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Abstract Animals have inspired numerous studies on robot locomotion,

but the problem of how autonomous robots can learn to take advantage

of multimodal locomotion remains largely unexplored. In this paper, we

study how a robot with two different means of locomotion can effective

learn when to use each one based only on the limited information it can ob-

tain through its onboard sensors. We conduct a series of simulation-based

experiments using a task where a wheeled robot capable of jumping has

to navigate to a target destination as quickly as possible in environments

containing obstacles. We apply evolutionary techniques to synthesize

neural controllers for the robot, and we analyze the evolved behaviors.

The results show that the robot succeeds in learning when to drive and

when to jump. The results also show that, compared with unimodal loco-

motion, multimodal locomotion allows for simpler and higher performing

behaviors to evolve.

Keywords: Evolutionary robotics, multimodal locomotion, navigation task

1 Introduction

Animals’ ability to move efficiently in complex environments is crucial for key
activities related to their survival, such as finding food and escaping predators.
As a means to efficiently move through complex and unstructured environments,
various animals exploit different modes of locomotion [11]. Birds, for example,
use the aerial mode when traveling long distances, whereas the terrestrial mode
is chosen for activities that require covering small distances, such as when
feeding [14]. Crocodiles use terrestrial locomotion, a quadrupedal gait, when
nesting and sunbathing, whilst for hunting, they rely on aquatic locomotion,
primarily using undulation of the tail for propulsion [14].

Besides animals, multimodal locomotion has an important role in the field
of robotics, particularly in tasks where robots may encounter distinct types
of environments. Indeed, in some tasks, such as navigation, and search and
rescue, it may be necessary to explore various types of terrains, which requires
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an adaption of movement modes, rather than just relying on one locomotion
strategy [10]. Although some multimodal robots have been developed with distinct
combinations of locomotion modes [1,3,20], the majority of them lacks the capacity
for autonomous decision-making and are unable to decide when to use each means
of locomotion.

Evolutionary Robotics (ER) is a field in which controllers for autonomous
robots are synthesized by means of evolutionary computation techniques without
the need for manual and detailed specification of behavior. In ER, there have
been numerous studies on the evolution of controllers for robots with distinct
means of locomotion, ranging from terrestrial and aerial robots, to aquatic
robots [4, 16,21]. Evolved controllers, however, have so far only made use of one
means of locomotion. In this study, we evolve control systems for robots that
have the capacity to exploit two modes of locomotion during task execution,
namely driving and jumping.

For our study, we use a robot model based on the Jumping Sumo, a low-cost
robotic platform made by Parrot. The robot has to perform a navigation task in
different environments with obstacles. In order to successfully perform the task,
the robot must reach a predefined destination as quickly as possible. The Jumping
Sumo has a jumping mechanism that has to charge for 1 second before a jump
can be executed. The need to charge prior to jumping and the fact the robot rolls
stochastically after landing, make jumping slower than driving. There is thus a
tradeoff, because the robot has to go around obstacles when driving, whereas the
jumping locomotion, although slower, enables the robot to jump over obstacles.
Taking into account the tradeoff between the two means of locomotion, we evolve
control in a balanced set of environments that is fair for both locomotion modes.
We compare results obtained in three distinct setups in which a robot has access
to different modes of locomotion, in (i) the robot can only drive, not jump,
in (ii) the robot can only jump, not drive, and in (iii) the robot is capable of
both driving and jumping. We then analyze the performance and behavior of
the controllers evolved in each setup. The contribution of our study is fourfold:
(i) we evolve controllers that can take advantage of jumping locomotion; (ii) we
demonstrate how controllers can be synthesized for multimodal locomotion,
in particular, jumping and driving; (iii) we show that simpler strategies can
be evolved for robots with multimodal locomotion capabilities compared with
strategies evolved for robots with unimodal locomotion, and (iv) we find that
the navigation strategies evolved for multimodal robots outperform strategies
evolved for unimodal robots – even when only one mode of locomotion is used.

2 Related Work

In this section, we present prominent multimodal robots and discuss work related
to autonomous navigation in the field of ER.
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2.1 Multimodal Robots

Robots equipped with more than one means of locomotion have the potential to
select which mode to use depending on the types of environment encountered,
which is particularly important in tasks where terrains may not be entirely char-
acterized prior to deployment [10]. With the growing interest in using robots for
search and rescue tasks, environmental monitoring, and so forth, it is increasingly
important to have robots with the capacity to exploit a variety of locomotion
strategies.

Of the limited number of multimodal robots that have been developed so far,
most combine aquatic and terrestrial locomotion. Examples include Aqua [8] and
Salamandra Robotica I and II [3]. There is also a number of robots that combine
aerial and terrestrial locomotion, such as MALV [1] and BOLT [17].

Some multimodal robots rely on the combination of jumping and wheeled
locomotion, in which wheeled locomotion is the primary means of locomotion and
jumping is used as a secondary means. Tsukagoshi et al. [19] developed a wheeled
robotic platform with a jumping mechanism for rescue operations. The jumping
mechanism uses a pneumatic cylinder and a specially designed valve that allows
energy efficient and high jumps. The Jumping Sumo is another example of a
wheeled robot capable of jumping that Parrot has recently developed1, along with
other multimodal robots. Other examples include the miniature Scout robot [18],
a cylindrical robot with two wheels, and the mini-whegs [13].

Besides the mentioned examples, a recent survey on robotic systems equipped
with multimodal locomotion can be found in [15]. Despite the interesting work
done so far, most of multimodal robots are unable to autonomously decide when
and how to exploit the different locomotion modes during task execution; in
fact, the majority of current multimodal robots lack the capacity for autonomous
decision-making altogether. In this paper, we study how to automatically syn-
thesize controllers for a robot equipped with multimodal locomotion so that it
effectively chooses which mode of locomotion during task execution based only
on limited information from onboard sensors.

2.2 Evolved Navigation Behaviors

Terrestrial robots Several ER studies on wheeled robots have been carried
out since the pioneering real-robot studies by Floreano and Mondada [6] and
Jakobi et al. [12]. In [6], the authors evolved behavioral control that enabled a
Khepera robot to locate a battery charger and periodically return to it. In [12],
the authors managed to successfully evolve artificial neural network-based control
for obstacle-avoidance and light-seeking tasks for a Khepera robot. Many others
examples of evolved behaviors for terrestrial robots can be found in [16].

Besides wheeled robots, legged robots have also been controlled by evolved
behavior. Gallagher et al. [7], for instance, carried out experiments using a

1 Parrot MiniDrone Jumping Sumo, URL: http://www.parrot.com/usa/products/
jumping-sumo/

 http://www.parrot.com/usa/products/jumping-sumo/
 http://www.parrot.com/usa/products/jumping-sumo/
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neural network to control the locomotion of a real six-legged robot. Gruau and
Quatramaran [9] attempted to evolve an artificial neural network with cellular
encoding to control the locomotion of OCT-1, an eight-legged robot.

Aerial and aquatic robots One example of ER in aerial robots includes
evolving spiking neural controllers for a flying robot which had to perform a
vision-based navigation task [21]. In terms of the aquatic environment, control
was recently evolved for a swarm robotics system composed of 10 surface robots, in
a study that demonstrated evolved swarm control outside of controlled laboratory
conditions [4].

As it is the case for all the studies discussed above, evolution of control
has almost exclusively been applied to robots with one type of locomotion. In
this study, we evolve control for robots capable of multimodal locomotion, in
particular, jumping and driving. It should be noted that, to the best of our
knowledge, no controllers have been evolved for robots capable of jumping prior
to this study.

3 Robot Model and the Task

In this section, we describe the navigation task and the robot model used in
our experiments. We conducted our experiments in JBotEvolver, a Java-based
open-source, multirobot simulation platform and neuroevolution framework [5].

3.1 Navigation Task

In our task, the robot must navigate to a predefined target destination in an
environment with different obstacle configurations. The configuration of obstacles
is random, but generated according to a predefined ratio that determines the
optimal time to complete the task by driving relative to the optimal time to
complete the task by jumping. For instance, if an environment has a ratio of
2, a configuration of obstacles will be generated in such a way that the time to
reach the destination will be twice as long when driving than when jumping if
the respective optimal paths are followed.

We use five different types of environment with the following ratios: 1/4,
1/2, 1, 2, and 4, during the evolutionary process. In the first two types of
environment, the robot can potentially reach the destination faster by driving
than by jumping (ratios 1/4 and 1/2), while the opposite is true in the two
final types of environment (ratios 2 and 4). In the environment with a ratio
of 1, the two means of locomotion potentially allow the robot to reach the
target destination equally fast. Solutions are thus evaluated in a balanced set of
environments with respect to the two means of locomotion. All environments are
bounded and square-shaped, with a side length of 10 m. An example of a random
configuration of the five environments can be seen in Figure 1.
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Target destination
Obstacle

Direct path
(jumping locomotion)

Optimal path
for driving locomotion

Ratio 1/4 Ratio 1/2

Ratio 2 Ratio 4

Ratio 1

Figure 1: Examples of configurations of the five types of environment with the
respective optimal paths for driving and jumping highlighted.

3.2 The Robot Model

The robot model is based on an existing physical multimodal robot, the Jumping
Sumo, a differential wheeled robot capable of jumping (see Figure 2). The robot
is equipped with two wheels, can move at up to 7 km/h, is able to prioritizing
either height or length, and has a size of 18.5 x 15 x 11 cm.

We conducted a series of empirical tests to assess the jumping characteristics
of the robot in order to model the Jumping Sumo in simulation. The jump mode
with height prioritization was chosen for our experiments since it allows the
robots to overcome tall obstacles. A total of 45 jumps were executed, and both
the time and distance covered were recorded. In the empirical tests, we observed
a jump length of 85 ± 4 cm, and a roll distance of 16 ± 7 cm after the jump. In
simulation, the dynamics were modeled using two Gaussian distributions. The
jumping mechanism has to charge for 1 second before a jump is executed, which
was also modeled in simulation.

In our experiments, the robot was equipped with two actuators: two wheels
and a jump actuator. A Gaussian noise component with a mean of 0 and a
standard deviation of 5% was added to the two wheels to simulate real-world
phenomena, such as imperfect motors and wheel slippage. The set of sensors
includes eight destination sensors, which have a maximum range of 10 m, and
eight obstacle sensors, which have a range of 4 m. The destination sensors are
distributed around the chassis of the robot and the obstacle sensors are distributed
on the front of the robot. All sensors have an opening angle of 60◦. The robot
was further equipped with a proprioceptive sensor that indicates if the robot is
currently jumping or not.
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Figure 2: Left: Jumping Sumo. Right: jump trajectory.

For our experiments, we use three setups in which the robot has access to
distinct locomotion capabilities: (i) Drive, where the robot is only capable of
driving, (ii) Jump, where the robot can only jump and rotate on its axis, and
(iii) Drive-and-Jump, where the robot is capable of multimodal locomotion, and
thus can both jump and drive. In the Jump setup, the robot is considered to
have reached the destination when it is within 30 cm of the target, instead of
the 10 cm used for the other two setups, given that jumping is less precise than
driving.

4 Control Synthesis

We evolve continuous-time recurrent neural networks [2] to control the robot.
Each neural network has three layers of neurons: a reactive input layer, a fully
connected hidden layer, and an output layer. The input layer is fully connected
to the hidden layer, which, in turn, is fully connected to itself and to the output
layer. The input layer has one neuron per input sensor and the output layer has
one neuron per actuator output.

We use a simple generational evolutionary algorithm to synthesize control
for the robot. Each generation is composed of 100 genomes that correspond
to artificial neural networks with the topology outlined above. Genomes are
evaluated over 25 samples with different initial random seeds (5 samples in each
type of environment) and the average fitness is used for selection. Each sample
can last up to 750 simulation time steps (19 seconds), or terminates once the
robot reaches the destination. The five highest-scoring genomes are selected to
become part of the next generation and to populate it. Each of the top genomes
becomes the parent of 19 offspring. The genotype of an offspring is the result of
applying a Gaussian noise to each gene with a probability of 10%.

The fitness function is defined as follows:

F (i) = Ri + Pi (1)
where Ri is a reward component and Pi a penalty component. Value of Ri depends
on whether the robot succeeded or failed to navigate to the target destination:

Ri =
{

1 + (T − t)/T if robot reached the destination
1 − d/D otherwise

(2)
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If the robot did not reach the target destination, the fitness function has a
value in [0, 1] depending on how close the robot got to the destination during the
experiment. By means of this bootstrapping component, a faster convergence to
the destination is expected. The term D represents the initial distance between
the robot and the target destination, and d is the closest distance the robot came
to the destination. If the robot is successful, its fitness will be in the interval
[1, 2], depending on how long the robot took to reach the target destination. The
term T is the maximum time available for the task (750 simulation steps) and t
corresponds to the time needed to reach the destination.

Pi is the penalty component which is used to promote obstacle avoidance:

Pi =
{

nc × −0.01 if robot reached the destination
nc × −0.001 otherwise

(3)

The term nc denotes the number of collisions with obstacles. Pi also depends
on whether or not the robot managed to reach the destination. A lower penalty
is given when the robot was unable to reach the target destination in order to
bootstrap the evolutionary process.

5 Results

A total of 30 evolutionary runs were conducted for each setup (Drive, Jump, and
Drive-and-Jump), each lasting 500 generations. For the highest-scoring controller
evolved in each run, we conducted a post-evaluation with 100 samples for each of
the five environment types used during evolution. In this section, we present the
results obtained in each setup, and we analyze the performance and behaviors of
the evolved solutions.

5.1 General Performance

Figure 3(left) shows the distribution of fitness scores achieved by the highest-
scoring controllers for the different experimental setups. The highest-scoring
controller was found in the Drive-and-Jump setup (1.84 ± 0.06), followed by the
similar performance of the Drive setup and the Jump setup (1.71 ± 0.15 and
1.71 ± 0.14, respectively). Figure 3(right) shows the distribution of the time to
reach the target destination by those highest-scoring controllers. As mentioned
in Section 3.1, the experiments were conducted in five types of environments that
equally favor the driving locomotion and the jumping locomotion. The results
show that the highest-scoring controllers evolved in the Drive setup and the
Jump setup obtained a similar performance. The highest-scoring controller of
the Drive setup reached the destination within a mean time of 5.69 ± 2.80 s, and
the best controller of the Jump setup reached the destination with a mean time
of 5.54 ± 2.96 s. The highest-scoring controller evolved in the Drive-and-Jump
setup successfully reached the destination faster than controllers evolved in the
other setups (3.10±1.20 s). The results demonstrate that robots with multimodal
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locomotion capabilities can effective learn when to use each mode of locomotion
based on the limited information they can obtain through their onboard sensors.

Figure 3: Left: distribution of fitness scores achieved by the highest-scoring
controllers of the three setups (higher is better). Right: distribution of the time
to reach the destination by the highest-scoring controllers of the three setups
(lower is better).

The simplicity of evolving successful behaviors with multimodal locomotion
can be seen in Figure 4(left): the evolutionary process found successful solutions
around the 80th generation, after which fitness only slightly increased. The
relatively low average performance displayed by the controllers evolved in the
Drive setup (Figure 4(right)), can be explained by the fact that the majority of
them did not succeed in reaching the destination in the final two environments
(ratio 2 and 4). It is thus more challenging to evolve effective Drive behaviors
than multimodal behaviors.

5.2 Behavioral Analysis

In this section, we analyze the performance and behaviors of the highest-scoring
controllers for the first (ratio 1/4), middle (ratio 1) and last environment (ratio

䐀爀椀瘀攀
䨀甀洀瀀
䐀爀椀瘀攀ⴀ愀渀搀ⴀ䨀甀洀瀀

Figure 4: Left: fitness trajectories of the highest-scoring controllers in each gener-
ation. Right: average fitness trajectories of the highest-scoring controllers in each
of the 30 runs.
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4). Examples of evolved behaviors can be seen in Figure 5. The highest scoring
controller of the Drive setup, Jump setup and Drive-and-Jump setup are here-
inafter referred to as Drive Controller, Jump Controller and Drive-and-Jump
Controller, respectively.

Ratio 1/4 The Drive Controller reached the destination with a mean time of
2.99±1.33 s, while the Jump Controller achieved a mean time of 7.49±1.82 s and
the Drive-and-Jump Controller outperformed both with a mean time of 1.90 ±
0.28 s. The Drive Controller was not as fast as the Drive-and-Jump Controller,
due to the fact that the controller has the general behavior of turning on the spot
to find a way around potential obstacles, as can be seen in Figure 5(a), which is
necessary in order to solve the navigation task in more complex environments.
Whereas the Drive-and-Jump Controller has a more general behavior, since it is
not limited to just one locomotion strategy. Successful behaviors leveraged the
ability to overcome obstacles in the other environments by jumping over them,
thereby using a simpler strategy in which the robots moves directly toward the
destination in the environments.

Ratio 1 This environment has a ratio of 1, thus, the robot can potentially reach
the destination in the same amount of time whether it drives or jumps. The Drive
Controller reached the destination within a mean time of 4.49 ± 1.77 s, similar

a)

b)

c)

Drive setup Jump setup Drive-and-Jump setup

Driving

Jumping

Rolling a�er landing
(see in Section 5.3)

Figure 5: Example of behaviors in the environments with a) ratio 1/4, b) ratio 1,
and c) ratio 4.
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to the Jump Controller that achieved a mean time of 4.11 ± 2.11 s. As to the
Drive-and-Jump Controller, once again outperformed the other two, achieving a
mean task-completion time of 2.59 ± 0.28 s.

We observed the Drive-and-Jump Controller successfully combining both
modes of locomotion by driving toward an obstacle, jumping over it and then
driving again to the destination, therefore achieving a even better performance
when compared with using just one of the locomotion strategies.

Ratio 4 The Drive Controller reached the destination within a mean time of
8.91 ± 3.47 s, while the Jump Controller achieved a mean time of 2.13 ± 0.72 s.
In the Drive-and-Jump setup, the mean time to navigate to the destination was
2.83 ± 1.62 s. The reason why the Jump Controller had a better performance
than the Drive-and-Jump Controller is only due to the fact that the robot is
considered to reach the destination at a greater distance with the Jump setup
than with the Drive-and-Jump setup, as explained in Section 3.2. The robot,
therefore, needs to drive a short distance after jumping, whereas in the Jump
setup, the robot reaches the destination immediately upon landing.

5.3 Generalization

In order to assess how general the evolved strategies are, we conducted an
additional set of post-evaluation experiments using the highest-scoring controllers
of each setup in 12 additional environments, which were not used during evolution.
The distribution of ratios for the new environments were chosen to uniformly fill
the gaps between the ratios of the five original environment types. Each controller
was evaluated 100 times in each of the 17 environments. The distribution of how

刀攀
氀愀
琀椀瘀

攀 
挀漀
洀
瀀攀

琀椀琀
椀漀
渀 
琀椀洀

攀

刀愀琀椀漀猀

䐀爀椀瘀攀ⴀ愀渀搀 䨀甀洀瀀 猀攀琀甀瀀 䐀爀椀瘀攀 猀攀琀甀瀀 䨀甀洀瀀 猀攀琀甀瀀

Figure 6: Distribution of task completion times of the highest-scoring controllers
evolved in a range of different environments. Highest-performing controller from
the Drive setup is used as baseline
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long it took to complete the task in each of the 17 environments, using the Drive
Controller as baseline, can be seen in Figure 6.

The results show that, as one might expect, the Drive Controller outperformed
the Jump Controller when the ratio was less than 1. With ratios higher than 1,
the Jump Controller achieve a higher performance than the Drive Controller.
The Drive-and-Jump Controller outperformed both Drive Controller and Jump
Controller in the majority of the environments.

6 Conclusions

In this study, we evolved control for robots with multimodal locomotion. To
conduct our experiments, the robot had to perform a navigation task in which it
had to reach a target destination as quickly as possible. The navigation task was
conducted in different environments, and we compared three modes of locomotion:
(i) driving locomotion, (ii) jumping locomotion, and (iii) multimodal jumping
and driving locomotion.

In our simulation-based experiments, the robot equipped with multimodal
locomotion, was able to adapt its locomotion strategy to a broad range of different
environments. Depending on the environment, the robot navigated to the target
destination either by combining jumping and driving locomotion or by exploiting
the one that best suited the environment. Multimodal locomotion enabled the
robot to reach the destination faster than when limited to just one locomotion
strategy. The evolved behavior shows that even in environments in which only
one type of locomotion is necessary, the robot can be faster by relying on a
general behavior.

The concept of evolving robotic control systems that have the capacity to
exploit driving and jumping locomotion opens several possibilities for others
combinations of two (or more) modes of locomotion, such as jumping and flying.
In our ongoing work, we are studying large-scale systems of autonomous robots
with multimodal locomotion capabilities.
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