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Abstract
The self-consistent modeling of vacuum polarization due to virtual electron-positron fluctuations
is of relevance for many near term experiments associated with high intensity radiation sources
and represents a milestone in describing scenarios of extreme energy density. We present a
generalized finite-difference time-domain solver that can incorporate the modifications to
Maxwell’s equations due to vacuum polarization. Our multidimensional solver reproduced in
one-dimensional configurations the results for which an analytic treatment is possible, yielding
vacuum harmonic generation and birefringence. The solver has also been tested for
two-dimensional scenarios where finite laser beam spot sizes must be taken into account. We
employ this solver to explore different types of laser configurations that can be relevant for future
planned experiments aiming to detect quantum vacuum dynamics at ultra-high electromagnetic
field intensities.

1. Introduction

The prospects offered by ultra-intense laser sources in the infra-red or x-ray central wavelengths [1] have
triggered a renewed interest in quantum electrodynamics (QED) and its impact on quantum processes at a
macroscopic scale, namely how such phenomena can affect well studied interactions in the fields of plasma
and laser dynamics. The most relevant QED processes in strong fields and high intensity laser interactions
have been explored in several reviews [2–4]. Among these effects, the second order QED process of
photon–photon scattering mediated by the vacuum fluctuation of virtual electron–positron pairs has been
a topic of renewed interest motivated by several exotic consequences [3, 5–7] that originate directly from
the original Heisenberg & Euler Lagrangian [8]. However, many of these effects, such as the virtual
polarization of the vacuum, remain to be experimentally observed with the use of ultra-high intensity laser
physics. With expected peak intensities up to 1023 –1024 W cm−2 to be delivered by large-scale facilities such
as the extreme light infrastructure [9], the VULCAN 10 PW project [10], or the HERCULES laser upgrade
[11], the regime where these virtual fluctuations can be detected in the laboratory is close to being within
reach. In particular, experiments are now being planned to study the quantum dynamics of the vacuum
[12, 13] by combining ultra-intense optical lasers with x-ray lasers [14]. The increasing consensus regarding
the importance of quantum dynamics in the collective effects of many extreme laser plasma interactions has
motivated the development of novel numerical tools that couple the multiple scales associated with the
problem. Numerical codes that simulate quantum radiation reaction [15–17] and pair production effects
[18–22], have already made important predictions in extreme energy density scenarios [22–25]. To our
knowledge, it already exists two groups that have proposed numerical schemes to solve quantum vacuum
nonlinearities. The group from Jena’s University has developed a numerical solver [26] based on the
vacuum emission picture that treats all strong-field components classically (as in the present paper), but the
nonlinear signature on a quantum level. This is quantitatively accurate for conventional laboratory fields,
but neglects back-reaction of the quantum effects on the classical backgrounds. The approach taken by by
Domenech & Ruhl [27] is fully semi-classical in the sense that it amounts to solve numerically the
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modified Maxwell’s equations without resorting to any quantum treatment. We propose here an algorithm,
different from the one suggested by Domenech & Ruhl [27], that includes the effect of vacuum
polarization in the spatio-temporal evolution of the electromagnetic (EM) field in multi-dimensions and
allows for a broad set of initial conditions. Without dwelling deeply in the details of each approaches, both
have advantages that deserve to be highlighted. Our approach is computationally less expensive and can be
implemented in the PIC loop. On the other hand, the algorithm proposed by Domenech & Ruhl [27] is
based on a gridless method which removes any interpolation issues and the precision of the numerical
scheme is of fourth order. These vacuum quantum effects can be integrated via an effective nonlinear
permeability and permittivity, and therefore to use a semi-classical approach. The effects of the quantum
vacuum can be important and appreciable, not only in scenarios involving high intensity EM radiation, but
also in extreme astrophysical environments surrounded by near critical Schwinger magnetic fields (e.g.
neutron stars) where the propagation of EM waves is modified [28, 29].

The electron–positron pair vacuum fluctuations were first taken into account by Heisenberg and Euler
(HE) who calculated the first full Lagrangian to all orders [8]. In the low field E � Es, low frequency
ω � ωc limit of the EM fields, the leading corrections of the standard Maxwell (M) Lagrangian density [8]
can be written as

L = LM + LHE =
1

4π
F + ξ(4F 2 + 7G2), (1)

where ωc = mec2/� is the Compton frequency, Esch = m2
ec3/e� the Schwinger critical field, and the EM

invariants F =
(
E2 − B2

)
/2, G = E · B, E and B the electric field and magnetic field respectively. The

nonlinearity coupling parameter is
ξ =

α

360π2E2
sch

, (2)

with α = e2/�c. The parameter weights the relative importance of the quantum corrections compared to
the classical fields and vanishes in the limit �→ 0. From the Euler–Lagrange equations for the EM fields, we
obtain a set of modified QED Maxwell’s equations [6]

∇ · D = 0 (3a)

∇ · B = 0 (3b)

∇× H − 1

c

∂D

∂t
= 0 (3c)

∇× E +
1

c

∂B

∂t
= 0, (3d)

with

D = E + 4πP (4a)

H = B − 4πM, (4b)

and

D = 4π
∂L
∂E

, H = −4π
∂L
∂B

. (5)

The nonlinear vacuum polarization, P, and magnetization, M read

P =
∂LHE

∂E
= 2ξ

[
2(E2 − B2)E + 7(E · B)B

]
(6)

M =
∂LHE

∂B
= −2ξ

[
(2(E2 − B2)B − 7(E · B)E

]
. (7)

We would like to stress that we are using CGS units throughout the article. This semi-classical formulation
treats the vacuum as a nonlinear medium, when the EM invariants F and G do not vanish. The algorithm
aims to solve the nonlinear set of corrected Maxwell’s equations leveraging the smallness of the vacuum non
linearity. This algorithm described in this article is second order accurate in time and space. Due to its
design, a key feature of the algorithm is that it can be seemingly incorporated into massively parallel fully
relativistic EM particle-in-cell codes such as OSIRIS [30]. This could also allow for studying
self-consistently scenarios where charged particles are also present in the system, and to be explored in
future publications.

This paper is organized as follows. In section 2, we describe the numerical algorithm, a generalization of
the Yee algorithm, that solves equations (3a)–(6) in multi-dimensions. Section 3 is devoted to the induced
vacuum birefringence on an EM probe beam while crossing a region of high field. Several configurations of
high field regions are considered such as a static field or realistic optical laser pumps. Harmonic generation
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constitutes the focus of section 4 in one-dimensional and two-dimensional geometry. Finally in section 5 we
state the conclusions.

2. Numerical algorithm

2.1. Description
The standard second-order finite-difference time domain method to solve Maxwell’s equations is the Yee
algorithm [31]. The Yee scheme solves simultaneously for both electric and magnetic fields by solving
Faraday’s and Ampère’s law, respectively. The explicit linear dependence of Maxwell’s equations on the
fields allows the field solver to be centered both in space and time (leapfrog scheme), thus providing a
robust, second order accurate scheme without the need to solve for simultaneous equations or perform
matrix inversions [32]. Moreover, the efficiency and simplicity of the Yee scheme allow an easy
incorporation into numerically parallel codes.

To solve the QED Maxwell’s equations, a modified Yee scheme was developed to address the two main
difficulties which arise from the nonlinear terms. Firstly, all fields must be evaluated at all grid positions as
opposed to spatially staggered fields. This permits to accurately evaluate quantities such as the EM
invariants F and G, since a given component of the nonlinear polarization and magnetization vectors now
fully couples all other field components as can be understood from equations (6) and (7). This is a
significant obstacle regarding the essence of the Yee scheme since the algorithm may no longer be correctly
spatially centered. Secondly, the temporal derivative of the nonlinear polarization term in Ampère’s
equations prevents each electric field component to be advanced straightforwardly as it requires the
knowledge of future quantities. This is easily understood through the discretization of the modified
Ampère’s law in one dimension

−
Bn+1/2

z i+1/2 − Bn+1/2
z i−1/2

Δx
+ 4π

Mn+1/2
z i+1/2 − Mn+1/2

z i−1/2

Δx

=
1

c

En+1
y i − En

y i

Δt
+

4π

c

Pn+1
y i − Pn

y i

Δt
, (8)

where the indices n and i denote the temporal and spatial positions, respectively. Usually, one would isolate
the electric field term of temporal index n + 1 to advance this field in time. However, to calculate this
component one must know the polarization at time step n + 1, which is a nonlinear function of all other
fields at the new time step. The latter difficulty served as the main motivation to develop the modified Yee
scheme proposed here. The numerical scheme is illustrated in figure 1 for a time step Δt:

• We begin by advancing the fields using the standard Yee scheme (i.e. without accounting for the
polarization and magnetization of the vacuum). This setup allows us to obtain predicted quantities
for the values of the fields at the new time. This approach is based on the standard technique of the
predictor–corrector method, where the linear Maxwell’s equations are solved as the zeroth order
solution to the fields;

• The predicted field values are then interpolated at all spatial grid points using a spline interpolation
method thus allowing to calculate quantities such as the EM invariants and respective polarization
and magnetization of the vacuum, to lowest order;

• The polarization and magnetization are then used to advance the electric field via the modified
Ampère’s law;

• The convergence loop re-injects this new electric field value back into the polarization and
magnetization source terms equations (6) and (7) to refine these quantities and re-calculate the
electric field iteratively. This loop is reiterated until the electric field converges to a value within the
desired accuracy;

• After convergence is achieved, Faraday’s law is advanced one time step, identically to the linear Yee
scheme, benefiting from the fact that the electric field values being used are self-consistent with the
QED corrections.

It must be emphasized that this method is only valid as long as the effects of the polarization and
magnetization of the medium are small compared to the non-perturbed propagation of the fields given as
solutions to Maxwell’s equations in classical vacuum. This condition is automatically satisfied for realistic
values of EM fields available in current, or near future, technology. In this regime, the QED theory is valid
since the Schwinger field, around which spontaneous pair creation (Schwinger effect) becomes
non-negligible, corresponds to an electric field of Es ∼ 1018 V m−1, whereas ambitious laser facilities aim to
push available intensities to the 1023 –1024 W cm−2 (E ∼ 10−3Esch) range. The order of the ξ parameter in
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Figure 1. Full loop of the modified Yee scheme.

equations (6) and (7) which is on the order 10−6E−2
sch clearly helps to ensure the validity of the method.

Therefore, this scheme highly benefits from the fact that the nonlinear QED corrections of the vacuum are
perturbative in nature. The convergence loop can be seen as a Born-like series since for every re-insertion of
the fields back into the nonlinear source term, there is a gain in accuracy of one order in the expansion
parameter to the result. The algorithm proposed here solves Ampère’s law by treating the nonlinear
corrections as a source term, in an iterative manner,

∇× B − ∂tE = SNL[E, B], (9)

where SNL = ∇× M + ∂tP. From this discussion and equation (9), we can conclude that this generalization
of the Yee scheme can be extended beyond the framework of QED corrections to the vacuum as it is valid to
solve Maxwell’s equations in any nonlinear medium provided that the polarization and magnetization are
given and that their order is such that they can be treated as a perturbation. This possible generalization
enhances the range of applicability of our algorithm. Furthermore, the inclusion of a current in the
algorithm (J �= 0 in Ampère’s law) can be done, both within a PIC framework or for a macroscopic field
dependent current by including the current term in the initial standard Yee scheme loop where the
predictor quantities are computed. This is another key feature regarding the ability to couple our proposed
generalized Yee solver to the PIC framework, of paramount importance to model scenarios where charged
particles (even in small numbers) are present.

2.2. Interpolation of the fields
The algorithm requires that all fields are calculated at the same spatial positions. When considering the
spatial interpolation of the self-consistent fields given by the Yee Algorithm we found a clear asymmetry
between interpolating the electric field at the magnetic field position or vice-versa in terms of the precision
of the EM invariant E2 − B2 for both cases. Since a plane wave is an exact solution of the QED Maxwell’s
equations, the invariants calculated in the simulation should be identically zero [33]. Figure 2 shows the
distribution of the EM fields within a two-dimensional Yee grid cell. We found that all the standard
interpolation schemes yield invariants with much greater precision at the lower left corner of the cell
compared to the other positions. This difference in precision was found to be of two orders of magnitude
when tested for a plane wave in 1D, which can affect the stability and precision of the code. The reason for
this artifact is due to the way that the fields are initialized within the simulation domain. In particular, the
fact that the electric and magnetic fields must be initialized with a shift both in space and time, creates an
asymmetry between interpolating a field to the corresponding position of the other field, even if this
interpolation is done in a centered manner. The solution we have adopted to address this problem is to
calculate all the fields at the cell corner where the invariants are known to be of higher precision. For
instance, the Bz component at the left corner of the cell becomes

Bzi,j = I
(

Bz i+ 1
2 ,j+ 1

2
, Bzi− 1

2 ,j+ 1
2
, Bzi+ 1

2 ,j− 1
2
, Bzi− 1

2 ,j− 1
2

)
,

where I is an interpolation function. Once all fields are calculated at the (i, j) positions, we can compute the
invariants at these positions and then re-interpolate these invariants directly to the other grid cell points in
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Figure 2. Position of the electric and magnetic field vector components within a 2D cell of the Yee lattice.

a similar fashion. The correct calculation of the EM invariants is necessary in order to evaluate the
nonlinear polarization and magnetization of the vacuum via equations (6) and (7).

2.3. Numerical stability
The method adopted to study the numerical stability of the QED polarization solver follows the standard
mode analysis [32]. With the linear Yee scheme, the one-dimensional numerical dispersion relation for a
plane wave propagating on a grid with spatial and temporal resolution Δx and Δt respectively is [32]

ω =
1

Δt
arccos

(
1 +

(
cΔt

Δx

)2

(cos(kΔx) − 1)

)
. (10)

A notable case is when Δt = Δx/c for which equation (10) reduces to the EM dispersion relation for a
plane wave in vacuum, ω = kc. To study the stability of the new set of QED-corrected Maxwell’s equations
using this method, a self-consistent numerical dispersion relation was derived. Due to the nonlinearity of
the equations, the new numerical dispersion relation can be written as

(
cΔt

Δx

)2

sin

(
kΔx

2

)2

− sin

(
ωΔt

2

)2

= ξE2
0FNL(ω, k,Δx,Δt), (11)

where E0 is the amplitude of the wave and FNL is a nonlinear function of ω, k, and the spatial and temporal
steps. In the classical limit ξ → 0 the rhs goes to zero and the dispersion relation reduces to equation (10). A
numerical plane wave propagating via our QED solver will therefore obey equation (11).

For a numerical plane wave the EM invariant E · B is identically zero, whereas the invariant E2 − B2 will
not vanish identically due to finite spatial resolution and the fact that the fields must be interpolated in
space to evaluate the invariants, as already discussed above. Therefore, the amplitude of this EM invariant
depends on the interpolation method and grid resolution. We calculate this dependence by evaluating
E2 − B2 at a given grid point, taking into account that a correct centering in space implies that one of the
fields must be interpolated to the position of the other (in this case the B field, using linear interpolation).
This yields

E2 − B2 = E2
0

[
1 − sin2(kΔx/2)

sin2(ωΔt/2)
cos2

(
kΔx

2

)]
. (12)

This expression was compared to the results extracted from one-dimensional simulations. Figure 3 shows a
comparison between equation (12) and simulations with several seeded k modes and with ξE2

0 = 10−4,
cΔt = 0.98Δx and kΔx = π/100. The simulation points agree with the trend presented by the theoretical
curve. This result shows that equation (12) provides an upper bound to the interpolation error when
seeding a particular k mode. In particular, the results show that for higher wave numbers, up to the
resolution limit, the order of magnitude of the invariant amplitude increases, tending toward unity. One
shall therefore limit the simulations to low k modes to ensure the smallness of the invariants.

The stability of the QED Yee solver, i.e. the nonlinear dispersion relation, equation (11) was solved using
three methods: a numerical solution, an analytical solution through the linearization of the system via the
ansatz ω = ω0 + δω with δω � ω0, and finally by estimating the growth rate of the maximum mode
allowed by the grid resolution i.e. kΔx = π. The results are shown in figure 4 for simulations performed
with a grid resolution of Δx = 0.0314, Δt = 0.98Δx and ξE2

0 = 10−4. One can verify in figure 4 that the
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Figure 3. Amplitude of EM invariant E2 − B2 as a function of the seeded k mode for a resolution Δx = π/100, Δt = 0.98Δx
and ξE2

0 = 10−4. Simulation results in blue are compared to equation (12) in red.

analytic solution is in excellent agreement with the numerical integration. The maximum growth rate is
given by

Im(δωmax) � 2ξE2
0

√
8ε

Δt
, (13)

where ε = 1 − cΔt/Δx. The maximum growth rate predicted theoretically by equation (13) serves,
therefore, as an accurate rule-of-thumb criterion to understand how unstable a given simulation setup may
be. Finally we took the solution of the perturbative expansion and studied the limit for small k values,
which yields

lim
kΔx→0

Im(δω) =
1

4

ξE2
0(kΔx)5

Δx
. (14)

Equation (14) suggests that the smallest k will be the least unstable mode. This is an important result since,
in principle, the low k modes, for a given grid resolution, are those that will be seeded for a simulation
setup. These theoretical predictions were compared with one-dimensional simulations by extracting the
growth rate of a given k mode in the simulation domain, the results are shown in figure 5. The growth rate
was extracted from the Fourier spectrum of the simulations for different values of ξE2

0. Figure 5 shows a
good agreement between the maximum growth rates extracted and equation (13). Our theoretical analysis
shows that the growth rate of the most unstable mode scales linearly with ξE2

0. Furthermore, we performed
simulations under the same conditions, varying only the seeded k mode and verified that this does not
affect the growth rate of the most unstable high k modes. Instead, it is the amplitude of the seeded mode
that affects the growth rate of the higher k modes by nonlinear coupling. It is possible to derive a criterion
for the time at which the seeded field starts to be strongly deteriorated by the growing numerical noise, by
assuming this blow-up occurs once the amplitude of the fastest growing k modes δẼ (initially this amplitude
is at the numerical noise level, and can be measured from the initial spectrum of the fields in the
simulation), become of the order of the initial seed amplitude. This criterion yields,

tblow ∼ Δt√
ε

1

ξE2
0

log

(
E0

δẼ

)
. (15)

For realistic values of ξE2
0, this time is far greater than any simulation setup one may wish to perform.

3. Vacuum birefringence

A thorough benchmark of the functionality and robustness of the algorithm may only be gained by
comparing simulation results with analytical results in 1D simplified cases. One-dimensional scenarios
provide excellent opportunities to test the code against analytical predictions. The two cases we present here
are the vacuum birefringence in the presence of a strong static field and counter propagating plane waves.
While the first case is well studied in the literature [34, 35], the second case requires a finer analytical work,
yielding nevertheless the well known result of generation of higher harmonics due to the nonlinear
interaction as shown in [36–38] for different setups and physical regimes that will be addressed in the next
section. The true physical value of the parameter in normalized units of the simulation is ξ ∼ 10−17 for an
optical frequency. Simulations were performed with artificially increased values of the ξ parameter to better
illustrate the method proposed here. This does not alter the physical relevance of the results. Rather, this is
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Figure 4. Imaginary part of solution of nonlinear dispersion relation, equation (11), as a function of k mode, calculated using
three different methods. Simulation parameters used were Δx = 0.0314, Δt = 0.98Δx and ξE2

0 = 10−4.

Figure 5. Comparison between maximum growth rate extracted from simulation with theoretical prediction calculated from the
nonlinear dispersion relation. The figure shows how this growth rate varies as a function of ξE2

0 , which measures the importance
of the nonlinear quantum vacuum corrections. The simulation parameters used were Δx = 0.0314,Δt = 0.98Δx and a seeded
kseed = 1.

simply a re-scaling of a constant to highlight the effects more clearly. Finally, in all the results presented in
this section, the units were normalized to the characteristic laser frequency, ω0 and wave number used in
the simulations, k0. The normalizations are thus t → ω0t and x → k0x. These normalizations of space and
time define the normalizations used for the fields, i.e.: E → eE/mcω0 and B → eB/mcω0.

3.1. Vacuum birefringence with a static field
The birefringence of the vacuum is a thoroughly studied setup of great experimental interest to explore the
properties of the quantum vacuum [39, 40]. A one-dimensional wave packet traveling in the presence of a
strong static field will experience a modified refractive index of the vacuum due to the HE corrections. To
obtain an approximate analytical expression, one assumes that the strong background field remains
unperturbed by the nonlinearities. This motivates the following ansatz for the solution of modified
Maxwell’s equations

E = Ep(x, t) + Es, (16)

where Ep and Es represent the EM pulse and the static fields, respectively and Ep � Es. Inserting
equation (16) into the QED Maxwell’s equations and keeping only the dominant terms in the polarization
and magnetization, one obtains the following refractive indices:

n‖ =

(
1 + 6ξE2

s

1 + 2ξE2
s

)1/2

, (17)

n⊥ =

(
1 + 2ξE2

s

1 − 5ξE2
s

)1/2

, (18)

7



New J. Phys. 23 (2021) 095005 T Grismayer et al

Figure 6. 1D Gaussian pulse after an entire propagation over a periodic box in the presence of a strong static field, with (black)
and without (red) QED nonlinearities.

where the parallel and perpendicular directions refer to the direction of the probe polarization when
compared to the static field. In the case of a constant externally imposed magnetic field, the expressions of
the indices are swapped [35] (the value of the perpendicular index takes the value of the parallel index and
vice-versa). Notice that the product ξE2

s appears as a relevant quantity. This is a recurring property of
several setups. It must be ensured that this product is a small quantity, both for the validity of the
theoretical framework but also from the point of view of the algorithm. This quantity controls whether the
corrections to the unperturbed fields are small or not, a crucial feature for the stability of the algorithm as
already discussed. It is worth mentioning that the effective vacuum refractive indices only depend here on
the externally imposed field to the order considered. Bialynicka-Birula [41] showed that if one considers the
HE Lagrangian to all orders, a non collimated wave packet will experience, in addition to the external field
effects, self-interaction. The dependencies of the index of refraction on the wave field will result in higher
harmonics generation, which will eventually alter the shape of the wave pulse along the propagation.

The simulation setup consists of a strong static electric field of 10−3Es aligned along the y direction and
a Gaussian EM pulse propagating in the x direction and polarized in the y–z plane. The central wavelength
of the EM Gaussian pulse is 1 μm and its duration is 5.6 fs. Figure 6 shows two simulations for the same
pulse after propagating once through a periodic box. In one case the propagation is in the classical vacuum,
whereas the QED solver is used in the other. Qualitatively, the difference in propagation distance and the
reduced electric field amplitude is consistent with the theory of a pulse traveling in a refractive medium. To
test the accuracy of the algorithm this same setup was run for different values of the product ξE2

s for both
the parallel and perpendicular setup. The difference in phase velocity between the two pulses allows to
extract directly the quantum vacuum refractive indices and to compare with the analytical predictions of
equations (17) and (18). The results are shown in figures 7(a) and (b) where an excellent agreement
between simulations and theory is found.

3.2. Vacuum birefringence: optical pump and x-ray probe
The effects of the quantum vacuum on the propagation of light waves requires a very strong static electrical
field that is unlikely to be produced in the laboratory. However it has been suggested a long time ago, by
Baier & Breitenlohner [34] and a bit later by Brezin & Itzykson [35], that high intensity oscillatory fields
with frequency small compared with the wave frequency might play the role of an external field. This is
nowadays the aim of various experiments based on the interaction between a counter-propagating
ultra-intense optical pulse and a low-amplitude x-ray probe pulse [4, 13]. It should be emphasized that
vacuum birefringence differs for finite times when considering an eternally-constant background (as in
section 3.1) or an adiabatically-evolved, quasi-static background [42, 43]. The latter configuration has
motivated the numerical work presented in this subsection

We start with the wave equation for the corrected QED Maxwell’s equations [36, 44] given by:

∇2E − 1

c2

∂2E

∂t2
= S, (19)

where

S = 4π

[
1

c
∇×

(
∂M

∂t

)
+

1

c2

∂2P

∂t2
−∇ (∇ · P)

]
. (20)
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Figure 7. (a) Phase velocity (c = 1) of probe pulse with polarization parallel to Es , (b) Phase velocity (c = 1) of probe pulse with
polarization perpendicular to Es, both as a function of ξE2

s parameter.

It is evident that the probe pulse propagation will be modified whenever the source term S is nonzero.
This is verified when the EM invariants are nonzero and the strong field intensity approaches the critical
value. If one assumes that the strong field remains unperturbed by the nonlinearities, then we can search for
solutions of the HE Maxwell’s equations of the form

E = Ep + E0, (21)

where p and 0 stand for the probe and strong field quantities, respectively. Plugging equation (21) in
equations (6) and (7) and considering just the dominant terms, we can obtain approximate expressions for
the resultant probe field after the interaction. This last step can be achieved by solving equation (19) using
the Green’s function method [36, 44]. The increasing availability of high-intensity lasers renders these QED
effects closer to being detectable in large-scale facilities. The prospect of coupling a 1 PW optical laser with
an XFEL laser pulse will allow measuring the ellipticity induced by the QED vacuum non-linearities
[13, 36]. The setup shown in figure 8 comprises the most promising configuration for detecting the vacuum
birefringence.

For this setup, the one-dimensional approximate solutions for the probe (being a plane wave),
considering just an Gaussian profile for the pump, are

Epy = E(0)
py + E(1)

py (22a)

Epz = E(0)
pz + E(1)

pz , (22b)

where, for θp = π/4,

E(0)
py = E(0)

pz =
Ep√

2
cos

(
kp (x − ct)

)
(23a)

E(1)
py = 8

√
2π3/2 ξE2

0kpσ0 erf

(
x

σ0

)
Ep sin

(
kp(x − ct)

)
(23b)

E(1)
pz = 14

√
2π3/2ξE2

0kpσ0 erf

(
x

σ0

)
Ep sin

(
kp(x − ct)

)
, (23c)

with σ0 being the optical pulse length, kp the wave number of the probe, and θp the angle between the
electric field polarization and the y axis. The expressions given by equation (23c) already show us several
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Figure 8. Counter-propagating setup proposed in [13] to probe the quantum vacuum.

important features. The first-order probe field components have a π/2 phase-shift relative to the
zeroth-order components. This makes it explicit that QED induced components are contributing to a
resulting ellipsoidal polarization [42, 43]. The induced components scale with ξE2

0, which shows that this
effect is only measurable for strong fields approaching the Schwinger critical field value. Dealing with an
optical laser pulse of finite duration, the effective interaction distance is now proportional to its pulse
duration parameter, σ0. The accumulated phase after the interaction can be written as [4]

Δφ =

∣∣∣E(1)
pz − E(1)

py

∣∣∣
Ep√

2
sin

(
kp(x − ct)

) = 12π3/2ξE2
0kpσ0 erf

(
x

σ0

)
. (24)

The ellipticity b is related to Δφ [4, 13], and reads, for a static field,

b =
sin 2θp

2
EpΔφ, (25)

where Δφ = 12πkpdξE2
0 and where d is the distance of interaction. For a probe interacting with an optical

pump one obtains

b = 6π3/2Ep sin
(
2θp

)
ξE2

0kpσ0 erf

(
x

σ0

)
. (26)

The static field result is recovered if we take into account: (i) a factor of 2 that appears from considering an
optical pulse along the propagation direction; (ii) the limit σ0 →∞. Up to now, we have only considered
longitudinal effects. However, finite laser pulses possess transverse Gaussian profiles.

We study how these Gaussian profiles applied to the strong and probe pulses modify the amplitude of
the ellipticity as a function of several constraints applicable to realistic configurations: probe polarization
angle, laser misalignment, timing and spatial jitter. We quantify these modifications through the variation of
the ellipticity due to having a more realistic optical pulse duration and pulse diffraction. The standard
simulation setup is the one presented in figure 8, where both laser pulses are focused at the same point in
time and space and counter-propagate co-axially. The XFEL (x-ray pulse) is represented by a 3 fs pulse with
1018 W cm−2 and wavelength λp = 10 nm. The optical pump pulse has the same duration with
1023 W cm−2 and λ0 = 1μm. We consider both pulses to have the same spot size
Wp = W0 = 30[c/ω0] = 4.78μm at the focal place x = 0. For a better illustration of the vacuum
nonlinearity effect, we have increased artificially the coupling parameter to ξ = 4 × 10−13.

3.3. Probe polarization angle
Equation (26) shows that the ellipticity is proportional to sin

(
2θp

)
, thus yielding its maximum amplitude

when the x-ray probe polarization has a π/4 angle with respect to the strong optical pulse polarization. In
addition, considering a two-dimensional paraxial Gaussian transverse profile, the ellipticity will vary along

10
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Figure 9. Normalized ellipticity as a function of the transverse position for five different probe polarization angles: 45◦ (purple),
30◦ (green), 22.5◦ (blue), 15◦ (orange) and 5◦ (brown). The colored dots and the full lines represent the simulation results and
the theoretical predictions, respectively.

Figure 10. Maximum value of the normalized ellipticity as a function of the probe polarization angle.

the y direction due to the transverse dependence of the fields

Ep →
Ep

4

√
1 +

(
z

zrp

)2
exp

⎛
⎜⎜⎝−

(
y − yp

)2

W2
p

(
1 +

(
z

zrp

)2
)
⎞
⎟⎟⎠ (27a)

E2
0 →

E2
0√

1 +
(

z
zr0

)2
exp

⎛
⎜⎜⎝−2

(
y − y0

)2

W2
0

(
1 +

(
z

zr0

)2
)
⎞
⎟⎟⎠ , (27b)

with y0 and yp being the center of the Gaussian profile along y for both laser pulses and z being the
longitudinal distance from the focus of each pulse (zrp, 0 = kp,0W2

p,0/2 is the Rayleigh length). We consider
here the special case where both pulses interact in the same point in time and space (z = 0). Figure 9 shows
the transverse variation of the ellipticity for different probe polarization angles. On the other hand, the
dependency of the ellipticity with the angle is verified in figure 10. The ellipticity value shown has been
normalized to the best case scenario, corresponding to a transverse position y = y0 = yp and a probe
polarization angle θp = π/4.

3.4. Laser misalignment
An important effect to take into account is the laser misalignment in the case where both pulses are not
propagating along the same axis. In this case, the transverse profiles of the pulses do not overlap fully and
we define

m = y0 − yp (28)
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Figure 11. Normalized ellipticity as a function of the transverse position for four different laser misalignment parameters: 0μm
(purple), 2.39μm (green), 4.78μm (blue) and 9.55 μm (orange). The colored dots and the full lines represent the simulation
results and the theoretical predictions, respectively.

as the misalignment parameter (also known as the transverse impact parameter). As equation (26) consists
in the product of two transverse profiles, it is then possible to rewrite the dependency of the ellipticity on
the transverse coordinate as

b(y) = b̄ exp

(
−2(y − yeff)2

W2
eff

)
exp(−R), (29)

with

b̄ = 6π3/2Ep sin
(
2θp

)
ξE2

0kpσ0 (30a)

W2
eff =

2W2
0 W2

p

W2
0 + 2W2

p

(30b)

yeff =
ypW2

0 + 2y0W2
p

W2
0 + 2W2

p

(30c)

R =
2m2

W2
0 + 2W2

p

. (30d)

It is important to notice that we have written equation (29) as an effective transverse profile, hence, the
expression for b̄ contains only the central amplitude of both pulses. Figure 11 shows the transverse variation
of the ellipticity for different values of misalignment, while figure 12 shows how the maximum for each case
vary with the misalignment parameter. As previously, the ellipticity amplitude is normalized by the best case
scenario, corresponding to a coaxial counter-propagation (m = 0) and, thus, y = y0 = yp. The probe
polarization angle is considered to be θp = π/4. These results are consistent with the ones obtained in
section III-D of [42]. In this paper, the authors show that the full exponent for the ellipticity amplitude
should decay with −2ρ2/(1 + ω̄), where ρ = r/W0 and ω̄ = 2W2

p/W2
0 . If we identify m = r, following the

notation of [42], we verify that it is equivalent to the two-dimensional R decay expression in equations (29)
and (30d).

3.5. Timing and spatial jitter
Potential fluctuations in the alignment of the lasers can lead not only to laser misalignment but also to jitter
[13]. The probe pulse can be off focus with the optical pulse both in space (spatial jitter) and in time
(timing jitter), as shown in figure 13. This effect has a direct impact on the integrated amplitude of the
optical pulse as seen by the XFEL probe pulse during the overlap phase. Consequently, the ellipticity can be

written as in equations (29)–(30d), with W2
0 replaced by W2

0

(
1 +

(
z/zr0

)2
)

. The small corrections were

not taken into account in equation (27a) since the XFEL Rayleigh length is much larger than the interaction
length (approximately the optical pulse width). Figure 14 shows the transverse variation of the ellipticity for
different spatial jitter configurations, while figure 15 shows how the maxima for each case vary with the
distance to the focus of the optical pulse. In this last figure, we also superimpose results for timing jitter
configurations, verifying that the results follow the same trend. The ellipticity amplitude is as usual
normalized by the best case scenario, corresponding to a coaxial counter-propagation (m = 0), probe
polarization angle θp = π/4, and nonexistent jitter (z = 0).
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Figure 12. Maximum value of the normalized ellipticity as a function of the laser misalignment parameter.

Figure 13. Spatial and timing jitter setups for two counter-propagating laser pulses. fp and f0 are the foci of the probe and optical
pulses, respectively. z corresponds to the longitudinal distance between the overlap region and the focus of the optical pulse.

In section III-C of [43], the authors explore these effects in a three-dimensional configuration. This
implies that the Gaussian paraxial fields will decay faster, hence, yielding that the ellipticity should decay
with 1/(1 + τ 2), where τ = z/zr0, instead of our square root decay. Our results and our numerical solutions
are consistent with the predictions of [43] further validating our algorithm.

Our approach focuses on the EM signatures of the QED interaction via the evaluation of the ellipticity
acquired by the original linearly-polarised probe pulse. A different, but equivalent, approach was taken by
Karbstein [45, 46], which focused on the distribution of photons that acquired a perpendicular polarisation
compared to the original one (defining the ‘signal photons’). By exploiting the diffraction of the signal
photons, it allowed the authors to identify regions where the signal-to-noise ratio is enhanced on realistic
experimental setups. Nevertheless, our approach allows us to self-consistently model the interaction and
self-interaction of both intervening pulses.

4. High harmonic generation

4.1. Counter-propagating plane waves
Two counter-propagating plane waves polarized in the same direction, with the same frequency ω0 and
amplitude would normally result in an EM standing wave in the classical vacuum. However, the vacuum
nonlinearities lead to the well-known phenomena of harmonic generation [38, 47–49]. This simple setup
represents an ideal benchmark for the numerical algorithm as analytic results can be obtained. To address
the problem, it is convenient to decompose the field into a Born series of partial waves as performed by
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Figure 14. Normalized ellipticity as a function of the transverse position for eight different values of the jitter parameter: 0μm
(purple), 1.59μm (green), 7.96μm (blue), 15.92μm (orange), 23.88μm (brown), 31.83μm (red), 47.75μm (greyish green) and
71.63μm (gray, Rayleigh length).

Figure 15. Maximum value of the normalized ellipticity as a function of the jitter parameter. The colored dots and the asterisks
correspond to the spatial jitter and timing jitter simulation results, respectively (full or dashed lines for the theoretical
predictions).

Bohl et al [36]

E = E(0) + E(1) + E(2) + · · · (31)

B = B(0) + B(1) + B(2) + · · · , (32)

where E(0) and B(0) are the unperturbed standing wave fields given by E(0) = E0 [cos(x − t) + cos(x + t)]
and B(0) = B0 [cos(x + t) − cos(x − t)] while the remaining terms are successively higher order corrections
to the standing wave fields, weighted by an expansion parameter to be identified. In this subsection, space
and time are taken in units of k−1

0 , and ω−1
0 with ω0 = k0c. The electric and magnetic fields are aligned with

the y and z axis, respectively. Starting from the modified Maxwell’s equations and inserting equations (31)
and (32) as the expressions for the fields, we arrive at the wave equation for the first-order correction to the
electric field E(1)

�E(1) = S1(x, t), (33)

where � is the d’Alembert operator and the source term S1 = −∂t∂xM + ∂2
t P. These are just the

one-dimensional version of equations (19) and (20). Inserting the zero order field in the source term, i.e.
taking P, M = f(E(0), B(0)), we find

S(1)(x, t) = 16ξE3
0 cos(t) cos(x) × [3 cos(2t) − cos(2x)] . (34)

This source term only accounts for the unperturbed fields being inserted into the nonlinear polarization
and magnetization. The formal solution of this equation is given by the convolution between the source
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term and the Green’s function of the one-dimensional wave operator [50],

E(1)(x, t) =

∫ L

0

∫ t

0
dt′dx′G(x, x′, t, t′)S(x′, t′), (35)

where the Green’s function is

G(x, x′, t, t′) =
1

2
H
[
(t − t′) − |x − x′|

]
. (36)

The modified electric field reads

E(1)(x, t) = −2ξE3
0 sin(t) cos(x) × [2 sin(2t) (cos(2x) − 2) − 4t] . (37)

We notice that the relative amplitude between E(1) and the unperturbed field amplitude is proportional to
ξE2

0 showing again that this perturbative treatment is valid as long as ξE2
0 � 1. More specifically, the

corrected field exhibits a secular growth term modulated by an oscillating term. This term is dominant for
t � 1 and should be interpreted as a phase shift due to the induced birefringence of one wave to the other.
The total field for t � 1 reads E � E(0) + 8ξE3

0t sin(t) cos(x). Using the trigonometric identity
a cos(x) + b sin(x) =

√
a2 + b2 cos(x − arctan(b/a)), one can write the total corrected field as

E � E0

[
cos(x − t/n) + cos(x + t/n)

]
, (38)

where n−1 = 1 + 4ξE2
0 and n the modified refractive index induced by the interaction of the two waves.

Taking the spatial Fourier transform of E(1), we verify that the fundamental mode k = k0 is corrected by a
secular term and the appearance of a harmonic at 3k0. Defining the Fourier transform of E(x, t) as Ẽ(k, t),
we obtain

Ẽ(1)(k0) = ξE3
0 sin(t) [4t + 3 sin(2t)] , (39)

Ẽ(1)(3k0) = −ξE3
0 sin(t) sin(2t). (40)

The third harmonics correspond to two waves, cos[3(x + t)] and cos[3(x − t)], propagating with the initial
zeroth-order field. The next order correction to the field E(2), reveals a correction to the k0 mode growing as
t2, a secular 3k0 harmonic and an oscillating 5k0 harmonic. Repeating this process to higher orders, we can
show that this nonlinear interaction generates odd higher harmonics from vacuum with the relative
amplitude between these harmonics obeying the ordering

Ẽ(k = 2n + 1) = (ξE2
0)nẼ(k0). (41)

Nonetheless, it should be emphasized that a rigorous treatment of higher harmonics (beyond the first-order
correction) should take into account additional terms in the expansion of the HE Lagrangian for weak fields
(E < Esch). As shown by Bohl et al [36], purely four-photon scattering (first-order term of the Euler
Heisenberg Lagrangian) allows the generation of higher harmonics in the counter propagating setup.
However the contribution from this twice-iterated process scales as (ξE2

0)2E0, which when compared to the
leading contribution to the fifth harmonic from six photon scattering is suppressed by a factor of ξE2

0.
Our analytical predictions were compared with the results of the QED solver using a field amplitude of

E0 = 0.025Esch, λ0 = 1 μm plane waves and ξ = 10−9, such that the higher harmonics can be accurately
resolved above the numerical noise. The spatial Fourier transform of the fields is shown in figure 16 for two
simulations, with and without the self-consistent inclusion of HE corrections. We observe that when the
non-linearities are present, the odd higher harmonics are generated with a relative amplitude that matches
the ordering given in equation (41). To compare the simulation results with equations (39) and (40), we
subtracted the classical vacuum electric field to remove the zeroth order standing wave contribution, and
performed the Fourier transform of this subtracted field. Finally, we tracked the temporal evolution of the
amplitude of the k0 mode in Fourier space and compared it with equation (39). Figure 17 shows the
temporal evolution of E1(k0). The simulation shows an excellent agreement with the theoretical predictions
for many laser cycles, ensuring that the algorithm is robust. Despite the one-dimensionality of this example,
a setup of counter-propagating beams is of great interest for planned experiments at extreme high intensity
laser facilities, as outlined in [44].

4.2. Interaction of paraxial beams: counter propagating setup
In order to illustrate the generation of harmonics in multi-dimensions, two setups were investigated: the
counter propagation of two Gaussian pulses interacting at the focal point, and the perpendicular interaction
of two Gaussian pulses focused in the same region of space. For these setups, a consistent analytical
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Figure 16. Spatial Fourier transform of electric field with and without QED NL present. The generation of odd higher
harmonics can be observed in blue.

Figure 17. Temporal evolution of k0 Fourier mode of the subtracted electric field.

treatment becomes cumbersome especially due to the self-consistent treatment of both the transverse and
longitudinal components of the pulses. A quantum parameter of ξ = 10−7 was used for the sake of showing
the prominent features of the harmonics of very small amplitudes.

In the first setup, two λ = 1 μm laser beams with a normalized vector potential a0 = eE0/mcω0 = 50
(which corresponds to laser electric field at the focus of E0 � 10−4Es) and duration of 25 fs interacted in the
presence of vacuum non-linearities. Both beams have a focal spot of W0 = 4 μm. Figure 18 shows the
transverse electric field of the laser beams before interaction at t = 0, figure 19(a) the spatial Fourier
transform of the beams with ξ = 0 (classical limit) and in figure 19(b) the Fourier transform of the electric
field after the interaction (asymptotic state) including the HE corrections. As shown in figure 19(b), after
the interaction odd higher harmonics are also generated as in the 1D case, with relative amplitudes
consistent with equation (41). However, in this case, the harmonics generated have the same Gaussian
behavior as the unperturbed pulses and attain a greater spread in Fourier space after the interaction. After
the pulses have spatially overlapped, the harmonics propagate and leave an imprint of the nonlinear
interaction, that co-propagates with the original beams.

4.3. Interaction of paraxial beams: 90◦ setup
The second setup, shown in figure 20, comprises two optical Gaussian pulses interacting at 90◦. The two
laser beams possess the same parameters: a0 = 100, a wavelength of 1 μm, a focal spot W0 = 4 μm, a
duration of 25 fs. The advantage of this setup is the vast amount of harmonics generated during the
interaction of the two pulses. Before discussing the results of the simulations, the reader can develop a
valuable intuition of the generated harmonics by carefully computing the EM invariants and the associated
vacuum polarizations for paraxial beams.

The theory of paraxial EM fields has been developed by Davis [51] with a simple method that allows to
find a formal solution of a light beam propagating in classical vacuum. The formal solution is based on an
expansion in powers of a small parameter s = W0/lr = 1/kW0 where W0 is the beam waist and lr = kW2

0

the Rayleigh or diffraction length. For the special case of a two-dimensional beam, varying as eiω0t
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Figure 18. Initial setup of Gaussian pulses. Both pulses are polarized in the x2 direction and will focus in the center of the box.

Figure 19. Spatial Fourier transform of the electric field, (a) after the interaction but when QED corrections are absent, (b) after
the interaction with self-consistent inclusion of the quantum corrections. The third harmonic and small distortion of the main
mode can be observed.

propagating in the x direction and polarized in the y direction, the non vanishing components up to the
second order in s are

Ey = Ēy e−ik0x + c.c.

Ex = Ēx e−ik0x + c.c. (42)
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Figure 20. Electric field setup for two Gaussian pulsed traveling in perpendicular directions but focusing on the center of the
simulation box.

Bz = B̄z e−ik0x + c.c.,

with

Ēy = −ik0

[
Ψ0 + s2

(
Ψ2 +

∂2Ψ0

∂η2

)]

Ēx = −k0s
∂Ψ0

∂η
(43)

B̄z = −ik0

[
Ψ0 + s2

(
Ψ2 +

∂Ψ0

∂ζ

)]
,

where ω0 = k0c, x = ζlr, y = W0η and

Ψ0 = A0e−(t−x/c)2/2σ2
e−i(P+Qη2) (44a)

Ψ2 = iQ(2 + Q2η4)Ψ0 (44b)

Q =
1

i + 2η
(44c)

iP = − log(iQ) (44d)

where σ is the typical duration of the beam and a0 = eA0/mc2 is the Lorentz invariant parameter which
measures the magnitude of the field. Whereas Gaussian paraxial beams are usually described up to the first
order in s [49, 52], the inclusion of the second-order terms for the transverse components are essential to
calculate accurately the EM invariants which consist of a series of terms proportional to (k0A0)2, s(k0A0)2

and (sk0A0)2. In our setup, we refer to the index 1 for the pulse propagating in the x direction with
wavenumber kx and to the index 2 for the pulse propagating in the y direction with wavenumber ky. The
EM fields for the pulse 2 can be found by rotating by 90◦ the fields described for the pulse 1. The non
vanishing invariant is

F = E2 − B2 (45)

= Fx + Fy −Fz,

where Fx = (Ex1 + Ex2)2, Fy = (Ey1 + Ey2)2, and Fz = (Bz1 + Bz2)2. In order to highlight the harmonics
generated during the interaction of the two pulses, we use the simplified notation (n, m) ≡ ei(nkxx+mkyy) with
n, m ∈ Z. In Fourier space, the invariant is symmetric with respect to the kx and ky axes and we can thus
just consider for the sake of simplicity one quadrant of the k space. Keeping only the terms for which
kx, ky > 0, the polarization P = 4ξFE calculated at first-order reads
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Figure 21. Spatial Fourier transform for E2 field at different stages of interaction. (a) Fourier transform of the polarisation Px.
The inset b1, b2, b3 and c1 corresponds to the lineouts A, B, C and D. The red curves represent the Fourier Transform of the
theoretical polarisation Px in equation (46a).

Px = P̄x
10(1, 0) + P̄x

01(0, 1) + P̄x
03(0, 3)

+ P̄x
30(3, 0) + P̄x

12(1, 2) + P̄x
21(2, 1) (46a)

Py = P̄y
10(1, 0) + P̄y

01(0, 1) + P̄y
03(0, 3)

+ P̄y
30(3, 0) + P̄y

12(1, 2) + P̄y
21(2, 1). (46b)

The full expression for the invariants Fx,Fy,Fz and the polarisation coefficient P̄x
ij, P̄y

ij can be found in the
appendix A. The time at which the interaction is strongest occurs at the full overlap of the two pulses,
ω0t = 100 for our configuration. The Fourier transform of the polarisation Px at that time is shown in
figure 21(a). The harmonics predicted theoretically in equation (46a) can be readily identified as well as new
harmonics such as P̄x

23 or P̄x
32 that result from highest order coupling. The first order harmonics of largest

amplitude are P̄x
10, P̄x

12 (four others are just the symmetric harmonics with respect to the kx and ky axis) and

19



New J. Phys. 23 (2021) 095005 T Grismayer et al

Figure 22. Spatial Fourier transform for E2 field at different stages of interaction. (a) Initial Fourier space, if there were no
vacuum non-linearities this spectrum would remain unchanged throughout the interaction. (b) At peak of nonlinear interaction
when the pulses are completely overlapped in space. (c) Asymptotic state: after the nonlinear interaction the pulses propagate
independently but with higher harmonics generated from the interaction.

are proportional to ξ(k0A0)3 while P̄x
01, P̄x

21 scale as ξs(k0A0)3. The harmonics of lowest amplitude P̄x
30 do

not arise from the interaction of the two pulses but from their self-interaction and are thus proportional to
ξ(sk0A0)3. A more precise comparison between the simulation and the first order theoretical harmonics of
the polarisation Px is shown on figures 21(b1), (b2), (b3) and (c1). One notes the very good agreement both
for the respective amplitude of the harmonics and their shapes in Fourier space. The theoretical calculation
of the first order fields can be carried out by convoluting the 2D Green function of the wave propagator
with the linearised source term [7, 38, 44] comprised of partial derivatives of the first order polarisation and
magnetisation. We have plotted in figure 22 the temporal evolution of the Fourier transform of the electric
field Ex. At t = 0, the two pulses are fully separated which implies that no interaction has started yet. As a
result, only the central wavelength of each pulse is visible, kx for the longitudinal field of pulse 1 and ky

corresponding to the transverse component of pulse 2. When the two pulses fully overlap, one identifies
several harmonics that are identical to the ones we have described for the polarization, which is a direct

20



New J. Phys. 23 (2021) 095005 T Grismayer et al

consequence of the linear property of the wave operator (the polarisation being the source term of the wave
equation). Nonetheless, the relative amplitude between the harmonics of the electric field differ from the
one we have observed for the polarisation. This is somehow obvious since we are showing here the total
electric field Ex which is the sum of all corrections due to the polarisation and magnetisation of the
vacuum. Finally, at time ω0t = 200, the two pulses have left the zone of interaction, thus ceasing to feed the
nonlinear interaction between them. The remainder contributions stem from the self-interaction alone
[37]. As also identified by other authors [27, 36], off-axis contributions dominate the spectral region
during the overlap and occur due to the field spatio-temporal inhomogeneities. These contributions rapidly
fade away with the separation of both pulses. The harmonics that persist after the two pulses have fully
separated stem from the self-interaction of each pulse. The amplitude of these harmonics appears to fade
away contrary to the 1D case for which the amplitude remains constant. In a 1D simulation, the amplitude
of the harmonics generated during the interaction of two pulses does not decrease as they move out of the
interaction zone, as seen before whereas in 2D the amplitude of the signal goes down as 1/r (and
1/r2 in 3D).

The Fourier spectra obtained in these two setups show that the harmonics generated in either case are
distinct, thus allowing to clearly distinguish both cases. Future work will include the analytical study of the
relative intensity and spectral width of the generated harmonics and their possible relation with other beam
parameters. Namely, it is of great interest to understand how the production of these higher harmonics
from vacuum may be optimized in terms of the duration of the pulses as these results can provide
signatures of experimental relevance. A future setup to explore will also include the interaction of two laser
beams at an arbitrary angle 0 < θ < π

2 to model realistic experimental conditions. If this angular
dependence of the interaction is well understood, one could in principle determine how well aligned two
ultra-intense beams are by examinating at the Fourier spectrum after a vacuum interaction. Finally, the
theoretical predictions, made in the case of two intense focused beams overlapping, on photon
merging/splitting [52] and four wave mixing [49] could also be verified with an extension of this present
code in 3D dimensions, which is computational very demanding but still feasible. A straightforward
extension to the code could also be the addition of higher order terms in the Euler Heisenberg Lagrangian.
This would allow us to explore the shock formation and asymptotic field generated via six-, eight- or higher
wave mixing processes [27, 36].

5. Conclusions

A numerically stable and robust generalized Yee scheme to solve the nonlinear set of QED Maxwell’s
equations was developed and incorporated in a standard PIC loop. This work represents an important step
toward modeling plasma dynamics in extreme scenarios when QED processes significantly alter the
collective behavior of the system. Furthermore, the algorithm is fully generalizable to include higher order
corrections (such as six-photon scattering or higher order terms). These terms are to be included in the
future as they have been shown to be necessary to fully simulate certain scenarios [36]. Our numerical
model can be used to design planned experiments, leveraging on ultra-intense laser facilities able to deliver
intensities of 1023 –1024 W cm−2, to verify for the first time the dynamics of the quantum vacuum below the
Schwinger limit. The simulations confirm predicted optical phenomena such as vacuum birefringence and
high harmonics generation in one-dimensional setups with an excellent accuracy. The algorithm was also
extended for two-dimensional scenarios where two setups of interacting Gaussian beams were studied. The
results highlight the importance of transverse beam effects and hint that the generation of higher harmonics
from quantum vacuum can be achieved via this interaction. The spectrum of the harmonics could provide a
direct measurement of important beam properties such as the peak intensity and alignment. This algorithm
may also be used to test two and three dimensional setups that have been proposed in the literature (where
transverse and finite spot size effects are taken into account under certain approximations), thus
complementing the results of previous theoretical works [42–44]. Finally our algorithm contributes to the
generalization of the Yee scheme, one of the most successful and commonly used algorithms in
computational physics, to scenarios where nonlinear polarization and magnetization can impact EM
propagation.
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Appendix A. Harmonics coefficients

Plugging the expression of the EM fields of equation (42) into equation (45), we obtain

Fx = Ē2
x1(−2, 0) + 2Ēx1Ē∗

x1(0, 0) + Ē∗2
x1(2, 0)

+ Ē2
x2(0,−2) + 2Ēx2Ē∗

x2(0, 0) + Ē∗2
x2(0, 2)

+ 2Ēx1Ēx2(−1,−1) + 2Ēx1Ē∗
x2(−1, 1) + 2Ē∗

x1Ē∗
x2(1, 1)

+ 2Ē∗
x1Ēx2(1,−1)

Fy = Ē2
y1(−2, 0) + 2Ēy1Ē∗

y1(0, 0) + Ē∗2
y1(2, 0)

+ Ē2
y2(0,−2) + 2Ēy2Ē∗

y2(0, 0) + Ē∗2
y2(0, 2)

+ 2Ēy1Ēy2(−1,−1) + 2Ēy1Ē∗
y2(−1, 1) + 2Ē∗

y1Ē∗
y2(1, 1)

+ 2Ē∗
y1Ēy2(1,−1)

Fz = B̄2
z1(−2, 0) + 2B̄z1B̄∗

z1(0, 0) + B̄∗2
z1 (2, 0)

+ B̄2
z2(0,−2) + 2B̄z2B̄∗

z2(0, 0) + B̄∗2
z2 (0, 2)

+ 2B̄z1B̄z2(−1,−1) + 2B̄z1B̄∗
z2(−1, 1) + 2B̄∗

z1B̄∗
z2(1, 1)

+ 2B̄∗
z1B̄z2(1,−1).

The first quadrant coefficients present in equations (46a) and (46b) are

P̄x
10 = 4ξ

[
Ēx1

(
3Ē∗2

x1 + Ē∗2
y1 − B̄∗2

z1

)
+ Ē∗

x1

(
6Ēx2Ē∗

x2 + 2Ēy1Ē∗
y1 + 2Ēy2Ē∗

y2 − 2B̄z1B̄∗
z1 − 2B̄z2B̄∗

z2

)
+ Ēx2

(
2Ē∗

y1Ē∗
y2 − 2B̄∗

z1B̄∗
z2

)
+ Ē∗

x2

(
2Ē∗

y1Ēy2 − 2B̄∗
z1B̄z2

)]
P̄x

01 = 4ξ
[
Ēx1

(
6Ē∗

x1Ē∗
x2 + 2Ē∗

y1Ē∗
y2 − B̄∗

z1B̄∗
z2

)
+ Ē∗

x1

(
2Ēy1Ē∗

y2 − 2B̄z1B̄∗
z2

)
+ Ēx2

(
3Ē∗2

x2 + Ē∗2
y2 − B̄∗2

z2

)
+ Ē∗

x2

(
2Ēy1Ē∗

y1 + 2Ēy2Ē∗
y2 − 2B̄z1B̄∗

z1 − 2B̄z2B̄∗
z2

)]
P̄x

03 = 4ξĒ∗
x2

[
Ē∗2

x2 + Ē∗2
y2 − B̄∗2

z2

]
P̄x

30 = 4ξĒ∗
x1

[
Ē∗2

x1 + Ē∗2
y1 − B̄∗2

z1

]
P̄x

12 = 4ξ
[
Ē∗

x1

(
3Ē∗2

x2 + Ē∗2
y2 − B̄∗2

z2

)
+ Ē∗

x2

(
2Ē∗

y1Ē∗
y2 − 2B̄∗

z1B̄∗
z2

)]
P̄x

21 = 4ξ
[
Ē∗

x1

(
3Ē∗

x1Ē∗
x2 + 2Ē∗

y1Ē∗
y2 − 2B̄∗

z1B̄∗
z2

)
+ Ē∗

x2

(
Ē∗2

y1 − B̄∗2
z1

)]

22



New J. Phys. 23 (2021) 095005 T Grismayer et al

P̄y
10 = 4ξ

[
Ēy1

(
Ē∗2

x1 + 3Ē∗2
y1 − B̄∗2

z1

)
+ Ē∗

y1

(
2Ēx1Ē∗
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x2 + 6Ēy2Ē∗
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z2

)
+ Ēy2

(
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)
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[
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.
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