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Abstract: Because of the thin set of well-formedness rules associated to Templates in UML, ill-formed elements may 

result from bindings to templates. Although such ill-formedness is generally detected by some UML 

validation rule, the problem is poorly reported because it is not normally imputed to the binding. Typically, 

such problems are detected as non-compilable code in the template instances. A set of well-formedness rules, 

additional to those of the standard UML, was proposed as a way to ensure the compilability of instances and 

prevent this problem from occurring. Such set of constraints was proposed in a previous paper and named 

Functional Conformance, but a demonstration of its effectiveness was not yet provided. Such a demonstration 

is outlined in the current paper. Carrying out the demonstration revealed the need for two more rules than 

those previously envisioned for Functional Conformance. 

1 INTRODUCTION 

An UML template is a model element embodying a 

patterned solution that can be instantiated to solve a 

recurring problem. A template is instantiated in a 

model by binding an element of that model to the 

template. In order to have a template instance 

contextualized to the target model, templates are 

defined as parameterised elements. A template 

parameter marks an element participating in the 

template’s definition to tell that it must be substituted 

by an element of the target model. Only when all of 

the template’s parameters are substituted, it becomes 

an actual, fully integrated solution in the target model. 

Aiming at ensuring that elements bound to 

templates are well-formed, UML enforces a set of 

constraints to parameter substitutions. One such 

constraint imposes that a substitute element must be 

of the same kind (Class, Attribute, Operation, etc.) as 

the parametered element. Another constraint enforces 

that if a parameter marks a typed element, this 

element and its substitute have conforming types. 

Yet, the set of validations falls short in 

guaranteeing the well-formedness of template 

instances. For instance, UML allows an operation 

Op1 be substituted by an operation Op2 whose 

signature is not compatible with the former’s. If so, 

every call to Op1 in the template’s code will be 

reproduced in the bound element as a call to Op2 with 

an unaligned set of arguments, an ill-formed call. 

Even though the problem was caused by a bad 

substitution, it is reported on the operation call, 

without any back tracking to the source of the 

problem being recommended by UML (as of version 

2.5 (OMG 2015)). There are far more other such 

scenarios of inadequate substitutions going unnoticed 

by UML templates and causing incidental errors 

inside template instances, mainly in the body of the 

operations. This causes bad error reporting and is a 

consequence of the scarce set of the validation rules 

for UML templates. 

In (Farinha & Ramos 2015) a set of additional 

rules was proposed for UML template as a way to 

overcome the aforementioned problem. Such rules 

implemented a concept named Functional 

Conformance (FC). With FC enforcement, improper 

substitutions of template parameters would be 

immediately signalled and reported, providing 

accurate error reporting. Since (Farinha & Ramos 

2015) provides only an intuitive perspective on the 

solution, a formal proof of the effectiveness of it is 

required. 

This paper outlines how such a proof is achieved. 

One that demonstrates that the enforcement of FC 

ensures that operations’ code resulting from a 

template binding will compile successfully, if the 

corresponding code in the template also compiles. 

E.g., the ill-formed operation call mentioned above 

would not be allowed by FC. Due to space 

restrictions, the actual demonstration could not be 

provided in this paper. The interested reader may 
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refer to (Farinha 2015). In such demonstration, the 

well-formedness of methods is verified assuming that 

these are represented as UML Activity Diagrams. It 

is also assumed that methods are purely built with 

UML constructs that also exist in the most common 

OOP languages, i.e., Java, C# and C++. 

The process of building the proof was useful to 

uncover the need for two more well-formedness 

constraints than those suggested by the empirical 

experimentation that lead to (Farinha & Ramos 

2015). This reinforced the importance of developing 

formal demonstrations. The two additional 

constraints are related to the preservation of 

subtyping relationships and of the abstract/non-

abstract nature of classifiers (i.e., classes, 

associations, use cases, etc.) when mapping from a 

template to its instances. 

The structure of the paper is as follows: §2 

presents some core concepts of UML templates and 

introduces the terminology and symbology used in 

this paper; §3 briefly presents FC; §4 outlines the 

demonstration strategy; §5 presents related work; and 

§6 draws some conclusions and foresees further steps 

towards FC as a sound concept. 

2 CONCEPTS, TERMINOLOGY 

AND SYMBOLOGY 

This paper uses the term “space of an element” to 

refer to the model fragment that is composed of that 

element and all the elements directly used by it. The 

set of model elements composed of a template and all 

of the elements directly used (referenced) by it is 

called that template’s space. The term “template 

space” is used for a general, non-specific template. 

Similarly, the term “target space” is used to denote 

the model fragment composed of an instance of a 

template and all the elements used by that instance.  

Some of the elements in a template’s space will 

be marked as parameters of the template. Others will 

be used ordinarily by the template, without been 

specified as parameters.  

When binding to the template – i.e., instantiating 

the template – the elements marked as parameters will 

be replaced by elements in the target space. This 

means that the instance of the template – termed the 

bound element – will use those elements of the target 

space instead of the ones of the template space. The 

concept in UML representing this replacements in the 

context of a binding is termed Substitution. It is said 

that an element in the target space substitutes an 

element in the template space. 

In a binding, the Projection of an element E of the 

template space is the element of the target space that 

corresponds to E in the context of that binding. I.e., 

the projection of E is one of the following: 

 the actual substitute of E – if E is substituted; 

 a replica (or reproduction) of E, if E is a 

member of the template that is not substituted; 

 E itself, if E is not substituted nor a template’s 

member (E is simply used by the template and, 

therefore, will be used by the bound element as 

well). 

In this paper, an identifier with a ‘
T
’, e.g. E

T
, 

represents an element in a template space. An 

identifier with a ‘’, e.g. E, represents an element in 

a target space. E is the projection of E
T
. 

3 FUNCTIONAL 

CONFORMANCE  

Functional Conformance (FC) is a term that was 

introduced in (Farinha & Ramos 2015) aiming to 

denote the equivalence between two model elements, 

from a third-party, client perspective. It is a directed 

relationship between two elements e1 and e2, herein 

represented in formulas as ‘FC (e1, e2)’, meaning that 

the first element may be replaced by the second in a 

model without compromising the consistency of that 

model. In (Farinha & Ramos 2015) and in the current 

paper, the concept is applied to the instantiation of 

UML templates, being proposed as a set of well-

formedness constraints that should rule every 

template parameter substitution. FC is defined as a set 

of criteria, presented next.  

Type conformance 

Type Conformance states that if an element e
T
 in the 

template space has type T
T
, then the projection of e

T
 

must have the projection of T
T
 as type. This criterion 

should hold for all the types of e
T
, i.e., for e

T
’s direct 

and indirect types (ascendants of the direct type). It 

can be announced two-fold: 

(1) If a type T of an element e
T
 is not substituted, 

then e must have T as type; 

(2) If the type T of an element e
T
 is substituted, 

then e must have T’s substitute as type. 

UML only enforces (1) (OMG 2015, sec.7.8.18.5). 
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Subtyping conformance 

Subtyping Conformance is intended to preserve every 

is-a relationship from the template to the target 

spaces, in case any classifier substitution occurs on a 

generalisation hierarchy. The definition is: if T
T
 is a 

subtype of Tsuper
T
, then T must be a subtype of Tsuper

 

or Tsuper
 itself. 

Multiplicity conformance 

Two elements conform regarding multiplicity if they 

are both single-valued (multiplicities’ upper bound = 

1) or both multivalued (multiplicities’ upper bound > 

1) and, in the latter case, if they are both ordered or 

both not-ordered.  

Contents conformance 

Contents Conformance applies only to model 

elements that are namespaces. In the context of a 

certain bind, the namespace ns conforms in contents 

with ns
T
 if every member of the ns

T
 being used by the 

template is substituted by a member of ns. If the 

namespace is a type, its members are properties, 

operations, or inner types. If it is package, members 

are packages or classifiers. 

Contents Conformance has a corollary, named 

Membership Conformance, which enforces that, if A 

is substituted by B, members of A must be substituted 

by members of B.  

Signature conformance 

Signature Conformance is Contents Conformance as 

applied to operations. It is the criteria that ensures that 

a substituting operation has a set of parameters 

compatible with that of the substituted.  

Staticity conformance 

A static feature may only be substituted by another 

that is also static, and a non-static by a non-static. 

Abstraction conformance 

This criterion applies only to parametered elements 

that are classifiers and is already supported by UML 

2.5. It states that a classifier that is not abstract must 

substituted by another that is also not abstract  

Visibility requirement 

This requirement states that an element may 

substitute a template parameter only if that element is 

visible from the bound element.  

4 DEMONSTRATION STRATEGY 

4.1 Representing Code by UML 
Activities  

The goal of this demonstration is to show that the 

code of operations in a class template remains 

compilable once reproduced in instances of that 

template. For instance, a class template that keeps a 

list of items ordered by name would have an operation 

insert (Item) with the following Java definition: 

AlphabeticList::insert (Item itm) { 

 int k = 1; 

 while (itm.name < self.items[k].name) 

  k++; 

 self.items.insertAt (itm, k); 

} 

If a class CustomerList is bound to such template 

and substitutes class Item by Customer and itm by 

cust, the following method is generated: 

CustomerList::insert (Customer cust) { 

 int k = 1; 

 while (cust.name < self.items[k].name) 

  k++; 

 self.items.insertAt (cust, k); 

} 

It must be proved that if method 

AlphabeticList::insert (Item) compiles successfully 

and FC is enforced on substitutions, then 

CustomerList::insert (Customer) compiles as well. In 

a Java setting, such a proof would use the syntax rules 

of that language to check compilability. 

Alternatively, our demonstration assumes that all 

code is represented by UML Activities and, therefore, 

compilability will be checked using the UML’s well-

formedness rules for Activities. E.g., the previous 

method is represented by the activity in Figure 1. 

 

Figure 1: A method represented as an activity with an 

expression. 

It could be noted however that the compilability 

of the method in Figure 1 cannot yet be fully assessed 

by UML Activity well-formedness rules. That is 
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because of the guard of one of the flows branching 

out of the decision node, which is represented by an 

expression. The assessment of that guard would 

require UML’s well-formedness rules for expressions 

as robust as those of programing languages, which is 

not the case: the UML metamodel stores expressions 

as simple tree structures, without establishing 

validation rules for the compatibility between those 

trees’ nodes. E.g., UML considers 3 * “potato” a 

valid expression. Hence, to achieve our goals, 

expressions must be represented by activities. E.g., 

the guard expression in Figure 1 must be replaced by 

the composite activity “cust.name < items[k].name” 

shown in Figure 2, which internally should be as in 

Figure 3. Since this expression-activity feeds the 

«decisionInputFlow» of the decision node, its result 

will steer execution as desired. Once every expression 

is formally represented by an activity, the 

compilability of a method may be fully verified 

through UML well-formedness rules. 

 

Figure 2: A method fully represented as an activity. 

 

Figure 3: The internals of an expression-activity. 

Although activity’s well-formedness rules do not 

verify the compilability of constructs of the target 

language that have no equivalent in UML, it provides 

a compilability check strategy that is valid for 

multiple languages in what is common between the 

UML Activity model and those languages.  

For the sake of a clear scope definition, it is 

considered that what is common to the most usual 

structured programing languages with object 

orientation – such as Java, C# and C++ – may be 

translated to UML activity diagrams exclusively built 

with the following concepts of the UML Activity 

formalism: Object Action, Structural Feature Action, 

Call Action, Object Node, Control Flow, Object 

Flow, and Decision Node. Every construct of such 

languages that is not subsumed by those concepts is, 

therefore, out of the scope of this paper. Limited to 

such a scope, the problem of compilability 

assessment may be further reduced to the assessment 

of the well-formedness of a general, archetypal 

action, as shown in §4.3. 

4.2 UML Activities 

This section overviews UML Activity concepts with 

the goal of explaining how PL code is represented in 

the demonstration.  

Paraphrasing (OMG 2015, sec.15.1): “An 

Activity is a kind of behaviour that is specified as a 

graph of nodes interconnected by flows. A subset of 

the nodes are executable nodes that embody lower-

level steps in the overall activity.” Such executable 

nodes are called Actions and correspond to statements 

in programing languages. UML defines several kinds 

of action. “Object Nodes hold data that is input to and 

output from executable nodes”, and may represent 

variables, operation parameters and their arguments. 

The data in object nodes moves across Object Flows. 

The sequencing of actions is specified through 

Control Flows, and these may be controlled by if-

then-else, switch, loop, fork and join nodes, globally 

designated Control Nodes.  

In this paper, it is considered that the operations’ 

code under consideration is purely represented using 

the UML concepts described below. 

The UML kinds of action that are relevant to this 

demonstration are: Object Actions, Structural 

Feature Actions and Call Actions. Object Actions 

operate on objects as a whole, representing statements 

that create objects, destroy them, check their 

classification (myObj instanceof MyClass) or their 

identities (obj1 == obj2). See Figure 4.  

Object actions also include Value Specification 

Actions. These are actions that yield a value after 

evaluating a textual expression. In this paper, only 

actions evaluating a single literal are considered (such 

as the ‘1’ action in Figure 2). Other value 

specification actions are represented as composite 

activities (see §4.1). 
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 o = new Order 

 
 delete o 

Figure 4: Object actions. 

Structural Feature Actions read or write on 

properties of objects (Figure 5). 

 
 o.totalCost 

 

 o.customer = c 

 
 o.customer = null 

Figure 5: Structural Feature actions. 

A Call Action invokes a behaviour (Figure 6) or 

an operation on an object (Figure 7). 

 

 processOrders (orders, 

currentUser) 

Figure 6: ‘Call Behaviour’ action. 

 
 o.add (p, qty) 

Figure 7: ‘Call Operation’ action. 

Object Nodes are used to store data that is used 

and/or produced by actions. Those may represent 

variables (e.g., ‘o: Order’ in the examples above) or, 

through the concept of Pin – a specialization of 

Object Node – may represent behaviour’s or 

operation’s parameters (e.g., quantity, in Figure 7). 

A Decision Node chooses one between multiple 

outgoing flows: the first one whose guard is true. 

Figure 8 shows two possible configurations for a 

decision node. Decision nodes may also be used to 

implement loops, as shown in Figure 9. Even though 

UML provides a construct specific for looping 

(LoopNode), representing loops as in Figure 9 

narrows down the set of UML constructs required for 

compilability assessment. 

 

 if (guard1) 
 ... 

elseif (guard2) 

 ... 

 

 switch (getSomething){ 
 case guard1: ... 

 case guard2: ... 

} 

Figure 8: Decision nodes. 

 

 while (guard1) 
 doSomething 

Figure 9: A loop in an activity. 

4.3 Demonstrating Compilability 
through an Archetypal Action 

This section shows that the verification of the 

compilability of the bound element may be reduced 

to the verification of a general, archetypal action.  

Taking into account the semantics of UML 

template binding – recalling: the bound element is a 

replica of the template with superimposed 

substitutions – and that the compilability of the 

template is a premise, it may be deduced that only 

those elements being impacted by substitutions may 

spoil the compilability of the bound element. This 

narrows down the set of elements to consider to those 

whose validation rules reference parameterable 

(therefore, substitutable) elements. Since neither the 

source nor the target of an activity flow are 

parameterable, flows’ connecting points are never 

changed by template substitutions. This means that 

the topology of an activity is preserved from the 

template to the bound element. Consequently, it is 

possible to consider individually each element kind 

presented in the previous section.  

Control Flow’s well-formedness constraints 

mostly deal with topology. The only exceptions are 

the flow’s weight and guard. Since the concept of 

weight doesn’t exist in programing languages, only 

the guard expression may jeopardize compilability. 

As seen in §4.2, every expression that is not a plain 
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literal is represented as a composite activity. Hence, 

the compilability of control flow may be ultimately 

determined by the joint compilability of an activity 

without guards and an action such as the one in Figure 

10, which happens to be a call action, already elicited 

in §4.2. The same is also valid for Decision Nodes, if 

in Figure 10 “true: Boolean” is replaced by “aLiteral: 

Any” or “aVariable: Any” (Farinha 2015). This filters 

out guards, control flows and decision nodes from 

consideration. 

 

Figure 10: Fragment of the semantics of a guard. 

Hence, the compilability assessment of a bound 

activity becomes reduced to the verification of the 

action kinds designated in §4.2 and of the object 

nodes and object flows connecting to those actions. 

This allows further simplifying our demonstration 

because all those action kinds may be subsumed by 

the generic, archetypal action in Figure 11. Such 

action aims at representing a feature call in the broad 

sense: a call to a feature of an object, of a class (a call 

to a static feature), or of the run-time system (e.g., a 

call to the new operator). The demonstration strategy 

from this point on is somewhat straightforward:  

assuming that well-formedness rules hold for the 

archetypal action in a template, it must be shown that 

they hold as well for the corresponding bound action 

if FC is enforced in the binding. I.e., representing the 

archetypal action by a, it is shown that: 

WellFormed (a
T
)  FC (a

T
, a)  WellFormed (a) 

 

Figure 11: An action in the template. 

Since the archetypal action is included in a 

template it will be reproduced in every element bound 

to that template. The archetypal action within the 

template will be referred as templated action and 

represented as in Figure 11. Its reproduction in a 

bound element will be referred as bound action and 

represented as in Figure 14. 

The Templated Action  

The feature being called by the templated action in 

Figure 11 is represented by the meta-variable f. For 

Create Object actions f is a class, not a feature. For 

Value Specification actions f is an expression; 

specifically to this demonstration, it is a literal. For 

Destroy Object actions f doesn’t exist. 

Self is a pin that represents the usual variable 

self/this: a reference to the object that executes the 

feature, from the perspective of the code of that 

feature. Self doesn’t exist in Create Object, Value 

Specification, and Call Behaviour actions. 

As imposed by UML’s constraints (OMG 2015, 

sec.16.14.54.6 and 16.14.10.6), self’s type is the type 

that owns – i.e., declares and provides context to – the 

feature being called. The type of self is represented by 

Tcontext.  

The multiplicity of the self pin is represented by 

Mself. Mself’s upper bound must be 1 if f is a 

property. If f is an operation, self may be multivalued 

(Mself’s > 1), to represent calls to collection 

operations (size(), includes(…), etc.). 

The caller object node represents the instance that 

embodies self in an execution of the action. In a 

statement ‘anObject.feature’, anObject is represented 

in Figure 11 by caller. Depending on the topology of 

the activity containing the action, caller may 

represent a variable, a parameter of the activity that 

contains the action (Figure 12) – including that 

activity’s self – or the result pin of a preceding action 

(Figure 13). Caller’s type and multiplicity are 

represented by Tcaller and Mcaller, respectively.  

  

Figure 12: Caller is a parameter of the owning activity. 

  

Figure 13: Caller is a previous result. 

Prmi, for i from 1 to N, only exists for call actions 

and it is a parameter of f with direction other than 

return. Prmi’s type and multiplicity are represented 

by Tprmi and Mprmi, respectively. Prmi also 

represents the pin that passes values to or from the 
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prmi parameter, depending on that parameter’s 

direction being in or out, respectively. If prmi is a 

bidirectional parameter (inout), values may be passed 

to and from it. Since UML pins may not be 

bidirectional, two pins are required to every inout 

parameter: these will be called prmi_in and prmi_out. 

That’s the case of prmK in Figure 11. 

Argi, for i from 1 to N, is the argument passed to 

prmi. Argi’s type and multiplicity are represented by 

Targi and Margi, respectively. Similarly to caller, 

argi may represent a variable, a parameter of the 

activity, or the result pin of an upstream action. 

Result is the pin that yields the value returned by 

the action. If f is a property, result yields the value of 

that property in the instance provided by caller. If f is 

an operation, result yields the value returned by the 

operation. Result´s type and multiplicity are 

represented by Tf and Mf, respectively. 

Destination represents the element that receives 

the result of the action. Also depending on the 

topology of the activity containing the action, it might 

be a variable, an output (out, inout or return) 

parameter of the activity, or a pin of a downstream 

action (a subsequent self or prmi). 

The Bound Action 

The reproduction of the templated action within the 

bound element will be termed bound action and 

represented as in Figure 14. In that figure, the 

elements that may differ from their original 

counterparts are marked with ‘’ (in some cases 

reduced to a ‘’, due to typewriting constraints).  

 

Figure 14: The bound action. 

4.4 Compilability criteria  

This section states how compilability assessment 

rules are elicited out of the whole set of UML 

Activity’s well-formedness constraints. It must be 

noted that such criteria will be applied to the bound 

action. Only constraints belonging to both the 

following sets are relevant:  

 Those being defined for the constructs that 

build up the archetypal action; i.e., well-

formedness constraints of: Object Node, Pin, 

Object Flow, Structural Feature Action, Call 

Action and Object Action; 

 Those referencing elements that UML defines 

as parameterable in a template (therefore, 

substitutable in a binding). 

(Farinha 2015) lists those constraints and 

formulates them in terms of the archetypal action. The 

holding of those constraints in the templated action 

are stated as premises and the holding in the bound 

action are the hypotheses, which are proved on the 

basis of the premises and that FC holds. I.e., it is 

shown that, being a the archetypal action: 

 rule  {Compilability rules}, 

rule (a
T 

), FC (a
T
, a) ⊢ rule (a). 

5 RELATED WORK 

For classifier template parameters only, UML allows 

the specification of constraining classifiers, which 

will act as required contracts that substituting 

classifiers must fulfil. This provides compatibility 

assurance between the substituted and the substituting 

classifiers, but limits the applicability of templates, 

because these classifiers must inherit some common 

supertype and/or implement common interfaces. 

(Cuccuru et al. 2009) presents a way to contour the 

need for such common supertype/interface, but 

imposes the need for a common template. Although 

that solution actually increases the applicability of 

templates, applicability is even greater using FC, 

because there is no need of any kind of common 

ancestor as long as every member of the substituted 

classifier is substituted by a member of the 

substituting classifier (CtsCnf). Furthermore, 

constraining classifiers only provide compatibility for 

classifier parameters, while FC works for any kind of 

parameterable element. 

(Caron & Carré 2004) also proposes a set of rules, 

additional to that of UML, to ensure that template 

instances are well-formed. However, the proposed 

rules overlook several aspects, such as multiplicity, 

staticity, and visibility. FC takes such aspects under 

consideration. 

(Vanwormhoudt et al. 2015) proposes an 

extension to the UML Template concept called 

Aspectual Template (AT). Instead of having multiple 

parameters, ATs have a single parameter, which 

exposes a model as a whole. Associated to ATs, a set 

of constraints ensures that the target model fragment 

is conformant with the AT parameter. However, AT’s 

constraints overlook multiplicities and the static 
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nature of features. AT’s rules also overlook subtyping 

in some circumstances and that makes templates less 

flexible. FC doesn’t have such limitations. 

None of the aforementioned outline a formal 

proof for their contributions. 

In the Generic Programing field, the concept of 

Concept was introduced to impose requirements on 

template arguments (Dehnert & Stepanov 1998). 

Since in C++, template parameters are … In Java 

Generics and in C# Templates, Concepts are specified 

through interfaces, the same approach as that of 

UML’s constraining classifiers, having the same 

limitations. (Siek et al. 2005) and (Gregor et al. 2006) 

are proposals for introducing Concepts in C++, and 

are the approaches to Concepts that most resemble 

UML Templates with FC. A concept definition in a 

C++ template plays the same role as an element that 

is exposed as a parameter of an UML template, if FC 

is enforced. The advantage of UML+FC lies in the 

fact that no additional constructs are required: 

concepts are modelled by ordinary classes, packages, 

operations, etc. 

6 CONCLUSIONS AND FUTURE 

WORK 

Building a proof was useful because it confirmed the 

theory put forth and because it uncovered issues that 

otherwise might become unnoticed. These were 

mostly related with the substitution of classifiers and 

revealed the need for the Subtyping and Abstraction 

Conformance criteria. The former was not initially 

apparent because Type conformance seemed to 

suffice for the purpose under consideration. 

Abstraction Conformance was not detected 

previously because none of the empirically tested 

templates included a new statement that could be 

substituted by an abstract class. It looks like a formal 

proof is worth a thousand tests. 

The demonstration strategy use only proves that 

FC is sufficient to ensure compilability. As a next 

step, a demonstration that shows that FC’s rules are 

the necessary ones must be done.  
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