, the methodology to answer the two formulated research questions is proposed as 

follows: 
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Table 1-1 - Research question methodology. 

Research Questions Objectives Methodology 

RQ1 -Which behavioral habits 

from the electric vehicles may 

negatively impact Li-ion battery 

capacity? 

OBJ 1 - To determine if there are 

factors in the data sample that 

might influence battery 

degradation. 

CRISP-DM plus 

Descriptive Statistics 

and Content Analysis 

RQ2 - Which factors might 

present themselves as a 

hindrance to the adoption of EV 

vehicles by citizens? 

OBJ 2 - To identify and understand 

user satisfaction and how that 

might hinder the adoption of 

electric vehicles. 

Descriptive Statistics 

and Content Analysis 

 

The two main objectives of this thesis were stated as follows: first to determine if there are factors 

in the sample that might influence battery degradation (by answering the RQ1), and secondly, to 

identify and understand user satisfaction and how that might hinder the adoption of electric vehicles 

by pursuing an answer to RQ2. 

Descriptive statistical analysis in SPSS was the chosen method to obtain a general and exploratory 

overview of the distribution of the several datasets collected and meet the second objective (OBJ2). In 

addition, to fulfill the first objective (OBJ 1), we performed a second analysis based on the CRISP-DM 

methodology due to the higher volume of data present in the Tesla dataset. 

 

1.4. Dissertation Structure  

This document is structured into five chapters as defined in the following structure: 

• Chapter 1 presents the context and the methodological steps taken. 

• Chapter 2 showcases state of the art, which introduces the subject’s present situation. The 

PRISMA systematic literature review method and the VOSviewer bibliometric visualization tool 

are applied in this chapter.  

• Chapter 3 describes the case study and the application of the CRISP-DM methodology to the 

Tesla dataset and discusses the results. 

• Chapter 4 introduces the complementary creation of three online surveys, their objectives, 

targeted audiences, questions made and designed, and the performed statistical analysis. 

• Chapter 5 describes the research conclusions; the limitations found and provides insights for 

future research to improve the CRISP-DM battery degradation model’s accuracy and 

performance.  
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2. Literature Review 

 

The upcoming sub-chapters document the process of our systematic literature survey. Although the 

topic of electric vehicles is recent, there is much interest in it, and as a result, there is plenty of 

pertinent, available literature online. Therefore, it was necessary to employ a systematic analysis 

method to efficiently filter out the works less relevant and highlight the ones most related to the theme 

of the thesis. 

 

2.1. PRISMA Systematic Literature Survey Methodology 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)[4] is a method for 

obtaining literature reviews with systematic and objective results. It is a method where findings can 

be reproduced and verified easily by other researchers. PRISMA is used to write systematic research 

reviews, particularly in the Medicine, Social Sciences, and Exact Sciences areas. 

It thus presents as a set of recommendations followed by authors who wish to publish and report 

comprehensively and transparently how they reached their conclusions at the time of their 

bibliographic research. In other words, the PRISMA guidelines help authors to describe the conducted 

literature work best, findings achieved, and what they are planning to do. 

 

2.2. Keyword’s Identification 

Keyword identification is the first step of PRISMA and was performed by an iterative search for specific 

keywords on the collected articles from the selected repositories. The final set of collected academic 

papers was determined by inserting the following logical query on their databases: 

“Electric vehicle” AND “Predictive model” AND “Aging” AND” Degradation” AND “Battery” OR “SoH.” 

 

2.3. Repositories 

The search for keywords was performed on known academic repositories: Scopus, Institute of 

Electrical and Electronics Engineers (IEEE), and Web of Science.  

IEEE is a repository introduced in 1952 and whose primary focus is the electrical and electronics 

engineering and computer science fields. It publishes roughly 200 peer-reviewed journals and more 

than 1,200 conference proceedings every year. 

Web of Science is a research tool that allows access to repositories containing peer-reviewed 

papers about science, social science, arts, and humanities. It stores papers from the year 1900 to the 

present and encompasses 12,000 journals and 160,000 conference proceedings. 
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Scopus is a database of abstracts and article citations for academic journals. It covers 

approximately 19,500 titles from more than 5,000 international publishers, including 16,500 peer-

reviewed journals in the scientific, technical, medical, and social sciences (including arts and 

humanities) fields. It is available on the web to subscribers. Searches on SciVerse Scopus incorporate 

scientific searches of web pages through Scirus, another Elsevier product, as well as patent databases.  

The same query parameters mentioned in the previous sub-chapter were used on all three 

repositories to get relevant and comparable results. 

 

2.4. Bibliometric Analysis 

We end with a paper set for further quantitative and qualitative analysis: our SLR collection by applying 

PRISMA. This one was structured using the Mendeley reference manager tool [26] to extract papers’ 

metadata and duplicated entries. The following metadata elements were extracted from each 

publication: author’s name, number of publications, publication data, references, and number of 

citations. 

 

2.5. Bibliometric Research Tool 

We used VOSviewer [27] to map and visualize bibliometric networks of the SLR publications. This tool 

allowed us to identify network properties, such as clusters and node centrality, and derive 

characteristics of the SLR papers. These networks were built based on the number of common 

citations, bibliographic coupling, co-citations, and co-authorship relations, visually representing our 

scientific literature survey's bibliographic data. 

 

2.6. Literature Review Results 

 

2.6.1. PRISMA Flow Diagram 

The PRISMA flow diagram in Figure 2-1 Illustrates our SLR process for further quantitative and 

qualitative analyses. In the first step, we identified the publications through a database search, using 

the logical query described previously, resulting in 149 publications (Scopus: 30; IEEE: 69; Web of 

Science: 50).  

The two main factors for selection were papers written in English and published by peer-reviewed 

journals during the last five years, the 2017-2021 period. Additionally, we manually added 12 extra 

papers that proved to be relevant for this paper’s scope. Finally, the research did not include review 

papers, conferences, position papers, and reports.  

In the next step, we removed the exact duplicates. In this case, there were none (n = 0). Afterward, 

we performed vetting of the collected abstracts. In the first review, the methodology excluded articles 
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from our research scope (n = 80). The second review excluded articles not related to prediction models 

(n = 4). Finally, the remaining 47 full texts were read, assessed, and fitted on the research scope. All 

papers were considered and eligible for a systematic review and analysis in the full-text screening 

phase. As such, this eligibility phase excluded a total of zero of such remaining papers.  

 

 

 

 

Figure 2-1 - PRISMA methodology flowchart. 
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The PRISMA flow diagram in Figure 2-1 illustrates our SLR process for further quantitative and 

qualitative analyses. In the first step, we identified the publications through a database search, using 

the logical query described previously, resulting in a total of 149 publications (Scopus: 30; IEEE: 69; 

Web of Science: 50). 

 

2.6.2.  Papers with Full-Text Reading 

Based on the systematic literature review mentioned in the previous sub-chapter, a collection of 47 

academic articles was arrived at and subjected to full-text reading and analysis. The themes were 

closely linked to the chosen keywords. Table 2-1 represents a list of the collected papers and the 

methods used. 

 

Table 2-1 - PRISMA literature review results. 

Title Author Method 

Lifetime of Self-Reconfigurable Batteries 
Compared with Conventional Batteries 
[28]. 

Bouchhima, N., Gossen, 

M., Schulte, S., Birke, 

K.P. 

Semi-empirical aging 

model. 

Hybrid VARMA and LSTM Method for 

Lithium-Ion Battery State-of-Charge and 

Output Voltage Forecasting in Electric 

Motorcycle Applications [29]. 

Caliwag, A-C, Lim, W. Neural Networking State 

of Charge (SoC) 

prediction method. 

Predicting Life-Cycle Estimation of Electric 

Vehicle Battery Pack through Degradation 

by Self Discharge and Fast Charging [10]. 

Singh Ceng, M., 

Janardhan Reddy, K. 

Battery pack SoC 

estimation of self-

discharge simulation.  

State of Health Estimation for Lithium-Ion 

Batteries Based on Fusion of 

Autoregressive Moving Average Model 

and Elman Neural Network [30]. 

Chen, Z, Xue, Q., Xiao, 

R., Liu, Y., Shen, J 

Neural Network 

prediction method. 

Lifecycle Comparison of Selected Li-Ion 
Battery Chemistries under Grid and 
Electric Vehicle Duty Cycle Combinations 
[31]. 

Crawford, A.J., Huang, 

Q., Kintner-Meyer, 

M.C.W., Zhang, J.-G., 

Reed, D.M., Sprenkle, 

V.L., Viswanathan, V.V., 

Choi, D. 

Neural Network State of 

Energy prediction 

method. 

State of Health Diagnosis and Remaining 

Useful Life Prediction for Lithium-Ion 

Battery Based on Data Model Fusion 

Method [32]. 

Cui, X., Hu, T Neural Network 

prediction method. 

Battery Health Prognosis Using Brownian 
Motion Modeling and Particle Filtering 
[33]. 

Dong, G., Chen, Z., Wei, 

J., Ling, Q. 

Particle Filtering 

prediction model. 
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Online State-of-Health Estimation for Li-
Ion Battery Using Partial Charging Segment 
Based on Support Vector Machine [34]. 

Feng, X., Weng, C., He, 

X., Han, X., Lu, L., Ren, 

D., Ouyang, M. 

SoH and SVM prediction 

model. 

Co-Estimation of State of Charge and the 
State of Health for Lithium-Ion Batteries 
Based on Fractional-Order Calculus [13]. 

Hu, X S., Yuan, H., Zou, C 

F., Li, Z., Zhang, L 

SoC and SoH estimation 

model. 

Charging, Power Management, and 
Battery Degradation Mitigation in Plug-in 
Hybrid Electric Vehicles: A Unified Cost-
Optimal Approach [35]. 

Hu, X., Martinez, C.M., 

Yang, Y. 

Battery Management 

System (BMS) estimation 

model. 

State Estimation for Advanced Battery 
Management: Key Challenges and Future 
Trends [36]. 

Hu, X S, Feng, F., Liu, K 

L., Zhang, L., Xie, J. L., 

Liu, B 

BMS estimation model. 

Bayesian Network-Based State-of-Health 
Estimation for Battery on Electric Vehicle 
Application and Its Validation Through 
Real-World Data [37]. 

Huo, Q., Ma, Z., Zhao, X., 

Zhang, T., Zhang, Y. 

Bayesian Network SoH 

estimation model. 

State of Health Estimation for Lithium-Ion 
Batteries Using Empirical Degradation and 
Error Compensation Models [14]. 

Jiang, Y., Zhang, J., Xia, 

L., Liu, Y. 

SoH predictive model. 

Batteries State of Health Estimation via 
Efficient Neural Networks with Multiple 
Channel Charging Profiles [38]. 

Khan, N., Ullah, F. U. M., 

Afnan, Ullah, A., Lee, M. 

Y., Baik, S. W. 

SoH Neural Network 

prediction model. 

Data-Driven State of Health Estimation of 

Li-Ion Batteries With RPT-Reduced 

Experimental Data [16]. 

Kim, J., Chun, H., Kim, 

M., Yu, J., Kim, K., Kim, 

T., Han, S. 

SoH prediction model. 

Reliable Online Parameter Identification of 

Li-Ion Batteries in Battery Management 

Systems Using the Condition Number of 

the Error Covariance Matrix [39]. 

Kim, M., Kim, K., Han, S. SoH prediction model. 

A Practical Lithium-Ion Battery Model for 
the State of Energy and Voltage Responses 
Prediction Incorporating Temperature and 
Ageing Effects [17]. 

Li, K., Wei, F., Tseng, K.J., 

Soong, B.H. 

SoE predictive model. 

State-of-Health Estimation for Li-Ion 
Batteries by Combing the Incremental 
Capacity Analysis Method with Grey 
Relational Analysis [40]. 

Li, X. Y., Wang, Z.P., 

Zhang, L., Zou, C.F., 

Dorrell, D.D. 

SoH and RUL predictive 

model. 

Lithium-Ion Battery State of Health 
Monitoring Based on Ensemble Learning 
[41]. 

Li, Y., Zhong, S., Zhong, 

Q., Shi, K. 

Grey Relational Analysis 

model. 

Optimal BP Neural Network Algorithm for 
State of Charge Estimation of Lithium-Ion 
Battery Using PSO with PCA Feature 
Selection [42]. 

Hossain Lipu, M.S., 

Hannan, M.A., Hussain, 

A., Saad, M.H.M. 

SoC estimation Back-

Propagation Neural 

Network model. 

A Review of State of Health and Remaining 
Useful Life Estimation Methods for 
Lithium-Ion Battery in Electric Vehicles: 
Challenges and Recommendations [43]. 

Lipu, M.S.H., Hannan, 

M.A., Hussain, A., 

SoH prediction model. 
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Hoque, M.M., Ker, P.J., 

Saad, M.H.M., Ayob, A. 

An On-Line State of Health Estimation of 
Lithium-Ion Battery Using Unscented 
Particle Filter [18]. 

Liu, D., Yin, X., Song, Y., 

Liu, W., Peng, Y. 

Neural Networking SoH 

prediction model. 

Modified Gaussian Process Regression 
Models for Cyclic Capacity Prediction of 
Lithium-Ion Batteries [44]  

Liu, K., Hu, X., Wei, Z., Li, 

Y., Jiang, Y. 

Gaussian Process 

Regression model. 

Remaining Useful Life Prediction of 
Lithium-Ion Battery Based on Gauss-
Hermite Particle Filter [45]. 

Ma, Y., Chen, Y., Zhou, X 

W., Chen, H. 

RUL and SoH prediction 

model. 

Battery-Degradation Model Based on the 
ANN Regression Function for EV 
Applications [9]. 

May, G., El-Shahat, A. Neural Network-based 

prediction model. 

Lithium-Ion Batteries Health Prognosis 
Considering Aging Conditions [19]. 

El Mejdoubi, A., Chaoui, 

H., Gualous, H., Van Den 

Bossche, P., Omar, N., 

Van Mierlo, J. 

RUL predictive model. 

A Design-Based Predictive Model for 
Lithium-Ion Capacitors [46]. 

Moye, D.G., Moss, P.L., 

Chen, X.J., Cao, W.J., 

Foo, S.Y. 

A predictive model of 

Capacitors. 

A Neural-Network-Based Method for RUL 

Prediction and SoH Monitoring of Lithium-

Ion Battery [22]. 

Qu, J., Liu, F., Ma, Y., 

Fan, J. 

Neural Network-based 

model. 

Empirical Electrical and Degradation 

Model for Electric Vehicle Batteries [8]. 

Saldaña, G., Martín, 

J.I.S., Zamora, I., 

Asensio, F.J., Oñederra, 

O., González, M. 

Degradation model based 

on actual LG battery cell. 

The Co-Estimation of State of Charge, 
State of Health, and State of Function for 
Lithium-Ion Batteries in Electric Vehicles 
[47]. 

Shen, P., Ouyang, M.G., 

Lu, L.G., Li, J.Q., Feng, X. 

N. 

SoH predictive model. 

Real-Time State-of-Health Estimation of 

Lithium-Ion Batteries Based on the 

Equivalent Internal Resistance [12]. 

Tan, X., Tan, Y., Zhan, D., 

Yu, Z., Fan, Y., Qiu, J., Li, 

J. 

SoH and SoC predictive 

model.  

A Health Monitoring Method Based on 
Multiple Indicators to Eliminate Influences 
of Estimation Dispersion for Lithium-Ion 
Batteries [48]. 

Tang, J., Liu, Q., Liu, S., 

Xie, X., Zhou, J., Li, Z. 

SoH estimation of 

Lithium-ion batteries. 

Fractional-Order Model-Based Incremental 
Capacity Analysis for Degradation State 
Recognition of Lithium-Ion Batteries [49]. 

Tian, J.P., Xiong, R., Yu, 

Q. Q 

SoH predictive model. 

Machine Learning Applied to Electrified 

Vehicle Battery State of Charge and State 

of Health Estimation: State-of-the-Art [23]. 

Vidal, C., Malysz, P., 

Kollmeyer, P., Emadi, A. 

ML-based prediction 

model. 

State-of-Health Estimation for Lithium-Ion 

Batteries Based on the Multi-Island 

Wang, Z., Ma, J., Zhang, 

L. 

SoH estimation of 

Lithium-ion batteries. 



 

13 

Genetic Algorithm and the Gaussian 

Process Regression [50]. 

Remaining Useful Life Prediction and State 
of Health Diagnosis for Lithium-Ion 
Batteries Using Particle Filter and Support 
Vector Regression [20]. 

Wei, J.W., Dong, G.Z., 

Chen, Z.H. 

RUL and SoH estimation 

model. 

State of Health Estimation for Lithium-Ion 
Batteries Based on Healthy Features and 
Long Short-Term Memory [51]. 

Wu, Y., Xue, Q., Shen, J., 

Lei, Z., Chen, Z., Liu, Y. 

Neural Network SoH 

estimation model.  

State-of-Health Prognosis for Lithium-Ion 

Batteries Considering the Limitations in 

Measurements via Maximal Information 

Entropy and Collective Sparse Variational 

Gaussian Process [52]. 

Xiang, M., He, Y., Zhang, 

H., Zhang, C., Wang, L., 

Wang, C., Sui, C. 

Neural Network SoH 

estimation model. 

State-of-Health Estimation for Lithium-Ion 
Batteries Based on Wiener Process with 
Modeling the Relaxation Effect [53]. 

Xu, X., Yu, C., Tang, S., 

Sun, X., Si, X., Wu, L. 

SoH estimation of 

Lithium-ion batteries. 

Novel Lithium-Ion Battery State-of-Health 

Estimation Method Using a Genetic 

Programming Model [54]. 

Yao, H., Jia, X., Zhao, Q., 

Cheng, Z., Guo, B. 

SoH estimation model. 

Remaining Useful Life Estimation of 

Lithium-Ion Batteries Based on Optimal 

Time Series Health Indicator [11]. 

Yun, Z, Qin, W. Bayesian Monte Carlo 

prediction model. 

Capacity Prognostics of Lithium-Ion 
Batteries Using EMD Denoising and 
Multiple Kernel RVM [55]. 

Zhang, C., He, Y., Yuan, 

L., Xiang, S. 

Monte Carlo prediction 

model. 

Remaining Useful Life Prediction for 
Lithium-Ion Batteries Based on Exponential 
Model and Particle Filter [56]. 

Zhang, L., Mu, Z., Sun, C. RUL prediction model. 

Lithium-Ion Battery Remaining Useful Life 
Prediction with Box-Cox Transformation 
and Monte Carlo Simulation [57]. 

Zhang, Y., Xiong, R., He, 

H., Pecht, M.G. 

RUL prediction model. 

Hybrid Lithium Iron Phosphate Battery and 
Lithium Titanate Battery Systems for 
Electric Buses [25]. 

Zhang, X., Peng, H., 

Wang, H., Ouyang, M. 

Novel hybrid battery 

system accounting for 

behavior. 

State-of-Health Prediction for Lithium-Ion 
Batteries with Multiple Gaussian Process 
Regression Model [58]. 

Zheng, X., Deng, X. SoH Grey Relational 

Analysis. 

State of Health Monitoring and Remaining 
Useful Life Prediction of Lithium-Ion 
Batteries Based on Temporal 
Convolutional Network [59]. 

Zhou, D., Li, Z., Zhu, J., 

Zhang, H., Hou, L. 

RUL prediction model. 
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2.6.3. Identification of Research Themes 

The identified journals papers covered a broad spectrum of research fields ranked by importance: 

Engineering, Energy, Computer Science, Materials Science, Chemistry, Physics, and Mathematics, as 

shown in Table 2-2. Again, this demonstrates a broad interest in this dissertation subject across many 

fields of research. 

 

Table 2-2 - Literature review by Publishers and Ranks. 

Journals No. Rank Publisher Country Field 

IEEE Access 25 

 

Q1 Institute of 

Electrical and 

Electronics 

Engineers Inc. 

United 

States 

Computer Science 

IEEE Transactions 

on Industrial 

Electronics 

5 

 

Q1  United 

States 

Computer Science and 

Engineering 

IEEE Transactions 

on Vehicular 

Technology 

4 Q1 Institute of 

Electrical and 

Electronics 

Engineers Inc. 

United 

States 

Aerospace Engineering, 

Applied Mathematics, 

Automotive Engineering, 

Electrical and Electronic 

Engineering 

Journal of Power 

Sources 

3 Q1 Elsevier Netherlands Chemistry, Energy, and 

Engineering 

Journal of Energy 

Storage 

3 Q1 Elsevier Netherlands Energy and Engineering 

IEEE Global 

Humanitarian Tech. 

Conference 

1   United 

States 

Business, Engineering, 

Management, and 

Accounting 

IEEE Transactions 

on Control Systems 

Technology 

1 Q1 Institute of 

Electrical and 

Electronics 

Engineers Inc. 

United 

States 

Engineering 
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IEEE Transactions 

on Transportation 

Electrification 

1 Q1 Institute of 

Electrical and 

Electronics 

Engineers Inc. 

United 

States 

Energy, Engineering and 

Social Sciences 

Journal of Cleaner 

Production 

1 Q1 Elsevier Ltd. Netherlands Business, Energy, 

Engineering and 

Environmental Science 

Mechanical Systems 

and Signal 

Processing 

1 Q1 Academic Press 

Inc. 

United 

States 

Computer Science, 

Engineering 

Renewable and 

Sustainable Energy 

Reviews 

1 Q1 Elsevier Ltd. Netherlands Energy 

      

 

From an initial collection of 149 papers, 47 journal papers were analyzed, including IEEE Access 

(25) and IEEE Transactions on Industrial Electronics (5). As shown in Table 2-2, most journals are ranked 

as Q1-quartile (45), representing 96%, while the remaining (2) are Q3 articles. The five primary areas 

of expertise identified in the analysis were Computer Science, Engineering, Environmental Science, 

Transportation, and Mathematics.  

The 46 selected articles’ publishers originate from two countries, with the most extensive set 

coming from the United States (40), followed by the Netherlands (7). The top publishers identified are 

Elsevier Ltd. (6), Institute of Electrical and Electronics Engineers Inc. (3), the American Institute of 

Physics (1), Academic Press Inc. (1), and SAE International (1). 

  



16 

2.7. Network Analysis and Visualization 

The most frequent keywords used in the titles and abstracts of the articles collected are represented 

in Figure 2-2. Thus, it is possible to assess three distinct groups, in three assorted colors, related to 

different subjects: in red, we show words linked with the theme of forecasting models; in green, the 

keywords related to the second model that refers to the theme of electric batteries, and in blue color, 

the third model associated with the temperature conditions under which the batteries operate. In this 

case, the most relevant topic present in the literature was the “model.” 

 

 

Figure 2-2 – Keywords collected from Title and Abstract fields by the literature review. 

 

In Figure 2-3, we depict the paper´s authors. To have a fitted representation of the authors, we 

did an initial visualization with all 1826 authors. However, the visualization of all the authors showed 

a too dense and complex network, making it hard to visualize. Hence, we selected authors with a 

minimum of 5 published works, resulting in 60 authors. This analysis showed that the scientific 

community is mostly of Chinese origin. Therefore, no filtering on nationality was applied in the papers 

screening. 



 

17 

 

Figure 2-3 - Most central authors in the literature review. 

Figure 2-4 shows the different themes present in the text of the consulted articles. There were 

four distinct themes, highlighted by different colors- a less prevalent theme linked to Electronics. There 

was a second cluster, a slightly more important theme, colored in blue on the theme of ML; the third 

theme colored in green focuses on EVs; and finally, a fourth theme displayed in red on lithium 

batteries.  

 

Figure 2-4 - Keywords co-occurrence in the literature review. 
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In Table 2-3, the most important contributors are listed, coupled with their quartile rank and the 

insight they provided to this paper: 

 
Table 2-3 - List of most important papers and their specific contributions. 

Author Title Rank Contributions 

Qu, J., Liu, F., Ma, Y., 

Fan, J. 

A Neural-Network-Based 

Method for RUL Prediction 

and SoH Monitoring of 

Lithium-Ion Battery [22]. 

Q1 

• Data-driven methods are faster 
and less complex than model-
based methods. 

• ML methods can improve 
model accuracy. 

Saldaña, G., Martín, 

J.I.S., Zamora, I., 

Asensio, F.J., 

Oñederra, O., 

González, M. 

Empirical Electrical and 

Degradation Model for 

Electric Vehicle Batteries [8]. 

Q1 

• Aging depends on the level of 
electrical current, the depth of 
discharge, and the number of 
cycles made. 

• Temperature, current level, 
and cycles are the variables 
that have the most significant 
impact on battery degradation. 

• The driving environment is also 
relevant to battery 
degradation. 

Singh Ceng, M., 

Janardhan Reddy, K. 

Predicting Life-Cycle 

Estimation of Electric Vehicle 

Battery Pack through 

Degradation by Self 

Discharge and Fast Charging 

[8]. 

Q1 
• Rising need to increase the 

working life of battery packs 
used in electric vehicles. 

Vidal, C., Malysz, P., 

Kollmeyer, P., 

Emadi, A. 

Machine Learning Applied to 

Electrified Vehicle Battery 

State of Charge and State of 

Health Estimation: State-of-

the-Art [23]. 

Q1 

• AI and ML have actively 
contributed to an increase in 
research and development of 
new methods to estimate the 
states of EVs. 

• Few studies focus on SoC and 
SoH at negative temperatures. 

Zhang, X., Peng, H., 

Wang, H., Ouyang, 

M. 

Hybrid Lithium Iron 

Phosphate Battery and 

Lithium Titanate Battery 

Systems for Electric Buses 

[25]. 

Q1 
• Novel hybrid battery system. 

• Accounts for driving behavior 
and charging patterns. 
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The most significant contributions retained from this literature review were from authors, such as 

Zhang [25] that proposed a hybrid model of electric buses powered by one Lithium Iron Phosphate 

(LPF) battery and one Lithium-Titanate-Oxide (LTO) battery. When coupled together and under strict 

temperature and voltage controls, these battery types would enable the charging of buses in 20 

minutes at fast-charging stations. In addition, Zhang concluded that buses built with this hybrid battery 

pack would suffer a maximum decay of 20% of their total capacity after eight years of operation until 

they no longer remain viable for service. Finally, he also accounted for behavioral factors like 

charging/discharging cycles in his model [13]. 

Vidal [23] reinforced the importance of applying ML techniques to precisely ascertain the batteries' 

SoH. Additionally, he frequently mentioned very few studies about the battery pack performance 

under cold temperatures. This finding is of notable consequence in, for instance, in colder regions and, 

to a lesser degree, vehicles directly exposed to the exterior elements (i.e., parked outside). 

Saldaña [8] and Vidal [23] also alluded to the essential nature of knowing the rate of battery 

degradation. Furthermore, Saldaña stated that battery endurance depends not only on electro-

chemical factors such as temperature, the degree to which EV users let their packs discharge but also 

on the total number of charging/discharging cycles completed throughout the useful life of the car. 

Finally, he mentioned that the driving environment where the car is used is of great relevance to 

determine how well the batteries will mitigate their decay. 
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3. Data Analytics – CRISP-DM 

 

The Cross-Industry Standard Process for Data Mining (CRISP-DM) [3] is a methodology widely used by 

data science specialists to develop solutions for business problems based on data. CRISP-DM can be 

understood as a cross-industry standard process for data mining. It can transform a company’s data 

into management information and knowledge, appropriate for decision making. 

This methodology was created over 20 years ago due to the need for Data Mining professionals. 

Although several tools can guide these professionals, they fell short in Big Data and its large data 

volume requirements. Thus, CRISP-DM emerged precisely to meet the projects directly involved with 

processing and analyzing a large volume of data. 

Data Mining is part of Data Science, which uses statistics and mathematics as a basis for crossing 

and correlating data, using induction techniques to propose assumptions and solve business issues. 

The CRISP-DM methodology gathers the best practices so that the DM is as productive and efficient as 

possible, analyzing financial data, human resources, production, customer habits, and other data 

sources to propose models for business improvement or problem-solving. It defines a project’s life 

cycle, dividing it into the six stages shown below in  

Figure 3-1, which follows a linear progression. 

It is essential to emphasize the theoretical character of this thesis. The application of the CRISP-

DM phases is therefore limited. For this reason, there are phases of this methodology that are less 

explored than others. 

 

Figure 3-1 - CRISP-DM methodology flowchart. 

  

Business 
Understanding

Data Understanding Data Preparation

Modelling Evaluation Deployment
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3.1. Business Understanding 

The first phase of CRISP-DM aims to understand the entity's primary needs and business requirements 

where the methodology will be implemented. It looks for all the details about its internal organization, 

terminology, marketing strategies, target audience, and available products. The conclusion of this step 

defines guidelines for the steps that will follow, such as the selection, cleaning, and interpretation of 

the information retrieved for the implemented data mining project. In the case of this study, the final 

client is an individual electric car driver. For example, a potential EV car buyer needs estimates of what 

an EV car's range could be. The EV car buyer could be interested in predicting the range of a car on a 

full charge based on its attributes. More precise, he could need the answer to the following business 

questions: 

• Is the battery degrading at a regular or abnormal rate? 

• Which factors had the most impact on said degradation? (RQ1) 

 

3.2. Data Understanding 

The second step of CRISP-DM consists of organizing and documenting all the available data sources 

relevant to the institution or client. This documentation implies the identification of a target audience 

and the selection of sources of data. This stage is an iterative process that switches between searching 

for data sources and the data essential for their selection. It is expected to obtain an extensive dataset 

with the potential of obtaining meaningful information from EV users and about their vehicles. Ideally, 

it would reach a diversity of responses high enough to ensure a comprehensive analysis of the business 

in focus. 

However, in this thesis, the original dataset was obtained through a single source. It came from an 

international news blog called Elektrek [5]. This blog shares a dataset compiling answers to a survey 

from a forum of Tesla users, who registered their range entries and other data in an excel spreadsheet, 

collecting a total of 1425 observations, structured in 43 variables. 

 

3.3. Data Preparation 

The data preparation phase aims to transform the collected data into clean, structured, and integrated 

data. To this aim, we developed procedures with the Python programming language [60] using the 

Jupyter Notebook tool [61]. Our data preparation included the following steps: 

Matching variable formats: normalizing dataset variables with formats (e.g., dates, distance units 

in the Imperial system). Figure 3-2 represents all the variables from the Tesla dataset. Some of them 
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in object format (mostly text ones), which had to be transformed from their original format to a 

numerical form, so this step processes the variables across all observations. 

•  

 

Figure 3-2 - Tesla dataset variables listed by their data format. 

Elimination of blank records: some of the observations from the dataset had missing fields. Figure 

3-3 shows a visual representation of each variable's number of null values. The higher the grey bars, 

the fewer null values its variable has. Given that these missing variables could create bias, leading to 

wrong conclusions, all responses with missing variables had to be excluded from the dataset for further 

analysis.  

 

Figure 3-3 - Total amount of null values per variable, in percentage. 
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Elimination of outliers: when existing variable values were too far from the remaining 

observations, they were considered outliers and needed to be removed. The method used to detect 

outliers was based on percentiles. With the percentile’s method, all data variables outside an interval 

formed by the 5th and 95th percentiles were considered potential outliers and removed. Figure 3-4 

shows an example of detected outliers for the charging frequencies variables, where the deviating 

values are shown in red. 

 

Figure 3-4 - Example of outliers’ identification of the three charging frequency variables. 

Removal of unnecessary variables: the original dataset (with 43 variables) has unnecessary 

variables for this study. Table 3-1 below lists all the variables present in the Tesla dataset, as collected, 

before any data cleaning operations, their data type, exclusion status from the study, and the reason 

behind the exclusion. 

 

Table 3-1 - Listing of all excluded Tesla dataset variables. 

Variable Type Excluded Reason 

Username String Yes 
No other demographic 

information. 

Location String No 
The dataset was too 

unbalanced 

Vehicle manufacture date Date No  

Date of range reading Date Yes No insights were found. 

Model String No  
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Mileage in miles Int No  

Mileage per day Float Yes 
A duplicate variable of Mileage 

in miles 

EPA rated range at 100% charge in miles Int Yes 
No correlations were found 

with other variables. 

Range mode on/off at the time of reading? Boolean Yes 
No correlations were found 

with other variables. 

EPA range after correction if range mode 
was off 

Float Yes 
No correlations were found 

with other variables. 

Did you have a battery replacement? Boolean Yes 
Very few vehicles had their 

battery replaced. 

What happened to the EPA range after 
replacement? 

String Yes 
Excessive number of null 

values. 

At what miles did you replace the battery? Int Yes 
Excessive number of null 

values. 

Mileage in mi after correction if the 
battery was replaced 

Int Yes 
Dependent on battery 

replacement. 

Battery age (days) after correction if the 
battery was replaced 

Int Yes 
Dependent on battery 

replacement. 

Lifetime average energy consumption at 
the time of reading Wh/mi 

Int Yes Irrelevant for this study. 

Rated range of this model when new Int Yes Like variable Mileage in miles. 

Remaining original range Float Yes 
Variable replaced by Average 

Capacity 

Remaining usable Wh capacity until typical 
range shows zero 

 Yes   

Unanswered questions Int Yes Majority of no answers. 

Frequency of supercharging String No  

Frequency of 100% charge String No  

Frequency of almost empty (5mi or less) String No  

Daily charge level Float Yes 
Excessive number of null 

values. 

Daily charge power in watts Float Yes 
Excessive number of null 

values. 

What was the 100% rated range when the 
car was new? 

Int Yes 
Excessive number of null 

values. 

Range mode on/off at the time of reading 
the previous column? 

Boolean Yes 
Excessive number of null 

values. 

Rated range at the beginning of the trip Int Yes 
Excessive number of null 

values. 

Rated range at the end of the trip Int Yes 
Excessive number of null 

values. 

Consumption for this trip Float Yes 
Excessive number of null 

values. 
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Range mode on/off when reading these 
trip numbers? 

Boolean Yes 
Excessive number of null 

values. 

Typical range consumption for the trip Float Yes 
Excessive number of null 

values. 

Typical range after correction if range 
mode was off 

Int Yes 
Excessive number of null 

values. 

Remaining usable capacity until typical 
range shows zero according to trip data 

Float Yes 
Excessive number of null 

values. 

Remaining original capacity Float Yes 
Excessive number of null 

values. 

Trip based battery capacity calculation 
explained 

Float Yes 
Excessive number of null 

values. 

100% range when the car was new after 
range mode adjustment 

Int Yes Dependent on range mode. 

Vehicle age (days) Int No  

Cycles Int No  

Mileage in miles Int No  

Wh/mi to wh/km Float Yes 
The unit conversions were 
made in Python and SPSS. 

Average capacity of all cars at this mileage 
according to chart trendline 

Float Yes Irrelevant for this study. 

Your capacity minus chart trendline at this 
mileage 

Float Yes Irrelevant for this study. 

 

The next step was the merging of the three surveys into a single dataset. As seen in Figure 3-5, 

most vehicles from the sample traveled a few kilometers because the vast majority have a range below 

100,000 kilometers. This occurrence aligns with the fact that most vehicles in the sample are less than 

ten years old. Thus, it is no surprise that the least populated group of vehicles are the vehicles with 

more range, in this case, more than 300 thousand kilometers. In contrast, the most numerous vehicles 

are precisely the group of vehicles with less range, meaning those whose range is below fifty thousand 

kilometers. 
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Figure 3-5 - Car sample range distribution. 

 

Considering the vehicles’ maximum range distribution, it follows a normal distribution (Figure 

3-6). Most of the vehicles in this sample have a range between three hundred and eight hundred 

kilometers. This significant autonomy is explained as most of the vehicles in this sample are Tesla’s 

Model S, a specific model with greater autonomy than most electric vehicles currently on sale. 

 

Figure 3-6 - Car maximum range distribution. 

 

Regarding the distribution of vehicles in the sample by country, the original dataset 

disproportionately represents vehicles from Asia and the Pacific. They are mainly vehicles from 

mainland China. The three surveys conducted aimed to add new vehicles to the sample and thus obtain 

vehicles from other continents/countries with different ages and ranges. However, due to the low 
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participation in the survey, this objective was not successfully achieved. Figure 3-7 below shows the 

sample composition by country. 

 

 

Figure 3-7 - EV vehicles distribution by country. 

 

In Figure 3-7, it is possible to see that the surveys carried out managed to add 103 observations 

to the dataset for the country of Portugal. However, this number was small due to the necessary data 

processing that included, for instance, the removal of outlier values and duplicates. 

After processing the data from the three surveys, we merged the statistical analysis about the 

vehicle distribution according to their range. 

 

3.4. Modeling 

In this phase, ML techniques were applied to the Tesla dataset to understand how several factors 

affected the range of the EVs present in the dataset. It was necessary to take the following steps to 

know which variables affect a car maximum range with a full charge: 

Classification analysis: Several ML supervised classification algorithms from the Scykit-learn 

package [62] were employed to classify which of the included variables influenced the cars’ maximum 

range on a full charge, addressing the first research question (RQ1). The objective of these classifiers 

was to label the current range that each car had against the original range value announced by their 

respective manufacturers. A new discrete variable called “Degradation” was created, containing two 

labels: “Normal” and “Abnormal.” These two labels represented the batteries' degree of energy 

capacity loss in a percentage of the original maximum range. Degradation levels lower than 10% were 

labeled as “normal” and higher than 10% as “abnormal.” The 10% threshold was used based on the 

Canada 3.18%
49

Portugal 6.68%
103

Netherlands 0.06%
1

USA 15.82%
244

UK 0.84%
13

Asia and Pacific 73.41%
1132

Distribution of Vehicles by Country



28 

Elektrek article claiming that 10% was the average capacity degradation of EVs after 160,000 miles [5]. 

The following ML classification models were chosen to perform the labeling task: 

• K-Nearest Neighbours (KNN) [63] 

• Logistic Regression [64] 

• Naïve-Bayes [65] 

• Support Vector Machine - Linear (L-SVM) [66] 

• Support Vector Machine - Radial (R-SVM) [67] 

These models were selected because they are low-complexity models, and as such, they should 

generalize better when dealing with small datasets. Since the Tesla dataset is a small dataset with just 

1425 observations, the decision boundary of complex models such as Decision Trees or the Random 

Forest would change wildly. As a result, the results from those more complex models would have high 

degrees of variance. Simpler models such as those chosen above perform better as they have more 

minor degrees of freedom. 

Following best practices from the literature [68], each classification model was preceded by a split 

of the original dataset into a training set and a test set (the split chosen was 80% - 20%, respectively) 

so that fitted models could be evaluated, regarding their performance and compared using a confusion 

matrix. 

Cross-Validation: An iterative cross-validation technique [69], employed to compare model 

performance, obtain the best model, and avoid overfitting [70]. Overfitting happens when a model 

obtains near-perfect scores after being trained with known training and testing sets but cannot make 

accurate predictions when using new data. In our case, the training set was split into ten smaller equal 

sets. A model was trained using nine sets as training data and judged its results against the tenth set. 

Then, a loop was created to switch the testing set between all ten sets. The average of the values 

computed in the loop reports the global performance of the model. 

 

3.5. Evaluation 

The evaluation phase aims to evaluate the results of the labeling process defined in sub-chapter 

3.4. First, the cars’ current range was checked to see if the vehicles retained more or less than 10% of 

the initial total battery capacity. Afterward, the classification models and the cross-validation 

technique labeled the vehicles with an abnormal or regular decline. Finally, the factors that had the 

most negative impact on the batteries were pinpointed, answering research question 1 (RQ1). 

Generally, the models’ performance presented accuracy results ranging between 57% and 62%. 

Table 3-2 shows the models’ accuracy and their standard deviation to classify the degradation rate 

of the vehicles. The accuracy values were calculated using the formula shown in Equation 1, which is 
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the sum of true positive (TP) and true negative (TN) values, divided by the sum of true positive, true 

negative, false positive (FP), and false-negative (FN) values. 

Table 3-2 - Training Accuracy results from Cross-validation. 

Classifiers Median Standard Deviation 

K-Nearest Neighbours 0.57 0.07 

Logistic Regression 0.69 0.11 

Naïve-Bayes 0.59 0.08 

L-SVM 0.59 0.11 

R-SVM 0.62 0.11 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 1 - Accuracy formula. 

The two best-fitted models identified using cross-validation are highlighted in italic. The key 

takeaway from the cross-validation evaluation results was the Logistic Regression and the Radial 

Support Vector Machine (Radial SVM). These were the two best performing models from the group, 

having reached 62.84 and 61.75% median accuracy, respectively, for the labeling task. Moreover, it 

demonstrates that from the 500 observations (vehicles), the best classification model, the Logistic 

Regression, correctly guessed 62.84% of the degradation labels.  

At this point in the analysis, each independent variable's weight over the dependent remains 

unknown to answer research question number one (RQ1). However, Table 3-3 below does just that, 

showing both the weight and significance of each variable. 

Table 3-3 - Degradation - Coefficients of the independent variables. 

Degradation Regression Coefficient Chi-Squared p-Value 

Country 0.384 4.52 0.052 

Year 2.191 12.6 0.037 

Maker 0.137 0.03 0.1839 

Model 0.012 0.01 0.982 

Freq. Fast -0.02 0.90 0.814 

Freq. Full 0.09 0.55 0.555 

Freq. Empty 0.027 0.28 0.370 

Mileage .0586 0.10 0.627 

Max Range 0.061 0.88 0.837 
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From the table above, it is possible to conclude that there were two predominant variables: the 

Year and Country. Furthermore, these two predictors seem to have positive and strong correlations 

with the dependent variable Degradation. Lower values for the Year variable correspond to older 

vehicles, and an “Abnormal” value of the Degradation variable, meaning a higher than usual degrading 

of the battery. 

Although insignificant, there seems to be a correlation regarding the variable Country, possibly 

due to this dataset's imbalance. It contains a large volume of vehicles from Asia and the Pacific regions. 

However, it would be necessary to have more data to draw more elaborate conclusions to explain this 

phenomenon. As for the remaining variables listed, there seems to be no relationship between them 

and Degradation.  

In conclusion, the variable variables Year was the most impactful factor on the rate of degradation. 

However, none of the behavioral factors were significant, which is the answer we could reach to 

answer the RQ1 (Which behavioral habits from the electric vehicles may negatively impact lithium-ion 

battery capacity?). For this reason, we expand the dissertation in Chapter 4 to include another 

methodology to try to find new insights with new data. 

 

3.6. Deployment 

In the deployment phase, knowledge extracted from the data is delivered and applied. From this 

moment, the processes within the organization might be changed or new products created. The ML 

classification algorithms were the final prototype. They aimed to determine which behavioral habits 

from the EV drivers negatively impacted the Li-ion battery capacity of the cars, answering research 

question 1 (Which behavioral habits from the electric vehicles may negatively impact Li-ion battery 

capacity?). 

The chosen models allowed us to gather and label the degree of battery degradation in two 

categories and get a general sense of the degradation trend of all vehicles. For the entities to whom 

this study is aimed, i.e., the owners of EV vehicles, this information can be crucial because it sheds light 

on the current rate of degradation of their car batteries and anticipates the need for future 

maintenance events, such as a complete battery replacement.  
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4. Surveys 

Following the work and analysis done in the previous chapters with the Tesla dataset, we conducted 

three surveys to find the habits of electric vehicles drivers. However, after evaluating the results of the 

CRISP-DM methodology, we concluded that this methodology partially answered the RQ1. 

Furthermore, after cleaning its data, we had to work with a dataset that was reduced to a third of its 

original size. Thus, we decided to obtain more data through surveys to seek more confident 

conclusions drawn from a dataset with a more significant number of observations. 

4.1. Survey Creation 

 These questionnaires were developed in either Portuguese or English languages, depending on their 

target audiences. The surveys were created on Qualtrics [69], a survey software tool, and comprised 

an introduction for the study objectives and its scope and the questionnaire. Unfortunately, personal 

data from the respondents was scrubbed from the database following the European Union General 

Data Protection Regulation [70]. Overall, all three surveys had in everyday choice eleven multiple 

items,  three of which on a Likert scale, scored from 1 to 8 (1 - Never; 2 - Once or twice a year; 3 - A 

few times a year; 4 -  Monthly; 5 - Twice a month, 6 - Weekly, 7 - Twice a Week and 8 - Daily).  

In the first survey, the target audience was members of the Portuguese Association of Electric 

Vehicle Users (UVE - Utilizadores de Veículos Elétricos) [71]. This institution’s mission is to promote 

electric mobility and inform the public about the use of electric vehicles. This association plays an 

essential role in the success of the adoption of electric vehicles in Portugal. It has a thousand associated 

members, and for this reason, it was considered a potentially attractive data source.  

At the suggestion of my supervisors, we contacted a representative of the association to better 

understand its mission and possibilities of cooperation. Since there was an agreement between their 

mission and the purpose of this work, we requested them to disclose the survey on their associates' 

loading and parking habits. 

The survey's decision to disclose to this group was taken because the original dataset only had 

Tesla vehicles. With the contribution of this community, we aimed to obtain more recent data on the 

same types of vehicles. Likewise, the Tesla survey, the UVE survey, was shared in the last week of 

February 2021, two months available to collect responses, resulting in 54 valid responses. 

The second survey reached a more international and broader audience of Tesla drivers to 

complement the original dataset for this study that included Tesla vehicles only. Most of the Tesla 

vehicles of this group were mainly from before 2017 and exclusively Model S vehicles. In order to 

minimize this sample imbalance of Tesla Model S vehicles, an attempt was made to diversify the data 

by querying specific Tesla fan groups to get a more diverse and newer sample of new Tesla models 

owners. The aim was to get responses from owners of the newer Model 3 vehicles, which have 
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improvements to their range from previous generations, and some occasional responses from Model 

Y owners, the most recent model released in early 2020, before the CoVID-19 pandemic. The second 

survey’s target audience comprised the Reddit online platform subscribers, namely the TeslaMotors 

[72] and TeslaLounge [73] Reddit subgroups. By the end of February 2021, the first Reddit group 

mentioned had about one million subscribers (equivalent to the Cyprus population), and the second 

group had around thirty thousand subscribers. Due to the international nature of the previously 

mentioned Reddit groups, the Tesla survey was done in English. Therefore, some of the original 

questions were removed, such as inquiring about the EV car manufacturer. This step was necessary 

since these two Reddit group forums were exclusive for fans of Tesla vehicles.  

The TeslaMotors group had strict publication rules, prohibiting the sharing of surveys within their 

group. For this reason, this specific survey was limited to the Tesla Lounge group only. On the other 

hand, a few questions were added to the Tesla survey. An example was an additional question 

regarding the distance units used by the car. Some car owners were originally from the United States 

of America, so this specific question was added to cater to them. This survey was created at the end 

of February 2021, two months available, and resulted in 30 valid responses. 

A third survey was created and shared with subscribers of the Portuguese magazine DECO-

Proteste [74], a magazine in Portugal. This magazine has a leading role in informing and advising 

consumers in Portuguese about the quality and price of various types of services and goods marketed 

in Portugal. The DECO survey was created because of the identified need to obtain more diverse data 

and more participation. In addition, this survey was more extensive and sought to obtain answers on 

electric batteries and the degree of satisfaction that current EV owners have about the charging 

infrastructure operating in Portugal. There was a suspicion that the charging network's coverage would 

hinder the massification of electric vehicles adoption by the public. 

The dissertation supervisors contacted a representative of DECO, a journalist, and scheduled an 

interview. Their objective was to raise DECO awareness on the relevance and growing international 

interest that this topic has sparked. Before the interview, we had preparation meetings to discuss the 

specific questions and details of the survey, tailoring them specifically to DECO’s userbase. As in the 

previous surveys, the DECO canvas was also created with the Qualtrics platform. The inquiry was tested 

on its quality, length, and conciseness.  

The survey had the following requirements: it had to be in Portuguese to satisfy DECO’s readers; 

had to be shared on an online link due to the ongoing Covid pandemic; user anonymity needed to be 

assured by The Qualtrics platform by not registering the answerers’ IP addresses; the questionnaire 

had to be completed in eight or fewer minutes for the user convenience and be answerable on both 

desktop and mobile devices, to assure access. After the requirements were met, we had a meeting 

with DECO. The DECO survey was done after the previous two and published on the last week of March 
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2021, with availability through a link. This link was open until the date of writing this thesis (June 2021). 

This survey yielded ten valid responses, despite being available online for more time and published in 

a national reference magazine. 

During the past months, several efforts have been made to circumvent the scarcity of data. The 

publication of an article by DECO magazine, coupled with a link to the survey, was an excellent 

opportunity to populate and diversify the replies of the original dataset. At the same time, it served 

the purpose of raising awareness in society on this subject. The objective was to obtain a substantial 

number of answers that could lead to more solid conclusions, which it managed to accomplish, but 

with modest results. 

 

4.2. Survey Shared Questions 

The three surveys followed the same structure process, created in different stages of our research. The 

surveys had different total numbers of questions, sharing eleven common questions. These common 

questions were tailored and matched among all three questionnaires to enable future comparisons 

and aggregations. The list below shows the eleven common question items, written as variables, with 

the following reasoning behind their inclusion: 

Country - This was a critical variable, which was included mainly due to the international nature of 

the Tesla survey with responses from foreign users. It is a nominal qualitative variable, which was a 

simple list of countries. We did not expect a direct relationship between the country of a vehicle and 

its anticipated range. 

Year - A continuous quantitative variable, included due to the need to distinguish different versions 

of identical electric vehicles. Its values ranged from the year 2010 to 2021. It was expected that this 

variable would find a direct relationship between the age of a vehicle and increasing battery 

degradation. 

Maker - The carmaker was a nominal qualitative variable, including the non-exclusive Tesla 

surveys, such as the UVE and DECO surveys. 

Model - A nominal qualitative variable, which collected data specific to each electric vehicle model. 

Like the previous variable, it is qualitative and nominal. It simply distinguishes different models so that 

each car manufacturer is not treated as a homogeneous group. It was expected that different models, 

even from the same car brand, had different behavior. 

Freq. Fast - This categorical qualitative variable gave the respondent the chance to give one of 

eight answers, following the Likert scale (answers ranged from 1 to 8, where 1 means a sporadic event, 

and eight a recurring occurrence). This variable asked people about the frequency with which they 

charged their vehicle at a fast public charging station. In Portugal, fast-charging stations have power 

delivery exceeding the 22 kW mark [75]. 
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Freq. Full - A categorical qualitative variable adopting the same Likert scale as the previous 

question. This question asked people how often they charged to the maximum charge their vehicle 

battery would allow. It was expected that the vehicles frequently charged beyond 80% up to their 

maximum capacity would have worse results in their range [76]. 

Freq. Empty - A categorical qualitative variable, with a Likert scale of eight answers, like the 

previous two questions. This question asked electric vehicle owners how often their vehicle battery is 

discharged below the ten percent charge threshold. The purpose of including this variable was to 

assess how this discharging practice could negatively impact the battery charge [76]. 

Charging Place - This was a nominal qualitative variable that asked people where they recharged 

their vehicles. Charging options included their garage, a condominium garage or a box, public charging 

stations, or a company’s station. This variable was expected to explain in part whether vehicles parked 

outside, and therefore exposed to more significant variations in ambient temperatures, had a more 

remarkable degradation of their maximum range. 

Parking Place - The Parking Place variable sought to capture the different solutions that electric 

vehicle owners have found to park their vehicles during the day when they are not on the road. The 

purpose of this question was to find a relationship between the vehicles being parked and a 

conjectured degenerative effect on their batteries’ longevity since lithium-ion batteries do not fare 

well in extreme temperatures. 

Mileage is a nominal, continuous variable that measures the vehicles’ current range, measured in 

kilometers. This variable was expected to have an inverse relationship with vehicles’ range. 

Max Range was a continuous nominal variable representing the maximum range of electric 

vehicles, measured by their owners and expressed in kilometers. This variable was used as a dependent 

variable. Through linear regressions, attempts were made to find relationships between it and all the 

previously mentioned variables.  

It was questioned if the frequency of charging and vehicle age variables would impact the 

maximum range, at the very least. This assumption would translate into a significant diminishing effect 

on the vehicle range. 

In Chapter 3, the data cleaning process reduced the Tesla dataset from 1,425 initial responses to a 

small sample of 500 useable observations. This lower number of observations was the outcome of the 

removal of null values and outliers. Due to the shortage of useable observations and alternative data 

sources, it was necessary to conduct additional surveys to provide more data and substance to the 

conclusions. 

Based on our literature review, a gap in state of the art was identified: very few articles 

[8][25][77][78] referred to the degradation of batteries from the point of view of electric vehicles user 

behavior. In most cases, articles only mentioned the point of view of Electrochemistry. It is known that 
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lithium batteries lose capacity depending on their use, or even if they are not in use [79]. These 

drawbacks might constitute a barrier to the adoption of electric vehicles by EV users. 

 

4.3. Survey Unique Questions 

Some surveys had to include specific questions tailored to their different target audiences to their 

purposes: 

 

UVE survey - this survey was prepared thinking of a national public that is more familiar with the 

reality of Portuguese charging stations. Thus, their specific questions were more related to 

satisfaction with the current service provided by the various charging stations. In addition, it tried 

to know their enthusiasm for a possible expansion of the network through financing a charging 

station in the garages of their condominiums. Therefore, the questions included were as follows:  

• What are the biggest obstacles you face when loading? 

• Indicate the degree of satisfaction with the following charging options for Electric Vehicles. 

• How do you see the possibility of having a shared charging system in your condominium's 

garage with personal consumption accounting (through the condominium account)? 

• How much would you be willing to pay to install a charging system that would make your day-

to-day easier? 

• How much would you be willing to pay for the monthly fee for a charging system that would 

make your day-to-day easier? 

• How do you see the possibility of having a shared charging system in your company's garage 

with personal consumption accounting (through the company's account)? 

• How often do you take the following types of trips? 

 

Tesla survey - the Tesla inquiry was aimed at an international audience. For that reason, there was 

a high probability of getting responses from American respondents. Hence, the Tesla survey included 

the following question to lead respondents to answer in their favorite measurement system: How 

many Miles/Kilometers does your car have, roughly? Later unit conversions were done in Python and 

SPSS. 

 

DECO survey - the DECO survey sought to obtain responses from a wider audience, both from 

enthusiastic and experienced users of electric vehicles, as well as from people who have never tried 

them. He also tried to capture their feelings and beliefs about this type of vehicle, particularly the 

advantages and disadvantages. The following questions were more opinionated than the reports of 
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their habits or the counting of kilometers traveled with their vehicles, as in the previous surveys: 

• Do you have an electric vehicle? 

• Have you ever driven an electric vehicle? 

• What are, in your opinion, the main advantages of a 100% electric vehicle? 

• Indicate your degree of agreement on each of the following statements: 

o EVs are quieter than other vehicles 

o EVs have a great acceleration 

o EVs are environmentally friendly because they produce zero direct emissions 

o The cost of charging an EV is less than the fuel cost of internal combustion vehicles 

o EVs cost the same as ICE vehicles 

o The technology of electric vehicles has improved, and now they have a much longer 

range 

o Charging EVs is difficult 

• What is the probability that the next vehicle you buy will be an electric vehicle? 

• Please indicate the importance you place on each of the following factors when purchasing an 

Electric Vehicle: 

o EV environmental benefits 

o EV performance 

o EV looks 

o Number of available charging stations 

o Operating costs 

o Charging costs 

o EV maximum range 

o EV purchase cost 

o Ease of buying a second-hand electric vehicle 

• What is the maximum charging time you consider acceptable in an electric vehicle (in hours)? 

• How far must an electric vehicle be able to travel on a single charge for you to consider buying 

one (in kilometers)? 

 

 

4.4. Surveys Data Cleaning and Merging Process 

The methodology for processing these three datasets in SPSS followed a set of steps before the 

analysis. Like the process done in Chapter 3, when the original dataset was cleaned with Python 

procedures. The following steps were performed: 
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Standardization of units and formats: Values of dates and distances appear in different units. This 

step focused mainly on the conversion of variable Mileage from the Imperial system to the metric 

system. 

Variable Type adjustments: Importing some variables into SPSS resulted in data type errors. It was 

necessary to manually adjust its type according to nominal, categorical, and continuous data. 

Elimination of null records: Some of the observations from the original dataset had missing fields. 

These cases were excluded from the dataset. 

Removal of outliers: some values were too far apart from the others, hence the need to remove 

them. Like the data cleaning done in Python, the outlier removal process adopted the sample 

percentiles technique. All observations outside the interval formed by the 5th and 95th percentiles 

were considered potential outliers and removed. 

 

4.5. Results and Discussion 

The results obtained from the three conducted surveys were focused on two research questions: RQ1 

- “Which behavioral habits from the electric vehicles may negatively impact lithium-ion battery 

capacity?”, and RQ2 - “Which factors might present themselves as a hindrance to the adoption of EV 

vehicles by citizens?”. The results of both research questions are presented in this sub-chapter using a 

similar methodology, performed with the SPSS tool owned by IBM and dedicated to statistical analysis. 

 

4.5.1. Battery Degradation – All Surveys 

This sub-chapter aimed to respond solely to RQ1 – “Which behavioral habits from the electric vehicles 

may negatively impact lithium-ion battery capacity?”. After studying the distribution of variables, an 

analysis was made on how the various variables influenced the continuous variable Mileage. Then, 

using the SPSS program, a linear regression was performed. According to the specifics of the problem, 

this is a suitable approach to measure future values from a continuous variable. Linear regression is a 

primary type of regression in ML. It needs a predictor variable and a dependent variable (Mileage) 

linearly related to each other and involves using a best-fit line. Linear regression is instrumental in this 

case because the variables are related linearly. Therefore, the more significant the effect of charging, 

the greater the battery degradation effect. Also, since the linear regression analysis is susceptible to 

outliers, it should not analyze big data sets. However, this dataset had few observations after being 

cleaned of outliers, so it should not pose any problems. 

Table 4-1 shows that many variables have a positive relationship with the dependent variable, 

Mileage. Those variables were Country, Year, Maker, Charging Place, Freq. Full and Parking Place. Their 

Unstandardized B values are positive, which seems to confirm a positive correlation between these 

and the independent variable. 
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Table 4-1 - SPSS coefficients with all variables. 

Model 
Unstandardized 

B 

Coefficients Std. 

Error 

Standardized 

Coefficients Beta 

t Sig. 

(Constant) -57,621.02 22,213.14  2.59 0.14 

Country 18.19 28.67 .080 .63 0.53 

Year 28.63 11.02 .482 2.60 0.014 

Maker 7.25 3.60 .28 2.01 0.05 

Model -0.54 4.63 -.02 -0.13 0.91 

Charging 

Place 
6.26 8.60 .10 0.73 0.47 

Freq. Fast -12.15 9.88 -.14 1.23 0.23 

Freq. Full 6.29 6.37 .11 0.99 0.33 

Freq. Empty -5.93 7.13 -.10 -0.83 0.41 

Parking 

Place 
27.34 17.14 .18 1.60 0.12 

Mileage 0.00 .00 -.07 -0.38 0.70 

 

However, there is a smaller group of variables, Model, Freq. Fast and Freq. Empty that is inversely 

proportional to the Mileage variable. This result meant that the more prominent the values of these 

variables are, the less range the car is likely to travel. In addition, these variables are not significant 

due to their p-values (listed on the Sig. column) being higher than 0.05, and because of it, we must 

reject the null hypothesis. The null hypothesis is the opposite assumption we want to prove (these 

variables explain the dependent variable Max Range). Since the p-values of these variables are higher 

than 0.05, we cannot assume they correlate with the Max Range metric. Finally, the variable Year had 

enough significance (0.014) to confirm our hypothesis. This outcome seems to hint that the older a 

vehicle is, the more likely it is to have less range available on a full charge. The model’s effectiveness 

was analyzed, considering all the variables, as shown in Table 4-2 below. 

 

 

  



 

39 

Table 4-2 - Model Summary - Max Range model. 

Model Summary 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate 

1 0.799a 0.639 0.529 102.81 

a. Predictors: (Constant), Mileage, Model, Freq. Fast, Freq. Full, Parking Place, Freq. Empty, 

Charging place, Maker, Year. 

b. Dependent Variable: Max Range. 

 

The Max Range variable was the dependent variable, while the remaining ones acted as independent 

variables. By employing a linear regression method, results were obtained and expressed in Table 4-2. 

It shows that the ten independent variables can obtain a result of R Squared of 63.9%, meaning these 

variables explain almost two-thirds of the Max Range variability. 

The model summary results shown in Table 4-2 did not account for each variable's weight on the 

model and achieved such a high level of performance. This lack of detail is because it treats all variables 

as a homogeneous group. A new analysis of variance (ANOVA) test was done to determine the relative 

weight of each variable, which considered the variation of the R squared value. This way, it was 

possible to discover the change in R Squared for each predictor. All was done without the need for 

extra computation and fitting every variable on a single model.  

Table 4-3 below shows in the Sig column the individual importance each variable had. It is vital to 

mention that concerning the significance of the variables studied, the Maker variable has not proven 

to be significant on the variability of the Max Range variable. However, the Maker variable reached a 

value of 0.52, above the significance 0.05 threshold, as shown in Table 4-3 below. 

 

The R Square Change column displays the change in R Square resulting from a new predictor (or 

block of predictors). It highlights the reduction in the explanatory power of the model if each of the 

variables is removed. It is a helpful way to assess the unique contribution of new predictors (or blocks) 

explaining variance in the outcome. In the case of this sample, the most impactful variable was the 

Year.  
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Table 4-3 - Analysis of Variance - ANOVA 

ANOVA b 

   Sum of Squares df Mean Square F Sig. 
R Square 
Change 

 Subset Tests Country 4,253.93 1 4,253.91 0.40 0.53a 0.004 
  Year 7,1381.45 1 7,1381.47 6.75 0.01a 0.074 
  Maker 4,2770.42 1 42,770.43 4.05 0.05a 0.044 
  Model 145.61 1 145.68 0.01 0.91a 0.000 
  Charging place 5,592.27 1 5,592.26 0.53 0.47a 0.006 
  Freq. Fast 15,981.43 1 15,981.48 1.51 0.23a 0.017 
  Freq. Full 10,310.09 1 10,310.14 0.98 0.33a 0.011 
  Freq. Empty 7,315.59 1 7,315.58 0.69 0.41a 0.008 
  Parking Place 26,985.23 1 26,985.24 2.55 0.12a 0.028 
  Mileage 1,548.56 1 1,548.59 0.15 0.70a 0.002 
 Regression  616,605.59 10 61,660.56 5.83 0.00c  
 Residual  348,797.27 33 10,569.61    
 Total  965,402.87 43     

a. Tested against the entire 
model. 

      

b. Dependent Variable: Max Range      

c. Predictors in the Full Model: (Constant), Mileage, Model, Freq. Fast, Freq. Full, Country, Parking 
Place, Freq. Empty, Charging place, Maker, Year. 

 

4.5.2. EV Adoption Obstacles – UVE and DECO Surveys 

The UVE and DECO surveys were carried out to understand how satisfied respondents were with 

electric vehicles. The objective of this sub-chapter was to obtain data and to answer the second 

research question, RQ2 – “Which factors might present themselves as a hindrance to the adoption of 

EV vehicles by citizens?”. 

A demographic analysis of the people surveyed was carried out. Ranging from Figure 4-1 to 

Figure 4-4 show visualization of the demographic distribution results. Most people that responded to 

the survey were male, representing 77% of the responses. 
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Figure 4-1 - Gender distribution of survey respondents. 

 

Concerning age distribution, Figure 4-2 shows that nearly two-thirds were between 40 and 59 

years old. The second-largest group was young adults aged between 26 and 39 years old. Lastly, adults 

over 60 years of age represent 14.29% of the total respondents. 

 

 

Figure 4-2 - Age distribution of survey respondents. 

 

The following distribution was obtained regarding the household size of the people surveyed, 

shown in Figure 4-3. First, the majority, comprising more than half of the responses received, referred 

to people whose households had three or more members. Secondly came households with two 

elements per household, and finally, people living alone. Therefore Figure 4-3 may indicate a need for 

more than one vehicle per household, confirmed in Figure 4-4. 
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Figure 4-3 - Total family members per household. 

 

As expected, more people per household is equivalent to more vehicles per household. Figure 4-4 

corroborates this assumption: a majority between homes with two and three vehicles and a small 

minority of households with only one vehicle. 

 

 

Figure 4-4 - Number of vehicles owned by the household. 

 

This survey showed that the public is becoming sensitive to environmental issues. For instance, in 

a multiple-choice question on the main advantages of an electric vehicle, the most voted answer (23) 

was the Environmental advantage (Figure 4-5). The second most selected answer was the low 

operating cost that an EV has. These results are encouraging because they suggest a will for EV 

adoption and savings opportunities for the consumer. Opposite to this trend, a minority of nine people 

responded that EVs do not have any advantage over internal combustion vehicles. 
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Figure 4-5 – Perceived main advantages of an electric vehicle. 

 

Figure 4-6 below reports the main difficulties that current electric vehicles users face during the 

daily operation of their vehicles. The most frequent problem was the great distance to the charging 

stations (public and private networks). It indicates a significant deficit in national infrastructure. 

“Range anxiety” is a frequent problem mentioned by the scientific community [80][81], referred to as 

a source of stress due to the combination of reduced autonomy with inefficient charging stations 

network. 

Secondly, the high cost of charging in these stations was indicated as an obstacle. However, the 

surveys' results make it impossible to confirm what price would suit Portuguese consumers. Also, it 

was not identified which charging network was the most expensive. 

 

 

Figure 4-6 - Main obstacles identified by UVE users while charging an EV. 

Thirdly, 14.71% of the users indicated the impossibility of charging EVs at their workplace.  It 

suggests that companies still resist transitioning to electric vehicles and providing the necessary 
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charging infrastructure to their employees. Instead, companies should provide electric charging 

stations in their parking areas. This suggestion is appliable to Municipalities that should provide 

charging stations in adjacent car parks to office buildings. Other inconveniences, such as condominium 

issues, were reported regarding the lack of available features to install charging stations in Portuguese 

condominiums. 

The most preferred charging locations by UVE members are presented below in Figure 4-7. Half 

of the respondents preferred to make their charging from home. Considering the sizable distance 

between charging stations previously mentioned (Figure 4-6) and an inefficient national charging 

coverage network, this preference for home charging is not surprising. The second largest group 

preferred to charge on the public networks, such as Mobi.E that has a greater expression in the 

country. 

 

 

Figure 4-7 - Preferred charging locations. 

 

There is a preference for collective solutions, such as loading at the firm (8.82%) and the 

condominium garage (4.41%). However, these solutions still show low levels of adherence. The least 

used solution is charging in a private network (2.94%), with few users. The Tesla network, an example 

of a private grid, has very few charging stations in Portugal. For example, when this thesis was done, 

there was no Tesla charging stations operating in the country’s two main cities, Lisbon and Oporto. 

Despite that, it has eight stations that allow the country's crossing from end to end with Tesla vehicles. 

Drivers' driving habits can perhaps explain the preferred use of charging at home. Most drivers 

travel short distances. Figure 4-8 below shows that most drivers (61.76%) make daily trips less than 

50m in length that might be the commuting route from home to work. For this reason, in the survey, 

most expressed the need to have a charging station close by, and in the absence, they preferred to 

charge their vehicles at home. 
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Figure 4-8 - Frequency of trips up to 50 Km per daily. 

 

Regarding the users’ satisfaction with the existing charging solutions, the consumers’ preferences 

are represented in Figure 4-9. In first and second places are Mobi.E network (20.41%) and its Miio 

application (19.39%), an optional service, followed by the recent charging network of the Continente 

group and by other undifferentiated service stations not belonging to any of the leading suppliers 

(16.33%).  

Figure 4-9 below represents users and their degree of satisfaction with the country's different 

available charging station networks. Again, most users were disappointed with the quality of the 

charging stations networks, and only a tiny minority is happy or does not use them at all. 

 

  

Figure 4-9 - Degree of Satisfaction with the available charging solutions. 
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Below 7% are the least popular options in this study: the Tesla-branded charging network, private 

charging solutions at home, collective garage solutions, workplace solutions, or startup 

ChargeSurfing’s app. 

There is a relationship between the number of charging stations that a network has available to 

its customers and its popularity: the Mobi.E network, the most popular solution, has 2390 charging 

stations in mainland Portugal [13], the most significant number of stations per network. In addition, 

there is also their proprietary application, the Miio app, which allows users to locate charging stations. 

Furthermore, the Miio app informs users in real-time about whether the station is available or has any 

impediment, such as breakdowns or users occupying the station. In addition, the application allows 

the user to make payments and integrates all steps in the same platform as an extra convenience. 

Respondents' second most popular option is the Continente network, the solution with the second 

broadest national coverage, with roughly 27 charging stations operating throughout the country, 

strategically installed next to Continente supermarkets. 

Tesla’s network has the lowest coverage of all the networks listed and has only eight 

superchargers operating in the country. This number of Tesla chargers might seem low, but the spacing 

between them is enough to drive across the country, both transversely and longitudinally. Plus, Tesla 

has a network of partner stations compatible with Tesla vehicles, called Destination Chargers, usually 

located in hotels and supermarkets to complement the superchargers, but with the added drawback 

of providing a lower voltage and, thus, a slower charging speed. 

 

4.5.3. Potential for Expansion – DECO Survey 

DECO asked us to include a different subject in our study, tangential to this dissertation’s topic and to 

document the respondents’ answers: EV owners’ opinion regarding the current service provided by 

the Portuguese EV charging networks, their acceptance of future network coverage expansions, and 

an overall improvement of the user charging experience. These different topics do not aim to answer 

any of the two research questions. Instead, they were included as a compromise to get our survey 

published to their subscriber base. 

Regarding the attractiveness of the existing network expansion, Figure 4-10 shows that most 

survey participants expressed a very high interest in having a shared charging system installed in their 

condominium’s garage. All that had a positive feeling were added to this first group. People with a 

favorable opinion represent most reported cases, meaning they had a greater interest in adopting this 

domestic solution. However, the second biggest group voiced no significant interest in receiving this 

technology for unspecified reasons. It could probably be because of this offshoot of people charging 

their EV cars elsewhere, other than their homes/condominiums. Still, it is worthy of mentioning the 



 

47 

interest this solution raised among the respondents. Furthermore, it tried to quantify this interest in 

costs for users. 

 

 

Figure 4-10 - Importance given to a shared charging system in the condominium’s garage. 

 

Another common topic among respondents was the importance that people gave to charging 

stations in the vicinity of their homes. In Figure 4-11, most people responded very positively to this 

question, suggesting a need to be fulfilled to potential buyers of EV. It confirms the previous Figure 

interpretation that EV owners of this sample are charging their vehicles more at any charging station 

near the condominiums. This outcome indicates considerable interest in the expansion and 

densification of charging networks, notably in public roads. 

 

 

Figure 4-11 - Importance of nearby available charging stations. 

 

Next, people were asked what monetary amount they would consider acceptable for installing a 

charger in their condominium garage, regardless of other existing factors. Most respondents (46%) 
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replied that they would not accept to pay any amount. This response had a dominant expression and 

was expected when the survey was launched. However, these answers may be related to multiple 

factors that the DECO survey did not predict, such as the economic situation of respondents or simply 

a pure lack of interest in the announced solution. Thus, we are interested in analyzing the people 

willing to pay for this service, representing 54%. A smaller group of 31% declared they would accept a 

one-time expenditure of up to 200 euros, and a more favored minority declared willingness to pay 

above 1,000 euros, as shown in Figure 4-12. 

 

Figure 4-12 - Amount accepted for the installation of chargers. 

Nevertheless, the installation of a charger is just one of the expenses involved. It is also necessary 

to account for the monthly cost of its everyday use. This cost is a monthly fee that each owner must 

pay for the service maintenance. The following survey question, “How much would you be willing to 

pay for the monthly fee for a charging system that would make your day-to-day easier?” responses 

show that most people do not want to pay again for this service. Only a third of people declared they 

would accept to pay a monthly fee, according to the distribution made in Figure 4-13. 

Furthermore, only 5% would agree to pay more than €40 extra per month. This reluctance in 

spending makes it challenging to accept the service as a first step.  

 

Figure 4-13 - Acceptable monthly fee for the installation of a charger. 
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Following this descriptive statistical study, a search was done between all variables for strong, 

positive, and statistically significant correlations.  To this end, a few correlations were found that can 

attest to the potential and market to expand the current EV station coverage. 

The first correlation found was between the Indoor/Outdoor variable, a new variable created 

through feature engineering, and the variables Importance: of EV maximum range, Agreement: 

Charging EVs is difficult, and Importance: number of charging stations. 

The Indoor/Outdoor variable expresses in percentage the probability that the user prefers to 

charge at public stations rather than at home. Values of this variable closer to zero represent a greater 

appetence to charging the car with solely domestic solutions (wall chargers at home or the 

condominium). In contrast, values closer to 1 represent the probability of using domestic, public, and 

private charging solutions. 

In  

Table 4-4, the model summary compares the dependent variable Indoor/Outdoor against all its 

predictors. SPSS reached an R Squared value of 0.444. This value means that the model had a positive 

and moderate correlation and can explain 44.4% of the variability between its independent and 

dependent variables. 

 

Table 4-4 - Model Summary -Usage of outdoor charging solutions and obstacles found. 

Model Summary 

Model R 
R 

Square 
Adjusted R 

Square 

Std. Error of 
the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Change df1 df2 

Sig. F 
Change 

1 0.667a 0.444 -1.222 1.63299 0.444 0.267 3 1 0.852 

a. Predictors: (Constant), Importance: EV maximum range, Agreement: Charging EVs is difficult, 
Importance: number of charging stations 

 

By analyzing variance (Table 4-5), the model reached a significance or p-value of 0.012, a value 

below 0.05, which confirms it is statistically significant. A value of 0.012 signals evidence against the 

null hypothesis (that the variables are not correlated), as there is less than a 5% probability of being 

correct. Therefore, the null hypothesis is rejected, and the alternative hypothesis is accepted (the 

dependent and independent variables are correlated). 
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Table 4-5 - Analysis of variance - Outdoor charging solution usage. 

ANOVA a 

Model Sum of Squares df Mean Square F p-value. 

1 

Regression 2.133 3 0.711 7.267 .012b 

Residual 2.667 1 2.667   

Total 4.800 4    

a. Dependent Variable: Indoor/Outdoor charging 

b. Predictors: (Constant), Importance: EV maximum range, Agreement: Charging EVs is difficult,  

Importance: number of available charging stations    
 

After a few more experiments, we found another correlation between a dependent variable 

Importance: having a shared charging system, and the following variables as independent ones: Age 

distribution, Agreement: Charging EVs is difficult, Agreement: EV charging cost is low, Frequency of 

trips between 50 and 100 Km per day, Frequency of trips up to 50 Km per day, Frequency of trips with 

more than 100 Km per day, Gender distribution, Importance: EV maximum range, Importance: 

operating costs, Importance: operating costs, Maximum acceptable charging time for an EV (Hours), 

Number of elements per household, Minimum range in kilometers to consider buying an EV and lastly 

Number of vehicles per household. With this selection of independent variables, this model obtained 

an R Squared of 69.0%, suggesting a positive and strong correlation, as shown in Table 4-6 below. 

 

Table 4-6 - Model Summary - Shared charging system. 

Model Summaryb 

Model R 
R 

Square 
Adjusted 
R Square 

Std. Error 
of the 

Estimate 

Change Statistics 

R Square 
Change 

F 
Change df1 df2 

Sig. F 
Change 

1 0.831a 0.690 0.450 1.317 0.690 2.867 14 18 0.019 

a. Predictors: (Constant), Number of vehicles per household, Frequency of trips between 50 and 
100 Km per day, Maximum acceptable charging time for an EV (Hours), Frequency of trips up to 50 
Km per day, Gender distribution, Agreement: Charging EVs is difficult, Frequency of trips with 
more than 100 Km per day, Agreement: EV charging cost is lower, Number of elements per 
household, Importance: operating costs, Age distribution, Minimum range in kilometers to 
consider buy an EV, Importance: EV maximum range, Importance: charging costs 
b. Dependent Variable: Importance of having a shared charging system in the condominium's 
garage with individual consumption accounting (through the condominium account)? 
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 As with the previous model, it is necessary to analyze its variance to determine whether the 

results of the surveys are significant. In addition, we need to know whether we reject the null 

hypothesis (whether the predictor elements explain the dependent variable) or not. The results of this 

analysis are shown in Table 4-7. 

 

Table 4-7 - Analysis of Variance - Importance of having a shared charging system. 

ANOVAa 

Model Sum of Squares df Mean Square F p-value. 

1 

Regression 69.667 14 4.976 2.867 .019b 

Residual 31.242 18 1.736   

Total 100.909 32    

a. Dependent Variable: Importance of having a shared charging system in the condominium's 
garage with individual consumption accounting (through the condominium account)? 
b. Predictors: (Constant), Number of vehicles per household, Frequency of trips between 50 and 
100 Km per day, Maximum acceptable charging time for an EV (Hours), Frequency of trips up to 50 
Km per day, Gender distribution, Agreement: Charging EVs is difficult, Frequency of trips with 
more than 100 Km per day, Agreement: EV charging cost is lower, Number of elements per 
household, Importance of operating costs, Age distribution, Minimum range in kilometers to 
consider buying an EV, Importance of EV maximum range, Importance of charging costs 

 

As shown in Table 4-7, the analysis of variance obtained a p-value of .019, and therefore below 

0.05, which allows us to confirm that this model has a positive, strong, and significant correlation. 

It is possible to gauge which variables had the most significant weight in the correlation found. 

Studying the coefficients represented in Table 4-8 makes it possible to determine which variables are 

most important. However, only two variables from this model were statistically significant, with a 

significance value below 0.05. These variables were: Agreement: EV charging cost is lower and 100 Km 

per day and Frequency of trips with more than 100 Km per day. 
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Table 4-8 - Coefficients table - Importance of having a shared charging system. 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Correlations 

B 
Std. 

Error Beta 
Zero-
order Partial Part 

1 (Constant) -5.693 5.288  -1.077 0.296    

Agreement: Charging 
EVs is difficult -0.319 0.259 -0.199 -1.233 0.233 -0.270 -0.279 -0.162 

Importance: charging 
costs 0.752 0.776 0.269 0.968 0.346 0.382 0.222 0.127 

Importance: EV 
maximum range -0.242 0.514 -0.117 -0.471 0.644 0.045 -0.110 -0.062 

Maximum acceptable 
charging time for an EV 
(Hours) 0.059 0.137 0.103 0.429 0.673 0.113 0.101 0.056 

Agreement: EV charging 
cost is lower 0.593 0.230 0.465 2.577 0.019 0.435 0.519 0.338 

Importance: operating 
costs 1.033 0.791 0.357 1.307 0.208 0.443 0.294 0.171 

Minimum range in 
kilometers to consider 
buy an EV 

-0.001 0.002 -0.119 -0.605 0.552 -0.286 -0.141 -0.079 

Frequency of trips up to 
50 Km per day 0.204 0.265 0.114 0.771 0.451 -0.068 0.179 0.101 

Frequency of trips 
between 50 and 100 Km 
per day 0.009 0.138 0.012 0.068 0.946 0.075 0.016 0.009 

Frequency of trips with 
more than 100 Km per 
day 0.275 0.126 0.327 2.185 0.042 0.429 0.458 0.287 

Gender distribution 0.178 0.708 0.047 0.251 0.805 -0.110 0.059 0.033 

Age distribution -0.185 0.515 -0.068 -0.359 0.723 -0.143 -0.084 -0.047 

Number of elements per 
household -0.062 0.425 -0.025 -0.146 0.886 -0.241 -0.034 -0.019 

Number of vehicles per 
household 0.107 0.425 0.050 0.253 0.803 -0.221 0.060 0.033 

a. Dependent Variable: Importance: having a shared charging system in the condominium's garage with individual 
consumption accounting (through the condominium account)? 

 

Therefore, this allows us to state that respondents' importance to having a joint charging system 

is even more significant as they agree that EVs are cheaper to use than internal combustion vehicles. 

Moreover, this seems more critical; the greater the frequency of trips a person makes corresponds to 

a longer distance of more than 100 kilometers a day. 
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5. Conclusions 

 

This thesis aimed to identify the main behavioral factors that impact lithium-ion battery performance 

by studying human actions when interacting with EVs. Based on the three surveys created and an 

approach backed by the CRISP-DM methodology, it was possible to conclude that charging and parking 

habits are negligible at best and might even be irrelevant to the decay of batteries. Furthermore, 

charging habits did not negatively impact the batteries’ longevity. The results from the CRISP-DM 

methodology have shown that the cars’ increasing age (variable Year) was by far the most significant 

variable. Vehicles that were regularly fully charged did not display significantly lower Max Range values 

than the other vehicles that avoided that practice. To this end, we answered the RQ1 by identifying 

the vehicle’s release year as the determining factor for battery degradation, but no behavioral habits 

play a meaningful part in the decay. 

The second research question, RQ2 - “Which factors might present themselves as a hindrance to 

the adoption of EV vehicles by citizens?” focused on the need for mass EV acceptance in society. Its 

objective was to establish the factors that might be present and hinder EV adoption by citizens. To this 

end, the respondents of the three surveys were asked questions to measure their degree of 

satisfaction with the current electrical charging network, identifying the main obstacles they 

encountered, and measuring their acceptability in funding the installation of smaller chargers in their 

condominiums garage. The results from the statistical analysis showed the following points: first, the 

Mobi. E network was the preferred station network by the EV users. Secondly, a small portion of the 

EV userbase was willing to fund the installation of chargers in their condominiums’ garages. Third, the 

importance of sharing a charging system in the condominium is correlated with the frequency of 

making long-range trips above 100 Km. Finally, the main obstacle mentioned was the poor coverage 

by public and private chargers, followed by their high charging cost. This last finding allowed us to 

answer RQ2 directly. 

Table 5-1 summarizes the conclusions reached by this dissertation and identifies which 

methodologies applied allowed us to answer the research questions. 
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Table 5-1 - Summary of research questions findings. 

Research Question (RQ) 
CRISP-

DM 
Survey 
Tesla 

Survey UVE Survey DECO 

RQ1 - Which behavioral habits do EV drivers 
take that more negatively impact lithium-ion 
battery capacity 

Variable 
Year 

Variable 
Year 

Variable Year Variable Year 

RQ2 - What are the factors that present 
themselves as barriers to the adoption of EV 
vehicles? 

  

• Poor charging 
station 
coverage 

• High charging 
costs at 
stations 

 

Extra objective - Determine the acceptance of 
EV charging network expansions/funding a 
charger in the condominium 

   

Positive 
reception to 

both 
questions 

 

5.1. Contributions 

This paper sought answers to the two main research questions: RQ1 - “Which behavioral habits do EV 

drivers take that more negatively impact lithium-ion battery capacity?” and RQ2 - “What are the 

factors that present themselves as barriers to the adoption of EV vehicles?”. The two questions were 

answered by analyzing the Tesla dataset and the three questionnaire results. Holistically, in the scope 

of the Tesla dataset comprised of 1.400 vehicles, the factors determined to be the most critical 

predictor factor of battery decay were the vehicles’ age (variable Year). The research allowed us to 

verify that all the factors under study have a marginal effect on the total autonomy of the vehicles. The 

correlations found were positive but not very significant.  

Regarding the disadvantages of EVs that discourage potential buyers from purchasing them (RQ2), 

it was shown in Chapter 4 that the most significant variable for this disappointment was the high 

distance between charging stations. 

Concerning the literature review conducted in Chapter 2, the work clarifies that just one scientific 

paper [25] quantified the battery degradation from the drivers’ charging and operating habits of this 

type of vehicle. Most of the papers collected by employing the PRISMA methodology were centered 

around the Electrochemistry field of expertise. These studies focused primarily on physical factors the 

batteries were subjected to, such as voltage, materials composition, and the varying range of 

temperatures  

During the research, it was possible to reach several conclusions that challenged some initial 

questions we had. First, the question of a higher frequency of using a fast-charging station harms the 

vehicle’s range was questioned. Likewise, the assumption that the frequency with which drivers let the 
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batteries charge to 100% or discharge below 10% would each hurt autonomy was also challenged. For 

the sample studied, these two theories seem to have had no adverse effect on battery autonomy. The 

effect of these three categorical variables (Freq. Fast, Freq. Full, and Freq. Empty) was unexpected, as 

it was anticipated that they would affect full range to some degree of significance. Instead, the values 

of these three variables in this sample seemed to disprove that belief. Finally, the idea that Li-ion 

batteries in EVs degrade in the same way as cell phone lithium batteries after a few years pass by or 

after a few hundred cycles are completed seems to be refuted. Additional evidence on this will be 

needed to draw definitive conclusions. 

On the other hand, the research allowed to state that the price of EVs is the main factor preventing 

the purchase of these types of vehicles (RQ2). However, while the price is a vital factor since EVs and 

ICE cars have not yet reached price parity, it was found that there were other factors at play, 

specifically the EV's short-range and the high distance between charging stations. These observations 

can be confirmed in Chapter 4, where a correlation was found between the following questions: 1 - 

EVs cost the same as ICE vehicles, 2 - EVs have great acceleration, and 3 - The cost of charging an EV is 

less than the fuel cost of internal combustion vehicles, and the probability that the respondents’ next 

car will be an EV. 

 

5.2. Future Work 

This section briefly describes some important research topics, which are worth investigating further. 

Finally, based on the previously mentioned conclusions, practitioners should consider the following 

future extensions to this work: 

An excellent suggestion for future works is to expand the dataset’s total of observations. Hopefully, 

this way, a more extensive dataset will have a more significant number of participants. 

Another suggestion is the inclusion of research from the standpoint of the electrochemistry field. 

That task should be easy, as there is plenty of available literature produced in this area. It is also more 

exhaustive about BMS (Battery Management Systems) and the role that the SoH and the SoC’s 

monitoring has on battery long life. 

Based on the previous two points, it would be interesting to establish guidelines for EV users to 

adopt beneficial actions to lessen premature aging on batteries. 
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