
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2021-09-24

 
Deposited version:
Accepted Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Silva, F., Correia, L. & Christensen, A. L. (2016). Online hyper-evolution of controllers in multirobot
systems. In Cabri, G., Picard, G., and Suri, N. (Ed.), 2016 IEEE 10th International Conference on
Self-Adaptive and Self-Organizing Systems (SASO). (pp. 11-20). Augsburg: IEEE.

 
Further information on publisher's website:
10.1109/SASO.2016.7

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Silva, F., Correia, L. & Christensen, A. L.
(2016). Online hyper-evolution of controllers in multirobot systems. In Cabri, G., Picard, G., and Suri,
N. (Ed.), 2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO). (pp. 11-20). Augsburg: IEEE., which has been published in final form at
https://dx.doi.org/10.1109/SASO.2016.7. This article may be used for non-commercial purposes in
accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/SASO.2016.7


Online Hyper-Evolution of Controllers in Multirobot Systems

Fernando Silva∗†‡, Luı́s Correia† and Anders Lyhne Christensen∗‡§
∗BioMachines Lab, Lisbon, Portugal

†BioISI, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
‡Instituto de Telecomunicações, Lisbon, Portugal

§Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal

Abstract—In this paper, we introduce online hyper-
evolution (OHE) to accelerate and increase the performance
of online evolution of robotic controllers. Robots executing
OHE use the different sources of feedback information
traditionally associated with controller evaluation to find
effective evolutionary algorithms and controllers online during
task execution. We present two approaches: OHE-fitness,
which uses the fitness score of controllers as the criterion to
select promising algorithms over time, and OHE-diversity,
which relies on the behavioural diversity of controllers for
algorithm selection. Both OHE-fitness and OHE-diversity are
distributed across groups of robots that evolve in parallel.
We assess the performance of OHE-fitness and of OHE-
diversity in two foraging tasks with differing complexity,
and in five configurations of a dynamic phototaxis task with
varying evolutionary pressures. Results show that our OHE
approaches: (i) outperform multiple state-of-the-art algorithms
as they facilitate controllers with superior performance and
faster evolution of solutions, and (ii) can increase effectiveness
at different stages of evolution by combining the benefits
of multiple algorithms over time. Overall, our study shows
that OHE is an effective new paradigm to the synthesis of
controllers for robots.

1. Introduction

Online evolution is an open-ended approach to the
synthesis of behavioural control for robots that is part of
the field of evolutionary robotics. In online evolution, the
robot controllers are continuously optimised during task
execution. An evolutionary algorithm is executed onboard
the robots themselves. The evolutionary operators, namely
selection and reproduction, are applied autonomously by the
robots without any external supervision or human interac-
tion. As a result, online evolution creates the potential for
long-term adaptation and learning: robots can continuously
self-adjust and learn new behaviours in response to, for
example, changes in the task requirements or environmental
conditions, and to faults in the sensors and actuators.

Research in online evolution started with the pioneering
contributions of Floreano and Mondada, see [1] and ref-
erences therein, which laid the foundation for a number
of studies that followed. The authors evolved controllers

for navigation and homing tasks on a real Khepera robot.
The synthesis of successful controllers required up to ten
days of continuous evolution on real robotic hardware, thus
showing that the evaluation time is a critical aspect in real-
robot experiments. Afterwards, Watson et al. [2] introduced
embodied evolution, in which the evolutionary algorithm is
distributed across a group of robots. Individual robots evolve
controllers in parallel, and exchange partial solutions to the
task when they meet. Such an approach enables a form of
knowledge transfer that can speed up evolution and facilitate
more effective collective problem solving [3]. However, the
speed up of evolution is dependent on encounters between
robots, which may be infrequent in large or open environ-
ments.

Over the past years, a number of online evolution al-
gorithms have been introduced. Recent examples include
mEDEA by Bredeche et al. [4], and odNEAT by Silva et
al. [5]. However, at the current state of development, there
are a number of key issues that must be addressed before
online evolution becomes a feasible approach to adaptation
and learning in real robotic systems. One main impediment
to widespread adoption is the prohibitively long time that
online evolution requires to synthesise solutions (typically
several hours or days) [6]. Ideally, research in the field would
enable the development of one or more prevalent algorithms
able to effectively synthesise solutions to a large number of
different tasks in a timely manner. However, as stated in
the No Free Lunch Theorem [7], it is impossible to devise
such general silver bullets given that all optimisation algo-
rithms yield equivalent performance on average. Even if the
tasks to which online evolution is applied share a common
structure, an algorithm’s performance is conditioned on its
configuration (e.g. parameters and genetic encoding), which
in turn constrains the ability for effective robot learning and
adaptation. In this way, while the current quest for more
efficient online evolution algorithms continues, the field may
ultimately need more general mechanisms that can combine
the benefits of different algorithms.

In this paper, we study a novel approach to accelerate
and increase the performance of online evolution of robotic
controllers. We introduce online hyper-evolution (OHE), in
which the key principle is to use the different sources of
feedback information traditionally associated with controller
evaluation to find suitable evolutionary algorithms online.



Contrarily to current approaches, which rely on a single,
predefined algorithm to find a high-performing controller,
OHE searches across a space of candidate algorithms and
configurations in order to find effective algorithms over time.
In this way, OHE has the potential to increase the level of
generality at which online evolution can operate. Similarly
to embodied evolution, OHE is distributed across a group of
robots, meaning that it can leverage the inherent parallelism
in multirobot systems to speed-up the search. As robots can
evaluate distinct algorithms in parallel, and a given robot can
make use of several algorithms throughout task execution,
OHE creates the potential for a multi-trajectory search for
high-performing controllers.

To assess the potential of OHE, we introduce two ap-
proaches called OHE-fitness and OHE-diversity that respec-
tively use the fitness score and behavioural diversity of
controllers produced by candidate algorithms as the cri-
terion to select a promising algorithm at a given point
in evolution. We then define two variants of OHE-fitness,
called OHE-fitness+fit and OHE-fitness+div, and two vari-
ants of OHE-diversity, called OHE-diversity+fit and OHE-
diversity+div, in which the evolutionary algorithms under-
lying OHE-fitness and OHE-diversity are themselves driven
by fitness-based evolution and by diversity-based evolution.
We implement our OHE approaches over different variants
of odNEAT [5], [8], a representative efficient algorithm
that evolves the topology and weights of artificial neural
network (ANN) controllers in a distributed manner. We
assess the performance of our approaches in two foraging
tasks with differing complexity, and in five configurations
of a dynamic phototaxis task with varying evolutionary
pressures. Results show that our proposed OHE approaches:
(i) outperform multiple state-of-the-art algorithms, as they
facilitate the synthesis of controllers with higher perfor-
mance and significantly faster evolution of controllers, and
(ii) increase effectiveness at different stages of evolution
by combining the benefits of different algorithms over time.
The main conclusion of our study is that OHE is an effective
new paradigm because of its ability to leverage and combine
the properties of different algorithms to solve a given task.

2. Related Work

In evolutionary computation, there is a long history of
tuning operators and parameters [9]. For example, in order to
tune parameters during a run, several alternatives exist [10],
such as: (i) meta-evolution, that is, using an evolutionary
algorithm to optimise the configuration of the parameters
of a task-solver evolutionary algorithm, (ii) self-adaptation,
that is, using a single evolutionary algorithm that configures
itself while it tries to solve the task: the parameters to be
self-adapted are encoded in the genome and co-evolve with
the candidate solutions, and (iii) adaptation of the parameter
values according to predefined heuristic rules (e.g. adaptive
Gaussian mutation step-size optimised according to the one-
fifth rule [10]). In effect, such approaches are related with
the idea of searching over a space of candidate configura-

tions, and can thus be considered as antecedents of hyper-
heuristics [11].

Hyper-heuristics are a search methodology intended to
solve a large variety of different tasks with little or no human
input. Specifically, hyper-heuristics have been described
as [12]: “heuristics to choose heuristics” or as “an automated
methodology for selecting or generating heuristics to solve
hard computational problems”. Hyper-heuristics systems can
be represented as a two-level model [12], as shown in Fig. 1.
The base level encapsulates a set of predefined heuristics
for a given task, a performance function, and a given search
space. The hyper level is responsible for deciding which
base-level heuristic should be used to solve a given task,
and may additionally generate new heuristics with a meta-
heuristic search mechanism. Importantly, the hyper level can
operate based on online learning or on offline learning. Sim-
ilarly to online evolution algorithms, systems that employ
online learning hyper-heuristics can learn directly from what
they experience during task execution.

Hyper level

Methodologies searching the design 
space to find effective algorithms

➔ Online learning, and/or
➔ Offline learning

Base level

Contains a task T, a set of predefined 
heuristics H, and a performance 

function P

Heuristic h 
and task 
instance t

P(h, t)

Figure 1: Illustration of a hyper-heuristic system.

At the current state of development, hyper-heuristics
have been successfully applied to a variety of domains,
including [11]: (i) educational timetabling, (ii) production
scheduling, (iii) workforce scheduling, (iv) constraint sat-
isfaction, and (v) vehicle routing. That is, hyper-heuristics
are a growing field of research with a number of practi-
cal applications. However, to the best of our knowledge,
hyper-heuristics have not yet been assessed in evolutionary
robotics domains, meaning that our study also includes the
first hyper-heuristic driven by behavioural diversity. In the
following section, we introduce hyper-heuristics in online
evolution, which we term online hyper-evolution.

3. Online Hyper-Evolution

Online hyper-evolution (OHE) is a novel mechanism to
accelerate and increase the performance of online evolution
of controllers in multirobot systems. The key principle be-
hind OHE is that, given a set of candidate algorithms, the
different sources of feedback used to assess the quality of
controllers during task execution can additionally be used
at the hyper level to select suitable algorithms over time.



We propose OHE-fitness and OHE-diversity, which respec-
tively use the fitness score and the behavioural diversity of
controllers to select promising algorithms over time. In the
following sections, we detail our proposed approaches.

3.1. OHE-fitness

Given a set of N candidate algorithms, OHE-fitness
operates at the hyper level by monitoring the fitness score
of controllers in the population of the robot, and by keeping
track of which algorithm generated which controller. To that
end, each genome is augmented with an integer identifier of
the algorithm i that has originated it, with i ∈ {1..N}. When
genomes are exchanged between robots, the fitness score
of the corresponding controller and the identifier of the
algorithm are also sent to the receiving robot. Thus, OHE-
fitness can operate in a distributed and decentralised manner.

OHE-fitness intervenes in the evolutionary process when
it is necessary to generate a new controller for a robot. Upon
initialisation, that is, when the robot first starts executing,
a randomly chosen algorithm is used. In subsequent inter-
ventions, OHE-fitness analyses the internal population of
the robot and estimates the performance level Pi of every
candidate algorithm i. The performance Pi of a candidate
algorithm i is given by the mean fitness of the controllers
it produced. An algorithm i is then selected proportionally
to its performance level or randomly with a small probabil-
ity prs. After the algorithm selection step, evolution proceeds
as usual, with the configuration of the chosen algorithm
during controller synthesis and evaluation.

3.2. OHE-diversity

Ultimately, online evolution of controllers synthesises
behavioural control for robots. Based on the insight that
controllers can be scored based on a characterisation of their
behaviour during evaluation (see Fig. 2) and not only based
on a traditional fitness function, Lehman and Stanley [13]
introduced novelty search. In novelty search, the idea is to
maximise the novelty of behaviours instead of their fitness,
that is, to explicitly search for novel behaviours as a means
to bootstrap evolution more effectively and to circumvent
convergence to local optima. Because behaviours from more
sparse regions of the behavioural search space receive higher
novelty scores, the gradient of search is towards what is
novel, with no explicit objective. Novelty search has attained
considerable success in the evolution of controllers for a
number of tasks, see [6], [13], [14], [15] and examples
therein.

Inspired by novelty search, different studies have intro-
duced behavioural diversity-based methods that explicitly
reward the diversity of behaviours in a population [14]. In
OHE-diversity, the behaviour is iteratively characterised at
every control cycle of the robot (see next section for details).
When a new controller for the robot is needed, a candi-
date algorithm is selected proportionally to its behavioural
diversity score pi or randomly with a small probability
prs. The behaviour diversity score of a candidate algorithm

Figure 2: In traditional evolutionary algorithms, genomes
of candidate solutions are translated into phenotypes whose
fitness is assessed. In evolutionary robotics, the behaviour
of the robot can also be characterised during task execution,
which enables evolution to be guided by the search for novel
or diverse behaviours instead of fitness. Adapted from [14].

is computed as the mean degree of behavioural diversity of
the controllers it produced. In turn, the behavioural diversity
score of a controller x is computed as the mean distance to
its k-nearest neighbours in the population of the robot [14].
In the following section, we describe the two components
required for behaviour diversity computations: (i) a charac-
terisation of individual behaviours, and (ii) a distance metric
dist to quantify differences between pairs of behaviours.

3.2.1. Distributed State Count Characterisation. An ef-
fective task-dependent characterisation is usually the product
of extensive trial-and-error experimentation [6]. We thus rely
on a generic, task-independent characterisation. We use a
modified version of the Combined State Count characteri-
sation [15], henceforth called Distributed State Count.

The key principles behind the Distributed State Count
characterisation are: (i) to define states based on the sensor
readings and actuation values at every control cycle during
controller evaluation, (ii) to compute the number of times
a controller visited a given state, and (iii) when robots
meet and exchange genomes, to propagate states counts
along with genetic information. For algorithmic efficiency,
each characterisation is represented as a map from states to
counts [15]. In Algorithm 1, we describe the computation
of the characterisation as independently executed by each
robot during controller evaluation.

The function read state(r) retrieves the vector of sen-
sor readings and actuation values ϑr for robot r:

ϑr = {s(r), a(r)} (1)

where s(r) and a(r) are the sensor readings and actuation
values. The function discretise(ϑr) computes the vector
ϑ′r by independently normalising each value in ϑr, and
rounding the resultant value to the nearest integer:

ϑ′i,r =

∥∥∥∥ ϑi,r − ϑi,min

ϑi,max − ϑi,min
· (B − 1)

∥∥∥∥ , i ∈ [1, N ] (2)

where ϑi,max and ϑi,min are respectively the maximum
and minimum value of the i-th sensor/actuator, B is the



Algorithm 1 Pseudo-code of the Distributed State Count
characterisation for a robot r.

controllerr ← assign as controller(genome, r)
map←Map < Integer, Integer >
alg id← id of current algorithm
while controllerr is under evaluation do

execute control cycle()
ϑr ← read state(r)
ϑ′
r ← discretise(ϑr)

h← hash(ϑ′
r)

map[h]← map[h] + 1
if broadcast? then

send(genome, alg id,map, robots in range)
end if

end while

number of discrete bins, and N is the length of ϑr and ϑ′r.
In this way, the parameter B is used to define the level of
detail of the behaviour characterisation. Finally, the function
hash(ϑ′r) employs Jenkins’s one-at-a-time function to hash
the vector ϑ′r into a single integer in order to improve the
space- and time- complexity of the algorithm [15]. The
behavioural distance dist between two characterisations is
given by a modified version of the Bray-Curtis dissimilar-
ity, a well-known statistic used to quantify the difference
between samples of abundance data, see [15] for details.

3.3. Driving the Search Process

OHE-fitness and OHE-diversity can aid evolution by
changing the algorithm used to search for promising solu-
tions. However, the performance of OHE is fundamentally
tied to how the search is guided at the base level. That is,
the selective pressure and effectiveness of OHE influences
and is influenced by the selective pressure of the individual
algorithms at base level, giving rise to a multi-level selective
pressure, see Fig. 3.

To investigate the multi-level selective pressure within
OHE, we study: (i, ii) OHE-diversity+fit and OHE-
diversity+div, which respectively represent OHE-diversity
with fitness-based selection and diversity-based selection
driving the base-level algorithms, and (iii, iv) OHE-
fitness+fit and OHE-fitness+div, that is, OHE-fitness oper-
ating with fitness-based selection and diversity-based selec-
tion at the base level. Because behavioural diversity methods
are an exploration procedure in the sense that they encourage
a more expansive search, and fitness-based algorithms are
an exploitation procedure as they typically focus on increas-
ingly narrow regions of the search space, these approaches
allow us to assess the relative merits of encouraging explo-
ration and/or exploitation at different levels.

4. Methods

In this section, we define our simulation platform, the
robot model, and the tasks used in the study.1

1. The source code of the experiments can be found at http://fgsilva.
com/?page id=319.

Online hyper-evolution

Find effective algorithms online

Base level

Contains a task T, a set of predefined 
evolutionary algorithms E, and a 

performance function P

Evolutionary 
algorithm e 
and task 
instance t

P(h, t)

OHE-fitness
or

OHE-diversity

Underlying 
algorithms

Selection criteria 
- drive evolution

Selection criteria 
- choose algorithm

Multi-level 
selective pressure

Figure 3: Scheme illustrating the multi-level selective pres-
sure in online hyper-evolution.

4.1. Simulation Platform and Robot Model

Our simulation-based experiments are conducted using
JBotEvolver [16], an open-source, multirobot simulation
platform and evolutionary framework. We model the robots
after the e-puck [17], a 7.5 cm in diameter differential drive
robot that can move at speeds of up to 13 cm/s. Robots
are equipped with infrared sensors that multiplex obstacle
sensing and communication at a range of up to 25 cm. The
controller details are listed in Table 1. Each sensor and each
actuator are subject to noise, which is simulated by adding
a random Gaussian component within ± 5% of the sensor
saturation value or of the current actuation value.

The control system of each robot is a based on a discrete-
time neural network with connection weights in the range
[-10,10]. The inputs of the neural network are the readings
from the sensors, normalised to the interval [0,1]. The output
layer is composed of two neurons. The values of the output
neurons are linearly scaled from [0,1] to [-1,1] to set the
signed speed of each wheel. In the two foraging tasks, each
robot is additionally equipped with a gripper, which allows
the robot to collect the closest resource within a range of
2 cm, if there is any. A third output neuron is used to control
the gripper (activated if the output value of the neuron is
higher than 0.5, otherwise it is deactivated).

TABLE 1: Controller details. Light sensors have a range of
50 cm. Other sensors have a range of 25 cm.

Foraging tasks – controller details
Input neurons: 25

4 for IR robot detection
4 for IR wall detection
1 for energy level reading
8 for resource A detection
8 for resource B detection

Output neurons: 3
2 for left and right motor speeds
1 for controlling the gripper

Phototaxis task – controller details
Input neurons: 25

8 for IR robot detection
8 for IR wall detection
8 for light source detection
1 for energy level reading

Output neurons: 2 Left and right motor speeds



4.2. Foraging Tasks

In the foraging tasks, robots have to search for and
collect objects spread across the environment. Foraging is
a classic task in cooperative robotics, and is evocative of
tasks such as search and rescue, harvesting, and toxic waste
clean-up. In our experimental configuration, robots spend
virtual energy at a constant rate, and gain energy by first
finding and then collecting resources. When a resource is
collected by a robot, a new resource of the same type is
placed randomly in the environment to keep the number of
resources constant. Following [3], [8], we setup two foraging
tasks with different types of resources that robots have to
collect: (i) the standard foraging task, in which there are
only type A resources, and (ii) the concurrent foraging
task, in which there are both type A and type B resources
that have to be consumed alternately (a resource of type A
followed by a resource of type B).

The energy level of a controller is initially set to
100 units, and is limited to the range [0,1000]. At each
control cycle, E is updated according to the resources
collected by the robot, as follows:

∆E

∆t
=


ritem

if right type of resource
is collected

witem
if wrong type of resource
is collected

-0.02 if no resource is collected

(3)

where ritem = 10 and witem = -10. The number of resources
of each type is set to the number of robots multiplied by
10. Note that the witem component applies only to the
concurrent foraging task.

4.3. Phototaxis Tasks

In traditional versions of the phototaxis task, a widely-
used task in evolutionary robotics, robots have to find and
move towards a fixed-position light source. Following previ-
ous studies [3], [8], we use a variant of the phototaxis task in
which the light source is dynamic and is periodically moved
to a new random location. In this way, the robots have to
continuously search for and reach the light source, which
eliminates controllers that find the light source by chance.

The virtual energy level is limited to the range [0,1000]
units. Each controller is assigned an initial value of 100
units. At each control cycle, E is updated as follows:

∆E

∆t
=


Sr if Sr > 0.5

0 if 0 < Sr ≤ 0.5

penalty if Sr = 0

(4)

Sr is the maximum value of the readings from light sen-
sors, between 0 (no light) and 1 (brightest light). To study
the relation between evolutionary pressure and evolutionary
dynamics, we setup five task variants. In each variant, we
changed the value of the penalty component when the light
source is not within a robot’s sensory range. The penalty

component is set to a value of -0.01, -0.02, -0.05, -0.08,
and -0.10 per control cycle, and a controller unable to find
the light source can only survive for a period of 1000, 500,
200, 125, and 100 seconds, respectively. These experimental
setups are henceforth referred to as p1, p2, p5, p8, and p10
setups. In all variants, light sensors have a range of 50 cm,
that is, robots are only rewarded if they are close to the light
source. The remaining sensors have a range of 25 cm.

4.4. Base-level Evolutionary Algorithms

Given its generality, OHE can be implemented over a
number of different algorithms. We use three variants of
the odNEAT algorithm [5], a distributed online evolution
algorithm that optimises both the weights and the topol-
ogy of ANNs. odNEAT has been successfully used in a
number of simulation-based studies, in which it was shown
to enable: (i) adaptivity, that is, the ability to effectively
evolve controllers for robots that operate in dynamic envi-
ronments [18], (ii) robustness, as the controllers evolved can
often adapt to changes in environmental conditions without
further evolution [5], and (iii) fault tolerance, that is, robots
executing odNEAT are able to adapt their behaviour in the
presence of sensor faults [5]. odNEAT is thus used here as
a representative online evolutionary algorithm.

odNEAT starts with minimal artificial neural networks
with no hidden neurons, that is, with each input neuron
connected to every output neuron. Throughout evolution,
topologies are gradually complexified by adding new neu-
rons and new connections through mutation. In addition,
the internal population of each robot implements a niching
scheme comprising speciation and fitness sharing, which al-
lows each robot to maintain a healthy diversity of candidate
solutions with distinct topologies [5].

During task execution, each robot is controlled by an
ANN-based controller that represents a candidate solution
to the task. Each controller maintains a virtual energy level
reflecting its individual task performance. The fitness score
is defined as the mean energy level, sampled at regular time
intervals. When the virtual energy level reaches a minimum
threshold, the current controller is considered unfit for the
task. A new controller is then synthesised via selection of
a parent species and two genomes from that species (the
parents), crossover of the parents’ genomes, and mutation
of the offspring. Mutation is both structural and parametric,
that is, it adds new neurons and new connections, and
optimises connection weights and neuron bias values. Once
the new genome is decoded into a new controller, it is
guaranteed a maturation period during which no controller
replacement takes place. The new controller can continue
to execute after the maturation period if its energy level is
above the threshold. That is, a controller remains active as
long as it is able to solve the task.

4.4.1. odNEAT variants. In online evolution algorithms,
two key aspects are: (i) the controller evaluation policy, and
(ii) the controller exchange policy. Because the effectiveness
of both aspects is task-dependent, we use two variants of



odNEAT that differ from the standard version of odNEAT
in the controller evaluation policy and in the controller
exchange policy. That is, we use algorithm variations with
relative advantages and disadvantages. In this section, we
review the two variants of standard odNEAT.

Controller evaluation policy: Traditional online evolu-
tion algorithms employ a policy in which robots substitute
controllers at regular time intervals, see [4] for an example.
While the approach is suitable for individual tasks, it has
been shown to lead to incongruous group behaviour and to
poor performance in collective tasks that explicitly require
continuous collective coordination and cooperation [5]. Al-
gorithms such as odNEAT, on the other hand, allow a
controller to remain active as long as it is able to solve the
task. However, such approach can also be too conservative
and delay the synthesis of more effective solutions [3] by
evolving intermediate controllers that can operate for a long
period of time before they fail.

To cut short the evaluation of inferior intermediate con-
trollers, odNEAT was recently extended [8] with a racing
approach for multirobot systems, a variant henceforth called
racing. The approach relies on the task performance of the
controllers assessed by the different robots, and on a non-
parametric statistical approach. The evaluation of a con-
troller x is aborted, and a new controller is generated, if the
performance of x is below Mc(t). Mc(t) is a progressively
stricter minimal criterion of performance based on the P -th
percentile of the fitness scores in the population, see [8].

Controller exchange policy: The exchange of genetic
information between robots is a crucial feature in distributed,
online evolutionary algorithms. In traditional approaches,
individual robots transmit to neighbouring robots either part
of a genome [2] or a complete genome [4], [5]. The genome
is the unit in the selection process, and the population
of robots is a distributed substrate across which genetic
information can spread. In order to give robots the potential
to leverage the genetic information they have accumulated,
and to enable a more effective knowledge transfer, racing
was additionally extended with a population cloning tech-
nique [8]. We henceforth refer to the population cloning
technique as ppc. The approach puts the selection and
reproductive processes at a higher level by considering the
elements involved in the selection process to be the internal
population of each robot. As a result, a robot can transmit
to neighbouring robots a copy of any part of its population
(e.g. a single genome or a set of genomes representing high-
performing controllers) or of the complete population, which
can push evolution towards higher-quality solutions [8].

When two ppc-executing robots meet, their internal pop-
ulations compete, and the losing robot receives a portion of
the population of the winning robot. Firstly, winner and loser
are determined by comparing the performance of each popu-
lation according to their Mc(t) value (as defined in racing).
The robot with the highest Mc(t) value is considered the
winner. Secondly, the internal population of the losing robot
is subject to an extinction event. The genomes of the losing
robot that yield a fitness score below the winner robot’s
Mc(t) are removed before the injection of new genomes.

Finally, the genomes from the population of the winning
robot that have a fitness score above Mc(t) are injected into
the losing robot.

4.5. Experimental Parameters and Treatments

For each task variant and each algorithm considered, we
conduct 30 independent runs. Each run lasts 100 hours of
simulated time. Robots operate in a square arena surrounded
by walls. The size of the arena is chosen to be 3 x 3
meters. The parameters of odNEAT and variants are set
as in previous studies [5], including a population size of
40 genomes per robot. Regarding the minimal criterion for
racing, we follow [8] and set P to the 50th percentile of the
fitness scores found in the population, meaning that Mc(t)
amounts to the median fitness score. For OHE approaches,
prs is set to 0.10. OHE approaches with a behaviour diversity
component use a k value of 5 nearest neighbours. The
number of bins is set to B = 10 bins. k and B were
tuned empirically. These parameter settings are robust to
moderate variation, and were found to perform effectively
in preliminary experiments.

In addition to the quality of the controllers evolved, an-
other relevant aspect is how the different algorithms explore
the behaviour space, individually and with respect to each
other. To visualise how the different approaches traverse the
behaviour space, we use Sammon’s nonlinear mapping [19].
Sammon’s mapping is a multidimensional scaling algorithm
that performs a point mapping of high-dimensional data to
two- or three-dimensional spaces, such that the structure
of the data is approximately preserved. The algorithm min-
imises the error measure Em, which represents the disparity
between the high-dimensional distances δij and the resulting
distance dij in the lower dimension for all pairs of points i
and j. Em is computed as follows:

Em =
1∑n−1

i=1

∑n
j=i+1 δij

n−1∑
i=1

n∑
j=i+1

(δij − dij)2

δij
(5)

We use the two-tailed Mann-Whitney U test to determine
the statistical significance of differences between results
because it is a non-parametric test, and therefore no strong
assumptions need to be made about the underlying distribu-
tions. When multiple comparisons are performed using the
results obtained in a given set of runs, we adjust the ρ-value
using the two-stage Hommel method [20].

5. Experimental Results

In this section, we assess our proposed OHE approaches.
Firstly, we compare the performance of the most straight-
forward OHE approach, namely OHE-fitness+fit, to the
performance of each individual evolutionary algorithm. We
then compare the different OHE approaches in terms of task
performance and exploration of behaviour space.



0 20 40 60 80 100
Simulation time (hours)

50

100

150

200

250

300

M
ea

n
fit

ne
ss

sc
or

e

Std. foraging – mean fitness score

0 20 40 60 80 100
Simulation time (hours)

50

100

150

200

250

300

M
ea

n
fit

ne
ss

sc
or

e

Conc. foraging – mean fitness score

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit

ne
ss

sc
or

e

Dynamic phototaxis p1 – mean fitness score

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit

ne
ss

sc
or

e

Dynamic phototaxis p2 – mean fitness score

OHE-fitness+fit
odNEAT

racing
ppc

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit

ne
ss

sc
or

e

Dynamic phototaxis p5 – mean fitness score

OHE-fitness+fit
odNEAT

racing
ppc

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit

ne
ss

sc
or

e

Dynamic phototaxis p10 – mean fitness score

OHE-fitness+fit
odNEAT

racing
ppc

Figure 4: Mean fitness score of controllers evolved by base-level algorithms and by OHE-fitness+fit throughout the
simulation trials of the standard foraging and concurrent foraging tasks (top, left and center), and four variants of the
dynamic phototaxis task (top right, and bottom).

5.1. OHE-fitness+fit vs. Base-level Algorithms

The mean fitness score of controllers throughout the
simulation trials is shown in Fig. 4 for the two foraging
tasks, and for four variants of the phototaxis task (p1, p2, p5,
and p10 setups). Overall, results show that OHE-fitness+fit
typically yields superior performance and that it is able to
synthesise effective solutions in the early stages of evolution.

In the two foraging tasks, OHE-fitness+fit typically
yields performance levels superior to those of the individual
algorithms, and the highest-performing individual algorithm
is ppc. Differences between the mean group fitness of the
final controllers evolved by OHE-fitness+fit and that of
those evolved by other algorithms are statistically significant
across every comparison (ρ < 0.0001, Mann-Whitney).

In the dynamic phototaxis task, OHE-fitness+fit is still
the highest-performing approach, but the differences in
performance between OHE-fitness+fit and the individual
algorithms is dependent on the evolutionary pressure. In the
least demanding configuration (p1 setup), OHE-fitness+fit
significantly outperforms odNEAT and racing (ρ < 0.0001,
Mann-Whitney), and ppc is the algorithm that gets closest
to the performance levels of OHE-fitness+fit. In the p2 and
p5 setups, OHE-fitness+fit continues to outperform every
other algorithm (ρ < 0.001, Mann-Whitney). However, as
the task becomes even stricter, the performance of odNEAT
furthermore increases, and the algorithm is able to outper-
form OHE-fitness+fit in the final part of the p10 setup
(ρ < 0.001, Mann-Whitney). The increasingly higher perfor-
mance performance of odNEAT as the dynamic phototaxis
task becomes stricter is due to the controller replacement
frequency of the algorithm. Specifically, as the task difficulty

is increased, odNEAT replaces the controller of each robot
more frequently: on average, each robot executing odNEAT
produces on average 9 controllers in the p1 setup, 24 con-
trollers in the p2 setup, 120 controllers in the p5 setup,
420 controllers in the p8 setup, and 920 controllers in the
p10 setup. This result is consistent with previous studies [8],
which have shown that if the evolutionary pressure is set
above a certain limit, odNEAT can, under certain conditions,
display increased performance in the long term.

5.1.1. Algorithm Selection Analysis. To investigate the
dynamics of OHE-fitness+fit, we analysed the base-level
algorithms used by the approach. Throughout this section,
we refer to the selection and execution of a given algorithm
by OHE as an algorithm instance.

Figure 5 shows the mean number of algorithm instances
used by OHE-fitness+fit in the p1 setup. Remaining tasks
yield similar trends. Throughout evolution, OHE-fitness+fit
selects ppc significantly more often than the other two
algorithms to synthesise effective controllers (ρ < 0.0001,
Mann-Whitney). Specifically, ppc is used to generate, on
average, 90% or more of the controllers evaluated during
the search process. For example, in the p1 setup, ppc is
chosen approximately 158 times per robot, while odNEAT
and racing are each chosen approximately six times per
robot. Importantly, ppc is typically used more intensively
in the early stages of evolution, thus indicating that it helps
to boost the evolutionary process and push towards higher-
quality solutions. It is also noteworthy that the base-level
algorithms used in this study cause different controllers to
have potentially different evaluation times, as discussed in
Section 4.4.1. In this way, it is also relevant to consider



0 20 40 60 80 100

Simulation time (hours)

0

20

40

60

80

100

120

140

160

M
ea

n
in

st
an

ce
s

Dynamic phototaxis p1 – algorithm instances

odNEAT racing ppc

Figure 5: Mean number of algorithm instances used by
OHE-fitness+fit throughout evolution in the p1 setup.

Std. for. Conc. for. p1 p2 p5 p8 p10
0

20

40

60

80

100

P
ro

po
rt

io
n

of
tim

e
(h

ou
rs

)

OHE-fitness-fit – proportion of individual algorithm execution per task

odNEAT racing ppc

Figure 6: Mean absolute proportion of time per robot that
each algorithm was used by OHE-fitness+fit in each task.

the amount of time that a controller produced by a given
algorithm executed.

Figure 6 shows the mean proportion of time per robot
that each algorithm was used by OHE-fitness+fit in the
different tasks, which is given by the execution time of
the controllers it produced. Despite the more consistent
selection of ppc, odNEAT-produced controllers execute for
a comparable amount of time in the majority of the tasks.
In effect, when odNEAT and ppc are selected to synthe-
sise controllers, the fitness score of controllers increases
on average from approximately 22% to 160%; racing, on
the other hand, causes the fitness scores to decrease by
approximately 19%. The performance of OHE-fitness+fit
is thus, not solely due to the ppc, but instead is caused by
an effective combination of odNEAT and ppc throughout
evolution. The key result is thus that different algorithms
are important at different phases of evolution and used for
different periods of time. This indicates that OHE stands for
more than an effective algorithm selection approach: OHE
can increase effectiveness and boost performance at different

stages of evolution.
Overall, our results illustrate the potential of OHE-

fitness+fit, namely that it can effectively combine the ben-
efits of different algorithms to speed up and increase the
performance of the evolutionary process. In the following
section, we study if and how the performance of OHE
changes with respect to how the search is guided at the
hyper level and at the base level.

5.2. Multi-level Selective Pressure

In this section, we analyse the performance and
behaviour of different OHE variants, namely OHE-
fitness+fit, OHE-fitness+div, OHE-diversity+fit, and
OHE-diversity+div, see Sect. 3.3 for a description.

Figure 7 shows the mean fitness score throughout evo-
lution for the two foraging tasks and for the dynamic
phototaxis p5 setup. Remaining variations of the dynamic
phototaxis task yield comparable results. Firstly, results
show that driving evolution towards behavioural diversity at
the base level is detrimental to the performance of OHE.
In this respect, differences between the fitness scores of
final controllers synthesised by fitness-based evolution and
those synthesised by diversity-based evolution are significant
in the two foraging tasks (ρ < 0.0001), in the p1 setup
(ρ < 0.05, scores not shown in Fig. 7), and in the p5 setup
(ρ < 0.005). Secondly, with respect to OHE-fitness+fit and
OHE-diversity+fit, the two approaches yield comparable
performance levels in all tasks, although there is a slight
advantage in favour of OHE-diversity+fit in the standard
foraging task. However, as shown by the proportion of
individual algorithm executions, see Fig. 6 and Fig. 8, the
two approaches use the base-level algorithms differently,
both in terms of the number of times each algorithm instance
is used and the amount of time that controllers produced by
a given instance execute. These combined results show that
OHE-fitness+fit and OHE-diversity+fit follow different ap-
proaches to the synthesis of high-performing solutions to the
tasks, which in turn highlights that the search mechanisms
underlying the different levels in OHE can exert significant
influence on the evolutionary path over time.

To further assess the dynamics of the OHE approaches,
we analysed how they traverse the behaviour space using
Sammon’s mapping [19], see Sect. 4.5. The distance in
the high-dimensional space δij between the behaviour of
two controllers i and j is given by the count of states
(number of states and respective cardinality) in which the
behaviours differ. The distance between two points in the
two-dimensional space is their Euclidean distance. Note that
OHE-fitness+fit does not make use of behavioural diversity
during evolution.

The three mappings in Fig. 9 show how the different
approaches compare with one another in terms of behaviour
space exploration (p5 setup, remaining tasks yield similar
results). To obtain a clear visualisation and a representative
selection of behaviours, we map the 250 most behaviourally
different controllers produced by each of the four ap-
proaches. The area of each point in the two-dimensional



0 20 40 60 80 100
Simulation time (hours)

50

100

150

200

250

300

M
ea

n
fit

ne
ss

sc
or

e

Std. foraging – mean fitness score

OHE-fitness+fit
OHE-diversity+fit

OHE-fitness+div
OHE-diversity+div

0 20 40 60 80 100
Simulation time (hours)

50

100

150

200

250

300

M
ea

n
fit

ne
ss

sc
or

e

Conc. foraging – mean fitness score

OHE-fitness+fit
OHE-diversity+fit

OHE-fitness+div
OHE-diversity+div

0 20 40 60 80 100
Simulation time (hours)

0

200

400

600

800

1000

M
ea

n
fit

ne
ss

sc
or

e

Dynamic phototaxis p5 – mean fitness score

OHE-fitness+fit
OHE-diversity+fit

OHE-fitness+div
OHE-diversity+div

Figure 7: Mean fitness score of controllers evolved by the different OHE techniques throughout the simulation trials of: (i)
the standard foraging and concurrent foraging tasks (left and center), and (ii) in the p5 setup.

Std. for. Conc. for. p1 p2 p5 p8 p10
0

20

40

60

80

100

P
ro

po
rt

io
n

of
tim

e
(h

ou
rs

)

OHE-diversity-fit – proportion of individual algorithm execution per task

odNEAT racing ppc

Figure 8: Mean absolute proportion of time per robot that
each algorithm was used by OHE-diversity+fit in each task.

space is set proportionally to the fitness score of the cor-
responding controller. Behaviours belonging to high-fitness
regions (fitness > 75% of maximum fitness) are marked
with a grey square in the centre of the corresponding point.
The error value is respectively Em = 0.025 for the first two
mappings, and 0.027 for the third mapping, which indicates
that the distances between behaviours are well-preserved.

The first mapping compares the two OHE-fitness vari-
ants, OHE-fitness+fit and OHE-fitness+div. Given its abil-
ity to guide evolution towards diversity, OHE-fitness+div
naturally performs a more uniform exploration of the be-
havioural search space than OHE-fitness+fit. The second
mapping compares the two approaches that exploit fitness-
based evolution and diversity-based evolution in oppo-
site ways. Comparing with OHE-fitness+div, the OHE-
diversity+fit approach is able to both cover more regions of
the behaviour search space, and to find higher-performing
solutions in those regions, see behaviours located in the
right half of Fig. 9 (middle). Complementarily to the results
in Fig. 7, which show that OHE-diversity+fit is typically
the highest-performing approach, the behaviour space ex-
ploration indicates that the multi-level selective pressure of
OHE benefits if the hyper-level search is driven towards

OHE-fitness+fit

OHE-fitness+div●
●

OHE-fitness+fit vs. OHE-fitness+div - exploration of behaviour space

●
●

● ●●●●

●

●
●

●●●

●
●

●
●

●
●●●●
●
●

●

●
●●

●

●●

●

●●●
●

●●
●

●
●●●

●

●

●

●●●●●●●
●
●●

●

●●●
●

●●●

● ●● ● ●
●

●
●●●

●

●
●

●

●

● ●●●●●●●

●●

●
●

●

●

●
●

●●

●

●

●

●
●

●●●●●●●●
●

●

●●

●●●●●
●
●●●●

●

●●●●

●

●●
●
●
●●

●

●●●
●

●
●

●
●

●
● ●

●●●
●
●

●
●

●●

●

●●

●

●

●
●

●
●●●● ●●

●

●●● ●
●

●●●

●

●

●

●

●
●

●●●●●●
●

●

●●●●

●

●●●●● ●● ●●●

●

●

●

●

●●●●●●●
● ●●

●

●
●●

●

●

●

●●●●●●●●●●●
●●●●●●

●
●

●

●

●●
●

●

●
●

●●
●
●●●
●●●●● ●●

●
●

●●●●●●●●●●●●●●●●●●●●●
●
●

●
●●●

●●
●
●

●●●●●●
●

●

●

●

●●●●

●

●●●
●●●●●●
●●●

●
●●●

●
●

●
●

●

● ●

●●●●●● ●
●●●●●
●

●●●●
●

●●●●●
●

●●●

●

●

●●●●● ●●
●●

●

●●●●●
●

●●
●●
●●

●
●●●●●
●●●●●

●
●●

●

●●

●

●

●
●●

●

●

●

●
●●●●

●

●●●

●

●

●
●

●

●
●●

●●
●

●●

●
●

●

●

●●●

●

●

●●●
●

● ●●●

●

●●●●●

●

●
●

●

●
●●●●●

●

●●
●●●●●

●

●

●
●
●●●
●
●●
●

●
●

●

●

●●

OHE-diversity+fit

OHE-fitness+div●
●

OHE-diversity+fit vs. OHE-fitness+div - exploration of behaviour space

●●●●
●

●●●●● ●●●●●●●●●●●
●

●●

●●●

●

●●●●●●

●
●●●●●●●●

●●●●● ●●
●●●●●●●●●

●●●●●●●

●

●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●
●

●●●● ●●●
●

●
●

●

●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●
●
●●●●●

●

●
● ●●●●●●●

●●
●

●

●●●●●●●●●●●●●

●

●●

●

●
●

●
●

●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●●●●●●
●
●

●●●●●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●
●

●●●●● ●●
●●●●●●

●

●

●●●●●●
●

●●●●●●●
●●●●●● ●●●●●●●

●

●
●●●●●●●●●●

●

●●●●●●●

●
●●●●●●●●●●

●

●

●●●●●●●●

●

●●●●●●

●●
●●●●

●
●●●●●●●●●●●●●

●
●●

●

●

●
●●

●

●

●

●●●●
●

●

●●●

●

●

●
●

●
●●●●●●

●
●

●●

●

●
●●●●

●

●●●
●●

●●●

●

●●●●●

●

●

●●

●

●●●●●
●●●●●●●●●

●
●
●
●●●●●●●●●

●

●●

OHE-diversity+fit vs. OHE-diversity+div - exploration of behaviour space

OHE-diversity+fit

OHE-diversity+div●
●

●
●●●

●
●●●●●

●
●●●●●●●●●●

●
●●●●●

●

●●●●●●

●

●●●●●●●
●

●●●●● ●●

●

● ●●●●●●●●
●

●●●●●

●

●●
●
●●●●●
●

●
●

●●
●●●●●●
●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●

●
● ●●●
●

●
●

●●●●●●
●

●
●●

●
●

●●●●●

●

●●
●

●●●●●●●●
●●●●●●●●●●●●●

●●●
●
●●

●

●●●●●●● ●
●●

●●

●
●●●●

●●
●

●●●●●●●
●
●
●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●

●

●●●
●

●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●

●
●●●●●●

●
●●●●●●●●●●●●●●●
●
●●●●●●●●●

●
●

●

●
●●●

●
●●●

●
●●●●●●●●●●●●●
●●●●●

●

●●
●

●●●●
●●●●●●●●
●●●●●
●

●●●●●
●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●●●●●●●●●
●●

●
●

●●●●●●●●●●
●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

Figure 9: Sammon’s mapping for the p5 setup: (top) OHE-
fitness+fit vs. OHE-fitness+div, (middle) OHE-
diversity+fit vs. OHE-fitness+div, and (bottom) OHE-
diversity+fit vs. OHE-diversity+div. Behaviours in
high-fitness regions are marked with a grey square.



behavioural diversity and the base-level search is driven to-
wards higher fitness regions. In effect, as shown in the third
mapping, OHE-diversity+fit also explores more regions of
high-performing solutions than OHE-diversity+div, which
is driven towards diversity in both levels.

Overall, the analyses in this section show that the OHE
approaches have different dynamics both in terms of how
they use the base-level algorithms, and of how they traverse
the behaviour space. In this respect, although the four ap-
proaches consistently yielded high-performance across the
tasks, OHE-diversity+fit was found to be the most effective
one.

6. Conclusions and Discussion

In this paper, we introduced a novel approach to ac-
celerate and increase the performance of online evolution
of controllers in multirobot systems. We proposed online
hyper-evolution (OHE), in which the evolutionary process
can search across a space of candidate algorithms online.
We studied four OHE approaches: OHE-fitness+fit, OHE-
fitness+div, OHE-diversity+fit, and OHE-diversity+div,
in which exploration and exploitation are conducted differ-
ently in the hyper level and in the base level. Experimen-
tal results showed that our OHE approaches: (i) facilitate
the evolution of controllers with superior performance, and
faster synthesis of solutions to the task, and (ii) effectively
combine different algorithms to increase the effectiveness of
the evolutionary process at distinct phases.

The main conclusion of our study is that OHE represents
a simple and effective approach to online evolution of
robotic controllers. In this respect, OHE-diversity+fit was
shown to be the most effective approach as it can success-
fully push towards diversity and performance. In ongoing
work, we are studying how OHE-diversity+fit fares against
other approaches that combine diversity and fitness (e.g.
multiobjective and linear scalarisation algorithms), assessing
alternative algorithm selection strategies, and if and how
low-performing algorithms can be removed from the selec-
tion process. Our final goal is to enable adaptation at dif-
ferent levels (e.g. parameter configurations such as mutation
and/or crossover rates, and algorithmic components such as
speciation or crossover), and the construction of complete
algorithms during task execution.

Acknowledgments

This work was partly supported by FCT under grants
SFRH/BD/89573/2012, UID/EEA/50008/2013, and
UID/Multi/04046/2013.

References

[1] D. Floreano and F. Mondada, “Evolution of homing navigation in
a real mobile robot,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 26, no. 3, pp. 396–407, 1996.

[2] R. Watson, S. Ficici, and J. Pollack, “Embodied evolution: Distribut-
ing an evolutionary algorithm in a population of robots,” Robotics
and Autonomous Systems, vol. 39, no. 1, pp. 1–18, 2002.

[3] F. Silva, L. Correia, and A. L. Christensen, “A case study on the scal-
ability of online evolution of robotic controllers,” in Proceedings of
the 17th Portuguese Conference on Artificial Intelligence. Springer,
Berlin, Germany, 2015, pp. 189–200.

[4] N. Bredeche, J. M. Montanier, W. Liu, and A. Winfield,
“Environment-driven distributed evolutionary adaptation in a popu-
lation of autonomous robotic agents,” Mathematical and Computer
Modelling of Dynamical Systems, vol. 18, no. 1, pp. 101–129, 2012.

[5] F. Silva, P. Urbano, L. Correia, and A. L. Christensen, “odNEAT: An
algorithm for decentralised online evolution of robotic controllers,”
Evolutionary Computation, vol. 23, no. 3, pp. 421–449, 2015.

[6] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and A. L. Christensen,
“Open issues in evolutionary robotics,” Evolutionary Computation,
vol. 24, no. 2, pp. 205–236, 2016.

[7] D. H. Wolpert and W. G. Macready, “Coevolutionary free lunches,”
IEEE Transactions on Evolutionary Computation,, vol. 9, no. 6, pp.
721–735, 2005.

[8] F. Silva, L. Correia, and A. L. Christensen, “Leveraging online
racing and population cloning in evolutionary multirobot systems,”
in Proceedings of the 19th European Conference on the Applications
of Evolutionary Computation. Springer International Publishing,
Switzerland, 2016, pp. 165–180.

[9] W. Kantschik, P. Dittrich, M. Brameier, and W. Banzhaf, “Empirical
analysis of different levels of meta-evolution,” in Proceedings of
the IEEE Congress on Evolutionary Computation. IEEE Press,
Piscataway, NJ, 1999, pp. 2086–2093.

[10] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith, “Pa-
rameter control in evolutionary algorithms,” in Parameter Setting in
Evolutionary Algorithms, ser. Studies in Computational Intelligence.
Springer, Berlin, Germany, 2007, vol. 54, pp. 19–46.

[11] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[12] P. Ryser-Welch and J. F. Miller, “A review of hyper-heuristic frame-
works,” in Proceedings of the 50th Annual Convention of the So-
ciety for the Study of Artificial Intelligence and the Simulation of
Behaviour, 2014, available at http://doc.gold.ac.uk/aisb50/.

[13] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution
through the search for novelty alone,” Evolutionary Computation,
vol. 19, no. 2, pp. 189–223, 2011.

[14] J.-B. Mouret and S. Doncieux, “Encouraging behavioral diversity in
evolutionary robotics: An empirical study,” Evolutionary Computa-
tion, vol. 20, no. 1, pp. 91–133, 2012.

[15] J. Gomes and A. L. Christensen, “Generic behaviour similarity mea-
sures for evolutionary swarm robotics,” in Proceedings of the 15th
Genetic and Evolutionary Computation Conference. ACM Press,
New York, NY, 2013, pp. 199–206.

[16] M. Duarte, F. Silva, T. Rodrigues, S. M. Oliveira, and A. L. Chris-
tensen, “JBotEvolver: A versatile simulation platform for evolutionary
robotics,” in Proceedings of the 14th International Conference on the
Synthesis and Simulation of Living Systems. MIT Press, Cambridge,
MA, 2014, pp. 210–211.

[17] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J. Zufferey, D. Floreano, and A. Martinoli, “The e-puck,
a robot designed for education in engineering,” in Proceedings of
the 9th Conference on Autonomous Robot Systems and Competitions.
IPCB, Castelo Branco, Portugal, 2009, pp. 59–65.

[18] F. Silva, P. Urbano, and A. L. Christensen, “Online evolution of adap-
tive robot behaviour,” International Journal of Natural Computing
Research, vol. 4, no. 2, pp. 59–77, 2014.

[19] J. Sammon Jr., “A nonlinear mapping for data structure analysis,”
IEEE Transactions on Computers, vol. C-18, no. 5, pp. 401–409,
1969.

[20] G. Hommel, “A stagewise rejective multiple test procedure based on
a modified Bonferroni test,” Biometrika, vol. 75, no. 2, pp. 383–386,
1988.


