

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2021-10-14

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Neves, P., Nunes, L. & Lourenço, A. (2016). Multi-factor authentication for improved efficiency in
ECG: Based login. In Fairclough, S., Holzinger, A., Otero, A., Pope, A., and Silva, H. P. da. (Ed.),
PhyCS 2016 - Proceedings of the 3rd International Conference on Physiological Computing Systems.
(pp. 67-74). Lisboa: SciTePress.

Further information on publisher's website:
10.5220/0005936500670074

Publisher's copyright statement:
This is the peer reviewed version of the following article: Neves, P., Nunes, L. & Lourenço, A. (2016).
Multi-factor authentication for improved efficiency in ECG: Based login. In Fairclough, S., Holzinger,
A., Otero, A., Pope, A., and Silva, H. P. da. (Ed.), PhyCS 2016 - Proceedings of the 3rd International
Conference on Physiological Computing Systems. (pp. 67-74). Lisboa: SciTePress., which has been
published in final form at https://dx.doi.org/10.5220/0005936500670074. This article may be used
for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-
archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.5220/0005936500670074

Multi-factor Authentication for Improved Efficiency in ECG:Based

Login

Pedro Neves 1,3, Luís Nunes 1,3 and André Lourenço 2,3

1 Instituto Universitário de Lisboa (ISCTE), Lisboa, Portugal

2 Instituto Superior de Engenharia de Lisboa (ISEL), Lisboa, Portugal

3 Instituto de Telecomunicações, Lisboa, Portugal

Luis.Nunes@iscte.pt, arlourenco@lx.it.pt

Keywords: Biometrics, Authentication, Bluetooth, Internet of Things.

Abstract: Electrocardiogram (ECG) based biometrics have proven to be a reliable source of identification. ECG can

now be measured off-the-person, requiring nothing more than dry electrodes or conductive fabrics to acquire

a usable ECG signal. However, identification still has a relatively poor performance when using large user

databases. In this paper we suggest using ECG authentication associated with a smartphone security token in

order to improve performance and decrease the time required for the recognition. This paper reposts the

implementation of this technique in a user authentication scenario for a Windows login using normal

Bluetooth (BT) and Bluetooth Low Energy (BLE). This paper also uses Intel Edison’s mobility features to

create a more versatile environment. Results proved our solution to be feasible and present improvements in

authentication times when compared to a simple ECG identification.

1 INTRODUCTION

This paper addresses a problem reported in the
literature concerning electrocardiogram (ECG)
authentication. The problem is that it presents a
significant time delay associated with identification
performance when using larger databases (Carreiras, et
al., 2014). We suggest using a smartphone, as security
token, to improve the performance of the process.

In this paper we describe the experiments leading
to the implementation of a multi-factor authentication
scheme, in a Windows environment, capable of joining
ECG and mobile-phone security token authentications
to improve identification efficiency. Also, in order to
guarantee a battery-friendly scheme we propose and
test a communication protocol between the smartphone
and the computer using Bluetooth Low Energy (BLE).

2 BACKGROUND

2.1 Authentication Methods

User authentication is based on three commonly
used factors: what you know (passwords), what you
have (security tokens) and what you are (biometrics)
(De Zheng, 2011). Biometric automated authentication

methods have been growing in the last years,
transferring security to factors which are difficult to
replicate – such as fingerprint, retina scan or face
pattern.

2.2 Electrocardiogram Authenticaton

ECG information can be used as a biometric
method. The ECG reading consists of a difference of
electrical potential between two limbs, and represents
an external measure of the electrical activity of the
heart. The intrusiveness of ECG data acquisition can
be classified as: (1) In-the-person, which means
implanting devices (e.g. pacemakers) and is highly
intrusive,; (2) On-the-person, meaning the devices that
work by being attached to the person; (3) Off-the-
person, which includes devices capable of acquiring
ECG signals without any preparation, simply by
maintaining contact for a few seconds with the
acquisition device.

One approach to this method is an off-the-person
approach (Silva, et al., 2013), that collects ECG data
from the hand (palms and fingers), facilitating large
scale acquisition of ECG signals. Authors propose a
solution for ECG acquisition by reading signals on
hand palms with dry Ag/AgCL (silver chloride)
electrodes, which are types of reference electrodes
known for their stability and electrode potential.

2.3 Smartphone as Token

Smartphones have been used in authentication
contexts before. A solution based on a mobile phone is
suggested in (Tanvi, et al., 2011). This source refers
hardware cost as a relevant drawback of the traditional
approach to security tokens (which includes individual
tokens and authentication server costs) and proposes
the use of phones as an alternative.

The authors presented a scheme consisting of: a
user (trying to gain access to the application), a
dynamic password generator for each identification
process, a SMS server, responsible for sending
dynamic passwords to the user, and a “Visitor
password Register” (VPR), temporarily registering
session’s username and password. Also, these authors
suggest using the IMSI (International Mobile
Subscriber Identity) number to strengthen the
authentication.

This paper also refers an extension of this approach
to Bluetooth, labeled “Laptop-user Authentication
Based Mobile phone” (LABM) (Abdelhameed, et al.,
2005), suggesting a java solution for laptop user
authentication focused on proximity-based login. This
work consists of a scheme for authenticating an
individual by approaching the computer with a
Bluetooth-enabled phone. This device acts as an
authentication token, by continuously communicating
with the laptop through a wireless link.

2. 4 Custom Authentication in

Windows

Windows 7 and later use Credential Providers (CP)
to manage credentials input. This architecture replaces
the old GINA (Graphical Authentication and
Identification) present in previous versions. These CPs
result in alternative logon tiles that may or may not
refer to the same user account, meaning that one user
may have several distinct logon methods through a
number of different logon tiles. The new approach
taken by Microsoft, however, won’t allow a full
replacement of logon UI (Microsoft, 2013). Tiles are
processed by the logon UI. It requests all credential
types provided by each CP and displays them. One CP
may have more than one associated tile, and can
specify one of them as default.

Windows authentication system can also be
managed through pGina (Wolff, 2014). This tool
replaces the default credential provider (CP) used by
Windows Vista and later (XP and above used the
GINA framework instead). It is a plugin-ready, open
source, application that allows an end user to manage
his own way of logging into Windows.

A typical logon (Figure 1) involves the following
process: 1) user providing credentials to pGina using

its GUI or any other credential provider; 2) pGina’s CP
sends credentials to pGina service; 3) pGina service
sends the logon attempt result (Boolean answer along
with the credentials) to pGina’s CP after being
processed by the installed plugins; 4) if the logon
attempt returns true, pGina sends credentials to
Windows and the latter performs logon.

Figure 1: Diagram showing the main pGina systems

interacting in a common logon, adapted from (Wolff,

2014).

2.5 Intel Edison

Intel Edison consists of a small board
(35.5x25.0x3.9 mm) capable of running a Linux
environment (Intel, 2015)

This board opens a wide range of opportunities
related with the Internet of Things. In this paper we
develop a custom authentication system in Windows;
however, Edison opens a number of alternatives. The
dual-core CPU provides significant processing power,
and the Wi-Fi and Bluetooth Low Energy adapters
provide low power consuming connectivity.

Edison was already used in several different
applications. For example, Jimmy, a humanoid
prototype based on Edison. It is an 18 inches tall robot,
3D printable (Landau, 2015). Their creators, Trossen
Robotics, intend to make it work in a similar way to
smartphones – install an app, and make it capable of
doing more activities.

3 IMPLEMENTATION

We intended to implement a scheme where a
Windows Phone would send its owner’s identification
through Bluetooth Low Energy when within a certain
range of a computer. This computer would advertise a
Generic Attribute Profile (GATT) server, which would
be accessed and wrote into by the phone, and would
have an ECG keyboard plugged in.

However, implementing a GATT advertisement in
Windows has proven to be a limitation, as it only
provides APIs to act as a GATT client (Social.msdn,

2013). Given this hurdle, we decided to implement a
similar scheme using classic Bluetooth. Afterwards,
we also implemented a solution using BLE, with a
Linux system acting as a connection enabler between a
BLE device and a Windows computer.

3.1 Classic Bluetooth Communication

Initially, we created an example plugin for pGina.
This plugin was written in C# and intended to enable a
Bluetooth interaction resulting in a successful logon.
We used a laptop with a Bluetooth 4.0 Dual Mode
dongle and a Windows tablet with Bluetooth 4.0. This
implementation was based on the 32feet.net Bluetooth
(32feet.NET, 2012).

In this preliminary version, we implemented the
authentication stage of pGina only, starting with a
Bluetooth interaction. We experienced problems
implementing a Bluetooth connection between 32feet
and Windows Phone API, so we were constrained to
use Bluetooth scan to get nearby MAC addresses, even
without establishing a connection. In this version we
verify user identity through the MAC address
associated to the users’ mobile device. This
verification only discovers devices, and has no other
interaction. Other unique identifiers were used
previously, such as IMSI (International Mobile
Subscriber Identity), consisting of the ID associated to
a SIM card (Tanvi, et al., 2011).

It is relevant to mention that, although the security
of such solution is low, this solution is fast as requires
no specific operating system on the mobile phone. In
fact, any discoverable Bluetooth device would work,
and requires no previous pairing.

Initially, we implemented a solution that would
trigger Bluetooth discovery when the user attempted
logon through regular Windows GUI by clicking a
button on logon interface, with both username and
password fields hidden (configured in pGina). pGina
did not offer any solution to completely automate this
process at the time, i.e., skip the button pressing. This
proved to slow down the process, requiring around 10s
to return the result in an environment containing three
discoverable devices. A significantly higher number of
devices could expand this time frame (Chakraborty, et
al., 2008).

Afterwards, we started developing a Windows
Phone (WP) 8.1 app for Lumia 530 that connected to a
Windows desktop application server using
32feet.NET. The connection was established using
classic Bluetooth instead of Bluetooth Low Energy
(BLE) due to the, previously mentioned, lack of APIs
to perform discovery and pairing with BLE in
Windows environment (Social.msdn, 2015). This time
we achieved the goal of connecting both devices and
communicating strings between them, allowing us to

build a prototype of Bluetooth-based login. This
prototype consisted of a WP app that, by pressing a
button, would send a string message (unencrypted) to
the desktop server. The server side –which was a pGina
plugin also managing a BL connection – would then
release the hardcoded user credentials to Windows
when asked for. This prototype was a significant
increase in performance when compared to the time it
would take to detect user presence/absence in the first
scenario. However, this solution requires user
interaction. Also, the connection was not reliable – it
would randomly connect, or throw an exception.
Similar problems were reported by other developers
(Social.msdn, 2015).

Figure 2: Communication scheme: 1) process is started by

interacting with WP app; 2) pGina processes username; 4)

ECG is read; 5) logon is successful/unsuccessful).

In order to avoid requiring user interaction with
mobile phone to perform login, we tried to execute the
connection as a background task. Additionally, while
trying to solve the unstable connection, we concluded
that the exact same code would work every time when
compiled to WP8.0, but was unstable when compiled
to WP8.1, as was also reported in (Social.msdn,
2015).The use of an external Bluetooth trigger (for
example, the presence of a Bluetooth server nearby) in
Windows Phone was, however, only available in 8.1
version at the time. This conflict forced us to choose
connection stability over functionality. Therefore, the
use of a background task was not further considered
and we backtracked to WP8.0.

Figure 2 refers to the communication scheme in
which this scenario was based. The main actors are:
Windows Phone, the pGina plugin working as BL
connection point, a database storing credentials
information and the ECG authentication accessed
using API. In 1, the WP app would send a message to
our server containing the username; in A, pGina

confirms the username with a database (2). A feedback
might be implemented, although we considered at this
point it would unnecessarily increase the process
complexity (3.1 and 5.1). Action is suspended before
4, while waiting for Windows logon; then, if ECG
authentication is successful (5), pGina allows logon
and, possibly, returns feedback to WP.

We also considered sending Bluetooth MAC
address from WP to pGina, in order to confirm the
identity of the phone itself – but WP will only allow
BL communication in-app with previously paired
devices, meaning no unpaired device could connect
with the server.

We chose to give the initiative of the
communication to WP and store all passwords in a
computer located database because: 1) the necessity of
asking for an explicit user interaction ruled out the
initiative being on server side; 2) in order to avoid
sending full credentials (user and password) through
Bluetooth we decided to store passwords on the server
side, and then identify the smartphone based on
username received and associated Bluetooth address,
both previously stored as well.

This solution worked by receiving a one-time
logon message from WP, which the server would
register with a timestamp and use in future logons
based on proximity. The process is the following: 1),
user is approaching the computer and sending the
logon message via Bluetooth. Then, the server
recognizes the phone as one authorized to logon in the
following hours (or any other predefined time range);
2) when no phone can be found nearby, logon is
denied; in 3) when the phone is again present, a logon
with the credentials associated to that user is allowed.
This means that, starting from 1), the computer itself
will search for the presence of the authorized phone;
the search will not require establishing a connection.

In fact, this search is different from the one stated
in the first scenario. Previously, we scanned for all
devices nearby and then verified the identity of each
one in search of a particular phone; with this new
approach, we tested the presence of a specific device
using a pre-stored address. In terms of time required, a
loop testing for a list of one phone changed logon status
in less than 2 seconds after turning off Bluetooth in
WP.

After implementing the Bluetooth side, we
approached the introduction of the ECG-reader
keyboard on the existing scheme. To better understand
the advantage of using a smartphone combined with an
ECG authentication, one must explain the latter. This
method works by first identifying a heart beat and then
authenticating the individual. Both processes can take
several seconds, thus leading to a delay in logon

process. Also, the authentication itself can be based on
different confidence levels. These two characteristics
bring a relevant improvement related to the use of a
smartphone as token – the computer is able to receive
the identification of the individual beforehand,
skipping the identification process and also being able
to use a better confidence level. The keyboard does its
own autonomous processing. It requires installing
VitalidiType (Technologies, 2015), the software that
allows interaction with the keyboard. The interaction
between the pGina plugin and this system is made
using its C# APIs, vitalidiAPI.

The ECG reader is the final step in our entire logon
scheme, taking advantage of the previously sent
information from the individual’s mobile phone.

In summary, the whole sequence is: 1), an
individual gets in the area covered by a Bluetooth
scanner in the computer; 2) this proximity triggers a
process of getting the ECG authentication username
associated with the detected mobile phone ready for
authentication; 3) a person attempts logon and the
keyboard uses the previously received username to
start authentication, reading the users’s heartbeat; 4)
the user is granted access if both authentications are
consistent with each other and succeeded.

3.2 Bluetooth Low Energy

As a solution to the GATT server role limitation in
Windows, we decided to implement a “middle point”
between the smartphone and Windows desktop. This
system was running Linux and, therefore, capable of
advertising a GATT service. In this scenario we also
changed from Windows Phone to Android to avoid
more limitations associated with their APIs.

The Linux system was capable of using BLE
through BlueZ, which provides support for this
technology. Also, in order to keep this a mobile, more
versatile and independent point, we used Intel Edison.
This board allowed us to create a GATT server,
listening for BLE messages from a smartphone, and
redirect them to our adapted pGina plugin running in a
Windows computer through Wi-Fi.

All the following scenarios maintain the working
scheme associated to the keyboard, i.e., ECG keyboard
expects a contact (hands on keyboard) after pGina
plugin acknowledges the presence of a valid
smartphone token. They are an improvement from the
classic Bluetooth scheme as Android API 19 (KitKat)
allowed to read the RSSI (Received Signal Strength
Indication) value associated with a BL signal.
Although several studies indicate that RSSI is not an
exact measure of device proximity, it may suggest the
distance if carefully handled (Parameswaran, et al.,
2009), (Al Alawi, 2011). Also, our scheme is not
dependent on an exact read of distance, but only in a

definition of “proximity”. In order to understand the
variation in RSSI values depending on distance, we
executed a series of tests (see section Tests).

First, we started developing a GATT server in
Edison’s Linux. This scheme worked by advertising a
GATT service, and the provided characteristic could
be written by a BLE peripheral (an Android phone
specifically). The first issue we found when
implementing a similar message system to the one
previously implemented in our classic Bluetooth
scheme was the message size limit of 20 bytes (Gomez,
et al., 2012). This would prove impossible to send both
username and password in most cases. So, we created
a third username, associated with the pair Windows
username/ECG username, represented by a smaller
string. Also, we eliminated any overhead associated
with the messages, being “login”, “logout” or
“register”, because: 1) register is now a process started
in the pGina plugin configuration dialog; 2) this
scheme is proximity-based, thus requiring no “log
out”, the device is either present or absent.

After the message is received on Edison (meaning
the GATT characteristic is written), it is forwarded to
the pGina plugin via Wi-Fi, and from there it is treated
as it would in the Bluetooth classic method. Notice that
this message is only sent by the phone if it is within the
RSSI margin predefined, so this validation was already
done by the phone itself.

Figure 3: The phone subscribes a GATT characteristic

advertised by Edison and, when notified, writes a

characteristic. After the message is forwarded to pGina,

user should start ECG authentication by clicking the arrow

button on Windows GUI.

Referring to the implementation on Android, we
changed the initiative of the communication from the
phone to the server side. Also, we used a partial device
MAC address (excluding two characters due to the
limitation of 20 bytes per message. This new scenario
requires a one-time subscribe to a GATT
characteristic. After this, the timer implemented on
Edison associated to the characteristic notifies the

subscribed phone within a certain time interval (2
seconds in this prototype). Each time a phone receives
this notification, it replies with its RSSI and partial
MAC address. An attempt to use the accelerometer to
detect user’s (in)activity was not.

4 TESTS

4.1 Signal Strength Reliability

Given the uncertainty about how reliable could
RSSI be for detecting proximity, we performed the test
whose results are shown in Table 1.

Table 1: RSSI values depending on distance.

RSSI

(dB)

Distances

30cm 1M 2M 3M 4M 5M

Best -27 -42 -47 -52 -54 -55

Worst -43 -49 -52 -56 -59 -60

Avg. -34,9 -44,4 -48,8 -54
-

56,1
-56,5

The tests with the mobile phone as the single
Bluetooth device in our environment; the phone was
placed in the referred distances, with no obstacles
between it and the Bluetooth scanner connected to a
laptop. The adapter was a CSR851 (CSR, 2015) and
the phone was a Wiko Darkmoon (Wiko, 2015).
Higher RSSI values mean better signal. We obtained
10 readings with 1s interval for each distance.
Analyzing the results, we can see a decrease in
average, minimum and maximum values of RSSI with
the increase of distance between both devices. Also,
the clearest difference in RSSI values is seen when the
distance varies the least – when we step from 30
centimeters to 1 meter. However, 30 centimeters is the
situation where the phone is actually in a similar
distance to the one where a person carrying it
approaches his computer. These results provide a more
substantiated way of defining a threshold value for
phone detection and logon authorization.

For implementation purposes, we defined a
threshold of -49dB. Even in a situation of random
minimum peaks where a phone is incorrectly detected
as being out of proximity, the consequence is likely to
be obfuscated by the loop timer of RSSI reading – the
value is so often retrieved that a single value is not
likely to impact a common interaction with the system

4.2 Bluetooth Performance

We also conducted a series of tests aiming to
analyze the performance of both classic Bluetooth and

Bluetooth Low Energy scenarios, in terms of battery
and reliability. All tests were executed using a Wiko
Darkmoon Android phone – the Windows Phone
scenario was tested in Android by tweaking the server
side implementation, in order not to require a login
message and just detect the pre-stored MAC address
associated to the phone (as mentioned before, this
scenario did not require an app being in execution).
The phone was put in airplane mode, only with
Bluetooth on. It was 100% charged for each test, and
standing still about 30cm from the laptop. For
comparison, we tested the phone in airplane mode,
with Bluetooth and apps off and concluded that in 1
hour, 0% battery is lost.

We tested for the following parameters (Figure 4):
Phone battery drain in-range; phone battery drain off-
range; pGina false negative (not detecting an in-range
phone). Regarding in-range performances, we can
conclude is that the classic Bluetooth scenario was less
battery efficient than all other scenarios. Although in
this scenario the phone is supposedly passive -
meaning no app is working and it is only detected by
the server’s BL scan – these results may indicate that
the scan actually involves waking the scanned
peripherals, and doing some work associated with the
Bluetooth scan itself.

Figure 4: Percentage of battery loss in each scenario.

Off-range results show us that the battery
performance is better in the classic Bluetooth and
server based BLE scenario. This is explained by the
fact that in both scenarios the phone is not required to
be awake – in the BL scenario, the phone is passive and
no server is scanning; in the BLE scen7ario, the phone
only replies when contacted by server’s notifications.
On the other two scenarios, the app is attempting
connection in a loop, explaining battery usage.

In another test we measure the difficulty in detecting
the phone when in range (false negatives). In the BL
scenario there are no false negatives because it is not
using RSSI values. This has a down-side, the fact that
a phone is considered near even if its several meters
away. In BLE scenarios, on the other hand, a phone is

only considered in-range if the RSSI reads -49dB or
better. So, there is a tradeoff between distance
detection and false negatives. Tests showed a minor
(0,416%) false negative rate.

Although we could consider the number of false
negatives excessive, one must consider the fact that the
position is updated every second, sometimes more (or
even less) due to connection inconstancies (both in
Bluetooth and Wi-fi). This means that these results are
not likely to affect user interaction. Also, by analyzing
the logs we concluded that they are sorted in long
moments of correct readings and short moments of
incorrect readings (thus showing peaks of bad readings
and, most of the time, stable correct readings).
Additionally, we used a value for RSSI threshold (-
49db) that requires close proximity to the computer,
leading to the possibility of more false negatives.

4.3 Token/ECG vs ECG only

comparison

In order to better understand the delay associated
with identifying vs authenticating a person we ran a
(necessarily) limited number of tests to confirm the
conclusions of previous studies published in
(Carreiras, et al., 2014). This study shows an increase
in identification delay and decrease in accuracy when
the number of subjects in database increases.

We executed two series of tests. In the first series
(Table 2), we tested ECG identification (the classical
ECG-based authentication scenario) and ECG
authentication (the scenario we suggest, where the
individual’s identity is previously known and the ECG
confirms it) times with an 8 user ECG database; in the
second series (Table 3), we tested the same with a 68
user database. Both tests were performed with a group
of five persons (an arbitrary small number, to simplify
the tests). The smaller database was generated by
measuring and registering the volunteers ECG; the
bigger database was provided by the authors’ of
(Carreiras, et al., 2014) complemented by the five
testing individuals of the smaller data-base.

It is relevant to mention that all times include the
ECG acquisition. Vitalidi collects eight heartbeats,
therefore an increased heartbeat will result in a faster
read, and a slow heartbeat will originate longer times.
For the tested individual – five young healthy males –
a 60 beats per minute heart rate is considered the
average (Malina, et al., 2004). Consequently, we
assumed an average value of 8 seconds in acquisition
time, and subtracted the original values to create the
following chart.

Results confirm the advantage of using a
smartphone as a security token in an ECG
authentication context. Identification is unnecessary,
thus comparing the readings with every user in a large

0

2

4

6

8

Battery Drain

Battery Performance

Bluetooth In-
Range

Bluetooth Off-
Range

BLE In-Range

database is avoided. Instead, the readings can be
compared to a single, previously known, individual’s
registered ECG.

Table 2: Identification and authentication times using an
8 user ECG database (in seconds).

Individual Identification Authentication

1 9,51 9,33

2 9,76 9,59

3 9,32 9,23

4 9,75 9,60

5 9,80 9,49

In a more safety demanding environment, false

negatives would be preferable to false positives; on the
other hand, a less demanding approach opens the door
for more false positives if that would increase the
overall performance. With this logic in mind, the fact
that the system knows the person’s identity before
ECG authentication allows it to have a better
confidence level, possibly allowing more false
positives to increase overall performance. In other
words, our solution offers the possibility of regulating
the threshold point.

5 CONCLUSION

In this paper, we proposed the use of a second
element in ECG-based authentication. We tested the
techniques in a Windows login scenario, introducing
an unconventional multi-factor authentication in an
everyday system. Our suggestion consists mainly of an
approach using an Android phone and an ECG reader
keyboard. In this scheme, we took advantage of
Bluetooth Low Energy technology, now emerging in
the commercial scene mostly with peripherals, in order
to take a more battery-friendly approach. As a part of
our work, we also suggested the use of classic
Bluetooth in a Windows-Windows Phone scheme. In
both schemes, our system is capable of working in a
single-factor mode (using the phone only), or in a
multi-factor mode (using the phone and the ECG
keyboard).

Table 3: Identification and authentication times using an

68 user ECG database (in seconds).

Individual Identification Authentication

1 12,83 9,12

2 12,54 9,86

3 11,33 9,54

4 12,87 9,89

5 12,20 9,14

In the classic Bluetooth approach, we struggled
with a number of limitations associated with Windows
environments – both in desktop Windows and
Windows Phone. Although we created a working
prototype in this context, it did not correspond to our
expectations, leading us to a different approach.

Figure 5: Identification vs. Authentication times, in

seconds, referring to the five tested individuals, using a 68

user DB. Comparison between a typical ECG

authentication with our multi-factor approach.

In the Bluetooth Low Energy approach, we used
mostly Linux on an Edison board which allowed us to
create a BLE server and test the scenario we initially
intended. Also, the use of Edison proves that this
approach is feasible for small embedded devices. In
this case Edison functioned as a middle worker,
forwarding BLE messages from the phone through Wi-
Fi to a computer running pGina. Also, Android
allowed us to work with more stable Low Energy
connections. The BLE approach allowed us to read
RSSI, giving us a hint of how close the phone actually
was from the computer. This gave us the opportunity
to be stricter concerning the individual’s proximity,
thus denying the identification if the person is in the
room but not in front of the computer.

We also analyzed, although limited by the number
of tests performed, the improvement in authentication
performance comparing to identification based on
ECG readings alone. We went from a situation where
one had to be identified and authenticated (adding the
delay associated to each), to a situation where the
system is previously informed about user’s foressen
identity, requiring the authentication delay only. This
translated in faster authentication, as well as decreased
identification error rates.

REFERENCES

 32feet.NET, 2012. 32feet.NET - user’s guide /

tutorial / examples. [Online] Available at:

0

2

4

6

Identification vs.
Authentication (68 user DB)

http://32feet.codeplex.com/documentation.

[Accessed 13 Jan 2015].

Abdelhameed, R., Khatun, S., Ali, M. B. & Ramli,

A. R., 2005. Authentication model based

bluetooth-enabled mobile phone. J. Comput. Sci..

Al Alawi, R., 2011. RSSI based location estimation

in wireless sensors networks. s.l., s.n., p. 118–

122.

Carreiras, C., Lourenço, A., Fred, A. & Ferreira, R.,

2014. ECG signals for biometric applications are

we there yet ?. s.l., s.n.

Chakraborty, G. et al., 2008. Analysis of the

bluetooth device discovery protocol. Wirel.

Networks, 16(2), p. 421–436.

CSR, 2015. BlueCore® CSR8510TM A10 WLCSP.

[Online] Available at:

http://www.csr.com/products/bluecore-csr8510-

a10-wlcsp [Accessed 28 May 2015].

De Zheng, J., 2011. A framework for token and

biometrics based authentication in computer

systems. J. Comput., 6(6), p. 1206–1212.

Gomez, C., Oller, J. & Paradells, J., 2012. Overview

and evaluation of bluetooth low energy: an

emerging low-power wireless technology.

Sensors, 12(12), p. 11734–11753.

Intel, 2015. Intel® Edison—one tiny platform,

endless possibility. [Online] Available at:

https://www-ssl.intel.com/content/www/us/en/do-

it-yourself/edison.html [Accessed 6 Apr 2015].

Landau, D. M., 2015. My robot is cuter than your

robot. [Online] Available at:

http://iq.intel.com/my-robot-is-cuter-than-your-

robot [Accessed 18 May 2015].

Malina, R. M., Bouchard, C. & Oded, B.-O., 2004.

Growth, Maturation, and Physical Activity. In: J.

P. Wright, ed. Human Kinetics. s.l.:s.n.

Microsoft, 2013. Credentials management in

windows authentication. [Online] Available at:

http://technet.microsoft.com/en/library/dn169014

(v=ws.10).aspx [Accessed 19 Dec 2014].

Parameswaran, A. T., Husain, M. I. & Upadhyaya,

S., 2009. Is RSSI a reliable parameter in sensor

localization algorithms – an experimental study.

F. Fail. Data Anal. Work., p. 5.

Sandeepmistry, 2015. Bleno. [Online] Available at:

https://github.com/sandeepmistry/bleno

[Accessed 25 Apr 2015].

Silva, A. P. et al., 2013. Check your biosignals here :

a new dataset for off-the-person ECG biometrics.

Comput. Methods Programs Biomed.

Social.msdn, 2013. GATT server role on Windows 8.

[Online] Available at:

https://social.msdn.microsoft.com/Forums/windo

wsapps/en-US/b89e673b-38b5-4ac4-b9e9-

47e634d668fc/gatt-server-role-on-windows-

8?forum=wdk [Accessed 6 Apr 2015].

Social.msdn, 2015. [Bluetooth RFComm]

SocketStream.ConnectAsync(HostName,String) –

SystemException Element Not Found. [Online]

Available at:

https://social.msdn.microsoft.com/Forums/windo

wsapps/en-US/4760a2a4-9133-4658-9f18-

c5aae2b39341/bluetooth-rfcomm-

socketstreamconnectasynchostnamestring-

systemexception-element-not-

found?forum=winappswithcsharp [Accessed 6

May 2015].

Social.msdn, 2015. RFCOMM connection fails.

[Online]

Available at:

https://social.msdn.microsoft.com/Forums/en-

US/62de78de-b6f1-4c8a-bc2d-

b88c77c6dd4d/rfcomm-connection-

fails?forum=winappswithcsharp [Accessed 6 Mar

2015].

Stackoverflow, 2015. RFCOMM connection works

unstable. [Online] Available at:

http://stackoverflow.com/questions/27122484/rfc

omm-connection-works-unstable [Accessed 6

Mar 2015].

Tanvi, P., Sonal, G. & Kumar, S. M., 2011. Token

based authentication using mobile phone. s.l.,

s.n., pp. 85-88.

Technologies, C., 2015. VitalidiType, s.l.: s.n.

Wiko, 2015. Darkmoon. [Online] Available at:

http://pt.wikomobile.com/m131-DARKMOON

[Accessed 28 May 2015].

Wolff, D., 2014. How pGina works. [Online]

Available at:

https://github.com/pgina/pgina/wiki/How-pGina-

Works [Accessed 20 Dec 2014].

