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Abstract: Several pathologies can alter the way people walk, i.e., their gait. Gait analysis can be
used to detect such alterations and, therefore, help diagnose certain pathologies or assess people’s
health and recovery. Simple vision-based systems have a considerable potential in this area, as they
allow the capture of gait in unconstrained environments, such as at home or in a clinic, while the
required computations can be done remotely. State-of-the-art vision-based systems for gait analysis
use deep learning strategies, thus requiring a large amount of data for training. However, to the best
of our knowledge, the largest publicly available pathological gait dataset contains only 10 subjects,
simulating five types of gait. This paper presents a new dataset, GAIT-IT, captured from 21 subjects
simulating five types of gait, at two severity levels. The dataset is recorded in a professional studio,
making the sequences free of background camouflage, variations in illumination and other visual
artifacts. The dataset is used to train a novel automatic gait analysis system. Compared to the state-
of-the-art, the proposed system achieves a drastic reduction in the number of trainable parameters,
memory requirements and execution times, while the classification accuracy is on par with the
state-of-the-art. Recognizing the importance of remote healthcare, the proposed automatic gait
analysis system is integrated with a prototype web application. This prototype is presently hosted in
a private network, and after further tests and development it will allow people to upload a video
of them walking and execute a web service that classifies their gait. The web application has a
user-friendly interface usable by healthcare professionals or by laypersons. The application also
makes an association between the identified type of gait and potential gait pathologies that exhibit
the identified characteristics.

Keywords: assisted living; gait classification; pathology identification; remote diagnosis; web application

1. Introduction

Gait can be defined as the act of locomotion, involving periodic body movements,
such as sequences of loading and unloading of the limbs [1]. The study and analysis of
gait in a medical context can contribute to the diagnosis and monitoring of pathologies
that affect people’s gait [2]. For this reason, the automatic classification of the type of gait
is gathering interest, with many approaches already available in the literature [3,4]. Of
these approaches, vision-based solutions appear to be especially interesting since image
sequences can be captured with relatively simple setups, e.g., with a single 2D camera [5].
This enables the capture of gait data in a clinical environment or even at home, with most
of the processing required to analyze the observed gait done remotely. A prototype based
on this idea is proposed in this paper to enable the remote classification of people’s gait.

Most state-of-the-art vision-based systems for gait classification rely on deep learning
strategies [6–8]. They involve the use of Convolutional Neural Networks (CNN), such as
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VGG-19 [9], pre-trained on the ImageNet [10], and fine-tuned using gait datasets. Fine-
tuning requires relatively smaller datasets to adjust an existing CNN to perform better on a
related problem. The quality of this adjustment and the expected results depend on the
richness and suitability of the used datasets. However, most publicly available datasets
containing different types of gait are captured from a limited number of healthy subjects
simulating gait pathologies. Most datasets contain simulations because of the ethical
and privacy concerns involved in sharing data from real patients. However, simulating
pathologies with all its complexity is seldom correctly executed.

This paper presents a new gait dataset, GAIT-IT, containing 21 subjects and five types
of gait, at two severity levels, simulated following instructions provided using an illus-
trative video, an oral explanation, and a short walking demonstration. The gait video
sequences are captured in a professional studio with a chroma-keying background, result-
ing in a high contrast between the foreground and the background. These characteristics of
the dataset are helpful for training a reliable gait type classification system.

The paper also presents a novel gait type classification system based on a CNN
architecture. It drastically reduces the number of trainable parameters, compared to the
state-of-the-art, thus having lower memory requirements and faster execution times. The
proposed system is trained using the GAIT-IT dataset and tested using also a publicly
available dataset containing simulations of the corresponding gait pathologies. The results
suggest that the proposed system has significant generalization ability, as it can correctly
associate available gait types with the corresponding pathologies. The results also highlight
the effectiveness of the proposed system to operate in a relatively noisy acquisition setup
of the GAIT-IST dataset, which was captured using a cell phone in an ‘at home’-like setting,
with a wall as background and without particular care taken with the illumination, which
came from a side window and the ceiling fluorescent lamps. Additionally, the distance
from the camera to the subjects is different in the GAIT-IT and GAIT-IST datasets.

A third contribution of this paper is a web application for gait assessment. It is
the prototype of a remote healthcare system, performing diagnosis by analyzing video
sequences captured and uploaded from a cellphone or a personal computer. The web
service identifies the type of gait and associates it to a possible gait related pathology. All
computations are performed on the server, and the results are returned in a user-friendly
manner, with images highlighting the parts of the gait that contribute more to the diagnosis.

1.1. Related Work

A rich characterization of gait information can be obtained through the use of different
types of sensors, including [3]:

1. floor-based sensors;
2. wearable sensors;
3. vision-based sensors.

Floor-based sensors are used to detect ground reaction force [11], or the pressure
exerted on the area under the foot [3]. It typically provides limited information for gait
classification and the equipment used is restricted to constrained spaces. Wearable sensors
are portable, allowing data acquisition of three-dimensional information related to walking
patterns over long periods of time [4,12]. However, their performance can be influenced by
the sensor placement. If sensor placement is not completed carefully, walking can become
uncomfortable, which can then affect the quality of gait data acquired. Additionally, if
an ‘at-home’ scenario is envisaged, for self-monitoring, then it is not guaranteed that
sensors will be correctly applied, and the captured data may not be the intended type.
In summary, sensor placement should always be completed under the supervision of
trained professionals.

Vision-based systems have the advantage of being unobtrusive and not requiring
a complicated cooperation of the subject. Marker-based systems are considered as the
gold standard approach for gait analysis [13], using special markers placed on key body
parts to track them and obtain kinematic features from the observed motion. However,



Diagnostics 2021, 11, 1824 3 of 13

these often require specialized personnel to ensure correct setup and calibration. On the
other hand, a markerless approach can be more suitable for application in less constrained
environments [14].

Markerless vision-based systems for gait analysis typically follow a model-based or
an appearance-based approach [15]. In the model-based approach, gait representations
are created by fitting a model to the input sequence of images or silhouettes, using prior
knowledge of the human body (structural model) or its motion (motion model) [16]. An
example includes using two Kinect sensors with perpendicular viewing directions, ac-
quiring both RGB and depth information to create a 3D model based on the movement of
skeleton parts [17]. This model combines static features (e.g., distances between joints) and
dynamic features (e.g., speed, stride length or the body’s center of mass movement). In
the appearance-based approach, gait is represented without assuming prior knowledge of
human motion. A sequence of binary silhouettes is typically obtained using background
subtraction, as illustrated in Figure 1a. As long as a well performing background subtrac-
tion method is used, the resulting silhouettes are mostly free from background clutter and
the influence of illumination changes. The desired gait representation can then be derived
using the sequence of binary silhouettes. A widely used representation called the Gait
Energy Image (GEI) [18] is obtained by averaging the cropped, normalized in size and
horizontally aligned binary silhouettes belonging to a gait cycle, according to Equation (1).

GEI(x, y) =
1
N

N

∑
i=1

Bi(x, y) (1)

In Equation (1), N represents the number of frames in one (or multiple) gait cycle(s).
Bi(x, y) is a binary silhouette image, with x and y being pixel coordinates. The resulting
GEI is a grey-level image implicitly representing, in a single image, the subject’s shape and
motion along the gait cycle, as illustrated in Figure 1b,c. The GEI representation is robust
against noise in individual frames.
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Figure 1. Example of (a) background subtraction, (b) binary silhouettes and (c) GEI.

A second representation considered for the presentation of results in this paper is
the Skeleton Energy Image (SEI) [6], a hybrid between model- and appearance-based
approaches—see Figure 2c. It starts by obtaining skeleton models for every available
image of the walking person, using Open Pose [19]. Open Pose is a neural network
trained to locate the positions of key joints of a human body on a 2D image, as illustrated
in Figure 2a. With a skeleton image for each frame, the SEI can then be obtained with
the same method used for GEI computation. The SEI was reported to achieve better
pathological gait classification results than the GEI, as the SEI focuses on the dynamic
movement characteristics and not on the physical constitution and clothing of a subject [6].
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1.1.1. Gait Classification Systems

Systems for the classification of gait types often use the gait representation directly,
they compute a set of biomechanical features, or use a combination of both. For instance,
the work reported in [20] describes two approaches, one using leg angles as features, and
another one using the GEI. A set of normalized gait features is proposed in [21], including
the step length, stance and swing phase durations, or the amount and broadness of limb
movements, to quantify gait impairments. The last decade has witnessed the emergence
of deep learning strategies for feature extraction in image recognition and classification
with very good results, including gait analysis systems. The solution presented in [8]
adopts the GEI for gait representation and uses the VGG-19 [9], pre-trained on a subset of
ImageNet [10], for feature extraction. Transfer learning is used to repurpose the CNN for
pathological gait classification, with the last layers of the VGG-19 network being trained
using GEIs computed from the INIT dataset [21]. Linear Discriminant Analysis (LDA) was
used for classification and the system’s performance is tested using two other pathological
gait datasets: DAI [22] and DAI2 [20]. Another deep learning approach, also based on
the VGG-19, is adopted in [6] for pathological gait classification, using both GEI and SEI
gait representations. In this case, the pre-trained CNN is fine-tuned with data from the
GAIT-IST dataset [6]. Other deep learning approaches include the use of Recurrent Neural
Networks (RNNs) that are able to learn correlations between inputs in a time series, such
as the application of a bidirectional Long-Short Term Memory (LSTM) [23] network for
pathological gait classification based on sequences of lower limb flexion angles [7]. Given
the good performance reported in the literature, this paper also considers a deep learning
solution to perform gait type classification.

1.1.2. Gait Datasets

Publicly available gait datasets are created either for biometric recognition, or for gait
type classification. Datasets for recognition include subjects walking normally, possibly
with some covariates such as different speeds, different types of shoes, different clothing
or carrying different items. The purpose of gait type datasets is to capture sequences
reflecting different kinds of impairments, notably to mimic the effects of some pathological
conditions. Since sharing data from real patients raises ethical and data privacy issues, the
publicly available impaired gait datasets are captured from healthy subjects simulating a
selection of gait impairments. To the best of our knowledge, there are four gait impairment
datasets publicly available, as listed below. All the sequences in these datasets are captured
from a canonical viewpoint and recorded in controlled environments.

The DAI dataset [22] contains binary silhouettes of five subjects. It has 15 healthy
gait sequences, and 15 sequences with random gait impairment simulations, for a total of
30 gait sequences. The subjects are captured walking over a distance of 3 m using both the
RGB camera of a Kinect sensor and a smartphone.

The DAI2 dataset [20] also considers five subjects, but contains a total of 75 gait
sequences. Each subject simulates four pathologies (Parkinson’s, diplegia, hemiplegia and
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neuropathy), as well as normal walking gait. Each condition was recorded 3 times, while
walking along a distance of 8 m.

The INIT dataset [21] contains binary silhouettes of 10 subjects (9 males, 1 female), for
a total of 80 sequences. Every subject is recorded 2twodifferent times, at 30 fps, capturing
multiple gait cycles and simulating seven different gait impairments (in addition to a
healthy gait sequence): (i) right arm motionless; (ii) half motion of the right arm; (iii) left
arm motionless; (iv) half motion of the left arm; (v) full body impairments; (vi) half motion
of the right leg; and (vii) half motion of the left leg.

The GAIT-IST dataset [6] considers 10 subjects, with a total of 360 gait sequences. The
dataset includes the same four pathologies considered in DAI2, with two severity levels for
each, two directions of walking, and two repetitions per subject, except for the normal gait.
It is the largest pathological gait dataset publicly available. Video sequences were captured
using a smartphone camera, with a resolution of 1280 × 720 pixels, mounted on a tripod at
about 1.5 m above the ground and at a distance of about 4 m from the target.

Of the above datasets, some include impairments that are very easy to simulate, but
which may not be directly related to any specific gait pathology. Other datasets include
simulations of the gait pathologies, which are harder for healthy people to simulate. The
proposed GAIT-IT dataset simulates different gait types that can be associated with known
pathologies. Healthy volunteers were instructed on how to perform the simulations by
watching detailed explanation videos, as well as personal interaction to clarify questions
and see a short demonstration of the main walking characteristics related to the pathologies
to simulate. GAIT-IT also doubles the number of subjects relatively to the largest publicly
available dataset.

2. Materials and Methods

This paper presents three novel contributions:

1. proposal of a new, larger, gait type dataset: GAIT-IT;
2. a gait type classification system;
3. a remote diagnosing web application.

2.1. GAIT-IT Dataset

The proposed GAIT-IT dataset (available at http://www.img.lx.it.pt/GAIT-IT/ ac-
cessed on 3 September 2021) captures a larger number of subjects, with significantly
more variations than the existing publicly available datasets. The sequences are cap-
tured at a higher quality and with a better contrast between the subject and the back-
ground. GAIT-IT is recorded in the professional studio of FCT|FCCN, Lisbon, Portugal
(https://www.fccn.pt/en/colaboracao/estudio/ accessed date 25 July 2021), on two dif-
ferent days. The studio includes controlled artificial lighting and a green background,
ideal for chroma-keying segmentation, resulting in high-quality sequences, free from back-
ground camouflage and other artifacts. Two professional 4K video cameras are used to
capture synchronized gait sequences, one with a side view, at approximately 3 m from the
target, and the other with a front/rear view, at about half a meter from the walking start
position. Both cameras stood on tripods at 1.75 m from the ground.

The GAIT-IT dataset contains simulations of five different types of gait. For each type,
except normal, two levels of severity are captured. The subjects provide four gait sequences
per severity level. This corresponds to a subject walking twice from left to right and from
right to left, from the side view. The sequences are captured on two different days where
21 volunteers (19 males and 2 females) between the age range of 20 to 56 years participated,
with a mean of 29.5 and a standard deviation of 11.6—see Figure 3. Thus, GAIT-IT dataset
includes a total of 828 gait sequences. Having some subjects captured on different days,
allows intra-subject variations in the simulations. Before capturing the sequences, the
subjects are instructed on how to simulate the various gait types and severity levels, as
summarized below [24].

http://www.img.lx.it.pt/GAIT-IT/
https://www.fccn.pt/en/colaboracao/estudio/
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Figure 3. Subjects’ age distribution.

The scissor gait commonly associated with diplegia affects both sides of the body. A
subject adopts a forward leaning posture and walks by dragging both feet in a circular
motion. For the second severity level the overall bending is accentuated, along with leg
and arm movements.

The spastic gait commonly associated with hemiplegia affects only one side of the
body. The leg is dragged in a circular motion, with a broader reach for the second severity,
while the right arm remains still and held close to the waist, or flexed against the chest in
the second severity level.

The steppage gait commonly associated with neuropathy leads to foot drop. Subjects
tend to lift their knees higher than normal to avoid dragging their toes on the floor. In the
second severity level, the lift of the leg and the forward swing are exaggerated.

The propulsive gait commonly associated with Parkinson’s diseases is characterized
by a stooped posture, with both arms held close to the chest and the lower limbs flexed
and rigid. Subjects are asked to attempt simulating general and erratic body shaking
while taking small and relatively fast steps. The second severity level involves an overall
exaggeration of these symptoms.

The captured sequences are processed to produce four different representations:

1. sequence of binary silhouettes;
2. sequence of skeletal images;
3. GEIs;
4. SEIs.

GEI and SEI representations are obtained for each gait cycle, as well as for the complete
set of gait cycles available per sequence. The spatial dimension of the produced gait
representations is 224 × 224 pixels. The binary silhouettes are cropped and overlapped
following Equation (1) to obtain the gait representations. All representations consider a
framerate of 10 fps. The main steps for obtaining the gait representations are as follows.

The extraction of binary silhouettes relies on chroma-keying segmentation. A frame
containing only the background is represented in the HSV color space and the histograms
of the hue (H), saturation (S) and value (V) components are computed. Then, all pixels in
gait sequences with HSV values outside the background range are classified as belonging
to the walking subject. Finally, a morphological filtering operation is applied to remove
noise. A sample result is presented in Figure 1a. Skeleton computation relies on locating
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key anatomical parts in the gait images, using the Open Pose [19] software, which uses
a multi-stage CNN to automatically detect a total of 135 body, hand, facial and foot key
points in each frame of a video, operating in real-time. In the current implementation, only
25 key points corresponding to the body are captured, as illustrated in Figure 2a. The GEIs
and SEIs are computed following Equation (1). An example of the gait representations
obtained from the GAIT-IT dataset is illustrated in Figure 1c (GEI) and Figure 2c (SEI).

2.2. Gait Type Classification System

The state-of-the-art vision-based systems for gait type classification rely on deep
learning using pre-trained CNNs, which are then fine-tuned by transfer learning with task-
specific datasets. This strategy is employed as most gait type datasets contain a limited
amount of training data. Since the proposed GAIT-IT dataset provides a considerable
increase in the amount of data available for training, rather than fine-tuning a complex
network, this paper proposes a novel lightweight CNN, specifically trained to perform gait
type classification. The architecture of the proposed CNN is illustrated in Figure 4.
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The proposed system accepts a GEI or SEI as an input, which is processed using five
convolutional layers. This option follows the type of architectures adopted in the Kaggle
MNIST challenge [25,26], which also process binary images. As in the architectures of
popular CNNs, such as VGG-16, the proposed system adopts a 3 × 3 filter size and a stride
of 2 for the convolutional layers. A total of 32 feature maps, or filters, is considered in the
first convolutional layer, being doubled for the last two layers. Each convolutional layer
is followed by batch normalization, to adjust and scale the outputs to have a mean value
close to 0 and a standard deviation close to 1. Bounding the values that pass between layers
helps to stabilize and speedup the training process.

To perform classification, the features computed by the final convolutional layer are
flattened and passed on to a fully connected neural network, consisting of two dense
layers with a dropout [27] of 0.5 between them. The first dense layer has 512 units and the
second layer has five units, corresponding to the five considered gait types, with a softmax
activation function to output class probabilities. The proposed system is trained using
categorical cross entropy and the Adam algorithm [28], with the Nesterov momentum
variation [29]. The learning rate is set to 0.001.

2.3. A Remote Diagnostic Web Application Prototype

This paper also proposes the prototype of a system that allows remote gait diagnosis.
It could assist healthcare professionals to identify patients requiring immediate attention
and further examination, as well as monitor the evolution of existing gait pathologies,
without the need of physical interaction with the patient. The usefulness of such a system
is made more evident under the COVID-19 pandemic.

The proposed remote diagnostic web application runs the proposed gait type classifica-
tion system on its server. It can be access by issuing HTTP requests to the web service. The
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web interface allows uploading a video sequence or a compact gait representation, notably
a GEI or a SEI. It then executes the web service and returns the results to be presented in
way that can be easily interpreted by the user.

The web application offers two different modes of operations:

1. basic mode;
2. advanced mode.

The basic mode is a simple interface to be used in a clinical environment or at home.
It assumes a simple setup which involves filming a subject using a 2D camera, e.g., using
a cellphone’s camera. The user interface, illustrated in Figure 5a, allows the user to up-
load the video, and the web application generates a GEI (or SEI) representation. The gait
representation is processed by the web service using the proposed gait type classification
system, which checks if the identified features could be associated to a specific gait pathol-
ogy. The user can then visualize the parts of the body that contributed to the diagnostic
using a saliency representation [30] and class-activation maps (grad-CAM) [31]. Figure 6
illustrates results for two different types of gait, suggesting that spastic gait is identified
by the characteristic movement of the feet, while propulsive gait is identified by the type
of feet movement and the bending of the spine. The diagnostic can optionally be sent
to a specified e-mail address. The interface is designed to remotely obtain a preliminary
diagnostic, and to help visualize the body motions that deviate from a healthy gait.
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The advanced mode uses the interface illustrated in Figure 5b, providing additional
details for those interested in analyzing the operation of the classification system. It allows
users to visualize the feature maps generated by specified convolutional layers. The
visualization of the feature maps can offer a low-level insight into the training process. It
also allows users to directly upload GEIs or SEIs to the system.

The remote diagnostic web application prototype can be further improved to allow
training the classification system with different gait representations. The visualization of
detailed features supported by the advanced user interface mode can provide an important
insight to understand the operation of the classification system.
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3. Results

The proposed gait type classification system is evaluated using a 10-fold cross-
validation protocol on the GAIT-IT dataset. To emphasize the proposed system gen-
eralization capability, a second set of evaluation results considers the proposed system
trained on the GAIT-IT dataset and tested on GAIT-IST. To compare the proposed system
performance with the state-of-the-art, the systems presented in [6,8] are considered here for
benchmarking. These systems use a solution based on VGG-19, pre-trained on Imagenet,
and then fine-tuned using GEIs [6] and SEIs [8]. Those systems are re-implemented and
fine-tuned using the GAIT-IT dataset, for fairness of the presented comparisons.

First, the proposed and the state-of-the-art systems [6,8] are evaluated using a 10-fold
cross-validation protocol. The GAIT-IT dataset is split into training and test sets, where
the subjects in each set are mutually exclusive. The test set for each fold is defined as
Vk = {Si, Si+1, Si+2}, where i = 2 × k − 1, k is the fold iteration and Si represents one of
the 21 subjects. This arrangement ensures the use of every subject in the test set at least
once, thus reducing training bias. The cross-validation results are presented in Table 1.
Table 2 additionally compares the neural network model size and the execution times for
the proposed and the state-of-the-art [6,8] systems, using a personal computer equipped
with an AMD Ryzen 7 1700X processer, 32 GB RAM and a GTX 1070 GPU with 8 GB.

Table 1. Cross-validation results obtained using the GAIT-IT dataset.

Gait Classification System Input Accuracy (%)

Fine-Tuned VGG-19 [8] GEI 94.0
Fine-Tuned VGG-19 [6] SEI 93.6

Proposed system GEI 93.4
Proposed system SEI 92.6

Table 2. Number of parameters, storage space, training and execution time (milliseconds) required
by the VGG-19 [6,8] and the proposed systems.

Gait Classification System Parameters Size (Mb)
Execution Time (ms)

Train Test

Fine-Tuned VGG-19 [6,8] 139,330,565 558.4 15 6
Proposed system 1,684,421 6.8 1 1

Training and testing a classification system using the same dataset can raise the issue
of overfitting. To address this issue, a cross-dataset evaluation is additionally performed
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using the GAIT-IST [6] and the proposed GAIT-IT datasets. This second set of evaluations
are conducted by training the proposed and the state-of-the-art [6,8] systems using all
available subjects from the GAIT-IT dataset, and then testing the gait type classification
systems using all the available subjects from the GAIT-IST dataset. It should be noted that
GAIT-IST dataset acquisition setup is significantly different from GAIT-IT, with acquisition
performed using a cell phone camera, under a ceiling light. Table 3 reports the obtained
classification accuracy results, while Table 4 reports the corresponding confusion matrix.
Training with GAIT-IST or DAI2 was not considered as those datasets are significantly
smaller and some of the available silhouettes contain segmentation errors. The other
publicly available datasets discussed in Section 1.1.2 were not considered because they
include simulations of limb movement impairments, rather than gait types, and their size
is small.

Table 3. Cross-dataset results obtained using GAIT-IT for training and GAIT-IST for testing.

Gait Classification System Input Accuracy (%)

Fine-Tuned VGG-19 [8] GEI 86.4
Fine-Tuned VGG-19 [6] SEI 85.1

Proposed system GEI 89.8
Proposed system SEI 86.4

Table 4. Confusion matrix for the proposed gait type classification system representing an average
score of GEI and SEI inputs (%).

Predicted Class

Tr
ue

C
la

ss

Gait
Type

Scissor
(Diplegic)

Spastic
(Hemiplegic)

Steppage
(Neuropathic)

Normal
(Healthy)

Propulsive
(Parkinsonian)

Scissor 87 7 0 0 5
Spastic 9 89 2 0 0

Steppage 0 2 97 1 0
Normal 0 0 0 99 0
Propulsive 5 0 0 0 95

4. Discussion

The average classification accuracy obtained using 10-fold cross validation, reported
in Table 1, suggests that the proposed system’s performance, achieving a classification
accuracy of 93.4% and 92.6% on GEI and SEI gait representations, respectively, is equivalent
to the state-of-the-art [6,8]. However, it should be noted that the proposed system has a
much lower computational complexity, due to the significantly smaller number of trainable
parameters and the consequent reduction of static and dynamic memory needed to store
and execute the system—see Table 2. The proposed system, represented in hdf5 [32] file
format, is 83 times smaller than the state-of-the-art VGG-19 system. The proposed gait
type classification system also executes significantly faster, which is of great importance
for considering the deployment of a diagnostics web service to operate over the Internet.
Table 2 also reports training and execution time for the proposed and the state-of-the-
art [6,8] systems, showing that the proposed system operates 15 times faster during training
and six times faster when processing a request.

The cross-dataset results reported in Table 3 suggest that the proposed system gener-
alizes better than the state-of-the-art VGG-19 systems [6,8]. The proposed system improves
the average classification accuracy by 3.4% and 1.3% using GEIs and SEIs, respectively. A
possible explanation for this increase may be that the deeper CNN architecture requires
significantly more data for fine-tuning, and to avoid overfitting to the seen training data.
Thus, the shallower CNN model of the proposed gait type classification system appears to
be more suitable for operation with datasets with limited training data.

Table 4 reports results of classification across five different types of gait when testing
with the GAIT-IST dataset [6]. This test assumes an association between the gait types sim-
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ulated in the novel GAIT-IT dataset (scissor, spastic, steppage, propulsive and normal), and
the gait pathologies simulated in the GAIT-IST dataset (diplegic, hemiplegic, neuropathic,
Parkinsonian, healthy), with the results obtained confirmed to be a reasonable assumption.

To further analyze the proposed system’s performance, the confusion matrix presented
in Table 4 highlights the prediction errors made by the proposed system. From these results
it can be inferred that normal gait is the easiest to classify, with a classification accuracy of
99%., while the scissor gait is the most difficult to classify, with a classification accuracy of
87%. This can be due to the scissor gait GEIs’ showing a similar appearance to spastic and
propulsive GEIs, as these three types of gait involve a limited leg movement. The spastic
gait performs slightly better with an average classification accuracy of 89%. The distinct
walking pattern of steppage gait allows the system to achieve an average classification
accuracy of 97%. Propulsive gait achieved the next best classification accuracy of 95% as
it involves a stooped posture along with the restricted leg movements. Finally, it can be
concluded that the proposed gait type classification system can be used to successfully
identify gait impairments from 2D video sequences, which may be captured using the
pervasive smartphone devices (as considered in the GAIT-IST dataset).

5. Conclusions

This paper presents the prototype of a web application for remote gait diagnostic
system. The application, to be used over the Internet, implements a web service that
executes a gait type classification system on the server, returning results to be reported
using a user-friendly graphical interface. The novel gait type classification system is based
on a shallow CNN architecture, whose performance is equivalent to the state-of-the-art
classification systems [6,8], while showing two distinct advantages:

1. The proposed deep learning model is 83 times smaller than the one considered by
state-of-the-art solutions [6,8]. This reduces the memory requirements and improves
the execution time, which is significant when operating over the Internet;

2. The shallower network model achieves a better fit using the GAIT-IT dataset, which
contains data from only 21 subjects, as confirmed by the cross-database test results.
This is significant as the proposed web application accepts video sequences captured
under different conditions and environments.

The paper also presents GAIT-IT dataset, containing 828 gait sequences, captured from
21 subjects simulating five different types of gait. The sequences were captured using two
synchronized cameras, capturing both the sagittal and frontal views. The dataset contains
silhouettes, skeletons, GEIs and SEIs.

Since this work focuses on the sagittal view, future work can consider the integration
of frontal view analysis. The combination of orthogonal viewpoints can result in more dis-
criminative features, leading to an improved classification system. Furthermore, different
deep network architectures can be considered to explore the temporal nature of gait. The
web application prototype is presently hosted as a web service in a private network, and
after further development, e.g., to allow training the system with additional types of gaits
and other gait representations, it might be made publicly available. The model is also be
released in GitHub (https://github.com/jpsmachado/Gait-WebApp.git accessed date 23
July 2021).

Another possible future direction can include extending the GAIT-IT dataset to in-
corporate sequences from real patients. Since all the existing publicly available datasets,
including GAIT-IT dataset, are composed of simulations, testing the proposed system with
real patients will allow further validation of its performance in classifying gait pathologies.
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