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OpenSwarm: An Event-Driven Embedded Operating System
for Miniature Robots

Stefan M. Trenkwalder1, Yuri Kaszubowski Lopes1, Andreas Kolling1,
Anders Lyhne Christensen2, Radu Prodan3 and Roderich Groß1

Abstract— This paper presents OpenSwarm, a lightweight
easy-to-use open-source operating system. To our knowledge,
it is the first operating system designed for and deployed on
miniature robots. OpenSwarm operates directly on a robot’s
microcontroller. It has a memory footprint of 1 kB RAM
and 12 kB ROM. OpenSwarm enables a robot to execute
multiple processes simultaneously. It provides a hybrid kernel
that natively supports preemptive and cooperative schedul-
ing, making it suitable for both computationally intensive
and swiftly responsive robotics tasks. OpenSwarm provides
hardware abstractions to rapidly develop and test platform-
independent code.

We show how OpenSwarm can be used to solve a canonical
problem in swarm robotics—clustering a collection of dispersed
objects. We report experiments, conducted with five e-puck
mobile robots, that show that an OpenSwarm implementation
performs as good as a hardware-near implementation. The
primary goal of OpenSwarm is to make robots with severely
constrained hardware more accessible, which may help such
systems to be deployed in real-world applications.

I. INTRODUCTION

Swarm robotics investigates the emergence of collective
behavior through local interactions of simple robots in large
groups (swarms) [1]. Due to the large number of robots
within a swarm, each robot typically has to be inexpensive
and is designed to rely on basic operations. As a result,
many swarm robots have severely limited on-board resources
and can be categorized as Class 0 or Class 1 constrained
devices [2]. For instance, the Kilobot [3] platform is a Class
0 constrained device by providing an Atmel ATmega328P
with 2 kB RAM and 32 kB ROM.

Due to the limited on-board resources, swarm robotics
algorithms are, in general, implemented at a low level
(hardware-near). Consequently, their implementation cannot
be directly ported to other platforms. They are usually
onerous to maintain or extend, and are likely to contain
programming errors [4]. This resembles the beginnings of
personal computers, where every machine executed only a
single program—such as a word processor or accounting
software. With the advent of operating systems and concur-
rency models, complex software could be developed more
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effectively and personal computers could execute multiple
applications concurrently. As a result, personal computers
became easier to use and program, and, hence, they were
used more widely.

The benefits of operating systems have already led to the
development of embedded operating systems in the field of
sensor networks [5] and the Internet of Things [6]. Sensor
network motes1 and Internet of Things devices provide
limited resources similar to swarm robots. For instance, the
sensor mote AS-XM1000, a Class 1 constrained device,
provides 8 kB RAM and 116 kB ROM. Embedded operating
systems—such as Contiki [7] and TinyOS [8]—manage
these resources and facilitate application development. They
are mainly designed to send sensor data to a central base
unit, which requires them to execute short sequences of
instructions. However, robots may also need to execute
computationally expensive algorithms—for example, image
processing. As a result, operating systems for robots have
different requirements.

This paper introduces OpenSwarm, an open-source, event-
driven operating system for miniature robots. It provides
a novel hybrid kernel that, unlike other kernels for
microcontroller-based systems, natively supports two concur-
rency models, preemptive and cooperative scheduling. It uses
events as hardware-abstraction to interface components of the
system with hardware. OpenSwarm provides mechanisms to
restrict, convert, and manipulate sensor and actuator values
for further—higher levels of—abstraction. All this makes
algorithms and code easier to port, maintain, and extend.

We compare OpenSwarm to state-of-the-art embedded
operating systems. OpenSwarm’s static and dynamic memory
footprint is analysed. OpenSwarm is then used to solve a
canonical problem in swarm robotics on the e-puck miniature
mobile robot [9], a Class 1 constrained device. The perform-
ance of the OpenSwarm implementation is compared with
that of a hardware-near implementation presented in [10].

The paper is structured as follows. Section II summarizes
existing systems that influenced OpenSwarm. The Open-
Swarm architecture is presented in Section III. Section IV
details its implementation and its evaluation is presented in
Section V. Section VI concludes the paper.

II. RELATED WORK

The need for easy-to-use software environments in ro-
botics resulted in a variety of middlewares [11]. They are

1A mote is a sensor device inside a sensor network.

http://www.advanticsys.com/shop/asxm1000-p-24.html?zenid=920b4ce80345bd2cb7d2369b271cabf3
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designed to simplify development, but require an underlying
operating system. One of the most common middlewares is
ROS [12]. Small units of ROS, which are called ROS nodes,
can be executed on small and embedded devices [13], but
need a ROS master and core functions, which are commonly
executed on a central device capable of running Linux.
Consequently, ROS and other robot middlewares are not
suitable for scalable swarm robotics applications.

Some frameworks—such as ASEBA [14] and JaMOS [15]
can be seen as interpreters implemented on miniature robots.
ASEBA is a virtual machine that executes a hardware-
independent script language. This improves the portability
and maintainability. However, the performance is limited (on
average, one instruction of virtualized code translates to 70
processor instructions [14]). JaMOS is a finite state machine
operating system, which uses an XML-based motion de-
scription language (MDL2ε). This provides good reusability
of code. Both systems—ASEBA and JaMOS—only provide
predefined sets of functions, which restrict the verity of
possible solutions.

Wireless sensor networks, which work under similar com-
putational constraints as swarm robotics systems, already
make use of concepts of operating systems [5]. Operating
systems for sensor network motes manage resources, includ-
ing memory, sensors, and timers. With growing complexity
of applications, these operating systems provide different
ways to execute one or more programs in a controlled
manner.

In general, there are two commonly used execution models
in operating systems: preemptive and cooperative. Preempt-
ive scheduling interrupts the executing thread (or process)
after a certain execution time, stores its current state, and
changes to another thread. It executes multiple threads—
each for a short time. It requires one call stack per thread
and consumes more time and memory than cooperative
scheduling. However, preemptive scheduling is better suited
to execute computationally intensive algorithms.

Cooperative scheduling typically uses functions or pro-
cesses that run to completion. Commonly, they are triggered
by events. Short sequences of code are more efficiently
scheduled cooperatively than preemptively. However, long
sequences of code tend to monopolize computational re-
sources and can cause execution delays. Furthermore, co-
operative scheduled code, in general, is difficult to maintain
and debug.

TinyOS [8] and Contiki [7] are the most common em-
bedded operating systems in sensor networks and are both
designed to provide a cooperative execution model and
events. Additional functions to provide software threads are
also provided. However, their thread-models have drawbacks.
TinyOS provides TOSThreads, which are executed in a
single high-priority kernel thread. They are only executed
when TinyOS becomes idle [16]. As a result, they have a
lower priority than the cooperative execution model. Contiki
provides Protothreads [17], which are two-byte-sized stack-
less threads that cannot be preempted in a common time-
slicing context. Each Protothread yields cooperatively and

another thread can take over [18]. A thread is only preemp-
ted by a hardware interrupt which executes certain run-to-
completion handler functions. As a result, Contiki is not a
preemptive operating system according to the definition in
[19].

The execution models of LiteOS [20], Mantis OS [21],
Nano-RK [22] and NuttX [23]—four embedded operating
systems—are based on preempted threads, which require one
call stack per thread. This creates a memory and time over-
head compared to cooperative scheduling. LiteOS and Mantis
OS use a priority-based round-robin scheduler. NuttX uses
FIFO/priority-based round-robin and sporadic scheduling.
Nano-RK uses rate-harmonized and rate-monotonic schedul-
ing, which provides real-time properties.

The aforementioned operating systems are mainly de-
signed to support measurements and communication, which
results in different system requirements compared to mini-
ature robots. For instance, motes typically have long inactive
and short active times. They are designed for low energy con-
sumption. On the other hand, a robot might constantly inter-
act with its environment. Consequently, it cannot be assumed
that the robot has long inactive periods. Interactions—such
as locomotion and actuation—usually require a significantly
higher amount of energy than the processor unit. Implicit
assumptions during the design of the presented operating
systems—such as processing time, energy consumption and
the lack of actuation—make these systems difficult to adapt
to the needs in robotics.

OpenSwarm, presented in this paper, has been primar-
ily designed for swarm robotics. It provides the benefits
of operating systems as well as an easy-to-use software
environment. It combines a preemptive execution model
of systems like LiteOS or Mantis OS with a cooperative
execution model, similar to TinyOS. The resulting hybrid
kernel enables OpenSwarm to compute long computational-
intensive tasks (such as image processing) at the same time
as short swiftly-reacting tasks (such as obstacle avoidance).
OpenSwarm also provides an architecture to manage in-
put and output devices (such as actuators) in a device-
independent manner.

III. ARCHITECTURE
OpenSwarm provides a monolithic kernel2, which allows

a small memory footprint and a high performance [19].
It is designed for platforms that lack support for different
access privileges (such as user and kernel mode) or memory
protection—for example, via a memory management unit
(MMU).

To provide an efficient system, user applications and
OpenSwarm are compiled into a single image, which is
uploaded to the microcontroller. One benefit of this approach
is that an application uses system calls directly and thus
generic translation tables are not needed.

Figure 1 shows the architecture of OpenSwarm. User pro-
cesses (applications) are hardware-independently executed

2A monolithic kernel compiles to one executable, is not layered, and
contains no un-/loadable modules [19].

http://ros.org/
https://aseba.wikidot.com/
http://www.tinyos.net
http://www.contiki-os.org/
http://www.liteos.net/
http://mantisos.org/
http://www.nanork.org/
http://nuttx.org/


Fig. 1: The OpenSwarm architecture. The top layer com-
prises the user processes (applications). The middle layer
represents the monolithic kernel. The bottom layer comprises
the hardware. Green boxes represent single-threaded pro-
cesses running in a flat memory space. Blue boxes indicate
modules of the kernel. Solid lines represent direct interac-
tions with modules, where red lines indicate hardware de-
pendent interactions. Dashed blue lines indicate interactions
through emitting events. Dotted green lines represent the
execution of events through handlers or previously-executed
blocking functions.

on top of the kernel. The kernel is thus the interface between
applications and hardware. It is divided into three logical
units: the Process Manager to provide concurrency, the
Event Manager to exchange information, and the Hardware
Abstraction Layer (HAL) for hardware abstraction.

A. Process Manager Module

OpenSwarm provides a novel hybrid kernel that natively
supports both preemptive and cooperative scheduling. Open-
Swarm is hence a multi-tasking system, that is, it can execute
multiple processes within a certain period concurrently. A
task can either be a process or a cooperatively scheduled
event handler.

A process is an independently-managed sequence of in-
structions with its own call stack. Processes are executed for
a guaranteed time interval (10 ms), which is controlled by a
time-slicing preemptive scheduler. In OpenSwarm, processes
are single-threaded. Due to the lack of separate protected
memory space, they behave like threads to each other in a
flat memory space. Therefore, thread and process are used
interchangeably in this paper.

OpenSwarm uses a five-state model where a process can
be new, ready, running, blocked, or zombie (see
Figure 2). During creation, a process is new and, during
termination, it is zombie. During its life-cycle, a process is
in one of the states ready, running, or blocked. The
change from one running process to the next is done by the
scheduler.

Fig. 2: OpenSwarm’s process state model. While a process is
being created, it is in state new (initial state). As soon as the
process is ready to be executed, it changes to ready. The
currently executed process is in state running. blocked
indicates that a process is waiting for an event to occur.
Once the event has occurred, the process changes its state to
ready. State zombie (final state) indicates that a process
is being terminated.

The scheduler stores and loads all working registers of
the processing unit and the call stack. Its algorithm can
be changed at run time. This can be used to implement
schedulers with different properties—such as real-time. By
default, a round-robin scheduler is used to guarantee fairness.

For short reactive sequences of code, cooperative schedul-
ing is preferable. It can be achieved by subscribing handler
functions to an event. Once this event occurs, the handler
function is executed and runs to completion. The handler
cannot use blocking functions, because it is not executed
as part of a thread and does not have its own call stack.
However, it still can be preempted by hardware interrupts.

B. Event Manager Module

In OpenSwarm, information between processes or mod-
ules is exchanged through events. Events provide platform-
independent abstraction to increase the portability of user
code. They can be used to access hardware functions (e.g.
obtain sensor values). To use an event, first, an event (such as
“new camera frame”) has to be registered, which informs the
operating system that this event can occur. When an event is
send and subsequently received, it is stored and processed
between the execution of threads to not compromise the
execution time of the currently running thread. If multiple
events occurred, each event is processed sequentially.

Events can also be used for interprocess communication
(IPC) and synchronization. Synchronization can be achieved
by calling blocking functions, which unblock once an event
has occurred and the transferred information matches a user-
defined condition.

C. Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) interfaces the
robot’s hardware with the hardware-independent part of the
system, that is, the processes and events. The HAL is modu-
lar in design. Each input/output (I/O) device is represented by
a dedicated module, which contains two layers (see Figure 3).
The lower layer interacts directly with the hardware via a
device-specific handler (including interrupts and registers). If
needed, this layer can also use other modules—such as I2C or
SPI. The top layer transforms values from hardware-specific
to hardware-independent, and vice versa, via a processor.



Processors are callback functions that can be changed during
run time by registering different functions. Note that they can
also be used to implement virtual sensors, virtual actuators,
or safety measures. For the case study in this paper, we use a
virtual line-of-sight sensor, which is realized using a camera
(see Section V-B). Virtual actuators could be used on an
omnidirectional robot to emulate different kinematic mod-
els. Safety measures could impose behavioural restrictions
similar to a subsumption architecture [24].

Fig. 3: Processing of data to/from input, output, and commu-
nication devices in OpenSwarm. Dashed blue lines represent
events. Red arrows represent hardware-specific data transfer.
Data exchange between different devices is indicated by thick
red arrows. Similar to Fig. 1, blue and green boxes represent
modules and processes of OpenSwarm.

HAL also comprises modules for hardware traps3 and in-
terrupts. One notable interrupt enables periodic scheduling of
threads. It is called the system timer interrupt (see Figure 1).

In general, HAL interfaces three types of devices: input,
output, and communication devices.

1) Input: Input devices, such as sensors, communicate
with the microcontroller via binary input or analog-to-digital
converter (ADC). After obtaining a value from the hardware
by executing the device-specific handler, the Pre-Processor
transforms it into a hardware-independent value and sends
the result as an event to all subscribers, as illustrated on the
left side of Figure 3. For instance, a proximity sensor reading
of 3520 obtained by an ADC might be transformed to 5 mm.
Non-linear sensor values could be linearized and converted
to arbitrary units.

2) Output: Output devices, such as actuators, interact with
the microcontroller via binary output or digital-to-analog
converter (DAC). Once an actuation value has been sent to
the Actuator Module, this value is then transformed by the
Post-Processor to a hardware-specific value and applied to
the hardware by the device-specific handler (see Figure 3).
For example, consider a robot that shall move with a certain
velocity in a particular direction. First, a thread emits an

3Hardware traps are detected fault states of the processing unit.

event that contains the desired hardware-independent direc-
tion and velocity (e.g. forward with 0.2 m

s ). It is then con-
verted into hardware-dependent values by the Post-Processor.
Under normal circumstances, the robot would immediately
apply these values to its actuators. However, let us assume
that the Actuator Module received an event informing it of an
unsafe area in front of the robot. The Post-Processor could
then change the hardware-dependent values to prevent the
robot from entering the unsafe area.

3) Communication: Communication devices, such as I2C
or UART, are commonly embedded in microcontrollers. The
structure to implement a communication device is similar
to the I/O modules. Raw communication messages, once
obtained by the device-specific handler, are unpacked by the
Rx-Processor. Error detection or correction is also applied
according to an implemented protocol. The retrieved data
is subsequently sent as an event to all subscribers. Once
an event has been received by the Tx-Processor, outgoing
data is dynamically buffered and packed into a message.
Thereafter, it is sent asynchronously by the hardware-specific
handler. Note that different protocols can be implemented by
extending or replacing the Rx-/Tx-Processors.

IV. IMPLEMENTATION

OpenSwarm is released under an open-source license
(adapted FreeBSD License) and its source code can be found
at [25]. Documentation, tutorials, and further details can be
found at www.openswarm.org. OpenSwarm is written in C
to facilitate the portability to other devices. The used imple-
mentation supports the miniature mobile robot e-puck4 [9].

Hardware-specific code was kept to a minimum (489 of
2783 lines of code = 17.6 % of OpenSwarm v0.15.9.15
without I/O device implementations). To deploy OpenSwarm
onto another robot platform, only a subset of OpenSwarm’s
functions have to be reimplemented. An example of how
to design and port a module of OpenSwarm to the Kilobot
platform [3] is provided in [27].

OpenSwarm supports the inclusion of new HAL modules,
enabling the extension of its features. It is good practice
to avoid access to low-level hardware from the user space
as this would reduce the portability of the code. However,
developers could access, for instance, raw sensor data or
other low-level hardware resources.

A. System Calls

OpenSwarm provides system calls to execute, manage,
communicate with, and synchronize threads. Table I lists the
most important system calls required to write applications.

1) Initialize and Start: OpenSwarm is made operational
by calling Sys Init Kernel and Sys Start Kernel.
Sys Init Kernel initializes the input and output ports,
the system timer, controllers of periphery, and communic-
ation. This also generates the system thread. Sys Start

4To facilitate the readability of the source code, three source files
(e epuck ports.h, e init port.h, e init port.c) from the e-
puck library [26] were used to define I/O registers and configure the robot.

http://openswarm.org/license/
www.openswarm.org
http://www.e-puck.org/
http://www.e-puck.org/index.php?option=com_phocadownload&view=category&id=11:library&Itemid=38
http://www.e-puck.org/index.php?option=com_phocadownload&view=category&id=11:library&Itemid=38


TABLE I: A list of important system calls of OpenSwarm.
System calls can be used in threads. A complete list can be
found in [28].

System Call Description
Sys Init Kernel

Initialize and StartSys Start Kernel
Sys Run SystemThread
Sys Start Process

Task Management
Sys Kill Process
Sys Yield
Sys Start CriticalSection
Sys End CriticalSection
Sys Register Event

Event Management
Sys Unregister Event
Sys IsEventRegistered
Sys Subscribe to Event
Sys Unsubscribe from Event
Sys Send Event

Interprocess Communication
& Synchronization

Sys Wait for Event
Sys Wait for Condition

Kernel starts all necessary timers and enables all inter-
rupts. The latter two functions were separated to give the
user the option to execute code before system start. This
would allow, for instance, events to be registered before any
thread is executed.

Once OpenSwarm has been started, the system thread is
executed by calling Sys Run SystemThread.

2) Task Management: To add new threads, Sys Start
Process allocates the process control block (PCB) [29]

and thread-specific stack. Once the thread is due, the pro-
cessing unit executes the function that was passed as a para-
meter. Each thread has a unique identifier, processID, and
can be terminated and removed with Sys Kill Process.
If a process wants to suspend itself prematurely, it calls Sys
Yield.

Running threads may contain a critical section of
code that needs protection from interruption to pre-
vent data inconsistencies or program faults. Sys Start
CriticalSection and Sys End CriticalSection

start and end a critical section, respectively. If the system
timer interrupt occurs, scheduling is postponed to the end of
the critical section. It is worth noting that critical sections
could also prevent the change of threads and, therefore, can
monopolize the processing unit, if used excessively.

3) Event Management: To use an event, it must first
be registered in the system by using Sys Register
Event. Similarly, Sys Unregister Event is used

to remove an event. Sys IsEventRegistered checks
if an event is registered. A complete list of available
events can be found in [27], [28]. Furthermore, threads
subscribe a certain handler function (callback function)
to an event by executing Sys Subscribe to Event.
Sys Unsubscribe from Event unsubscribes a thread.
Note that event handler functions can only be subscribed
once to a specific event by a specific thread. However,
different threads can subscribe the same handler to the same
or different events.

4) Interprocess Communication & Synchronization: To
communicate with other threads, data can be send with the
non-blocking function Sys Send Event. The transferred
data is copied to a process-internal event table and processed
asynchronously by the Event Manager. All event handler
functions are executed between two scheduled threads. This
provides a fast response time without delaying the running
thread.

Concurrent threads can be synchronized by Sys Wait
for Event, which blocks a thread until a specific event

occurs and returns a pointer to its data structure. Sys Wait
for Condition blocks a thread until the event data meets

a condition defined by a function that was passed as a
parameter. The condition function can represent user specific
requirements and does not have to process the transferred
data. For instance, it can wait until a 1 ms clock event
occurred 250 times, if the application has to wait 250 ms.

V. EVALUATION
The evaluation is based on OpenSwarm v0.15.9.15 com-

piled by Microchip MPLAB XC16 Compiler v1.25 (released
28.07.2015 for Linux 64-bit) for the miniature mobile robot
e-puck [9]. The e-puck was chosen due to its wide use in the
domain of swarm robotics [30], [31], [32]. Its processing unit
is the Microchip dsPIC30F6014A, which provides 15 MIPS,
8 kB RAM, and 144 kB ROM.

A. General Properties
Table II shows general properties of OpenSwarm and other

embedded operating systems. As can be seen, OpenSwarm is
the only embedded operating system to natively support both
cooperative and preemptive scheduling. Scheduling mechan-
isms that are natively implemented in the system are more
efficient than mechanisms marked as ‘library’, as the latter
are executed in the application layer. All operating systems
provide resource sharing mechanisms. The two operating
systems that support threads through additional software
library and cooperative scheduling (i.e. Contiki and TinyOS)
do not provide system-wide process synchronization mech-
anisms.

OpenSwarm has an overall static memory footprint of 1 kB
of RAM and 12 kB ROM. Based on the memory footprints
listed in Table II, OpenSwarm consumes a relatively small
amount of memory. The memory footprint values for other
systems are from the literature [33], [7], [21], [22], [20],
[23]. These values result from implementations on different
devices and may change for other devices.

IN OpenSwarm, each thread requires 146 B5 of dynamic-
ally allocated memory. Each event uses 6 B of dynamically
allocated memory. In addition, the data that was sent last with
event i is also buffered and consumes memory (di B). Over-
all, the required RAM (in bytes) for OpenSwarm v0.15.9.15
can be calculated for n user threads and m user events by:

1142+146n+6m+
m

∑
i=1

di. (1)

5This assumes a default stack size of 128 B. The required memory
increases if the user allocates memory inside the thread.

http://www.microchip.com/pagehandler/en-us/devtools/mplabxc/home.html
http://www.microchip.com/pagehandler/en-us/devtools/mplabxc/home.html
http://www.e-puck.org/
http://www.microchip.com/wwwproducts/Devices.aspx?product=dsPIC30F6014A


TABLE II: List of embedded operating systems and key properties.

Operating Architecture Programming Scheduling Events Dynamic Resource Process Memory Usage
System Model Cooperative Preemptive Memory Sharing Synch. RAM ROM

Contiki [7] modular events & natively only with yes yes serial no 2 kB 60 kBinterrupts interrupts access
LiteOS [20] modular threads no natively yes yes mutex yes < 4 kB < 128 kB

Mantis OS [21] layered threads no natively no yes semaphores yes 500 B 14 kB

Nano-RK [22] monolithic threads no natively only to no mutex & yes 2 kB 18 kBsynchronize semaphores
NuttX [23] modular threads no natively no yes POSIX standarda yes n/a ≥ 32 kBb

TinyOS [8] monolithic events & natively library yes no virtualization noc n/a ≥ 400 Bd
threads & events

OpenSwarm monolithic events & natively natively yes yes event-based yes 1 kB 12 kBthreads IPC

aNuttX provides POSIX standard Interprocess Communication methods, such as semaphores, shared memory, or message queues [23].
bNuttX requires 32 kB in its smallest configuration [23]. The memory footprint of a deployed system is not documented.
cTinyOS cannot synchronize threads with the event-driven cooperative part of it. Between threads, processes can synchronize.
dTinyOS’s core elements use 400 B [8]. The memory footprint of a deployed system is not documented.

B. Swarm Robotics Case Study

We use a canonical swarm robotics task, object cluster-
ing [10], to illustrate the use and analyse the performance
of OpenSwarm. The task requires a group of robots to push
together objects. Each robot uses a line-of-sight sensor to
determine what is in front of it: another robot, an object,
or nothing (i.e. a wall, if the environment is bounded). The
detection is based on color: robots are green, objects are
red, and the environment is white. The controller maps the
obtained color onto a pair of predefined wheel speeds [10].

1) Implementation: Listing 1 shows the controller im-
plementation using OpenSwarm. To realise the line-of-sight
sensor, the image from the on-board camera is transformed
into a single color value by a customized pre-processor
(not shown). The resulting value is then sent as a SYS
IO 1PXSENSOR event. Note that the transformation to a

virtual line-of-sight sensor requires a significant amount of
the available resources.

Function main initializes the system. It registers
all system events—including SYS [LEFT|RIGHT]MOTOR
SPEED, SYS SEND UART1, SYS 1ms TIMER, and SYS
IO 1PXSENSOR. Then, the object clustering controller

(object clustering) is subscribed to the camera event
SYS IO 1PXSENSOR. A thread loggingThread is alloc-
ated. OpenSwarm is then started, including timers and inter-
rupts. From that point onwards, the operating system (system
thread) and the logging thread are executed concurrently.

In parallel to threads, the object clustering con-
troller is cooperatively executed each time event SYS IO
1PXSENSOR occurs. Depending on the received color

value, the appropriate speed values are send to the motors
with events (SYS [LEFT|RIGHT]MOTOR SPEED). The
wheel speeds parameters ROBOT SPEED [L|R], OBJECT
SPEED [L|R], and NOTHING SPEED [L|R] are taken

from [10].
The loggingThread sends the system time and the

wheel speeds via Bluetooth (connected to UART1). After
the execution, the thread waits 250 ms by using the
SYS 1ms TIMER event with the wait250times condi-

tion function.

1 vo id loggingThread ( ) ;
2 vo id wait250time (sys_event_data ∗data ) ;
3 boo l object_clustering (uint16 PID , uint16 ←↩

EventID , sys_event_data ∗data ) ;
4

5 i n t main ( vo id ) {
6 Sys_Init_Kernel ( ) ; / / i n i t i a l i s e OS
7

8 Sys_Subscribe_to_Event (SYS_IO_1PXSENSOR , 0 ,←↩
object_clustering , NULL ) ;

9 System_Start_Process (loggingThread ) ;
10

11 Sys_Start_Kernel ( ) ; / / s t a r t OS
12 Sys_Run_SystemThread ( ) ; / / run sys tem t h r e a d
13 }
14

15 boo l object_clustering (uint16 PID , uint16 ←↩
EventID , sys_event_data ∗data ) {

16 sys_colour rx_color = data−>value ;
17

18 s w i t c h (rx_color ) {
19 c a s e GREEN : / / O the r r o b o t
20 Sys_Send_IntEvent (SYS_LEFTMOTOR_SPEED , ←↩

ROBOT_SPEED_L ) ;
21 Sys_Send_IntEvent (SYS_RIGHTMOTOR_SPEED ,←↩

ROBOT_SPEED_R ) ;
22 b r e a k ;
23 c a s e RED : / / o b j e c t
24 Sys_Send_IntEvent (SYS_LEFTMOTOR_SPEED , ←↩

OBJECT_SPEED_L ) ;
25 Sys_Send_IntEvent (SYS_RIGHTMOTOR_SPEED , ←↩

OBJECT_SPEED_R ) ;
26 b r e a k ;
27 c a s e WHITE : / / n o t h i n g o r w a l l
28 Sys_Send_IntEvent (SYS_LEFTMOTOR_SPEED , ←↩

NOTHING_SPEED_L ) ;
29 Sys_Send_IntEvent (SYS_RIGHTMOTOR_SPEED , ←↩

NOTHING_SPEED_R ) ;
30 b r e a k ;
31 d e f a u l t : / / a n y t h i n g e l s e
32 b r e a k ; / / do n o t h i n g
33 } }
34

35 vo id loggingThread ( ) {
36 s t a t i c c h a r message [ 2 4 ] ;
37 w h i l e ( t r u e ) {
38 sprintf (message , ”\%u :(\%u,\%u ) \n ” , ←↩

Sys_Get_SystemTime ( ) , ←↩
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Sys_Get_MotorSpeed_Left ( ) , ←↩
Sys_Get_MotorSpeed_Right ( ) ) ;

39 Sys_Send_Event (SYS_SEND_UART1 , message , ←↩
24) ; / / send v i a B l u e t o o t h

40

41 Sys_event_data data = ←↩
Sys_Wait_for_Condition (SYS_1ms_TIMER ,←↩
wait250times ) ;

42 Sys_Clear_EventData(&data ) ;
43 } }
44

45 vo id wait250time (sys_event_data ∗data ) {
46 s t a t i c uint8 counter = 0 ;
47 i f (counter++ < 250){
48 r e t u r n f a l s e ;
49 }
50 counter = 0 ;
51 r e t u r n t r u e ;
52 }

Listing 1: Program used in the object clustering case
study. This code illustrates how OpenSwarm can be used.
It was executed on each of the five physical e-pucks in
the case study.

2) Experiment Setup: In the experiment, five robots
pushed 20 objects together to form a cluster (see Figure 4).
The robots and objects were uniformly randomly distributed
on 165 pencil marks arranged in a 15×11 grid. The pencil
marks are equally spaced (25 cm) in a 400 × 300 cm
arena with light grey floor surrounded by 50 cm tall white
walls. The robots were fitted with green skirts to simplify
identification. The objects were red and had a diameter of
10 cm and a height of 10 cm.

Twenty experimental trials were conducted, ten with the
hardware-near [10] and ten with the OpenSwarm implement-
ation. The experiments were conducted following the same
protocol as in [10]. Each trial lasted 15 minutes. Video
recordings of all experiments are available on the online
supplementary material website [27].

(a) (b)

Fig. 4: Snapshots of the object clustering experiment: (a)
initial distribution of robots and objects; (b) distribution after
10 min.

To provide comparable results, OpenSwarm and the
hardware-near implementation used the same camera con-
figuration and logic to obtain the sensor values and the
logging thread was disabled. Due to sensor misalignment
and noise, the line-of-sight sensor value was calculated from
a 160×160 sub-frame of the 640×480 CMOS RGB camera
with a 8× digital zoom. This created reliable sensor values

within 150 cm [10].
3) Analysis: Figure 5 shows results of the hardware-near

implementation (black) and the implementation with Open-
Swarm (red). We consider two performance metrics [10].
Figure 5a shows the proportion of objects in the largest
cluster (a) and the compactness of the cluster (b). The
compactness is computed, as in [10], by

u(t) =
1

4r2
o

No

∑
i=1
||p(t)

i − p̄(t)||2, (2)

where ro is the radius of the object, No is the number
of objects, p(t)

i denotes the position of object i, and p̄(t)

represents the centroid of the center of all objects.
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Fig. 5: Dynamics of object clustering with five physical
robots and 20 objects, (a) average proportion of clustered
objects over time; (b) average compactness of objects over
time. In black, the results obtained in 15 minutes using
the hardware-near implementation [10]. In red, the results
obtained in 15 minutes using OpenSwarm. The dashed grey
and light-red lines represent the mean value ± standard devi-
ation of the hardware-near and OpenSwarm implementation,
respectively.

Overall, both the hardware-near and OpenSwarm imple-
mentations are similar in performance (see Figure 5). Both
implementations succeeded in clustering the objects.

VI. CONCLUSION

We presented OpenSwarm, the first operating system
designed for severely computationally constrained robotic
systems. OpenSwarm provides a multi-tasking environment,
which supports natively both preemptive and cooperative
scheduling. This makes OpenSwarm suitable for both com-
putationally intensive and swiftly responsive tasks.



OpenSwarm enables the developer to design platform-
independent solutions. This is realised by using a hardware
abstraction layer. OpenSwarm thus facilitates the implement-
ation of high-level control strategies, and improves reprodu-
cibility of experiments across devices.

We reviewed general properties of embedded operating
systems (including OpenSwarm). OpenSwarm provides a
small memory footprint of 1 kB RAM and 12 kB ROM
while offering a broad range of features, such as interprocess
communication/synchronization.

The usage of the system was illustrated by a code example
implementing a controller solution for a canonical swarm
robotics problem. This code was then used in experimental
trials with five physical e-puck robots. Their performance
was on par with that of a hardware-near implementation from
the literature.

In the future, we plan to extend OpenSwarm to provide
cooperative computing across multiple devices. Furthermore,
we plan to deploy OpenSwarm on further platforms—such
as the Kilobot robot, which is based on Atmel’s megaAVR
series.
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