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ABSTRACT Automatic image over-segmentation into superpixels has attracted increasing attention from
researchers to apply it as a pre-processing step for several computer vision applications. In 4D Light
Field (LF) imaging, image over-segmentation aims at achieving not only superpixel compactness and
accuracy but also cross-view consistency. Due to the high dimensionality of 4DLF images, depth information
can be estimated and exploited during the over-segmentation along with spatial and visual appearance
features. However, balancing between several hybrid features to generate robust superpixels for different
4D LF images is challenging and not adequately solved in existing solutions. In this paper, an automatic,
adaptive, and view-consistent LF over-segmentation method based on normalized LF cues and K -means
clustering is proposed. Initially, disparity maps for all LF views are estimated entirely to improve superpixel
accuracy and consistency. Afterwards, by using K -means clustering, a 4D LF image is iteratively divided
into regular superpixels that adhere to object boundaries and ensure cross-view consistency. Our proposed
method can automatically adjust the clustering weights of the various features that characterize each
superpixel based on the image content. Quantitative and qualitative results on several 4D LF datasets
demonstrate outperforming performance of the proposed method in terms of superpixel accuracy, shape
regularity and view consistency when using adaptive clustering weights, compared to the state-of-the-art
4D LF over-segmentation methods.

INDEX TERMS Automatic segmentation, adaptive light field over-segmentation, superpixels.

I. INTRODUCTION
Image segmentation is a process of dividing the scene
into several coherent regions according to some criteria.
Image segmentation aims at minimizing intra-variance and
maximizing inter-variance among regions [1]. Several image
processing and computer vision applications rely on image
segmentation in different fields, such as medical imaging [2],
autonomous vehicle navigation [3], and face or optical char-
acter recognition [4]. Available image segmentation algo-
rithms in the literature require different levels of supervision
to suit different types of applications. These algorithms can
be classified into supervised [5], semi-supervised [6], and
unsupervised (automatic) [7], [8], based on the need for
pre-trained labels or human interactions.

Image over-segmentation divides the scene into uni-
form regions with similar visual characteristics, such as
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color or texture to obtain superpixels [9]. Most existing
image over-segmentation methods belong to the
unsupervised image segmentation class and can be cat-
egorized as clustering-based methods and graph-based
methods [9]. Recently, researchers have also been attempt-
ing to exploit deep learning techniques to generate image
over-segmentations for 2D images [10], [11]. These image
over-segmentation methods, in [10], [11], belong to the
supervised image segmentation class and have shown to
achieve superior performance. However, preserving all image
boundaries during the over-segmentation could be chal-
lenging, since the used ground truth labels for training are
usually segmented in a more semantically meaningful level
(e.g., object level). Additionally, although their performance
is competitive compared to unsupervised methods, the gen-
eralization of the network to over-segment different datasets
is still a challenge to be further studied.

By creating homogenous regions that involve local percep-
tually meaningful information (i.e., superpixels), subsequent
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image analysis and processing are facilitated [8]. A recent
trend in computer vision and image processing applications
is to process an image at the superpixel-level representation
instead of the pixel-level representation. As an example,
in image compression, superpixels can be used to reduce
coding overhead by minimizing the number of regions that
need to be coded [12], [13]. Additionally, superpixels can be
used in object tracking [14], object segmentation [15], and
saliency detection [8], [16].

As for 2D images, in 4D Light Field (LF) images,
the superpixel concept can be also exploited to divide the var-
ious views into smaller regions. However, 4D LFs comprise
spatial as well as angular scene information, since they cap-
ture the scene from different perspectives by using a camera
array, a moving camera gantry or a single camera equipped
with a microlens array in front of the sensor [17], [18].
Therefore, in 4D LF images the superpixel-level representa-
tion should correspond to regions that are coherent not only
spatially but also angularly across views. In 4D LF process-
ing, superpixel-level representation facilitates the propaga-
tion of subsequent processing tasks from a reference view into
other views; hence, a significant reduction in computational
complexity can be achieved. Furthermore, superpixel-level
representation using appropriate LF superpixels, that con-
sider angular and spatial geometry, helps ensure cross-view
consistency, which is a critical property in 4D LF process-
ing (e.g., in virtual reality applications, the 4D LF object
must be accurately and consistently segmented in all views).
Compared to 2D images, 4D LFs offer richer cues that can
be used efficiently to significantly improve the robustness of
image segmentation, such as depth information. In general,
when traditional 2D segmentation is applied to 4D LFs,
the cross-view information is not considered to resolve
object occlusions, thus resulting in inconsistent or inaccurate
image segmentations. Therefore, 4D LF over-segmentation
solutions should aim at achieving superpixel cross-view
consistency (e.g., without flickering borders or sudden
shifts in border positions when the angular perspective is
changed) in addition to other properties such as compactness
(e.g., superpixel-shape regularity) and segmentation accuracy
by adhering to object boundaries. Currently, there are only
a few 4D LF over-segmentation solutions in the literature
that tackle the above 4D LF superpixel challenges. Existing
solutions for 4D LF over-segmentation can be classified as
clustering-based methods [8], [19], [20] and graph-based
methods [21], depending on the used approach. However,
independently of the followed approach, they all suffer from
two important limitations.

The first such limitation is the fact that the used parameters
for clustering or graph optimization are empirically tuned
to the specific set of tested images. Consequently, it may
be very time-consuming, and it may not lead to an optimal
set of parameters considering the actual content of each
view. Moreover, when features of different nature (such as
color, position, and depth) are used, the difference in range
between them is not adequately considered. As a result,

the superpixel accuracy and consistency may be negatively
affected. A possible way to overcome this limitation is to use
a content-adaptive algorithm that adjusts over-segmentation
parameters. The adaptive algorithm can use the feedback
values from previous iterations to dynamically adjust the
parameters for better performance. This type of solutions has
been proposed for adapting the used weights for segmen-
tation or graph optimization in 2D superpixel segmentation
algorithms with promising results, e.g., [22], [23]. Given
the similarities between 2D and 4D LF image segmentation,
a similar approach can be followed for LF images.

The second limitation is the fact that the angular infor-
mation is currently not being fully exploited. In some
cases [8], [19], only a sparse estimation of the disparity
(i.e., the displacement of a point between different views,
which is inversely proportional to the depth) is used for
projecting superpixels from the central view to all other
LF views. When a sparse or roughly estimated disparity is
used for centroid projection, actual corresponding positions
in other views may not be computed accurately, hence may
generate inconsistent superpixels across views. Additionally,
since in most existing solutions the disparity is used merely
for projection and not for clustering, this seriously limits the
ability to segment regions with the same visual appearance
at different depths. In other cases [20], the central horizontal
and vertical views are used to guide the segmentation and
propagation, which may affect the accuracy or consistency
in the off-central views.

To deal with the two limitations above, this paper pro-
poses an adaptive view-consistent 4D LF over-segmentation
method that belongs to the clustering-based over-segmentation
class. The two main contributions of the proposed method
are:
• Automatic LF over-segmentation with adaptive clus-
tering weights – In the proposed method, the used
features are first normalized using the min-max nor-
malization method for proper feature weighting, pre-
venting unbiased clustering and leading, this way,
to a robust segmentation. Additionally, the clustering
weights are adjusted adaptively based on the 4D LF con-
tent. For that, the discriminability measure proposed for
2D images [22] is adapted to compute the contribution
of the used features and adjust the clustering weights
accordingly. To the best of the authors’ knowledge, this
is the first 4D LF method that generates content-based
adaptive 4D LF superpixels based on K -means clus-
tering. Experiments and the dynamic results in the
supplemental materials show outperforming results
quantitively and qualitatively when adjusting the
weights based on image content compared to the existing
solutions that use fixed clustering weights.

• Adaptive clustering based on a robust hybrid fea-
ture set – The proposed method belongs to the
clustering-based class using a bottom-up clustering
approach with hybrid clustering features. Angular and
spatial LF information is included to improve the
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accuracy and cross-view consistency of the generated
superpixels. The recent 4D view-consistent depth esti-
mation method [24] that estimates per-pixel disparity is
used during the superpixel segmentation as a discrim-
inable feature, besides position and visual appearance.
Exploiting per-pixel disparity for clustering and pro-
jecting improves the qualitative and quantitative results
in terms of accuracy significantly and ensures view
consistency.

The remainder of the paper is organized as follows.
Section II briefly reviews the related work on 4D LF
over-segmentation available in the literature. Section III
describes the proposed Adaptive LF Over-segmentation
(ALFO) method in detail, while Section IV evaluates its per-
formance through a series of experimental results. Section V
discusses some remaining limitations. Finally, Section VI
concludes the paper with some final remarks and proposes
directions for future work.

II. RELATED WORK
Superpixels have attracted increasing attention since their
naming in 2003 [25]. Several over-segmentation solutions
for obtaining superpixels in 2D images have already been
proposed; a comprehensive review can be found in [26]. For
4D LF images, unsupervised over-segmentation solutions
have been proposed and can be classified as either
clustering-based or graph-based 4D LF over-segmentation
methods.

A. CLUSTERING-BASED 4D LF OVER-SEGMENTATION
In this class, the image is segmented by defining centroids
(a.k.a. seeds) to guide the segmentation, with each pixel being
grouped into the nearest centroid based on some criteria. The
existing solutions use K -means clustering to generate the
4D LF superpixels, where K is the number of superpixels.
Initially, Hog et al. [8] introduced the concept of superrays

to achieve superpixel segmentation for LFs. Using K -means
clustering, the 2D square grid of the central view is projected
to the other LF views, based on a roughly estimated disparity
for the central view centroids only. Afterwards, the pixels
are assigned to the nearest superray based merely on color
and position features. During the clustering, the color and
position of each centroid are updated. However, the centroid
disparity is never updated even when the centroid position
is changed. The clustering is iteratively applied until conver-
gence is reached. Finally, a cleaning step is needed to smooth
the labeling. In [27], the authors extended the work to handle
LF video by including the temporal dimension. Although
their proposed solution has a fast execution time, the resulting
superrays are not always consistent across views [20], [21].

Zhu et al. [28], [19] proposed a robust superpixel
Light Field SuperPixel (LFSP) segmentation method. Given
the depth map of the central view, they first perform
a 2D K -means superpixel segmentation for the central
view using a 2D superpixel algorithm. Then, the result
is projected into the entire LF based on the central view

depth map. Lastly, after clustering, the segmentation bound-
aries are optimized using the Block Coordinate Descent
algorithm (i.e., an optimization algorithm that sequentially
minimizes a multivariable function along one direction at a
time to find the minimum of that function) [19] to preserve
boundaries for occluded objects. Since the depth map is used
to segment the central view only, the objects in the off-central
views that are occluded in the central view may not be seg-
mented properly across views.

Khan et al. [20] proposed a View-Consistent Light Field
Superpixel (VCLFS) segmentation with implicit disparity
estimation based on Epipolar Plane Images (EPIs) (i.e., the
unique 2D spatio-angular slice of the LF. Each EPI contains
several oriented lines, and the slope of these lines is asso-
ciated with the disparity) [29]. They use two stacks of the
central horizontal and central vertical views independently to
generate the EPIs. Each pair of lines in an EPI represents a
segment; hence, cross-view consistency can be enforced by
propagating the labels through these lines. After applying the
segmentation in the EPI space, they use K -means clustering
by combining the angular segmentations in horizontal and
vertical EPIs into the central view. Labels are then propagated
to all off-central views in the 4D LF using per-pixel disparity.
Finally, unlabeled pixels are assigned to the label of the
nearest neighbor in each view independently. Although the
disparity is exploited during clustering in this solution, in
some cases, such as for non-Lambertian or occluded objects
in the central EPIs, not all the superpixels are view consistent.
In all the mentioned solutions, fixed values are used for the
clustering weights and most of them also fixed the number of
iterations, independently of the content.

B. GRAPH-BASED 4D LF OVER-SEGMENTATION
In this class, the image is represented as a weighted undi-
rected graph. Each pixel is considered as a graph node. After-
wards, graph optimization techniques are used to separate the
graph into sub-graphs to generate superpixels based on the
edge weights between the nodes. Due to the huge number
of pixels in 4D LF images, graph-based solutions are gen-
erally complex in terms of the used resources and execution
time.

Li and Heidrich [21] proposed a Hierarchical and View-
invariant LF Segmentation (HVLFS) method. Given the esti-
mated depth for all LF views, they use 4D graph segmentation
by applying greedy heuristic optimization to maximize the
entropy rate in a 4Dweighted undirected graph. The proposed
method generates hierarchical superpixels with different sizes
based on the user input. This solution exploits several fea-
tures, such as depth and texture, and no centroids projection
is used. Due to the huge graph structure, the authors proposed
several optimization techniques and data structures to reduce
the complexity, such as disjoint trees and max heap structure.
However, they also mentioned some limitations regarding
the need for normalizing the weight values of the used opti-
mization function.Moreover, a massive amount of computing
resources is needed for dense LF segmentation.
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FIGURE 1. Overview of the proposed ALFO method. Given a 4D LF image and the corresponding disparity maps for all
views, initial centroids, characterized by distinct features, are assigned in a reference view. Next, the 4D LF superpixel
segmentation is achieved by iteratively applying K-means clustering, including pixel labeling, centroids updating and
clustering weights adaptation, until convergence is reached.

To the best of our knowledge, to date, these are the existing
solutions that address the 4D LF superpixel segmentation
problem. All these solutions rely on several fixed parameters
for different input images during the K -means clustering
or the graph optimization, without considering the relative
importance of various features for each image. Additionally,
the used features are not normalized before the clustering;
hence, they cannot be weighted properly, and the superpixels
may not be generated optimally.

III. PROPOSED METHOD
The proposed ALFO method aims at generating 4D LF
superpixels that respect visual appearance, compactness,
occlusions, and cross-view consistency. The proposed
method consists of four major stages as shown in Fig. 1.
To generate the 4D LF superpixels, firstly, the disparity of all
4D LF views are estimated entirely (i.e., for each pixel) using
the View-consistent 4D Light Field Depth Estimation algo-
rithm proposed in [24]. Given the input LF image, the esti-
mated disparity for all views, and the grid step size, the central
view is selected to initialize the centroids and assign them
the initial feature values (i.e., position, color and disparity)
extracted from the central view of the 4D LF image and the
central disparity map in the grid spatial coordinates. Next,
the centroids are projected to each view using the disparity
(i.e., the disparity from the central view to other views) to
ensure consistency across views. After that, the K -means
clustering is applied for each view in the 4D LF to assign
a label for each pixel according to its ‘‘nearest’’ centroid,
considering all the features. The features of all centroids are
updated iteratively by back-projecting the pixels that belong
to each superpixel from all LF views into the central view.
Finally, to optimize the segmentation, the used clustering
weights are adapted according to the content of each image
and the generated superpixels in the current iteration. Each
stage in Fig. 1 will be detailed in the following sub-sections
and the main notations used in this paper are summarized
in Table 1.

A. 4D LF CENTROIDS INITIAL ASSIGNMENT
Initially, the 4D LF image (represented as a 2D array
of 2D views) is converted to CIELAB color space.

TABLE 1. Main notations used in this paper.

This color space was designed to approximate the human
visual perception; thus, it is typically used in image seg-
mentation. After that, a reference view (e.g., central view)
is selected to initialize the clustering centroids in a grid.
A uniformly distributed grid is used where the center of each
grid square represents a centroid, and the initial distance
between two centroids is defined as the grid step size, Ssize,
as illustrated in Fig. 2. The value of Ssize is defined by the
user, or a default value (e.g., 20 pixels) can be used to generate
superpixels that adhere well to the boundaries. Ssize is com-
monly referred as the superpixel size in the literature [7], [20].

After generating the centroids grid, each centroid will be
characterized by several features, namely relative position,

131150 VOLUME 9, 2021



M. Hamad et al.: ALFO

FIGURE 2. Visual representation of the clustering iterations: a) initial
square grid in the central view only. Each square represents a superpixel
and the center point of each square represents its centroid. In (a), for
illustration, all pixels are labeled, however, initially, only centroids have
labels; b) labeling result after the first iteration; c) final labeling output.

color and disparity. However, due to the differences in the
hybrid features ranges, the used features are normalized to
properly weight them in the next stages. The min-max nor-
malization [30] is used as in (1):

ωnorm =
ω − ωmin

ωmax − ωmin
, (1)

where ωnorm is the normalized value, ω is the current value
and ωmin, ωmax are the minimum and maximum values in
the dataset, respectively. For LF images, the MATLAB con-
version from RGB color space to CIELAB color space is
used, and the CIELAB LF image is normalized to the range
of [0, 1] using the color space ranges, namely [0, 100] for
l channel, and [−100, 100] for a and b channels. These ranges
are obtained from MATLAB documentation [31]. To nor-
malize the disparity feature, the maximum and minimum
values from the dense 4D LF dataset are used. Although the
used test images in our experiments are within the disparity
range of [−2.25, 2.25] pixels for horizontally adjacent views,
we considered a larger range than the used test images to
ensure robust over-segmentation for other dense LF datasets
available with disparity values up to [−4, 4] [32]. The posi-
tion feature normalizationwill be detailed later in Sub-section
C. To exploit the 4D LF cues in segmentation, each pixel is
characterized by its color and disparity values, according to
its location (x, y, u, v),where (x, y) are the spatial coordinates
and (u, v) are the angular coordinates.

B. 4D LF PIXELS LABELING
Like state-of-the-art 4D LF superpixel methods, we assume
the centroids in the central view also exist in all
other 4D LF views. Given the disparity maps for all
4D LF views and the initial centroids in the central view,
the K -means clustering is applied to each view by first
projecting the centroids from the central view into each view,
as in (2):

cu,vx = crefx + d
ref→(u,v)
hor,c ,

cu,vy = crefy + d
ref→(u,v)
ver,c , (2)

where (cu,vx , cu,vy ) are the spatial coordinates of the pro-
jected centroid using the disparity of the reference centroid

located at (crefx , crefy ), and (d ref→(u,v)
hor,c , d ref→(u,v)

ver,c ) are the
horizontal and vertical disparities from the reference view
ref =

(
uref , vref

)
to view (u, v), respectively. Since the used

disparity estimation method generates per-pixel disparities
from each view to its right horizontal adjacent view, and
considering uniformly sampled LF, the disparity value is
computed as in (3) [19]:

d ref→(u,v)
hor,c = dc ×

(
u− uref

)
,

d ref→(u,v)
ver,c = dc ×

(
v− vref

)
, (3)

where dc is the disparity of the centroid from each view
to its right horizontal adjacent view and (uref , vref ) are the
angular coordinates of the ref view. However, if the camera
baselines are different for horizontal and vertical directions
(e.g., the LF is captured by a camera array), in this case,
camera parameters (extrinsic and intrinsic matrices) should
be considered [19]. The projected centroid (cu,vx , cu,vy ) may
belong toR2, however, in the used datasets we only have color
and disparity values for integer positions. To access these
features from the projected centroid, the color and disparity
values are obtained by rounding the coordinates to ensure
integer indexing belonging to z2. Notice that the normalized
unrounded values of the position and disparity are used for
clustering and clustering weights adaptation. Unnormalized
values are only used for projection.

To improve the clustering performance, searching is per-
formed in a small window, �c, with size (4× Ssize)2 around
each centroid in each view. The searching window enforces
spatial connectivity and improves the performance since
most 4D LF superpixels have a local slice in each view [7]
(i.e., are non-occluded). As shown in Fig. 3, for narrow base-
lines (e.g., when dc < Ssize), each centroid in the reference
view is assumed to exist in all views with a slight disparity.
The solid arrows describe the projection of the centroids from
the reference view into other views based on the disparity
of the centroid. After projecting from the reference view
into all other LF views, for each pixel, let F represents the
set of clustering features {p, l, a, b, d}, where p stands for
relative position, l, a, b for the three color channels in the
CIELAB color space and d for the average of the horizon-
tal and vertical disparities, respectively. Each pixel in all
LF views is then assigned to the ‘‘nearest’’ superpixel accord-
ing to the weighted distance, Dw, as in (4)-(9):

Dp(p, c) =

√√√√ (px − cx)2 +
(
py − cy

)2
8× S2size

, (4)

Dl(p, c) =
√(

lp − lc
)2
, (5)

Da(p, c) =
√(

ap − ac
)2
, (6)

Db(p, c) =
√(

bp − bc
)2
, (7)

Dd (p, c) =
√(

dp − dc
)2
, (8)

Dw (p, c) = wp × D2
p + wl × D

2
l + wa × D

2
a

+wb × D2
b + wd × Dd , (9)
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FIGURE 3. Assuming all centroids in the reference view exist in all other
views, the projection of a centroid from the reference view into other
views is illustrated by the solid red arrows. Similarly, back-projection of
all pixels that belong to a superpixel from all other views into the
reference view is illustrated by the dashed arrows.

where wp is the relative position clustering weight, wl , wa, wb
are the color clustering weights, wd is the disparity clustering
weight, p represents each pixel that belongs to the searching
window centered on centroid c and Dp, Dl , Da, Db, Dd are
the relative position, color and disparity distances between
each pixel p and a centroid c, respectively. Note thatDd is not
squared in (9) as will be detailed in Section IV. To normalize
the relative position feature,Dp is divided by 8×S2size, by con-
sidering the minimum distance to be zero and the maximum
distance to be 2× Ssize, for both x and y coordinates.

In the first iteration, all the weights are initialized with
same value, equal to 1/ |F | , where |F | is the number of the
used clustering features. After extensive testing, we noticed
that the values of the initial weights do not significantly
impact the final clustering weights. Notice that the used
weights must be in the (0, 1) range and the summation of all
weights is equal to one. Let S = {S1, . . . , Sk} represents the
set of all superpixels, the over-segmentation can be consid-
ered as an energy minimization problem as in (10):

E = argmin
S

K∑
c=1

Nu∑
u=1

Nv∑
v=1

∑
p∈Su,vc

Dw(pu,v, cu,v), (10)

where K is the number of superpixels, Nu, Nv are the hor-
izontal and vertical dimensions of the LF array of views,
respectively.

C. 4D LF CENTROIDS UPDATING
After assigning each pixel in all 4D LF views to the ‘‘nearest’’
superpixel (in terms of Dw), the clustering feature set, F ,
for each centroid in the central view is updated iteratively as
described in this section.

The average value of the color channels from all pixels that
belong to that superpixel, considering the entire 4D space, are
assigned to each centroid. However, since in each iteration,

all centroids in the central view are projected to all 4D LF
views, only the relative position of each centroid is updated.
To update the relative position of the centroids in the central
view, all the pixels that belong to a given superpixel in each
view are back-projected into the central view using the dis-
parity of each pixel (see Fig. 3 dashed arrows), as in (11):

prefx = pu,vx + d
(u,v)→ref
hor,p ,

prefy = pu,vy + d
(u,v)→ref
ver,p ,

(crefx , crefy ) =
1∣∣∣Brefc ∣∣∣ ×

 ∑
p∈Brefc

prefx ,
∑

p∈Brefc

prefy

 , (11)

where
(
prefx , prefy

)
are the back-projected spatial coordi-

nates of the pixel using its horizontal and vertical dispari-

ties d (u,v)→ref
hor,p , d (u,v)→ref

ver,p from view (u, v) into the ref view,

Brefc is the set of all back-projected pixels that belong to super-
pixel Sc from all views into the ref view, with c ∈ {1, . . . ,K },
and (crefx , crefy ) are the updated spatial coordinates of the
centroid in the ref view. In contrast to the solution described
in [8], where the pixels of all views are back-projected into
the central view using the same coarse estimated disparity of
the central view centroids only, we use the estimated disparity
values of each pixel that belong to the corresponding super-
pixel in the 4D space to properly back-project into the central
view. Similarly, as in (3), according to the used disparity
estimation method, the disparity from any view (u, v) to the
ref view is computed as in (12):

d (u,v)→ref
hor,c = dc ×

(
uref − u

)
,

d (u,v)→ref
ver,c = dc ×

(
vref − v

)
. (12)

After that, the spatial position of each centroid is deter-
mined as the average pixel coordinates of all pixels that
belong to the given superpixel. The back-projection step
is used to update the centroids positions in the ref view
without being affected by the slight disparity across views
(e.g., if actual positions of all pixels are considered).

Finally, after updating the positions of the centroids, the
disparity value of each centroid needs to be updated as well.
Given the estimated disparity maps, each centroid disparity
is updated using the disparity value of the updated position
(rounded to integer positions) from the disparity map. The
actual disparity in the updated centroid position is used in
our method instead of computing the average disparity of
all pixels in a superpixel. This approach ensures a robust
projection of a given centroid from the reference view into
other views in the next iteration. Different from the proposed
solution in [20], where the average disparity of all pixels
that belong to each superpixel is considered to update the
disparity of each centroid. Additionally, the centroid disparity
is never updated in the proposed solution in [8], even when a
centroid changed its position, which may affect the projection
accuracy, hence degrading the superpixels consistency.
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D. CLUSTERING WEIGHTS ADAPTATION
Due to the different nature of the used features, fixing
clustering weights for all image types without consider-
ing their content is a non-trivial, time-consuming task and
may generate non-optimal over-segmentations. To improve
over-segmentation flexibility and robustness, and to over-
come this drawback, which prevails in the existing 4D LF
superpixel solutions, adaptive clustering weights are used in
our proposed method. The technique considered here was
inspired by the adaptation technique proposed in [22] for
2D clustering to adapt the K -means clustering weights iter-
atively based on their within-cluster variance. As proposed
in [22], the principle of feature discriminability states that the
features with the smaller sum in within-superpixel variance
(i.e., the total sum of the feature distances from each pixel
to its centroid in all superpixels) are more distinguish-
able. Therefore, they can be assigned larger weights to
guide the segmentation. To compute the discriminability of
each clustering feature, after each K -means iteration and
after all the 4D LF centroids are updated, the normalized
within-superpixel variance for each feature f is computed by
using (13):

WSV f =
∑K

c=1

Nu∑
u=1

Nv∑
v=1

∑
p∈Su,vc

Df
(
pu,v, cu,v

)2
, (13)

whereK is the number of superpixels,Nu,Nv are the horizon-
tal and vertical dimensions of LF array of views, respectively,
Su,vc is a 2D slice of superpixel Sc in view (u, v), p represents
each pixel that belongs to the superpixel Sc in all 4D LF
views, Df is the feature distance from each pixel pu,v and the
projected centroid cu,v in view (u, v), and f ∈ F . In [22],
WSV f is then divided by the range of feature f in a given
image to normalize it. However, during clustering, in [22],
the used features are not normalized, and range differences
are not considered. Different from [22], in this paper, the
clustering features are normalized initially, hence, WSV f ,
is computed based on normalized features, and for proper
weighting, the normalized features are also used during
clustering.

Initially, all feature clustering weights, are assigned
to 1/ |F |. After that, we iteratively update the clustering
weights according to the generated superpixels of the current
iteration. Based on [22], features with smaller values ofWSV f
are coherent among the superpixel, and can generate a com-
pact grouping for similar pixel values. Hence, to optimize the
clustering weights, a higher weight value is assigned to the
feature with smallWSV f value, as in (14):

wf =
1∑

t∈F
(
WSV f

/
WSV t

) 1
|F |−1

, (14)

where t is a feature that belongs to the features array F .
The summation of all the clustering weights should be equal
to 1 in all iterations.

Since the proposed method is adaptive, the number of
K -means iterations is content-dependent as well. After each

iteration, the average displacement of all centroids is com-
puted by finding the Euclidian distance between the centroid
previous position and the updated one in the ref view as
in (15):

Davg =
1
K

K∑
c=1

√(
crefx ′ − c

ref
x

)2
+

(
crefy′ − c

ref
y

)2
, (15)

where (crefx ′ , c
ref
y′ ) and (crefx , crefy ) are, respectively, the pre-

vious and updated spatial coordinates of each centroid in
the ref view, and K is the number of superpixels. The
4D LF superpixel segmentation will iterate untilDavg reaches
0.5% of Ssize (i.e., the grid step size), or until it reaches the
maximum number of iterations (e.g., 20 iterations).

According to the image dimensions and grid shape or step
size, the approximate number of generated 4D LF super-
pixels, K , can be computed and rounded from (16), where
Ssize is the grid step size, and

∣∣I ref ∣∣ is the number of pixels
in the ref view:

K ≈

∣∣I ref ∣∣
S2size

. (16)

The entire proposed algorithm is summarized in
Algorithm 1.

Algorithm 1: ALFO: Adaptive Light Field Over-
Segmentation
Input: 4D light field image, I, step size, Ssize, and 4D light field

disparity map, Z
Result: 4D light field labeled image, L
Initialize a 4D regular grid with step size in the reference view;
Initialize the K centroids using reference view values and normalized
features;

Initialize clustering weights to 1/|F |;
Initialize pixel label L(p) = 0 for each pixel;
Initialize pixel distance D(p) =∞ for each pixel;
while not converged or reached max iterations do

D(p)=∞;
for each centroid c ∈ {1, . . . ,K } do

for each view (u, v) ∈ I do
project c into (u, v) view using (2);
Create searching window, �c, around the
projected c;

for each pixel p ∈ �c do
Compute features distance, Dw (p, c),
using (9);

if Dw(p, c) < D(p) then
L(p)← L(c);
D(p)← Dw(p, c);

end
end

end
end
Update color, position and disparity for
each c;

Compute within-superpixel variance, WSVf ,
for each feature using (13);

Update clustering weights, Wf , using (14);
end

IV. EXPERIMENTAL RESULTS
In this section, the proposed method is analyzed and
evaluated. For this purpose, quantitative and qualitative
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comparisons with the state-of-the-art methods are performed.
Initially, the used datasets, benchmark methods and eval-
uation metrics are introduced. Afterwards, the generated
results and comparisons are discussed. In this analysis,
visual results are presented only from top-left, central, and
bottom-right LF views to show the over-segmentation con-
sistency across the 4D LF views. Nevertheless, to visualize
the entire 4D LF views and the smooth transition across
views, we highly encourage the reader to see our results in the
supplemental material for dynamic visualizations available
online.1

A. DATASETS AND PARAMETER SETTINGS
To evaluate the proposed method, both synthetic and real
(i.e., not synthetic) 4D LF datasets are used to obtain the
experimental results. For synthetic 4D LF images, the HCI
4D LF dataset [33] is used. The HCI dataset includes both
Ground Truth (GT) disparity maps and segmentation labels.
Additionally, for real 4D LF images, the EPFL MMSPG
dataset captured with a Lytro Illum camera [34] is used,
as shown in Table 2. Due to the vignetting effects in this
dataset (i.e., darkening of the edges of the captured micro-
images), only the central 13 × 13 views are used, thus dis-
carding the entirely dark views in the 4D LF corners.

TABLE 2. Image datasets used in the experimental results.

It is worth highlighting that our method does not use any
empirically set clustering weights or any post-processing
optimization (e.g., to regularize the superpixel borders across
views) or cleaning (e.g., to remove sparse pixels that are
labeled wrongly). Solely the maximum number of iterations
is set empirically. The maximum number of iterations is set
to 20 to ensure robust segmentation even for complex texture
images. As illustrated in Fig. 4, the average displacement of
the centroids,Davg, converges after 10-15 iterations and goes,

1Higher quality versions at https://github.com/MaryamHamad/ALFO

usually, below 0.5% of the superpixel size before 20 iterations
(see the threshold line in Fig. 4). Moreover, we noticed that
the results were not significantly improved when the clus-
tering is terminated based on this threshold value compared
to the maximum number of iterations. The superpixel size
is assigned by the user to control the generated superpixel
size according to the desired application. In our experiments,
several superpixel sizes are tested and the central view is used
as a clustering reference view.

FIGURE 4. Average displacement of centroid spatial coordinates, Davg,
in pixels, along the number of iterations. Ssize = 20.

B. BENCHMARK METHODS
To compare our method with the state-of-the-art methods
presented in Section II, we used the open-source software
provided by the authors of the LFSP [19] and the VCLFS [20]
methods. For the LFSP method, we used the depth esti-
mation algorithm proposed in [35] applied for central view
only, as defined in the LFSP proposal. To compare with
the Superray method [8], we used the superray software
that was implemented and used in [36], since the original
software of the Superray method [8] is not publicly available.
To generate the superrays, several parameters are needed to
be assigned, such as disparity range between two adjacent
LF views, and compactness weight (e.g., a weight that con-
trols superpixel compactness and balances between color and
position features during the clustering). The disparity range
is obtained from the used estimated disparity in [24] for
each test image independently, and the compactness weight
is set to 10 for better results for different superpixel sizes.
For the HCI dataset, several superpixel sizes were tested
for all the mentioned solutions (i.e., {15, 20, 25, 30, 35, 40}).
For the MMSPG LF dataset, since there is no labeling GT
available, only Ssize = 20 was tested, as detailed below.
Finally, we compared our proposed method with the HVLFS
method [21] using the 4D LF labeled images from the HCI
dataset provided by the author, with average superpixel sizes
belong to [10, 45].

131154 VOLUME 9, 2021



M. Hamad et al.: ALFO

C. EVALUATION METRICS
In 2D superpixel methods, there is, usually, a requirements
trade-off between compactness (e.g., shape regularity) and
accuracy including boundary adherence [7]. In addition
to these requirements, 4D LF superpixels should also be
consistent across views (e.g., to have coherent shape and
no flickering borders or sudden shifts in border position
when the angular perspective is changed). To evaluate
these characteristics quantitatively, the following metrics are
considered [20]:

1) ACCURACY AND COMPACTNESS METRICS
• Achievable Accuracy (AA) – Since the GT labels, LGT ,
are segmented at the object-level with n segments, each
superpixel in the labeled image, L, is assigned to the
label of the LGT segment that has the largest overlap
with the current superpixel. Afterwards, the accuracy is
measured as follows [22]:

AA =
1
Nu,v

∑
u,v

{
1
|Iu,v|

K∑
c=1

max
j

∣∣Sc ∩ Gj∣∣} , (17)

where Nu,v is the number of all 4D LF views,
∣∣I (u,v)∣∣ is

the number of pixels in a single LF view, (u, v) are the
angular coordinates for all LF views, K is the number
of superpixels, Sc is a superpixel in L and Gj is the
jth segment in LGT , with j = {1, . . . , n}. A higher value
indicates better accuracy.

• Boundary Recall (BR)– Given the GT boundary
image, BGT , let True Positive, TP, and False Negative,
FN , represent the number of boundary pixels (i.e., pixels
that represents image edges) in the superpixel labeled
image, L, with respect to BGT . Then, the boundary recall
is computed as follows [37]:

BR =
TP

TP+ FN
, (18)

where TP is the number of boundary pixels in BGT
that share boundary pixels with L within chessboard
distance, β, in pixels, FN is the number of boundary
pixels in BGT that do not share any boundary pixels
with L within distance β, where β is set to 2 as in [20].
A higher value of BR indicates better adherence to the
object boundaries.

• Under-segmentation Error (UE)– This metric com-
putes the percentage of superpixels that overlap
GT segment borders as follows [37]:

UEu,v =
n∑
j=1

∑
Sc:Sc∩Gj=∅min

(∣∣SINc ∣∣ , ∣∣SOUTc

∣∣)∣∣Gj∣∣ ,

UE =
1
Nu,v

∑
u,v

UEu,v
|Iu,v|

, (19)

where n is the number of segments in GT labels, and
SINc , SOUTc represent the inside and outside parts of a
superpixel that are divided by a GT label segment Gj,

∣∣SINc ∣∣ , ∣∣SOUTc

∣∣, ∣∣Gj∣∣, represent the number of pixels in
each segment, Nu,v is the number of 4D LF views and
|Iu,v| is the number of pixels in a single LF view. This
metric evaluates the quality of segmentation based on
the requirement that a superpixel should overlap with
only one object. A lower value of UE indicates that the
superpixels are less likely to flood over the GT segment
borders, hence indicates improved accuracy.

• Compactness (CP) – This metric measures superpixel
boundary curvature as follows [20]:

CP =
1
Nu,v

∑
u,v

∑
Sc∈S

4πASc |Sc|

|Iu,v|P2Sc
, (20)

where Nu,v is the number of 4D LF views, S is the set
of superpixels in labeled image, L, |Iu,v| is the number
of pixels in a single LF view, ASc and PSc are the area
and perimeter of superpixel Sc, respectively, and |Sc| is
the number of pixels in Sc. Larger CP values indicate
smoother borders of superpixels and better regulation in
superpixel size across views.

2) ANGULAR SIMILARITY AND CONSISTENCY METRICS
• Self-Similarity (SS)– As defined in [19], centroids are
back-projected from each view into the ref view using
the GT disparity. The self-similarity error computes the
average distance between the back-projected centroids
from all views and the centroids in the central view,
the approach in [20] is used as follows:

SS =
1
K

K∑
c=1

{
1
Nu,v

∑
u,v

√(
crefc,(u,v) − crefc

)2}
, (21)

whereK is the number of superpixels,Nu,v is the number
of 4D LF views, crefc,(u,v) is the back-projected centroid
from view located in angular coordinate (u, v) into ref
view, and crefc is the original centroid in the ref view.
A smaller SS error indicates better consistency.

• Number of Labels per Pixel (LP)– This metric com-
putes the average number of labels per pixel in the ref
view by projecting the labels from the ref view to other
views via GT disparity as follows [20]:

LP =
1∣∣I ref ∣∣ ∑u,v

∑
p∈I ref

1

(
L(pu,v) 6= L(pref )

)
, (22)

where
∣∣I ref ∣∣ is the number of pixels in the ref view,

L represents the superpixel labeled image, pu,v repre-
sents a projected pixel in view (u, v), pref represents
a pixel in the ref view, 1() is a binary indicator and
1
(
L(pu,v) 6= L(pref )

)
= 1 indicates that the label of the

projected pixel pu,v has a different label value compared
to its label value in the ref view. This metric discards the
pixels from other views that are occluded in the central
view to simplify the computation. A smaller LP error
indicates better consistency across views because the
corresponding pixels that belong to the same superpixel
have the same label across views.

VOLUME 9, 2021 131155



M. Hamad et al.: ALFO

FIGURE 5. Visual results for Papillon test image, with and without using the squared disparity distance in the clustering weighted distance, (With-D2),
(With-D1), respectively. Portions of the central view (5, 5) are selected and highlighted on both the test images and the corresponding ground truth
label images. The blue oval highlights higher segmentation accuracy in (With-D1) where the overlapping leaves are robustly segmented. Ssize = 20.

D. VISUAL AND QUANTITATIVE RESULTS
In this section, we firstly compare our results with two
different versions of the proposed ALFO method, to study
the influence of clustering weights adaptation stage and the
used disparity map on the performance. In the first ver-
sion, the used clustering weights are fixed and not adjusted
during clustering to study the clustering weights adaptation
stage impact. In the second version, the GT disparity is
used instead of the estimated disparity, that is used in our
proposed method, to study the influence of using an accurate
4D LF disparity map. Quantitative and qualitative results
are generated for both versions and compared to the pro-
posed ALFO method. Next, the performance of the proposed
method ALFO is evaluated and compared with the bench-
mark methods.

1) ABLATION STUDIES
Before discussing the two versions of the proposed ALFO
method, it is worth to present some intermediate results that
justify the weighted distance in (9), where the distances are
squared for all features but not for the disparity. Therefore,
in this experiment, instead of (9), the following distance is
used:

D′′w (p, c) = wp × D2
p + wl × D

2
l + wa × D

2
a

+wb × D2
b + wd × D

2
d , (23)

where the disparity distance is squared, aiming to study its
influence on the results. As can be seen in Fig. 5, the over-
lapping leaves are not segmented robustly when squaring the
disparity and the superpixels are not adhering to the light
green leaf vein. Although the consistency metrics do not
significantly differ in both cases (see Fig. 6 for average quan-
titative evaluation and Table 3 for specific superpixel size
(i.e., 20) where the best results are highlighted with bold font
style), the accuracy metrics are noticeably decreased when
squaring the disparity, especially for large superpixel sizes.
The accuracy is reduced due to the superpixel-flooding over
the true object boundaries in the image when the color and
position are not enough to segment different regions. While
the used features are normalized within [0, 1] range, keeping

FIGURE 6. Average quantitative evaluation on all LF images of the HCI
4D LF dataset, (With-D2), (With-D1) indicate with and without using the
squared disparity distance in the clustering weighted distance,
respectively.

the disparity unsquared in (9) imposes stronger penalty on
disparity feature. Hence, the method will avoid clustering
across occlusions and accurately segment overlapping objects
with same color but different depths. This approach is also
used in [20] where a high weight is assigned to penalize the
disparity feature compared to other used features.

Furthermore, we evaluate the proposed ALFO method by
implementing two different versions, considering two differ-
ent test conditions:
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FIGURE 7. Visual results for two test images of the HCI 4D LF dataset for different test conditions of the
proposed ALFO method, namely SLFO and ALFO-GT. Portions of the central view (5, 5) are selected and
highlighted on both the test images and the corresponding ground truth label images. Adaptive clustering
weights with good disparity maps can robustly segment challenging regions, e.g., the silver non-Lambertian
region in (b). Ssize = 35.

TABLE 3. Average quantitative evaluation on all LF images of
the HCI 4D LF dataset (for superpixel size 20).

• Static LF Over-segmentation (SLFO)– This version
consists in not using the clustering weights adaptation
stage during theK -means clustering. Alternatively, fixed
weights (e.g., initial clustering weights) are used and not
changed during clustering. Equal clustering weights are
used for SLFO to study the influence of the adaptation
stage where the initial weights are adjusted.

• ALFO using GT disparity (ALFO-GT)– This ver-
sion consists in using the GT disparity instead of the
estimated one for the HCI 4D LF dataset to study the
influence of disparity accuracy on the clustering and
projection.

Notice that we normalized the used features as described
in Section III in all versions. Several superpixel sizes are used
to obtain the quantitative results, however, for visual results,
superpixels with Ssize equal to 35 is presented in Fig. 7 for
better visual comparison.

According to the visual results shown in Fig. 7, the quan-
titative results in the form of plot presented in Fig. 8 and the
numerical quantitative results for superpixel size 20 in Table 4
(highlighting the best results in bold font style), we may
conclude that a significant improvement is achieved on the
AA, BR, UE metrics when using adaptive clustering weights

TABLE 4. Average quantitative evaluation on all LF images of
the HCI 4D LF dataset (for superpixel size 20).

associated with accurate disparity maps (i.e., GT disparity
maps) as in ALFO-GT. As can be seen in Fig. 7, some
challenging regions can be segmented more robustly using
ALFO-GT compared to other versions. However, using fixed
weights for all test images, without adjusting the weights
based on the image content, may generate wrong segmenta-
tion (e.g., see the overlapping leaves in Fig. 7a and the small
hole in the gold region in Fig. 7b). The SLFO version shows
higher CP for large superpixel sizes compared to other ver-
sions, without genuinely adhering to the borders. According
to consistency metrics SS and LP, no significant difference
is noticed since the used consistency metrics consider the
non-occluded regions in the central view, where the used dis-
parity has high accuracy in these regions, but some ambiguity
exists in the occluded ones.

2) COMPARISON TO BENCHMARK SOLUTIONS
Before comparing our results to the existing methods, it is
important to mention that our method does not require any
post-processing optimization, since the centroid projection
across views is applied robustly by using per-pixel disparity
and the clustering weights are optimized in each iteration.
In most existing methods, a post-processing stage is needed
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FIGURE 8. Average quantitative evaluation on all LF images of the HCI
4D LF dataset for different test conditions of the proposed method,
namely SLFO, ALFO-GT and the proposed ALFO method. Adaptive
clustering weights and good disparity maps can improve the
segmentation performance.

to remove sparse labels that are wrongly propagated or to
smooth superpixels borders and enforce spatial or angular
connectivity across views. In our experiments, we compared
with other methods without disabling their post-processing
step. As shown in Fig. 9, the used clustering weights are
adapted based on the image content and adjusted in each itera-
tion until the final weights are reachedwhen the segmentation
terminates (see Table 5).

According to the initial values of the used cluster-
ing weights, several tests using different initial weights
(e.g., giving a higher weight for one feature compared to
other features) are applied. We noticed that the initial clus-
tering weights are not crucially impacting the final clus-
tering weights, such as when these weights (wl = 0.2,
wa = 0.15,wb = 0.15,wp = 0.1,wd = 0.4) are used
as initial weights, and Ssize is set to 20, the final clustering
weights percentage change on the HCI dataset is less than or
equal to 2.0% of the final weights when using equal initial
clustering weights, without any significant change on the
quantitative evaluation metrics.

To compare our results with the existing methods, different
superpixel sizes are used for all methods. However, since we
only could obtain labels of the HVLFS method for specific
sizes, only the available sizes in the used size range are
used in our comparisons. Due to the post-processing stage
in some methods, the size of the generated superpixels can
be different from the input size (e.g., in some solutions, some
superpixels are removed if their sizes, after the segmentation

FIGURE 9. Clustering weights adaptation along the number of iterations
for different test images. The included weights are wl , wa, wb for color
channels, wp for relative position and wd for the disparity. Ssize = 20.

TABLE 5. Final clustering weights for different features and test images.

is completed, are smaller than a given threshold). For
this reason, and for fair comparisons, the average size of
the generated superpixel in each image is used instead of
the input superpixel size. The average performance of all the
LF images of the HCI dataset is presented in Fig. 10 and
per-image performance is presented in Fig. 11.

The quantitative evaluation and the visual results in Fig. 10,
Fig. 11, Fig. 12 and Table 6 (bold font style for best results)
can be summarized based on evaluation metrics as follows:

• Achievable accuracy – Our proposed method achieves
outperforming average AA for all superpixel sizes com-
pared to the benchmark methods. The importance of
using the disparity feature during the clustering can be
observed in Fig. 12b and Fig. 12c, where the overlapping
regions share the same color information; hence it can-
not be accurately segmented in the Superrays or LFSP
methods. The HVLFS method accurately segmented the
leaves in Fig. 12b since the depth information is used
during the clustering. However, in Fig. 12c, the method
fails to segment the horses’ heads correctly due to the
limitation in balancing the importance of the used fea-
tures to generate robust segmentation.

• Boundary recall – Our proposed method achieves out-
performing average BR compared to the benchmark
methods and competitive results to the VCLFS method.
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FIGURE 10. Average quantitative evaluation on all LF images of the HCI 4D LF dataset for different 4D LF superpixel segmentation methods.

TABLE 6. Average quantitative evaluation on all LF images of the HCI 4D LF dataset (for superpixel size 20).

Our results are competitive to the VCLFS method since
the per-pixel disparity is used during the clustering in
both methods. In Fig. 12a, our results recall boundaries
across views even in the small black circus. Moreover,
in Fig. 12c, only our method and the VCLFS method
adhere to the actual boundaries of the horses.

• Under-segmentation error – Our proposed method
achieves outperforming UE compared to the Super-
rays and HVLFS methods. However, the LFSP and
VCLFS methods achieve lower UE error (e.g., each
superpixel is less likely to include more than one object)
but not necessarily with better accuracy or compact-
ness as mentioned above and can be seen visually
in Fig. 12.

• Compactness – Our proposed method achieves outper-
forming CP for all superpixel sizes compared to the
benchmarkmethods. Ourmethod encourages spatial and
angular connectivity through robust projection and local
searching. Moreover, the adaptation stage adjusts the
clustering weight of the position, hence can control the
superpixel boundaries to be smoother and more coher-
ent across views. As can be seen in the yellow ball

in Fig. 12d, where our results show more regular shapes
and smoother borders.

• Self-similarity and number of labels per pixel – Our
proposed method achieves outperforming SS and LP
compared to the benchmark methods and competitive
results to the VCLFS method. Superpixel consistency
can be clearly noticed from the dynamic results in the
supplemental material, where the flickering and label
change across views can be noticed easily. Visually, our
results preserve angular consistency and the superpix-
els borders are less likely to flicker, when changing
the angular perspective, compared to the benchmark
methods. We tried to show the consistency metrics by
presenting the same patch from different LF views.
As in Fig. 12 for all images, our results are consistent and
similar across views. Generating consistent superpixels
is a crucial requirement for subsequent editing tasks.

For the real LF images dataset, since there are no GT
segmentation labels available, we only make a visual com-
parison of our method, the Superrays, LFSP, and VCLFS
methods for various representative test images, Ssize is set
to 20. The HVLFSmethod is not evaluated in this experiment
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FIGURE 11. Per-image quantitative evaluation on the HCI 4D LF dataset for different 4D LF superpixel segmentation methods.
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FIGURE 12. Visual results to evaluate accuracy, compactness and consistency across views for the proposed ALFO, Superray, LFSP, VCLFS and HVLFS
methods on the HCI 4D LF dataset. Challenging regions (highlighted on both the test images and the corresponding ground truth label images) are
selected to show the importance of the adaptive clustering weights: a) non-Lambertian and shaded regions; b) overlapping leaves with the same color
and different depths; c) a complex background and overlapping cardboard horses sharing the same texture; d) a spherical region with non-even lighting.
As can be seen, our method can robustly and adaptively segment similar color regions with different depths and reduce the flickering around
superpixels, hence generates not only superpixels that are compact but also accurate and consistent across views. Ssize = 20.
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FIGURE 13. Visual results to evaluate accuracy, compactness and consistency across views for the proposed ALFO, Superray, LFSP and VCLFS
methods on the MMSPG LF dataset. In real 4D LF images, the noise existence and non-even lighting generally can affect the segmentation
accuracy or generate flickering borders around superpixels. However, with the adaptive clustering weights to optimize the segmentation
based on the content of each image, our method shows compact and consistent superpixels compared to the benchmark methods. Due to
the vignetting issue in the corner views of this dataset, only the central 13× 13 views are used to generate superpixels. Ssize = 20.
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since only the labels of the HCI 4D LF dataset are available.
We strongly encourage the reader to see the dynamic results
in the supplemental material, where the performance in terms
of accuracy and cross-view consistency can be noticed easily.
As can be seen in Fig. 13, the existence of complex texture
and noise in the real LF image can affect the regularity and
accuracy of superpixels in the existing solutions, where the
borders of superpixels may flicker across views. However,
our results generate more compact and accurate superpixels
as shown in Fig. 13, where the superpixels in the woman’s
hair, the trees in the background, the bike parts and in the
face patch are more regular and consistent when compared
to other methods. In Fig. 13c, a challenging region with
non-even lighting and a non-Lambertian object are selected.
Our results show better consistency, which can be observed
from the red parts in Fig. 13c. However, the light in the
floor in Fig. 13c (see pink square) is different across views
and, hence, may lead to inconsistent superpixels, as is the
case for the benchmark results. More results for real LF
images can be found in the dynamic results available in the
supplemental material. In general, for complex textures in
real LF images, our proposed method can balance between
compactness, accuracy and cross-view consistency instead of
generating superpixels that are extremely sensitive to color
changes with irregular or flickering borders when changing
the view perspective.

The proposed method is implemented using MATLAB
on a desktop computer with Intel i7 4 GHz processor and
32 GB RAM. Our implementation is not optimized and, for
this reason, consumes more time, compared to the benchmark
methods, since the clustering is performed for each light field
view and not merely propagated from the central view as
in some existing solutions. The average computational cost
(i.e., execution time in seconds) of generating 4D LF super-
pixels for all LF views is presented in Table 7 for different
superpixel sizes and datasets. The computational cost of the
HVLFS method is not included since we only have the gen-
erated results from the author but not the software implemen-
tation. Our implementation takes more time for images with
complex textures since it requires more clustering iterations
due to the frequent adjusting of the clustering weights and the
labels of the pixels until convergence is reached. Additionally,
in most test images, it requires more time for smaller super-
pixel sizes since the clustering includes more superpixels and
requires more comparisons to assign the accurate label for
each pixel according to the corresponding superpixel. Since
K -means clustering in local searching can be parallelized,
as shown in [7] for the proposed 2D superpixel method, it is
expected that our method can be further optimized, especially
considering that clustering is done independently in each
view.

V. DISCUSSION AND LIMITATIONS
The proposed ALFO method produces competitive results
in several challenging cases such as overlapping objects
with the same color but different depths (see Fig. 12c),

TABLE 7. Average Segmentation time in seconds for different
over-segmentation methods.

and can segment accurately, consistently and adaptively the
small parts that are smaller than the initial/target superpixel
size (see the dice black dots in Fig. 12a) without any need
for post-processing smoothing or cross-view regularization
steps, when compared to most of the existing methods. Addi-
tionally, using disparity values for each pixel during the
over-segmentation helps in improving the superpixel accu-
racy and consistency for non-Lambertian objects where the
color can change according to each view perspective. The
mentioned advantages can be noticed in the dynamic results
in the supplemental material where the superpixels are accu-
rately adhering to the boundaries and not flickering across
views.

However, the ALFO method still has some limitations that
can be further improved. First, in real LF images, where the
disparity maps are affected by noise or non-even lighting
across views, ALFOmay generate an imprecise segmentation
and superpixels may not adhere well to the boundaries when
there are disparity ambiguities. Hence, better disparity maps
will lead to better performance. Second, non-Lambertian
objects have a non-uniform appearance across views due to
the non-even lighting in each view perspective. In the EPI
space, these non-Lambertian objects present more complex
and non-linear features, characterized by curved lines [38].
Although, in our method, we are not enforcing superpixel
consistency in the EPI space by exploiting the assumption of
linearity in EPI lines (as in other light field over-segmentation
methods [19]–[21]), our method may still generate inaccu-
rate or inconsistent segmentation in some non-Lambertian
areas. The mentioned limitations can be noticed in the
dynamic results for all views in the supplemental material
where, in some regions that include a metallic material or
non-even lighting, the superpixels may not adhere to the
borders accurately across views. Third, our implementa-
tion, including K -means clustering, is not optimized and
may take more time compared to other methods. However,
K -means clustering in local searching can be parallelized,
as shown in [7] for the proposed 2D superpixel method and
in [8] for 4D LF images; hence, it is expected that our method
can be further optimized to generate faster over-segmentation
and reduce the overall subsequent editing complexity
(this optimization is out of scope of the present work). Finally,
similarly to the benchmark methods, we assume that the
centroids in the central view exist in other views. Since this
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assumption may not hold for LF images captured by wide
baseline cameras, where new centroids can exist in other
views and some centroids in the central view are completely
occluded in other views, our method may fail to segment this
type of sparse LF images accurately.

VI. CONCLUSION
In this paper, we proposed an automatic content-adaptive
LF over-segmentation method. Using hybrid and normalized
4D LF features along with adaptive clustering weights, our
method achieves a robust balance between accuracy, com-
pactness and cross-view consistency of superpixels. More
precisely, the estimated disparity for entire 4D LF views is
used jointly with color and position features during clustering
to overcome the limitation in some challenging regions where
color information is not enough for segmentation. Due to the
different nature and ranges of the used features, the clus-
tering weights are adapted to the given content iteratively
until convergence is reached. Experimental results showed
competitive results, quantitatively and visually outperform-
ing the benchmark methods, without requiring any empirical
assignment for the clustering weights or any post-processing
optimization. Additionally, it was shown that the proposed
ALFO method can benefit from accurate disparity maps and
the performance is relatively independent of the initial clus-
tering weights adopted.

In the future, we will apply the proposed method in dif-
ferent applications, such as object segmentation and saliency
detection. Additionally, we will further consider adapting
the final superpixel size to generate an adequate number of
superpixels based on the image content. Furthermore, we will
exploit deep learning techniques to generate superpixels for
4D LF images, since it has shown promising results for
2D over-segmentation.
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