ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2021-10-25

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Santana, P., Almeida, A., Mariano, P., Correia, C., Martins, V. & Almeida, S. M. (2020). An affordable
vehicle-mounted sensing solution for mobile air quality monitoring. In Solic, P., Nizetic, S., Rodrigues,
J. J. P. C., Lopez-de-Ipina, G.-de.-A. D., Perkovic, T., Catarinucci, L., and Patrono, L. (Ed.), 2020 5th
International Conference on Smart and Sustainable Technologies (SpliTech). Split: IEEE.

Further information on publisher's website:
10.23919/SpliTech49282.2020.9243697

Publisher's copyright statement:

This is the peer reviewed version of the following article: Santana, P., Almeida, A., Mariano, P.,
Correia, C., Martins, V. & Almeida, S. M. (2020). An affordable vehicle-mounted sensing solution for
mobile air quality monitoring. In Solic, P., Nizetic, S., Rodrigues, J. J. P. C., Lopez-de-Ipina, G.-de.-A.
D., Perkovic, T., Catarinucci, L., and Patrono, L. (Ed.), 2020 5th International Conference on Smart
and Sustainable Technologies (SpliTech). Split: IEEE., which has been published in final form at
https://dx.doi.org/10.23919/SpliTech49282.2020.9243697. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.23919/SpliTech49282.2020.9243697

An Affordable Vehicle-Mounted Sensing Solution
for Mobile Air Quality Monitoring

Pedro Santana! , Alexandre Almeidal , Pedro Mariano

1,2
o

Carolina Correia? , Vania Martins? , Susana Marta Almeida?
L Instituto Universitdrio de Lisboa (ISCTE-IUL), Instituto de Telecomunicagées, Lisboa, Portugal
2 Centro de Ciéncias e Tecnologias Nucleares, Instituto Superior Técnico, Lisboa, Portugal

Abstract—This paper presents the first prototype of the Expo-
LIS system and its preliminary laboratory and field experiments.
The ExpoLIS system is composed of an affordable vehicle-
mounted mobile sensor network and its supporting user-centred
services whose aim is to provide citizens with real-time and
dense spatiotemporal air quality data. A set of preliminary
static laboratory experiments and dynamic field experiments
were conducted, showing that the current prototype is already
able to track changes in the air quality and provide citizens with
access to these events via a mobile application.

Index Terms—Mobile Sensor Networks, Air Quality Analysis

I. INTRODUCTION

Despite the efforts to improve Air Quality (AQ), the citizens
are still exposed to levels of air pollution above the limits set
by the European Legislation and World Health Organization
[1]. Monitoring airborne pollutants is of utmost importance to
reliably assess the impacts of air pollution on human health.
While it is current practice to monitor air pollution with
networks of static stations, their acquisition and maintenance
costs limit the number of installations, and thus the ability to
monitor AQ in the entire city. In the recent years, there have
been many efforts to provide less expensive solutions for AQ
monitoring. For instance, it has been shown that implementing
a wireless network of low-cost sensors can increase the spatial
distribution and coverage area of the monitoring systems,
especially if mounted on mobile platforms [2], [3]. In fact,
the use of low-cost sensors aims to complement the readings
from the Monitoring Stations and provide useful information
about AQ at specific locations [4], [5].

Although spatiotemporal sampling of environmental vari-
ables can be achieved by means of tele-operated and au-
tonomous mobile robots [6], [7], costs and risks can be reduced
if the sensors are moved across the city on existing public
transportation vehicles. The ExpoLIS project aims exactly at
exploiting the natural advantages of existing public transporta-
tion infrastructures by developing an affordable AQ exposure
sensing system composed by a network of sensor nodes
deployed on city buses. As depicted in Fig. 1, this network
will gather in a central database real-time air pollution data
to support urban planning policies, environmental scientists
and transport companies, as well as to provide health-optimal
routing services to the population. The implementation of the
ExpoLlIS system is happening in Lisbon in a partnership with

- | Gl

||
EXPOLIS SERVER \ (o) - ﬁ
|
c 2y Co &> (i e
w * EXPOLIS SENSOR NETWORK

EXPOLIS USERS

Fig. 1. The ExpoLIS system.

the public transportation buses company (CARRIS), where the
sensors are being installed.

The paper is organised as follows. Section 2 describes the
mechanical aspects involved on the sensor node, including its
design, prototype, and dynamic behaviour analysis. Section 3
presents the hardware architecture of the sensor nodes, with
particular emphasis on the rationale underlying the selection
of the air quality sensors. Section 4 presents the main software
components composing sensor nodes, server, and graphical
user interfaces. Section 5 exposes laboratory and field pre-
liminary static and dynamic results. Finally, some conclusions
and future work directions are drawn in Section 6.

II. MECHANICAL SOLUTION

This section presents the rationale underlying the design,
the prototype, and the fluid dynamics analysis of the sensor
node’s enclosure and air sampling device.

A. Requirements

Although the main deployment focus of the ExpoLlIS project
are city buses, to foster future expansion of the ExpoLIS
network, the sensor nodes were designed in order to allow
their installation on any vehicle, including bicycles (attached
to the bicycle’s frame or to the rider’s backpack). Therefore,
the sensor node has been designed to be as small and light as
possible and to be able to operate in static and dynamic sce-
narios. The solution withstands the weather, while taking into
account that it is not possible to have a completely hermetic
solution as the sensors must be in contact with air. Finally, to
allow the sensor node’s replication and massive deployment as
quickly and inexpensively as possible, the attained solutions
relies only on low-cost consumable components.

\ AR
airflow R
exhaust **aaa.. airflow

intake

(a) Rendering of the box’s 3D triangular mesh with airflow direction repre-
sented by dashed arrows.

article
senso’

gas ﬁ/

Sensors

\
‘ fans

computing unit

(b) Rendering of the box’s 3D triangular mesh without the hollow tube (for
the sake of the other components visibility).

Fig. 2. Renderings of the sensor node’s 3D model.

B. Design

Fig. 2 depicts two renderings of a 3D model of the designed
sensor node, whose bounding volume has a width, height,
and depth of 38cm, 22cm, and 9cm, respectively. The box
has been designed assuming that it will be deployed on the
vehicle’s roof, away from the influence of the vehicle’s exhaust
pipes. To ensure that no rain droplets enter the sensor node, the
air inlet has a downwards U-like shape. An inclined hollow
tube, with 5cm diameter, is connected to the airflow inlet.
The inclination of this tube ensures that whatever comes in
(e.g., water droplets) and condensed water are drained away.
The drained elements and airflow go through this tube until
they reach the air outlet, a downwards curved elbow-like
hollow tube. The shape of the air outlet helps preventing water
drops inside the tube when washing the vehicle. To ensure a
sufficiently strong airflow through the tubes in static situations,
a fan placed at the air outlet forces the air extraction. The use
of fans is not necessary when the vehicle is in motion.

Inserted along the top of the inclined tube, the gas and
particles sensors analyse the air flowing through them. The
accumulation of dirt and water droplets on top of the sensors’
sensible surfaces is mitigated by placement of the sensors

facing down. There is a second airflow outlet with its own
air extraction fan. This outlet extracts the air inside the box,
yet outside the tube, that has been heated by the electronics
and exposure to solar light. The GPS device is placed on the
top face of the sensor node in order to improve sky view.

C. Analysis

To assess the ability of the sensor node to properly sample
the air while in motion, a computational fluid analysis was
conducted by feeding the software package OpenFOAM [8§]
with the 3D model presented in Fig 2. The air extraction fans
were removed from the model for this analysis. The goal of
removing the fans is to test the ability of the device to properly
sample the air in a mechanically passive way.

Fig. 3 presents the results of the computational fluid analysis
for a vehicle moving at 10 m/s (36 km/h). The figure shows a
significant pressure difference between the box’s frontal face
(the one encompassing the air inlet) and the box’s rear face
(the one encompassing the air outlet), which helps building a
flow of air that enters the air inlet, moves along the tube, and
exits through the air outlet. The existence of this air flow can
be verified by the horizontal and vertical air speed depicted
in the figure. Hence, even without air extraction fans, the air
flows through the sensor node as desired, provided that the
vehicle is in motion with adequate speed.

The particles sensor is provided with its own embedded
fan, which is used to suck air in for an internal chamber in
which a laser-based analysis is performed. If the air speed in
the inclined tube is too high, there is the chance that, due
to inertia, the particles sensor becomes unable to pump in
the heavier particles. In the same line, the gas sensors may
not be able to perform their analysis if the air flows on the
sensors’ surface too rapidly. Fortunately, the computational
fluid dynamics analysis shows that the air’s horizontal speed
in the inclined tube is roughly 2 m/s, despite the fact that the
vehicle is moving at 10 m/s. This means that the device is
acting as an airflow dumper.

D. Prototype

Supported by the computational fluid dynamics analysis, a
prototype of the low-cost sensor node was built (see Fig. 4).
The node is based on a standard IP65 electronics plastic box.
The inclined tube is based on a standard PVC tube, whereas
the curved tubes are consumable plastic toilet plumbing pipes.
All these components are consumer-based to ensure afford-
ability. All elements junctions are bonded and protected with
silicone and aluminum tape for additional mechanical strength
and better waterproofing.

III. HARDWARE SOLUTION
A. Processor

The block diagram for the sensor node’s hardware is de-
picted in Fig. 5. The specific sensors, model and manufacturer,
are listed in Table I. At the core of the unit we use the
RaspberryPi 3B+ board computer, which is a 1.4 GHz 64-
bit quad-core processor, with dual-band wireless LAN and

(a) Pressure (Pa)

(b) Horizontal wind speed (m/s), positive to the left.

(c) Vertical wind speed (m/s), positive upwards.

Fig. 3. Box’s computational fluid dynamics analysis with 10 m/s constant air
flow incoming from a vertical wall-like inlet at the right, without air extraction
fans (passive mode).

TABLE 1
DESCRIPTION OF HARDWARE MODULES
[Module | Model | Notes |
DC-DC CUI PDQE15-Q24-S5-D S5V/3A output
T/H/P Adafruit BME280 SV/12C (Ox77)
ADC Adafruit ADS1115 3.3V/12C (0x48)
CO Alphasense CO-B4 336mv/ppm
NO, Alphasense NO2-B43F 165mV/ppm
Particulate Alphasense OPC-N3 PM2.5/PM10/SPI
GPS Adafruit Feather GPS 3.3V/UART
FAN Sunon EF30080S2 5V/0.4W/3CFM

Bluetooth 4.2/BLE. Although the RaspberryPi model 4 is
already available, we found the previous model to be a better
solution due to the reduced power dissipation while providing
more than enough computing power to process all the sensor
data and wireless communications. Moreover, the Raspberry
allows the installation of a Linux OS, which is useful to set
up database and MQTT [9] servers.

B. Power Supply

In order to take advantage of the vehicle’s 12V battery sup-
ply, we use a 15W DC-DC converter to obtain a 5V/3A output.
In the particular case of a city bus, the input voltage Vbus

Fig. 4. Sensor node prototype strapped to a vehicle’s roof. The cables entering
the window are for the box’s power supply and additional airflow intake for
a DustTrak device (commercial device used for reference measures).

12-24Vin
Vbus 15W DC/DC |—>] ngz;ﬁap
5V out P
Temperature | [2C () SPI OPC
Humidity <> ™ pM2.5/10
Pressure :
10R
- |UART
ADC < RaspberryPi < » GPS
R 4.ch /16 bit 3B+
1\ 1\ GPIO
— co NO, ~ | FANx
Sensor Sensor x=1.2
-

Fig. 5. Block diagram for the sensor node’s hardware

can fluctuate above the standard 12V, possibly reaching 24V.
As a consequence, we chose a converter with an appropriate
wide range input. When the vehicle ignition is switched off,
a resistive voltage divider is used by the processor to read
this power loss condition and initiate a controlled shutdown.
This process might take a few seconds and, therefore, a
super-capacitor backup module is provided to maintain the
energy required in keeping the Raspberry alive during this
time interval.

C. Air Quality Sensors

1) Gas Sensors: In order to monitor the urban air we
use two gas sensors from Alphasense that provide readings
for carbon monoxide (CO) and nitrogen dioxide (NO,). Gas
concentrations for NO, are typically 20 to 200 ppb at the
roadside and, so, we chose fuel cell technology sensors with
fourth electrode compensation that can reliably detect very
low parts per billion levels. Since these sensors provide an
analog voltage readout, we use an analog-to-digital converter
to provide the corresponding digital values to the processor via
an I2C interface. This bus is shared by another sensor, giving

information about the temperature, humidity, and atmospheric
pressure.

2) Particulate Sensing: To measure mass concentrations
of suspended Particulate Matter (PM), we use a laser based
optical particle counter OPC-N3, from Alphasense, which is
able to measure the particulate fractions of most interest, from
the finest of particles up to larger particles such as pollen. The
sensor (slave) provides digital outputs of PM1, PM2.5, and
PM10 and communicate with processor (master) via an SPI
interface.

3) GPS sensor: The geographic position of the vehicle is
provided by the GPS unit, whose purpose is to allow us to
correlate pollution levels with certain urban areas, like narrow
streets, roundabouts or concentration of vehicles around traffic
lights. The sensor uses an UART interface.

4) General purpose input/output: Some GPIO pins are used
to switch on or off the inlet and outlet fans that impose an air
flow even when the vehicle is at rest. Not shown in the block
diagram is an RGB led to provide colour feedback about the
activities in the processor.

IV. SOFTWARE SOLUTION
A. Architecture

Fig. 6 depicts the system’s major software components
and their connectivity. MQTT, a lightweight publish-subscribe
messaging protocol adequate for unreliable networks, is used
as the main inter-component communication medium. A sen-
sor node %, associated to vehicle ¢, runs a persistent process,
sensor node © manager, responsible for sensor data acquisition,
pre-processing, local storage, and data transmission via MQTT
messages. These messages are published on project-specific
topics on a remotely located public MQTT server through
recurring to the Paho MQTT Python client library. These
communications are currently done over 3G/4G internet links.
A project-dedicated server subscribes the topics in order to
gather the produced sensor data, process it, and provide
pollution maps to Graphical User Interfaces (GUI) that allow
ExpoLlIS users to access the project’s services. Conversely, the
project server is also allowed to publish MQTT messages on
project-specific topics to configure the activity of each sensor
node. By subscribing to these topics, all sensor nodes get the
appropriate commands and react accordingly.

In some deployments it may not be possible for sensor nodes
to access the internet (e.g., when placed on an underground
parking lot). In this case it is not possible to send commands
and receive sensor data via the public MQTT server. Therefore,
the sensor node runs a private (local) MQTT server on which it
mirrors the messages otherwise published on the public MQTT
server. To provide external access to the private MQTT server,
the sensor node is also configured as a WiFi hotspot (i.e., it
provides its own local wireless network). Through this link,
users in the immediacies of the sensor node are able to send
commands and receive sensor data. A typical use case is the
following. A user deploys the sensor node on an internet-
absent site, connects to the sensor node’s private WiFi hotspot
with a GUI running on the user’s laptop, via MQTT messages

Remote | (LI EXPOLIS (AN i (2| Remate EXPQL'S
GUI Server GUI ervices
Server Layer
7 "
Local <:> Sensor 3G/4G WiFi Local
GUI1 Node 1 Internet Hotspot GUI
Interface Interface
vehicle 1 {} ~/
Sensor Private
<& 3614 internet link Nodei (% MQTT
Manager Server
<:> WiFilocal link Sensor Node i

vehicle i

Fig. 6. Software components. Each solid box corresponds to a software com-
ponent running on a separate machine, whereas the dashed boxes correspond
to software sub-components (within the same machine).

the user asks the node to store the acquired data on local
text files rather than sending it as MQTT messages. Then,
when the acquisition period is expired, the user returns to
the site, connects to the sensor node, and publishes a MQTT
message on the private MQTT server requesting all logged
data. As a response, the sensor node publishes the log files
as MQTT messages, which are then acquired by the user.
This local interaction is also useful for debugging purposes.
All messages are handled with the maximum MQTT quality
of service available (two). Although this imposes additional
network overhead, it reduces the chances of losing key data
(in particular commands) in unreliable networks.

B. Sensor Node Manager

The sensor node manager is implemented as a multi-
threaded python persistent process that gathers sensor data
every second using a set of open-source and custom device
drivers, pre-processes these data, stores the raw and filtered
data locally in buffers and files (if requested), publishes the
data on the MQTT servers, and reacts to requests published
on these.

Fig. 7 depicts the bundle of topics associated to a given
sensor node ¢. By using topic bundles specific to each sensor
node, the overhead associated to the publishing and subscrib-
ing MQTT messages is reduced. The payload of the messages
published every second on the measurements topic include
a message identifier (an integer number incremented at each
new message), timestamp, GPS position, raw sensors data,
and filtered sensors data. The sensor node also publishes
operational information to the state topic. This information
includes asynchronous acknowledgement of incoming com-
mands and the node’s current state (e.g., whether it is saving
to local text files).

The sensor node manager subscribes a management topic
to be able to receive commands from the ExpoLIS server
or a GUIL Via this topic, the sensor node manager can be
asked to set Kalman Filters’ uncertainty model according to
a given set of parameters, to associate a textual description to

MQTT topics

—_ /sn_i/state —i—» | EXPOLIS
Sensor ' ' Server
Nodei |<» /sn_i/management <
. : Local/Rem.
Manager =P /sn_i/measurements —— GUI

Fig. 7. Bundle of topics associated to a given sensor node ¢. Thick and thin
arrows represent publish and subscribe requests, respectively. Bidirectional
arrows represent coexisting publish and subscribe requests.

the next sensor readout (e.g., to associate a description of an
observed event), to start, stop, delete, and fetch text-based log
files containing all data sent to the measurements topic,
to restart the sensor node operating system process, to reboot
or shutdown the sensor node computational unit via a set of
system calls, and to set the operating system clock to a given
timestamp so as to cope with the limited accuracy of the real
time clock (typically obtained from the system clock of the
message sender).

Although the considered gas sensors do not exhibit outliers
nor high-frequency noise due to their slow dynamic behaviour,
that is not the case for the particles sensors. For this reason,
each particle sensor output (i.e., PM1, PM2.5, and PMI10) is
Kalman filtered independently, that is, assuming no correlation
among the outputs.

The Kalman filter is a recursive estimator that, at time-step
k, takes 1}, as the observation zero mean Gaussian white noise
with covariance Ry, : 7, ~ N(0, Ry). The high magnitude and
frequency of outliers observed in these sensors, renders the
need for an unconventional covariance computation. There-
fore, the observation covariance is formulated as the result
of accumulating the background covariance of the sensor
and the covariance that results from extreme outlier events
(endogenous or exogenous to the sensor):

max (0, 0k—1) >
min (o, 0x—1])
where « represents the background covariance of the sensor
and ~y represents the base covariance of the sensor as a result
of the presence of outliers, whose relevance is computed
according to a ratio of change from the previous to the
current observation. The stronger the change, the higher the
covariance. The log function squeezes this contribution to
ensure that extremely strong oulier events do not saturate
the filter. Although both o and ~ can be updated online by
sampling the natural statistics of the sensor while in operation,
currently, these are empirically defined.

The plot presented in Fig. 8 illustrates the ability of the
implemented Kalman filter to smooth the sensor data, reject
outliers, and yet track the signal. The peaks present in the
plot that were rejected by the filter are extreme and do not
last more than one time-step and, thus, are clearly outliers.

Rk.:oH—”ylog((1)

C. Error Recovery

Every ten cycles of the sensor node manager’s main thread
(every 10s), a message is sent from that thread to the

200
180
160
140
120
100
80
60
20

20

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Raw —Filtered

Fig. 8. Kalman filtering PM10 mass concentrations captured by the sensor
node mounted on a moving car in an urban environment (see Section V-B),
with oo = 20, v = 50.

management topic at the private MQTT server. Then, if
the callback function that subscribes this topic receives the
sent message, it touches a specific file so as to update its
modification time. Hence, if for some unexpected reason (e.g.,
problem with a sensor or local network interface failure) the
sensor node manager’s main thread gets blocked, the file is
no longer touched. A cron service (a script running at the
operating system level every minute) watches the modification
time of the file to force a kill and restart of the sensor node
manager whenever the file becomes older than one minute. If
the file is at least five minutes old (five restart attempts have
been unsuccessfully attempted), then the machine is rebooted.

Despite the fact that the MQTT quality of service is set to its
available maximum (two), several messages are permanently
lost in the face of network dropouts that last more than one
minute. To detect these situations, the ExpoLIS server runs
a periodic script every fifteen minutes that determines the
existence of missing messages by finding gaps in the identifiers
of the already received ones. Whenever gaps are found, the
identifiers of those messages are published as a single message
in the management topic of the corresponding sensor node.
The reception of this message in the sensor node manager
triggers the re-sending of the lost messages, stored locally on a
circular buffer with one hour capacity, to the measurements
topic.

D. ExpoLlS Server

Information collected by the sensor network is stored in
a Postgis database. Fig. 9 shows a diagram of the tables in
the database. These contain information about sensor data,
hardware specifications and deployment, routes taken by the
buses, existing lanes. To cope with an heterogeneous sensor
network, each measured data (humidity, PM1, ...) is stored
in a distinct table (represented by table measurement_D in
the figure). Moreover, there are functions to query individual

measurement_properties
PK | ID

aggregattion_S_D_P_R
PK | long_lat: GEOMETRY
PK | when: INTEGER

measurement_D

T

FK | reflD
value: INTEGER
sensor_hardware
PK [ID
FK

FK | nodelD

long_lat: GEOMETRY
when: INTEGER

value: INTEGER

— node_sensors
interpolation_M_D_P

PK | ID
PK |long_lat GEOMETRY
FK | busiD specificationsID
PK | when: INTEGER K_
senial_description: TEXT FK | nodelD
value: INTEGER
deployed: TIMESTAMP AK | serial_description: TEXT

sensor_specification
bus_assignment PK | ID
busID FK | typelD

PK,FK | linelD AK | product_description: TEXT
PK assigned: TIMESTAMP \ min_value: INTEGER

bus

PK,FK
PK |ID

AK | description: TEXT

o/

max_value: INTEGER
line_path -
PK,FK | linelD fine Lyl
. inel Sensor_type
[Pk D =i
PK number: INTEGER PK | ID
number: INTEGER
PK order: INTEGER description: TEXT
description: TEXT
long_lat: GEOMETRY

Fig. 9. An entity relation diagram of the tables in the database.

measured data, and a single function with variable number of
parameters to insert sensor readings.

As the number of sensor readings can increase rapidly, there
are tables that store aggregated information. Aggregation is
done by applying a statistical function (maximum, minimum,
or average) to data in a period (hour, or day), and in a square
(with side 50 or 100 meters).

Since sensor readings are limited to bus lanes, we apply
interpolation algorithms to compute pollution levels in non
covered areas. This information is stored in a set of tables
(interpolation_M_D_P in the figure).

The software to create the database was developed in Python
and it includes a script to install the database as a Docker
container. Both aggregation and interpolation are performed by
cron services that run at the rate associated with the respective
period.

Besides the database, the ExpoLIS server has a MQTT client
that subscribes to sensor data. As already mentioned, it also
has a periodic service that keeps track of incoming messages
sequential identifiers. If it detects gaps in these IDs, it requests
the corresponding messages by sending a MQTT management
message.

E. Visualisation

In order to bring awareness to the general public regarding
pollution, we have developed an Android application to display
sensor data. We provide three types of graphs: 1) map with
aggregated data during a time interval; 2) plot with pollution
in a circular area during a time interval; 3) plot with pollution
along a bus line filtered by a period. All these graphs use the
data stored in the aggregated tables of the database. Fig. 10
shows an example of a map graph.

Fig. 10. Measured distribution of PM10 mass concentrations across a
100 km trip from Cartaxo to Setuibal, Portugal, January 31, 2020. Each label
corresponds to a key segment of the route. A: Cartaxo, rural city with light
traffic. B: main highway with medium traffic. C: Lisboa, main urban city
with heavy traffic jams. D: secondary high way with light traffic. E: Settbal,
secondary urban city with medium traffic.

V. RESULTS
A. Static Use Case

Aiming at establishing the utility of the data provided by the
particulate matter low cost sensor OPC-N3 from Alphasense,
the unit was set in parallel with a light scattering laser
photometer DustTrak 8533 from TSI Inc.. This equipment
measures mass concentrations of several size fractions of PM,
namely PM1, PM2.5, and PM10. Fig. 11 presents the scatter-
plots of the sensor mass concentrations versus the DustTrak
measurements for PM1 (a), PM2.5 (b), and PM10 (c), based on
1 minute averaged values. Strong linear correlations were ob-
served between the sensor and DustTrak mass concentrations.
The highest coefficients of determination (R?) were obtained
for PM1 (0.95) and PM2.5 (0.96), being slightly lower for
PM10 (0.85). These values suggest that the sensors have high
precision. However, the same should not be concluded about
accuracy, since the DustTrak concentrations are, on average,
11, 7 and 6 times higher than the sensor concentrations for
PM1, PM2.5, and PM10, respectively. Although the difference
between concentrations is high, the correlation that exists
between them, allows the application of a correction factor
to the original sensor concentrations to obtain the real PM
mass concentrations.

B. Dynamic Use Case

To assess the ability of the sampling solution to perform
properly when mounted on a mobile vehicle a second set of
tests was carried out. Concretely, the sensor box was mounted
on a vehicle’s roof, as depicted in Fig. 4), and a 100 km trip
in the Lisbon region was performed on the 31st of January,
2020. The trip started in a rural city with light traffic, Cartaxo,
included heavy traffic jams in Portugal’s capital, Lisbon, and
ended in a secondary urban city with medium traffic, Settbal.

35
3
= y=0.13x-0.36
E3s R®=0.95
oo
=
o2
=
G 15
o
©
05
0
0 5 10 15 20 25 30
DustTrak (ng/m3)
(a) PM1
8
7
6
= y=0.26x-1.13
Es R?=0.96
ab
=
'}
=z
O 3
o
©,
1
0
0 5 10 15 20 25 30
DustTrak (ug/m3)
(b) PM2.5
20
17.5
__ 15
T y=0.35x-1.92
R R?= 0.85
poli
=
O 75
o
© 5
25
0
0 5 10 15 20 25 30 35 40

DustTrak (pg/m3)

(c) PM10

Fig. 11. Scatter plot of the linear regression of the sensor OPC-N3 against
the DustTrak 8533 for the mass concentrations of PM1, PM2.5, and PM10.

Fig. 10 depicts the measured distribution of PM10 mass
concentrations in the mobile app, across the trip. As expected,
higher particles concentrations were registered in the portions
of the trip where higher levels of traffic were observed.
Although the qualitative results are promising, it is necessary
to perform additional tests in order to compare the obtained
results against ground truth. Ground truth can be obtained from
more accurate, yet more expensive and bulkier, sensors and
from fixed reference stations distributed across the city.

VI. CONCLUSION

The first prototype of the ExpoLIS system was presented.
This system aims at providing an affordable solution for air

quality dense sampling of human-populated environments by
means of exploiting low-cost sensors and the mobility of
commuting vehicles, both public and private. The accumulated
data is expected to inform citizens’ decision making towards
a healthier way of life. The attained design is based on
affordable components, fostering massive reproduction of the
system components. Preliminary static laboratory experiments
and dynamic field experiments show the ability of the sensor
node to track changes in the air quality while coping with
challenging weather conditions. As future work, we plan to
revise the mechanical design so as to ease the attachment of the
sensor node to the vehicle and better handle potentially damag-
ing vibrations. The graphical user interfaces will be improved
in order to provide a more intuitive and in depth access to the
generated data. We are also considering the implementation of
web services in order to allow external systems (e.g., vertical
applications) to efficiently interact with the data server. Finally,
to thoroughly assess the robustness and accuracy of the system
in comparison to high-cost (commercial) mobile alternatives
and existing reference monitoring stations, various large-scale
field experiments will be run with the system already deployed
on a fleet of city buses.

ACKNOWLEDGMENT

We would like to thank our colleagues Tomds Brandao,
José Moura and Joaquim Reis for their helpful comments
throughout the preparation and execution of the project. This
work is financed by national funds through FCT - Foundation
for Science and Technology, I.P., within the framework of the
project ExpoLIS (LISBOA-01-0145-FEDER-032088).

REFERENCES

[1] “Eea, air quality in europe 2019 report,” Luxembourg: Publications Office
of the European Union, Tech. Rep., 2019.

[2] S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, and B. Nath, “Real-
time air quality monitoring through mobile sensing in metropolitan areas,”
in Proceedings of the 2nd ACM SIGKDD international workshop on
urban computing, 2013, pp. 1-8.

[3] W. Y. Yi, K. M. Lo, T. Mak, K. S. Leung, Y. Leung, and M. L. Meng,
“A survey of wireless sensor network based air pollution monitoring
systems,” Sensors, vol. 15, no. 12, pp. 31392-31427, 2015.

[4] J. E. Thompson, “Crowd-sourced air quality studies: A review of the liter-

ature & portable sensors,” Trends in Environmental Analytical Chemistry,

vol. 11, pp. 23-34, 2016.

S. Brienza, A. Galli, G. Anastasi, and P. Bruschi, “A low-cost sensing

system for cooperative air quality monitoring in urban areas,” Sensors,

vol. 15, no. 6, pp. 1224212259, 2015.

E. Pinto, F. Marques, R. Mendon¢a, A. Lourenco, P. Santana, and

J. Barata, “An autonomous surface-aerial marsupial robotic team for

riverine environmental monitoring: Benefiting from coordinated aerial,

underwater, and surface level perception,” in Proceedings of the IEEE

International Conference on Robotics and Biomimetics (ROBIO 2014).

IEEE, 2014, pp. 443-450.

P. Deusdado, M. Guedes, A. Silva, F. Marques, E. Pinto, P. Rodrigues,

A. Lourenco, R. Mendonga, P. Santana, J. Corisco, S. M. Almeida,

L. Portugal, R. Caldeira, J. Barata, and L. Flores, “Sediment sampling in

estuarine mudflats with an aerial-ground robotic team,” Sensors, vol. 16,

no. 9, p. 1461, 2016.

[8] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach
to computational continuum mechanics using object-oriented techniques,”
Computers in physics, vol. 12, no. 6, pp. 620-631, 1998.

[9] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, MQTT Version
5.0. OASIS Standard: hittps://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-
v5.0.html., March 07, 2019.

[5

—

[6

—_

[7

—

