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Abstract1

Most available bank asset allocation models use several risk measures2

as constraints; as a consequence, the comparison of the risk between dif-3

ferent asset allocation strategies is often difficult, since each strategy is4

subject to several risks.5

With this research, we create a simulation-optimization methodology6

that measures interest rate, credit and liquidity risks in a unified manner.7

The associated risk events, such as interest rate increases, liquidity out-8

flows or spikes in defaults are generated using the same simulation engine,9

giving as output a single risk measure (the probability of failure, used by10

ratings agencies) that aggregates those risks under the same simulation11

engine.12

Finally, we use our methodology to determine Pareto fronts for the13

optimal balance sheet allocations and minimum-risk strategies. As a re-14

sult, several findings emerge, such as: 1) Risk is dependent on the income15

stream; 2) Allocation to book value assets is preferable; 3) Under low16

rate environments, a full allocation to cash is very risky and is not the17

minimum risk strategy; 4) Banks can make investments in stocks in envi-18

ronments of high prospective returns and low leverage.19

1 Introduction20

Risk aggregation is one of the most important topics in risk management and21

bank strategic asset allocation, as it is the main methodology used in inter-22

nal capital adequacy exercises (ICAAP) for banks. For years, academics and23

practitioners have tried several solutions to risk aggregation.24

In typical bank risk management, interest rate risk is usually measured using25

Economic Value of Equity (EVE), while credit risk is evaluated with CreditVaR26

and liquidity risk is assessed with Liquidity at Risk (LaR). All these risks are27

measured separately, under measures that are not comparable; as a consequence,28

the aggregation of risks used in exercises such as ICAAP is not rigorous, and29

fails to account for liquidity risk.30

When addressing the different risks in the balance sheet it is important to31

ensure that there is comparability in order to assess the decisions. For example,32

if one wants to compare three strategies, one that has a CreditVaR of 100 and33

no other risk, one that has an interest rate risk (EVE) of 100, and one that has34

an LaR of 100, which one is the riskier? The methodologies are different, the35

measures are not comparable. CreditVaR typically uses a book-value approach36

to measuring losses, whereas EVE uses fair-value impacts, and liquidity at risk37

usually measures the outflows against the lack of liquid resources to compensate38

for those outflows. Having a simulation approach that models under the same39

framework credit, market, interest rate and liquidity risk is important to make40

such assessments.41

The usual way to circumvent this difficulty is to mix these risks in an ad hoc42

fashion. Step 1 is measuring each risk (credit, market, interest rate); Step 2 is to43

mix them under some rule, which either sums the risks, assumes independence44

of the risks or assumes correlation between the different types of risk. The more45

sophisticated approaches use copulas, but the lack of comparability of the dif-46

ferent risks persists. The literature is quite vast, but possible approaches are47

described in Brockmann and Kalkbrener [9], Chong, Feng, and Jin [17], Di Las-48
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cio, Giammusso, and Puccetti [27], Rosenberg and Schuermann [57], or Uryasev,49

Theiler, and Serraino [61]. However, as we mentioned before, these methodolo-50

gies aggregate risks that are not comparable. Alessandri and Drehmann [1] and51

Jobst, Mitra, and Zenios [42] model different risks under the same simulation52

engine, but these methodologies do not account for liquidity risk. Gubareva53

and Borges [34] propose integrating credit and interest rate risk with the infor-54

mation from traded derivatives, but again do not incorporate funding liquidity55

risk stemming from customer potential withdrawals. The reader can also refer56

to the survey by Li et al. [45] on risk integration.57

As we will see below, our research will go beyond risk integration. Risk58

integration is just the starting point for the paper, whose primary focus is to59

provide strategic asset allocation for banks based on unified risk measures. To60

the best of our knowledge, the risk integration papers focus solely on risk and61

do not provide insights on the optimal strategies to be followed by banks.62

This problem of risk integration feeds into bank strategic asset allocation.63

When maximizing return against risk, it is important to compare different64

strategies, particularly those that are credit risk-intensive to those that are65

interest rate risk-intensive or liquidity risk-intensive. If there is no unified way66

to compare interest rate, credit and liquidity risks, there is no possibility to67

evaluate the best strategy in a comparable manner. Going back to the example68

above, assume a bank has three possible strategies: one that has a CreditVaR69

of 100 and a return of 2 (assuming no other risks), a second strategy that has70

interest rate risk of 100 and a return of 3, and a third strategy that has liquidity71

at risk of 100 and a return of 2; which strategy is the best? Without a single72

framework to evaluate the different risk factors, it will be difficult to evaluate the73

strategies. From the point of view of the manager, he is interested in assessing74

the risk of failure of the bank, which can be liquidity-driven or solvency-driven.75

We solve the lack of comparability in the bank asset allocation problem76

by simulating liquidity, credit and interest rate risks under the same engine:77

liquidity risk is modeled with a liquidity volume econometric model, devised78

by [21]; our engine simulates the interest rates and defaults using a methodology79

close to [2]. The simulation of these risk factors feeds into the balance sheet80

equations, and with that we are able to calculate risk and return measures. To81

assess risk, we use the probability of failure over a certain horizon although82

other measures may be used. The probability of failure is the measure ratings83

agencies use to assess financial strength, and encapsulates both solvency-led84

failures (depletion of capital) and liquidity-driven failures (running out of liquid85

resources to compensate outflows).86

We have used the approach for certain asset classes which are more relevant87

in the case of commercial banks, but the approach can be extended to several88

other aggregates in the balance sheet and even different for banks operating in89

different jurisdictions. This seems like a promising avenue for future research90

and for use at commercial banks.91

Having the simulation for the balance sheet ready, we can then pursue92

optimization. As we show in Section 5.1, the optimization problem is non-93

continuous, non-differentiable and non-convex. In addition, we aim to obtain94

a global optimum. These would be significant drawbacks, but the structure of95

the problem leads to two great advantages: it has few optimization variables,96

and also does not need very sharp tolerances, as the simulation outputs also97

have errors. Therefore, a grid search on the possible combinations (within a98
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certain tolerance), generates very satisfactory and intuitive solutions, as we will99

see below. In the grid search we set a tolerance of 1% on the allocations, which100

does not make a significant difference for a bank in a practical context. In effect,101

from the point of view of establishing asset allocations, the difference between102

a 15% or a 16% allocation is usually not important in practice.103

The solutions obtained by this method will be good approximations for104

global minimizers, avoiding the convergence of the algorithms to local mini-105

mizers that may be far away from global solutions. If more accurate solutions106

need to be obtained, multi-objective optimization algorithms [35, 54] can be107

used starting from the referred solutions. In a practical context, the solutions108

with more accurate precision would not add value, given the tolerances that are109

needed in practice. Also, the objective function stems from a simulation, so its110

accuracy is O(1/
√
numPaths), where numPaths is the number of simulated111

paths. Specifying sharp tolerances in the optimization would render an exercise112

that would still have a significant margin of error that comes from the objective113

function.114

In this fashion, we are able to steer away from the problems associated with115

local and global optimization problems (for example, converging to local minima116

in the case of local optimization, or failing to generate enough initial solutions117

properly in the case of global optimization problems so that the problem does118

not converge to the global maximum).119

We generate Pareto fronts, yielding very intuitive results which highlight120

critical issues in bank strategic asset allocation. First, the optimizer gives a121

clear prevalence to book value asset classes (namely mortgages), which, unlike122

fair value classes, do not generate volatility in the balance sheet from changes123

in market prices. This finding is consistent with [8], who conduct an asset124

optimization methodology for securities at fair value and amortized cost. We125

also observe that leverage is correlated to risk (not surprisingly). The level and126

risk of the Pareto fronts reflect the economic environment and the prospective127

risk premia on the different asset classes.128

Our methodology also shows a critical interaction between return and risk.129

Usually risk and return are measured separately, but risk is highly dependent130

on return. Let us give another example. Suppose that, in an environment of131

low interest rates, a bank manager decides to invest all his assets in cash, as this132

would be the textbook-type riskless portfolio taught in mean-variance analysis.133

Since the bank has an operating cost structure to pay for, the bank would be134

certainly destined to fail, since it would have consecutive losses with certainty.135

The textbook riskless allocation strategy is clearly not the riskless strategy in136

our setting, and does not have the lowest risk, as we discuss in Section 5.4. In137

other words, if a bank does not generate return, it will be risky in the medium138

term.139

Our approach also shows that stock investments make sense particularly in140

environments of low leverage and high prospective returns.141

In summary, our integrated strategic asset allocation methodology has three142

main steps:143

• Step 1: Scenario generation framework for the relevant risk factors; this144

is described in Section 2.145

• Step 2: Simulation of the bank’s asset allocation, based on the simulation146
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of the risk factors, and the computation of the risk-return measures; this147

is described in Section 3.148

• Step 3: Optimization of the bank strategies and determination of the149

Pareto fronts, based on the simulation of the bank’s balance sheet; this is150

described in Section 4.151

Our introduction would not be complete without a brief survey on the re-152

search output on balance sheet management and bank asset allocation.153

Portfolio allocation models had great developments in the second half of154

the last century. The seminal work of Markowitz [47] influenced generations of155

asset allocation methods in several contexts. Merton [48] and Samuelson [58]156

developed the theory for investments under a lifelong consumption stream. The157

book by Campbell and Viceira [11] describes many models on asset allocation.158

Pandolfo, Iorio, Siciliano, and D’Ambrosio [55] use a non-parametric estimation159

method based on statistical data depth functions to obtain a model that is less160

sensitive to changes in the asset return distribution.161

Allocation models for insurance and pension funds also had numerous ad-162

vances. We highlight a few of the pioneers in this field. The book by Ziemba163

and Mulvey [69] provides excellent references to the subject. Other references164

include Boender [3], Cariño et al. [12], Consigli and Dempster [20], Gondzio165

and Kouwenberg [31], Kouwenberg [43], Lucas and Zeldes [46], Mulvey and166

Thorlacius [50], Mulvey and Vladimirou [51], and Zenios [68]. These papers of-167

ten build stochastic scenarios and optimize portfolio allocations based on those168

scenarios.169

In the context of banking, Chambers and Charnes [13] and Eatman and170

Sealey [29] developed deterministic models. Stochastic models can be traced171

back to Brodt [10], Charnes and Thore [15], Kuzy and Ziemba [44], and Pyle [56].172

Bradley and Crane [5] [6] and Wolf [67] developed sequential decision models. All173

these models, naturally, do not incorporate the financial theory and regulation174

that were subsequently developed.175

Looking into more recent advances, Birge and Júdice [2] created a methodol-176

ogy for simulating scenarios on the balance sheet over many periods. Halaj [37]177

devised an optimal balance sheet framework for a single-period model. Ha-178

laj [38] created an optimal balance sheet model with liquidity risk, but does the179

computational work over a two-period model (although a multi-period model180

is mentioned). The model does not take into account interest rate risks, and181

also does not have a unified measure of the different risks. Coelho, Santos and182

Júdice [18] have recently created an optimal balance sheet model for one period,183

ensuring robustness with turnover constraints. The approach, however, does not184

have a comparable framework to model different risks. Dewasurendra, Júdice185

and Zhu [26], have recently created an optimal balance sheet model based on186

a modified Kelly criterion, but this model does not account for credit risk or187

liquidity risk. Schmaltz, Pokutta, Heidorn and Andrae [59] devised an optimal188

framework for balance sheets for a non-compliant bank under Basel III, but189

their model does not account for interest rate risk, nor does the paper have the190

comparable framework we pursue in this research.191

In our opinion, the approach we propose can be also used in practice to advise192

boards at banks on strategic asset allocation. To the best of our knowledge, in193

practice many existing bank asset-liability management (ALM) techniques take194

the asset and maturity structures of a bank as a given and try to optimize the195
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trade-off between funding costs, interest rate risk and liquidity risk, by changing196

the maturity profile of the liabilities, or by using derivatives such as interest197

rate swaps. Our approach is different. Given a bank capital structure formed198

by equity and deposits, our methodology devises optimal asset allocations for a199

bank, taking into account the risk factors which have been discussed, including200

credit risk. This output can be used for instance in strategic plans.201

We can view our framework as an Expert System (ES) for banking man-202

agement: a computerized application that advises and helps decision-makers203

based on quantitative and/or qualitative information. The application and de-204

velopment of ES have already a long tradition in the financial domain, cover-205

ing several fields such as financial analysis, banking management, investment206

advisory, and financial marketing [52]. Earlier ES were mainly rule-based algo-207

rithms, like Port-Man, which helped banks to advise their customers on their208

investments [14]. Port-Man consists of a search algorithm looking for feasible209

products based on personal information about the investor, e.g., risk appetite210

and tax and pension implications.211

Nowadays, researchers investigate much more complex ES, some based on the212

recent trend of artificial intelligence and machine learning algorithms. One such213

case is Ferreira et al. [30], where the authors propose a fuzzy multiple-attribute214

framework for portfolio optimization in private banking. The approach consists215

of two steps: first, a fuzzy sorting method to match the investors’ profile to the216

banks’ investment options; next, a multiobjective optimization model to find217

the optimal allocation. The optimal allocation considers risk, return, and the218

investors’ profile. Other research includes combining the mean-variance model219

with machine learning algorithms to select assets and predict future returns.220

For such task, Wang, Li, Zhang, and Liu [64] use deep learning long-short term221

memory networks, while Chen, Zhong, and Chen [16] use a combination of222

clustering and a radial basis function neural network.223

While the contributions above focus on optimal asset allocation for portfolio224

management, our research aims to find the optimal asset allocation for a bank,225

given a capital structure consisting of deposits and equity. Portfolio manage-226

ment problems deal with traded assets, which have market prices. Bank asset227

allocation is a different problem. First, most assets do not trade in liquid mar-228

kets, so they are accounted at book value rather than at fair value. Second,229

most assets are illiquid, thus the need to manage funding risk much more care-230

fully than in the context of portfolio management. Third, the problem depends231

on the bank’s capital structure, i.e., the proportion of shareholders’ equity to232

creditors’ funds. In contrast, in portfolio management, typically investors in the233

fund share the same characteristics.234

The paper is organized as follows: Section 2 develops the scenario simulation235

engine, largely based on results in [2] and [21]; in Section 3, we conduct the236

simulations for the balance sheet that enable us to conduct the risk and return237

assessments, which will be optimized in Section 4 obtaining the Pareto fronts;238

Section 5 discusses the results; we conclude in Section 6.239

2 The scenario generation framework for the risk240

factors241
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For asset allocation models, scenario generation often resorts to vector autore-242

gressive processes [60] or stochastic differential equations. Among the first mar-243

ket interest rate models are the short-rate models of Brennan and Schwartz [7],244

Cox-Ingersoll-Ross [22], and Vasicek [62]. These models, however, do not in-245

corporate the interactions between market and retail banking rates, which have246

been subsequently studied by Diebold and Sharpe [28], Hutchison and Pennac-247

chi [39], Jarrow and Van Deventer [41], and Janosi, Jarrow, and Zullo [40]. Birge248

and Júdice [2] have built an interest rate risk model that explores the interac-249

tions between market and retail banking rates using a vector autoregression that250

accounts for auto-correlation.251

The literature on credit risk is quite extensive (see for instance Gordy [32]252

and Crouhy et al. [24]). Seminal references include CreditMetrics [36], Cred-253

itRisk+ [23], CreditPorfolioView [65, 66], Gordy [33], the KMV model [4], and254

Vasicek [63]. Many of the models are based on the framework of Merton [49].255

The model by Birge and Júdice [2] builds upon the Vasicek credit model by256

introducing autocorrelation and a momentum term.257

Stochastic models for liquidity volumes appeared in the literature previously.258

Jarrow and van Deventer [41] and O’Brien [53] developed stochastic deposit259

volume models. Recently, Costa et al. [21] have introduced a panel data model260

for simulating deposits, with the advantage that this model can simultaneously261

account for both episodes of boom and failed banks in the sample.262

We start then by developing the scenario generation framework for the risk263

factors. We simulate the risk factors which are relevant to our research, namely264

the interest rates on different classes, equity returns, credit losses, and deposit265

volumes. Using a single simulation engine, we are able to generate the relevant266

risks. Interest rate risk is included by using a vector auto-regressive model on267

the different relevant interest rates; equity returns (stocks) are modeled by an268

autocorrelated process fitted to the Standard & Poor’s index; credit losses are269

also modeled using an autocorrelated process; and liquidity flows are modeled270

according to an auto-regressive model with momentum, calibrated to a cross-271

section of different banks. The estimation results given in this section are taken272

from the research conducted by Costa, Faias, Júdice and Mota, whose most273

interesting findings were published in [21]. The interest rates and charge-off274

model is inspired by the research of Birge and Júdice [2].275

The motivation, effectiveness, and estimation of this type of models was276

investigated by those authors, and so some details are omitted. For the sake of277

clarity, we review the main points. First, we will address the data sources and278

notation and then we discuss the models and methods, where we present the279

estimation of the interest rate model, followed by the credit loss model and the280

stock price model, and finally, the deposit volume model.281

2.1 Data and Notation282

As argued in [2] and [21], financial crises have highlighted the need for better283

long-term bank asset allocation policies that allow the banks to remain profitable284

and solvent through economic cycles. Optimal long-term asset allocation policies285

are crucial to provide adequate returns to the bank stakeholders in the long286

run. Moreover, the long-term nature of most assets in bank balance sheets only287

reinforces the need for long-term asset allocation strategies.288

With this in mind we take scenario generation framework from [2] and [21]289
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that allows the long-term simulation of interest rates, equity returns, charge-offs,290

and deposit volumes. To adjust the underlying stochastic models, the authors291

of these papers have used long historical data spanning several decades and292

covering periods of economic growth and economic downturn. In particular,293

the interest rates data is from FRED (Federal Reserve Economic Data) and294

spans from 1971 to 2016, covering periods of very high rates (early eighties)295

and the recent periods of very low rates. The charge-off data is also from296

FRED and spans from 1985 to 2016, covering a period of increasingly high rates297

corresponding to the 2007-2008 subprime crisis. The S&P price index is from298

the Robert Shiller Irrational Exuberance Database and spans from 1946 to 2016.299

Regarding the liquidity flows the authors of [21] used the annual deposit data300

from 9 Portuguese banks spanning from 1992 to 2016. The banks were selected301

based on the criterion of having an average of at least 10 billion euros in client302

deposits during this time span, considering a total of 128 observations. The303

panel data of Portuguese banks constitutes a very rich dataset, as it encapsulates304

periods of crises and failed banks, so that the model proposed by the authors can305

simultaneously account for episodes of boom and periods of financial crises and306

bank failures, thus yielding realistic scenarios for liquidity management and LaR307

estimates. In fact, the nineties were characterized by a boom in the Portuguese308

banking system, fueled by the privatization of formerly nationalized banks (in309

the aftermath of the Carnation Revolution of 1974) and the 1993 European310

single market for financial services. On the other hand, in 2011 Portugal needed311

a bailout, and from 2011 to 2014 was under severe austerity measures imposed312

by the Troika (European Union, European Central Bank, and the International313

Monetary Fund). The data analyzed in [2] and [21] are depicted in Figure 1.314

The model’s parameters were estimated using this data set and ordinary least315

squares.316

In Table 1 we show the model asset classes, risk factors and the data sources317

for each risk factor.318

Asset class Risk factors Data

Cash Wholesale rates FRED
Mortgage rates Interest rates and

charge-off rates
FRED

Public debt (bonds) Yields FRED
Equities (stocks) S&P index and div-

idend data
Robert Shiller Irrational
Exuberance Data

Deposits Deposit rates and Rates – FRED
Liquidity flows Cross section of bank de-

posit volume series from
Portuguese banking asso-
ciation

Table 1: Asset classes considered in this work. For each asset class, we highlight
the risk factors and the data sources.

2.2 Interest rate simulation319
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Figure 1: Historical data used to fit the risk factor models in [2] and [21]. On
the upper left-hand corner, we show the US historical data for mortgage rates,
10-year Treasury bond rates, wholesale funding rates, and deposit rates. On
the upper right-hand side, we show the historical credit losses (charge-off rate)
for mortgages. The lower left-hand side shows the historical S&P price index,
used to estimate the equity process. On the lower right-hand side we show
the historical data for the bank deposits used to estimate the liquidity volume
process; since the model was estimated to panel data of 9 banks, we show the
historical average.

The interest rate scenario generation is very similar to Birge and Júdice [2]. As320

argued by the authors, their interest rate model blends elements from previous321

research. First, it is a discrete-time vector autoregressive process [60], with322

different dynamics for the short-term rates and long-term rates, as in Diebold323

and Sharpe [28] and Brennan and Schwartz [7]. The inclusion of momentum324

terms stems from their significance when conducting the time-series estimates.325

However, the model has some differences when compared to Birge and Júdice326

[2]. First, it incorporates bond yields, which were not present in the previous327

model. Also, while Birge and Júdice [2] use square root residuals in the estima-328

tion, this model uses two regimes, one lognormal for low rates and one normal329

for high rates. Finally, this new model accommodates more recent data better.330

As mentioned before, this new model was estimated during research project331

with Costa et al. [21], whose most relevant findings were published.332

The interest rate data (in percentage) are first transformed by using the
following function

g(x) =

{
ln(x), 0 < x < 1
x− 1, x ≥ 1

.
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Type Parameter Description

Asset allocation α0 proportion allocated to cash
vector α1 proportion allocated to loans

(decision variables) α2 proportion allocated to (ten-year) bonds
α3 proportion allocated to stocks

Liabilities Et amount of shareholder capital/equity
Dt volume of deposits (stochastic)

Costs ct operating costs
c operating cost factor

Interest rates rt Interest rate on new loans (mortgages)
ft interest rate on cash
yt ten-year bond yield
dt deposit rate

Loans λt charge-offs/credit losses
p amortization factor for legacy loans
Lt volume of total loans
It income obtained from legacy loans

Bonds Dur(y) duration of the par ten year bond
Stocks St stock prices

divt stock dividends

Table 2: Notation for asset allocations, liabilities, costs, interest rates, loan
variables, bonds and stocks.

The function thus specified allows two regimes: a lognormal regime for low rates,
which ensures that rates do not fall below zero, as observed in the US interest
rate data; and a normal regime, for higher rates, that prevents the model from
having explosions as observed in lognormal interest rate models. Next, the g-
transformed data is centered around the long-term mean as suggested by [25].
Define

r∗t = g(rt)− ĝ(rt)

y∗t = g(yt)− ĝ(yt)

f∗t = g(ft)− ĝ(ft)

d∗t = g(dt)− ĝ(dt),

where the hat over a quantity denotes the long-term mean.333

The evolution of the transformed interest rates is given by the following334

vector autoregression:335

r∗t+1 = φrrr
∗
t + φfr f

∗
t + φyry

∗
t + φdrd

∗
t + φmr m

r
t + εrt+1

f∗t+1 = φrfr
∗
t + φfff

∗
t + φyfy

∗
t + φdfd

∗
t + φmf m

f
t + εft+1

y∗t+1 = φryr
∗
t + φfyf

∗
t + φyyy

∗
t + φdyd

∗
t + φmy m

y
t + εyt+1

d∗t+1 = φrdr
∗
t + φfdf

∗
t + φydy

∗
t + φddd

∗
t + φmd m

d
t + εdt+1,

where ε = (εrt+1, ε
f
t+1, ε

y
t+1, ε

d
t+1) is normally distributed with mean zero and
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covariance Σ, and the momentum terms mr
t , m

f
t , my

t and md
t are defined by

mr
t = r∗t − r∗t−1; mf

t = f∗t − f∗t−1; my
t = y∗t − y∗t−1; md

t = d∗t − d∗t−1.

φ r∗t f∗t y∗t d∗t mt sd R2 t0 t−1

r∗t+1 0.42 0.21 0.28 0.02 0.21 0.94 0.92 3.65 3.85
f∗t+1 -0.93 0.41 1.29 0.35 0.51 1.57 0.86 0.43 0.12
y∗t+1 -0.12 0.20 0.79 0.05 0.09 0.97 0.91 1.85 2.14
d∗t+1 -0.44 0.04 0.64 0.69 0.37 0.75 0.93 0.112 0.102

Table 3: Least-square estimates coefficients φ for rates. r∗t , f∗t , y∗t and d∗t repre-
sent the interest rates after subtracting the long-term mean. sd represents the
standard error, whereas t0 and t−1 represent the initial values for the simulation
at t = 0 and t = −1.

The vector autoregression parameters φ are estimated by ordinary least336

squares and given in Table 3. The obtained R-squared values are also shown in337

Table 3. The high values, ranging from 0.86 to 0.93, suggest that the model fits338

the data quite well. Still in Table 3, we denote by sd the standard deviation339

and by t0 and t−1 the initial values for the simulation, at t = 0 and t = −1,340

respectively.341

εrt εft εyt εdt
εrt 1 0.76 0.96 0.80

εft 1 0.74 0.94
εyt 1 0.79
εdt 1

Table 4: Interest rate residuals correlation matrix, for the mortgage rate, the
wholesale rate, the bond yields and the deposit rates. The different rate residuals
are positively correlated as expected.

The estimated residuals correlation matrix is given in Table 4. Following [25],
the long-term means are defined as the average of the sampling data, thus
obtaining

ĝ(rt) = 7.2465; ĝ(ft) = 4.0347; ĝ(yt) = 5.5550; ĝ(dt) = 2.1343.

To generate the interest rate trajectories, one uses the inverse transforma-342

tion, i.e, adds the long-term mean and applies the inverse function g−1 to the343

simulated rates from the vector auto-regressive model.344

2.3 Credit losses345

In order to simulate charge-offs or credit losses, one transforms the data by
using the inverse of the standard normal cumulative distribution function, N−1

(see [2] for details), before deriving the regression model coefficients:

λ∗t = N−1(λt).
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Define also the momentum term:

mλ
t = λ∗t − λ∗t−1,

so that the dynamics is given by the autoregression process:

λ∗t+1 = cλ + φλλλ
∗
t + φmλ m

λ
t + ελt+1.

cλ φλλ φmλ R2 σλ t0 t−1

λ∗t+1 -0.59 0.79 0.78 0.90 0.12 0.06 0.13

Table 5: Least-square estimates for the charge-off process. The regression is
conducted on the changed variables λ∗t = N−1(λt). Here, cλ is the intercept, φλλ
and φmλ are the coefficients for the lag-one charge-off rate and the momentum
term, σλ is the standard error. As before, t0 and t−1 are the initial values.

Here, ελt+1 is normally distributed with mean zero and standard deviation346

σλ. The least square estimated parameters φ, as well as the initial simulation347

values and the R-squared for the charge-off rates, are given in Table 5.348

The R-squared of 0.90 indicates that the model fits the data well. After349

generating the simulation, the charge-off trajectories are obtained by applying350

the cumulative distribution function of the standard normal distribution, λt =351

N(λ∗t ).352

2.4 Stocks353

For stock prices St and dividends divt, consider the logarithmic transformation
of the total return and the dividend yield for the Standard & Poor’s index.
Namely, take

S∗
t = ln(

St + divt
St−1

)

and

δ∗t = ln(
divt
St

).

The dynamic model for S∗
t and δ∗t is defined by:

S∗
t+1 = cS + αSδ

∗
t + εSt+1

δ∗t+1 = cδ + φδδ
∗
t + εδt+1.

Total returns on stocks are thus dependent on dividend yields, in line with354

the literature on stock returns (see for instance the book by Campbell and355

Viceira [11]).356

The least squares estimated coefficients are given in Table 6. Note that the357

initial values at t0 are associated with the total return and the dividend yield,358

(St + divt)/St−1 and divt/St, respectively.359

To get the actual total return values, we apply the transformation exp(S∗
t )−1360

to the simulated data.361
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cS cδ αS φδ sd t0

S∗
t+1 0.49 0.11 0.15 1.1159
δ∗t+1 -0.27 0.93 0.17 0.0203

Table 6: Least-square estimates coefficients for the stock prices and dividend
yields, using the transformations S∗

t = ln(St+divt
St−1

) and δ∗t = ln(divtSt
). Here, cs

and cδ represent the intercepts, αS and φδ are the regression coefficients, sd are
the standard errors and t0 are the initial values.

2.5 Deposit volumes362

Deposits volumes are estimated using the following panel data model [21]:363

Dt+1 = cD + β1Dt + β2(Dt −Dt−1) + εDt .

The parameters of the model are presented in Table 7; we can write the model
as

Dt = 1229300 + 0.98804Dt−1 + 0.22016(Dt−1 −Dt−2) + εDt .

This equation gives an intuitive understanding of the model, as deposit vol-364

umes are influenced by the previous volumes Dt−1, a momentum term Dt−1 −365

Dt−2, and a residual εDt . The dependence on previous volumes is the auto-366

regressive part. The momentum term generates the auto-correlation present367

in the model: increases in deposits are likely to be followed by increases, and368

decreases in deposits are likely to be followed by decreases. The residual term,369

as shown by the authors in [21], has negative skewness.370

The skewness of the residuals, coupled with the momentum term, signifi-371

cantly increases the risk associated with liquidity outflows, thus enabling the372

model to be realistically used for liquidity risk purposes. Also, the model is373

calibrated to a panel data set of banks, that includes failed banks, thus allowing374

the possibility of significant decreases in deposits.375

cD β1 β2 D̂ t0 t−1

Dt 1 229 300 0.98804 0.22016 27 251 747 27251747 27251747

Table 7: Least-square estimates coefficients for the stochastic deposits. Here,
cD is the intercept, β1 and β2 are are the model parameters, D̂ is the sample
mean, and t0 and t−1 are the initial values.

Since the distribution of the residuals is not normal, the simulation needs376

to use the bootstrap method. First the authors of [21] estimate the probability377

density function of the residuals by a kernel distribution. Then they calculate378

the cumulative density function F (x), and the residuals are sampled generating379

random numbers θ between 0 and 1 and calculating F−1(θ). Since we are in a380

discrete setting the inverse transformation is performed by linear interpolation.381

Algorithm 1 gives a sketch of the framework presented here for the risk382

factors simulation, for each of the numPaths trajectories with time horizon383

T . Therefore, all the parameters of the model described in Tables 3 to 7 are384

loaded (step 2) as well as vector ω0 containing the initial values (step 3). The385

simulation of trajectory k, k ∈ {1, . . . , numPaths} is done in steps 5-8. Since386
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the simulation process only uses the transformed values accordingly to Section387

2, the initial value ω0 is first transformed into ω∗
0 (step 4), and at the end of388

the simulation process of each trajectory, the risk factors generated ω∗
t must be389

reversed with the inverse transformation to obtain the ”real” values ωt (step390

8). At the end of generating all ωt values, t ∈ {1, . . . , T}, they are stored in a391

matrix ωk corresponding to the k-th trajectory that will be used later in the392

other algorithms. This algorithm has a complexity order O(numPaths T ).393

Algorithm 1 Scenario generator

1: procedure scenarioGenerator(numPaths, T )
{ωt = (rt, ft, dt, yt, λt, St, divt, Dt)};

2: Load model parameters from Table 3 to Table 7;
3: Read ω0, the initial values for the scenario;
4: Compute ω∗

0 using the transformation functions defined in Section 2;
5: for k = 1 to numPaths do
6: for t = 1 to T do
7: Compute ω∗

t using formulas in Section 2;
8: Compute ωt using the inverse of the transformation functions;

9: Save the k-th path scenario as ωk;

3 Integrated balance sheet simulation and opti-394

mization395

In this section we perform the simulation of the balance sheet, using the simu-396

lation of the risk factors described above. After simulating the balance sheet we397

devise risk and return indicators which are the main measures used to calculate398

the Pareto Fronts in Section 4.399

Let us consider the evolution of the bank and of its risk factors, exogenous to400

the bank, for an horizon of T and periods t = t0, . . . , T , where t = t0 represents401

the initial state. In order to proceed, we first need to establish some notation.402

Let us denote by ω the stochastic variable that allows us to represent each403

trajectory for the risk factors and Ω the space of all possible trajectories. We404

denote by ωt the realization of trajectory ω at time t, that encapsulates all the405

information at time t, namely interest rates, charge-off rates, stock prices, and406

the volumes of core deposits. Specifically,407

ωt = (rt, ft, dt, yt, λt, St, divt, Dt) .

We assume that the bank’s initial capital structure is given, i.e., at time t0,408

the bank has Et0 from shareholder capital an Dt0 from deposits. Total funding409

comes from these two sources. As time evolves, shareholder capital increases if410

the bank makes a profit; otherwise it will decrease. Deposits evolve according to411

the stochastic volume method explained in Section 2.5. As a result, we assume412

that management does not fully control deposits and bank runs are possible.413

As presented in Table 2, let us denote by α0, α1, α2 and α3 the constant414

proportions of the funding allocated to cash, loans, bonds and stocks. By α =415

(α0, α1, α2, α3) we represent the vector of constant proportions allocated to each416

asset class.417
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We denote by Fail(ω) the Bernoulli random variable that describes if the418

bank fails under trajectory ω; in this case it will be equal to 1, otherwise it will419

be zero (the bank survives). This random variable will be dependent on the420

percentage allocations referred to above, but for the sake of clarity of notation,421

we will not specify this dependence.422

We describe the model for the balance sheet. As we go along the equations,423

we omit the dependency on ω on each random variable for the sake of notation,424

except when this dependency is needed. For example, the evolution of share-425

holders’ capital Et(ω), which depends on the trajectories for the risk factors, is426

denoted by Et.427

• The balance sheet equation:428

Since total funding (equity plus deposits) can be allocated to cash, loans,429

bonds and stocks, we denote by α0, α2 and α3 the dollar or euro amounts430

in cash, bonds and stocks at time t. α1 denotes the dollar or euro amount431

in new loans at time t. The fundamental balance sheet equation432

α0 + (Lt + α1) + α2 + α3 = Et +Dt (1)

has to hold (i.e., assets are equal to liabilities plus shareholders’ equity).
Therefore we set the dollar or euro amounts as

α0 = α0(Et +Dt), α2 = α2(Et +Dt), α3 = α3(Et +Dt),

and
α1 = max(α1(Et +Dt)− Lt, 0).

The amount of new loans α1 will be positive only when the desired loans433

determined by α1 exceeds the legacy loans in the books. In the case that434

α1 is zero, i.e., legacy loans exceed the desired loans, α0, α2 and α3 are pro-435

portionally adjusted accordingly to satisfy the fundamental balance sheet436

equation (1). We are assuming that loans are not callable or transferable.437

• A bank needs to be compliant with the common equity tier 1 ratio (CET1)438

limit T 1
l . This is specified by the following restriction:439

Et
max(wLLt + wSα3, 0.01)

> T 1
l , (2)

where wL and wS are the risk weights assigned to mortgages and stocks by440

regulators, respectively. Cash and bonds have zero risk weights, so they441

do not show in the denominator. We also specify a tolerance of 0.01 in442

the minimum risk weight to avoid explosions in the CET1 ratio, which is443

infinite in case the bank invests all the funds in cash or Treasuries. We444

assume that the bank is compliant with the common equity tier 1 limit,445

and that it fails if it reaches this limit, i.e., we set Et = 0 and446

Fail(ω) = 1.

This can be seen as an solvency-driven failure. We also need to specify447

liquidity-driven failures, which occur when the bank does not have enough448
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liquid securities to compensate for outflows. Since in our setting all the449

assets but loans are liquid, this occurs when there is a shortage of liquid450

assets, i.e., when the loan balance is lower than total liabilities:451

Dt + Et ≥ Lt. (3)

If the previous restriction is not fulfilled the bank fails and we assume that
Et = 0 and

Fail(ω) = 1.

As we can observe, by flagging both liquidity-driven and solvency-driven452

failures we are able to integrate solvency and liquidity risks into a single453

framework. As we will see later, we will use as a risk measure the proba-454

bility of failure or default of the bank, that evaluates the strength of the455

balance sheet in a single measure. The probability of default is possibly456

the most important indicator to make such an assessment and is widely457

used by ratings agencies.458

• It is the income from loans in the books at time t, which will be positively459

influenced by new loans:460

It+1 = (It + rtα1)(1− p− λt+1) (4)

where p is the amortization rate.461

• The total loans Lt are given by legacy loans (loans in the books) at time t462

plus new loans, and their evolution in time is influenced by amortizations463

and defaults:464

Lt+1 = (Lt + α1)(1− p− λt+1). (5)

• Dur(yt) is the modified duration of the par ten year bond (sensitivity to465

interest rates), which can be approximated by:466

Dur(yt) =
1

yt(yt + 1)10
− 1

yt
. (6)

• ITt is the total income on the assets, which depends on the income on467

legacy loans It, the income on new loans rtα1, the return on cash α0ft,468

the total return on stocks α3S
∗
t+1, and the total return on bonds α2(yt +469

Dur(yt)m
y
t+1) (given by the coupon plus the change in the bond prices,470

using the modified duration). The total income is also negatively affected471

by credit losses λt+1(Lt +Lnewt ) and the interest rate charged on deposits472

−dtDt:473

ITt+1 = It + rtα1 + α0ft − dtDt − λt+1(Lt + Lnewt )

+ α3S
∗
t+1 + α2(yt +Dur(yt)m

y
t+1). (7)

• The variable ct accounts for operating costs that depend on the size of the474

balance sheet, which is fully funded by equity and deposits:475

ct+1 = cAt = c(Et +Dt), (8)

where c is the cost factor to the balance sheet size.476
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• Earnings are given by the total income minus the operating costs:477

et+1 = ITt+1 − ct+1. (9)

• DivRt represents the accumulated dividends that shareholders receive, that478

we assume that are given as constant payout ratio Rp in terms of earnings.479

Since we need to keep track of accumulated dividends, we assume that480

shareholders reinvest them at the cash rate:481

DivRt+1 = (1+ft)Div
R
t +Divt+1, with Divt+1 = max(Rpet+1, 0). (10)

• Et is the bank’s equity or shareholders’ capital, which increases with the482

amount of earnings that is not distributed through dividends:483

Et+1 = max(Et + et+1 −Divt+1, 0). (11)

• At the final year of simulation, and for all paths, we calculate the return
Ret, it is based on the expectation E of equity plus reinvested dividends:

Ret =

(
E(ET +DivRT )

E0

) 1
T

− 1,

with T the number of years in the simulation.484

• As we anticipated, we use the probability of failure as our central risk485

measure.486

Our unified risk measure allows us to differentiate the interest rate risk487

between fixed-rate assets at book value (in our case fixed-rate mortgages) and at488

fair value (in this setting bond securities), unlike change in EVE, which is used489

in the interest rate risk in the banking book (IRRBB) regulation for medium490

to long-term interest rate risk. First, let us elaborate on the sources of interest491

rate risk for assets at book value and assets at fair value. The interest rate risk492

for assets at fair value is essentially the risk of devaluations in these assets due493

to a rate shock (for instance an increase in interest rates). The interest rate494

risk for assets at book value is different: it comes from a long-term potential495

loss in net interest margin on these assets in case there is an increase in funding496

costs. As shown by [8] using a simulation model, the interest rate risk for assets497

at fair-value is typically much higher than the interest rate risk for assets at498

book-value.499

In order to assess medium and long-term interest rate risk, the IRRBB regu-500

lation uses essentially changes in economic value of equity (EVE) and duration-501

based measures. These measures are price-based and are suitable for assets and502

liabilities at fair value; in our view, these measures are not suitable for assets503

and liabilities at book value, since these are not exposed to price fluctuations.504

To the best of our knowledge, the IRRBB measures do not differentiate be-505

tween assets at book value and at fair value. In other words, the IRRBB risk506

measures (such as change in EVE after a rate shock) for an asset are the same507

irrespectively of being classified at fair value or book value.508

Many assets and liabilities are not measured at fair value. Our approach509

uses the accounting treatment instead of measuring interest rate risk under a510

17



price-based measure. This enables us to calculate the interest rate risk for assets511

at fair value (such as bond securities) and at book value (such as loans).512

Algorithm 2 gives a sketch of the procedure to evaluate the bank balance513

sheet given a vector of allocation portions ᾱ and a specific scenario ω. Thus,514

for each instant t ∈ {0, . . . , T − 1} of trajectory ω (step 2), the auxiliary values515

described in the formulas (2) to (11) in Section 3 are calculated to obtain the516

final values Et+1, DivRt+1 and Fail (step 3). The simulated values in the last517

period correspond to the output of Algorithm 2 (ET , DivRT and Fail) and they518

will serve as input for the Algorithm 3. This procedure determines the average519

risk-return measures under all the generated scenarios for the bank balance sheet520

for a given ᾱ, i.e., the average return capitalized over the period under analysis521

and the probability of default. The complexity order of Algorithm 2 is O(T )522

and for Algorithm 3 is O(numPaths T ).523

Algorithm 2 Bank balance sheet simulator

1: procedure (e, d, f) = bankBalanceSheet(ᾱ, ω)
2: for t = 0 to T − 1 do
3: Compute Et+1, DivRt+1 and Fail using the formulas in Section 3;

4: e = ET ; d = DivRT ; f = Fail;

Algorithm 3 Computation of the risk-return measures for the bank balance
sheet
1: procedure (Fail, Ret) = bankPerfomance(ᾱ)
2: for k = 1 to numPaths do
3: Load the k-th path scenario as ωk;
4: (ek, dk, fk) = bankBalanceSheet(ᾱ, ωk);

5: Fail = (
∑numPaths
k=1 fk)/numPaths; {probability of default}

6: Ret =
(∑numPaths

k=1 (ek+dk)/numPaths

E0

) 1
T

− 1; {average return}

4 Optimization of the bank strategies524

Since Fail is a random variable with Bernoulli distribution, then the expected525

value for this variable corresponds to the probability of failure, that is, Risk =526

E(Fail) = P (Fail(ω) = 1). This key indicator summarizes in a single number527

the financial strength of the bank, so that it accounts for all the risks simul-528

taneously. As we mentioned before, this probability computes the likelihood529

of the bank defaulting by both solvency-driven or liquidity-driven shocks. The530

importance of this measure also stems from its wide use by ratings agencies.531

We would also like to note that other measures could be possible. For in-532

stance, one could use an average maximum drawdown measure (by computing533

the maximum drawdown on each of the trajectories and averaging these num-534

bers), or an expected shortfall on losses. On these computations, one would as-535

sume that a liquidity-driven failure would amount to a total loss; this would also536

allow the inclusion of liquidity risk into the single-measure framework. However,537
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we chose the probability of default, due to its great importance and widespread538

use in Banking and Finance.539

In this way, the problem can be formulated as follows:

max
α

E(Ret)

min
α

E(Fail)

s.t. (1)− (11)

We denote by Ah the discretization with step length h of the set of ad-
missible solutions. The model was tested using the step h = 0.02 for all the
decision variables, making ᾱi ∈ {0, 0.02, 0.04, . . . , 1}, i ∈ {0, 1, 2, 3}, satisfying

the additional constraint
∑3
i=0 ᾱi = 1. More than 23000 admissible solutions

were analyzed and the points at the Pareto frontier were selected. A solution ᾱ
belongs to the Pareto frontier if there is no admissible solution β such that

E(Ret(β)) ≥ E(Ret(ᾱ)) and E(Fail(β)) ≤ E(Fail(ᾱ)),

where one of the inequalities is strict.540

Algorithm 4 gives us the general sketch of the optimization routine to com-541

pute the Pareto Front. It starts by calling the scenarioGenerator routine to542

generate all the scenarios which will be used in the simulation-optimization543

procedure (step 2). Next, the set of admissible solutions, A (step 3), is dis-544

cretized considering a step h to build {ᾱ ∈ A : ᾱi/h ∈ N0} (step 4). Therefore,545

each solution in Ah (step 6) is evaluated (step 7) and the Pareto front is updated546

(step 8).547

Algorithm 5 is used to update the Pareto front, where P is the current548

Pareto front set and (newFail, newRet) is the risk and return of a new solution549

in Ah which is under analysis. If in the current Pareto front P there exists550

some (Fail`, Ret`) that dominates (newFail, newRet) - step 2, i.e., a point551

with better risk and return, the new solution is discarded (step 3). Otherwise,552

the new solution is included in P and this set is updated keeping the solutions553

with better risk (P̄1) or better return (P̄2) – step 5-7. As #Ah = O(h−3) and in554

the worst-case all the elements of Ah produce new elements in P , the worst-case555

complexity of Algorithm 5 isO(h−3) and consequently the worst-case complexity556

of Algorithm 4 is O(h−6 numPaths T ). We would like to emphasize that the557

worst-case scenario is very unrealistic and that the average-case complexity of558

Algorithm 5 should be much smaller than O(h−3).559

Algorithm 4 Computation of the Pareto front for the risk-return measures

1: procedure P = ParetoFront(numPaths, T , h)
2: scenarioGenerator(numPaths, T ); {generates the scenarios}
3: A = {ᾱ : ᾱi ≥ 0 ∧

∑3
i=0 ᾱi ≤ 1}; {set of admissible solutions}

4: Ah = {ᾱ ∈ A : ᾱi/h ∈ N0}; {discretization of A with step length h}
5: P = ∅; {actual Pareto front in lexicographic order}
6: for each ᾱ ∈ Ah do
7: (newFail, newRet) = bankPerfomance(ᾱ);
8: P = updateParetoFront(P , (newFail, newRet));
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Algorithm 5 Update the Pareto front with the new solution

1: procedure Pnew = updateParetoFront(P , (newFail, newRet))
2: if ∃(Fail`, Ret`) ∈ P : Fail` ≤ newFail ∧Ret` ≥ newRet then
3: Pnew = P ; {the new solution is not efficient}
4: else
5: P̃1 = {(Fail`, Ret`) ∈ P : Fail` < newFail};
6: P̃2 = {(Fail`, Ret`) ∈ P : Ret` > newRet};
7: Pnew = P̃1 ∪ {(newFail, newRet)} ∪ P̃2;

If additional precision is required or additional variables are included in the560

problem, the points generated with this strategy can be used as initial solutions561

to compute local optimizers using non-continuous and non-differentiable meth-562

ods such as direct search (for a reference, see [19]). In our case, we did not563

use these methods because the number of variables is low, the solutions have564

the needed precision from a practical standpoint, and the objective function565

stems from a simulation process. Specifying sharp tolerances in the optimiza-566

tion would render an exercise that would still have the margin of error that567

comes from the objective function.568

5 Computational results569

In this section, we conduct several computational results on the methodology570

that we propose. We will start by conducting univariate tests, where we ex-571

amine changes in only one asset class, so that we can better understand the572

risk and return profiles associated with each of these classes in our unified and573

multiperiod framework.574

We will then proceed to the analysis of efficient frontiers, assuming different575

economic environments and prospective returns. As we will see, given the low576

prospective returns associated with the last few years, in an environment of low577

rates, the corresponding Pareto fronts will result lower prospective returns but578

also higher risk profiles. The model will also prefer book-value assets, in this579

case mortgages, given the lower volatility when compared to fair-value assets,580

whose price changes severely create balance sheet volatility.581

A third subsection will evaluate how the results change when in the presence582

of more conservative leverage ratios. We will see that equity investments may583

make sense for banks with lower leverage which choose to gain more risk.584

Finally, we will address minimum risk portfolios. We will observe a revealing585

but intuitive finding: unlike textbook treatments of asset allocation, the lowest586

risk portfolio is not full investment in cash. In fact, full allocation to cash can587

be very risky, as the bank will not generate enough return to compensate for588

operating costs, thus facing a likely failure.589

In the whole section, we will see that risk is highly dependent on the return590

profile. If a bank generates a steady return, it will be better capitalized and591

thus the likelihood of failure will decrease.592

5.1 Univariate tests593

We start by analyzing the univariate effect of changing the asset allocation on594

only one asset class in Figures 3 - 5 . For example, an allocation of 40% to595
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loans assumes that the remainder is allocated to cash. Therefore, in the graphs596

we test the effect of substituting cash by other asset classes. The simulation597

parameters are described in Table 8.598

Mortgage risk weight wL 0.35 Costs to balance sheet c 0.015
Stocks risk weight wS 1 Payout ratio Rp 0.5
Tier 1 ratio limit T 1

l 0.1 Initial equity E0 0.05D0

Amortization ratio p 0.1

Table 8: Baseline simulation parameters. We specify the risk weights given in
the Tier 1 capital ratio, the Tier 1 limit ratio and the amortization proportion
of loans. Annual costs represent 1.5% of the balance sheet. We assume that the
dividend payout ratio is 50%, whereas the initial equity base is 5% of the initial
deposit volume.
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Figure 3: Evolution of risk and return with loans, considering as initial points
the interest rates, charge-offs and stock prices in 1985, 1998, 2008 and 2016. We
test the univariate effect on risk and return of changing the allocation to loans
and replacing them with cash.

We conduct the tests assuming as initial environments those of the end-of-599

year for 1985, 1998, 2008 and 2016, which correspond to different and varied600

periods in the sample. For each of these periods, we take the interest rates,601

the charge-off rates and the stock price variables as the initial points in the602

simulation.603

When looking at the graphs, one can immediately observe that the functions604

are not differentiable, not convex and not continuous (in the case of the returns).605

The eighties were associated with high interest rates, that subsequently fell,606

along with sharp rises in the equity markets. By the end of the 1990s, equity607

markets were severely overvalued. 2008 is the year of the collapse of Lehman608

Brothers, so it’s also an important point in the sample.609

When examining the risk results, one can immediately see that loans tend to610

be much less risky than equities and bonds. This finding is revealing of how the611

accounting treatment impacts very considerably the risk profile. Whereas loans612

are classified at book value, and therefore market prices do not influence their613

Profit and Loss (P&L), in our setting we are assuming that bonds and equities614
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Figure 4: Evolution of risk and return with bonds, considering as initial points
the interest rates, charge-offs and stock prices in 1985, 1998, 2008 and 2016. We
test the univariate effect on risk and return of changing the allocation to bonds
and replacing them with cash.
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Figure 5: Evolution of risk and return with stocks, considering as initial points
the interest rates, charge-offs and stock prices in 1985, 1998, 2008 and 2016. We
test the univariate effect on risk and return of changing the allocation to stocks
and replacing them with cash.

are classified at fair value, so that the variation in market prices impacts the615

earnings and the capital on the bank. This variation in prices accounts for the616

much higher risk profiles of bonds and equities, i.e., securities in general. It is617

also a very clear indication of the volatility that fair-value accounting induces618

in general.619

Another feature that we observe is the risk profile of loans which has a620

parabola-like shape. When the allocation to loans is zero, the bank is essentially621

putting all the resources into cash. This may not be a problem in periods of high622

rates such as 1985, but in a context of ultra-low interest rates such as recent623

years, the bank is possibly earning a very low interest margin when considering624

the rates on cash against the rates that the bank pays on deposits. Particularly625

in times of low rates, these ultra-low net interest margins far from compensate626

the operating costs associated with the bank. Therefore, it is no surprise that627
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Figure 6: Pareto front obtained with the proposed model, for the different
economic environments of 1985, 1998, 2008 and 2016. As the prospective returns
have been decreasing over the years, the returns on the balance sheet tend to
be lower as the years advance.

for the 2016 environment, putting all the resources into cash can be extremely628

risky and dictates the almost certain failure of the bank. Also, putting all629

the resources in loans can be a risky strategy from the point of view of the630

bank: first, loans have credit risk which can be higher in times of crises; second,631

mortgages are not liquid and the bank may face failure because of deposit runs.632

Both these features are captured in our model.633

The return profiles are heavily influenced by the likelihood of default by the634

bank. If the bank faces default, then it will not be able to generate more returns.635

As we can see, both bonds and equity show a cut-off point after which failure636

is certain and therefore returns are very low from then on.637

5.2 Efficient frontiers638

In this section we analyze efficient frontiers and the corresponding allocations,639

so that we can better understand their shape and also the properties of the allo-640

cations. In Figure 6 we plot the efficient frontiers for the four different economic641

environments that we have mentioned above. In Figures 7 - 10 we document642

the allocations associated with the different points in the efficient frontier, along643

with the risk and return measures. The last two bars in each graph show the644

comparison of the risk and return measures with common heuristic asset allo-645

cation strategies (to be analyzed later).646

As a first observation, we notice that efficient frontiers tend to be upward647

sloping, which is not surprising. If risk is relaxed, then the bank can achieve a648

better return.649

We also observe in general that prospective returns have been decreasing650

over the years. The eighties were characterized by higher interest rates and651

higher dividend yields, which in turn influenced the returns on the banks.652

In general, we observe that the model suggests high allocations to mortgages.653

As we mentioned, the accounting classification here plays an important part.654

Mortgages are classified at book value rather than fair value, making them ideal655

instruments for mitigating balance sheet volatility. Stocks and bonds induce656

much more volatility in the balance sheet. As a consequence, one can observe657

that for most years the model selects an almost zero amount to Treasury bonds658
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Figure 7: Pareto optimal solutions obtained with the proposed model (1985).
The two bars on the right-hand side describe the risk and the return for two
heuristic allocations: 40% loans/40% bonds and equal weight.

Risk

0

0.2

0.4

0.6

0.8

1

Return

Figure 8: Pareto optimal solutions obtained with the proposed model (1998).
The two bars on the right-hand side describe the risk and the return for two
heuristic allocations: 40% loans/40% bonds and equal weight.
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Figure 9: Pareto optimal solutions obtained with the proposed model (2008).The
two bars on the right-hand side describe the risk and the return for two heuristic
allocations: 40% loans/40% bonds and equal weight.
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Figure 10: Pareto optimal solutions obtained with the proposed model
(2016).The two bars on the right-hand side describe the risk and the return
for two heuristic allocations: 40% loans/40% bonds and equal weight.
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because of these fluctuations.659

The allocation to stocks seems to be highly dependent on the economic660

environment. It is no coincidence that, in a period of market bubble such as661

1998, when dividend yields were at historically low levels of 1.4%, the model662

selects almost no stocks in the portfolio. In contrast, using the data of the663

year of 2008, i.e., the year of Lehman Brothers’ collapse, the model would have664

chosen a relatively high allocation to stocks, since the stock devaluations in 2008665

caused an increase in prospective returns on stocks by the end of that year.666

In general, the model always leaves a considerable stock of liquid assets, so667

that it can avoid failure due to deposit run-offs.668

Finally, we clearly observe the domination of efficient frontier strategies ver-669

sus two commonly adopted heuristic strategies. To compare the efficient fron-670

tier with heuristic strategies, we use an equal-weight strategy that allocates one671

quarter to each asset class, and a strategy that allocates 40% to loans, 40% to672

Treasury bonds, 10% to cash and 10% to stocks. We can clearly observe the673

suboptimal performance of these strategies.674

5.3 Tests with more conservative leverage levels675

In our previous tests, we assumed that equity corresponds to 5% of the deposit676

base, which corresponds to a bank that is 20 times leveraged. This is a very677

high leverage level, although common in practice. In this section, we evaluate678

how the results change as a function of the leverage of the bank.679

In Figure 11, we analyze how the univariate tests behave when changing the680

leverage levels, whereas in Figures 12 - 14 we show the Pareto frontier and the681

associated asset allocations.682

In the univariate tests, we can still observe the parabola-shaped effect of683

risk, particularly on loans. We can also observe that, for each asset class, risk is684

also increasing when leverage is higher, which is also not surprising. The returns685

also show revealing patterns. As we have seen before, there is a cut-off point for686

stocks and bonds from which the return is -100%. What we can clearly observe687

is that this cut-off point increases when leverage decreases, revealing again that688

lower leverage is associated with the lower certainty of having bankruptcy.689

The Pareto frontier has also some very interesting features. When we com-690

pare the stock allocation in our baseline leveraged bank in Figure 10, with691

E0 = 0.05D0, to the lower leverage levels in Figures 13 - 14, we observe that692

lower leverage produces a higher allocation to stocks for the same level of risk.693

This is quite intuitive. When the leverage is lower, risk decreases, if all else694

is constant. Therefore, if a bank chooses to decrease its leverage, it can still695

maintain the same level of risk if it increases the exposure to stocks.696

Looking at Figure 12, we can observe that, when leverage decreases, expected697

returns decrease, but also the point with the least risk decreases. The minimum698

risk allocation will be addressed below.699

5.4 Portfolios with minimum risk700

In this section, we analyze the portfolios with minimum risk. In typical mean701

variance portfolio problems, when assuming a riskless asset, the minimum risk702

portfolio is the full investment in riskless cash.703
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Figure 11: Evolution of risk and return with loans, bonds and stocks for the
2016 economic environment with different leverage levels, at E0 = 0.05D0, E0 =
0.1D0 and E0 = 0.15D0. We test the univariate effect on risk and return of
changing the allocation in each asset class and replacing it with cash.

As we have seen in the sections before, full investment in cash is not riskless704

in our setting, because operating costs will increase the probability of a loss,705

therefore increasing risk.706

We calculate the minimum risk portfolios in Figure 15, assuming that the707

ratio of equity to deposits is equal to 5%. First we observe that the allocation to708

cash is different from 100%. Also, mortgage loans represent a significant amount709

of the allocation, given their low risk profile when compared to bonds and stocks.710

As we have mentioned before, the low risk profile associated with mortgages is711

also linked to its accounting classification: since mortgages are accounted at712
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Figure 12: Pareto fronts, for the 2016 economic environment, with different
leverage levels, at E0 = 0.05D0, E0 = 0.1D0 and E0 = 0.15D0. One observes
that higher leverage produce higher returns but also higher risk.
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Figure 13: Pareto optimal solutions obtained with the proposed model, consid-
ering 2016 as the initial economic environment and E0 = 0.1D0.
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Figure 14: Pareto optimal solutions obtained with the proposed model, consid-
ering the 2016 as the initial economic environment and E0 = 0.15D0.
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Figure 15: Minimum risk solutions, assuming different initial environments in
1985, 1998, 2008 and 2016. Due to the decrease in prospective returns over the
years, as time progresses the balance sheet return is lower and risk is higher.

book value, this asset class is not exposed to severe market fluctuations as in713

the case of bonds and stocks.714

Year Equity to Total Assets Earnings to Total Assets

1985 0.2598 0.0415
1998 0.1598 0.0238
2008 0.1174 0.0162
2016 0.1087 0.0148

Table 9: Average earnings to total assets and equity to total assets for the
minimum risk portfolios using the simulation model for a period of 30 years,
assuming different initial points corresponding to the economic environments in
1985, 1998, 2008 and 2016. We can observe that, for more recent years, the
results of the simulation show lower earnings to assets and lower shareholders’
equity, due to the decrease in prospective returns in the last two decades.

As we can see from Figure 15, the minimum risk varies very significantly715

depending on the year and the economic environment. The returns simulated716

by our scenario engine are much higher when the initial points are taken from717

1985 than in the latter years, as observed in Table 9. This means that, for the718

scenarios generated based on 1985, a bank will be extremely profitable, with719

average earnings to total assets of 4.2% and very rapidly be capitalized, as one720

can see in Figure 16. When looking at the evolution of the equity to total assets,721

we see that the simulations that start in 1985 rapidly will generate extremely722

well capitalized banks, due to extremely high returns. Well capitalized banks723

will be less risky and default less.724

On the other hand, for a bank that starts in 2016, the average earnings to725

total assets resulting from the simulation is 1.5%; as a consequence, the bank will726

not be as capitalized and will be more vulnerable to economic shocks and have727

more risk. Summarizing, the low risk that one observes in 1985 is essentially728

driven by higher prospective returns in 1985. This link between the return and729
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Figure 16: Evolution of earnings to total assets (on the left) and equity to total
assets (on the right), considering four different initial economic environments.
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Figure 17: Solutions with minimum risk obtained with the proposed model for
the year 2016 with different leverage levels.

risk in our model is one of the differentiating factors of our research: a bank730

that produces solid returns is less risky as well, because very quickly will be in731

a very well capitalized position.732

In Figure 17, we change the equity level to assess the level of minimum risk.733

We can readily observe, not surprisingly, that the higher the capitalization the734

less risky the bank will be.735

6 Conclusion736

In this paper, we developed a unified framework for bank strategic asset allo-737

cation, encapsulating all the risks into one single measure, the probability of738

failure of the bank. This single measure, which is evaluated by ratings agen-739

cies, gives a single score for the financial strength of the bank, and avoids the740

silo-based approach for risk measurement which has been present in banks. In741

fact, in practice, risks are evaluated separately and then aggregated in an ad742
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hoc fashion.743

We built upon the risk factor scenario generation framework of Birge-Júdice744

[2] and Costa, Faias, Júdice and Mota [21] to develop a simulation methodology745

for the balance sheet, from which we calculated return and risk measures. As a746

consequence, we built a unified framework for evaluating risk and return, as it747

evaluates simultaneously liquidity and solvency risks under a single measure.748

We subsequently formulated the optimization model. The optimization749

problem is non-continuous, non-differentiable, non-convex, which seemed a draw-750

back at first. We also were interested in obtaining global, not local, optima.751

However, given the structure of the problem, and the required tolerances, we752

used a grid search to determine the Pareto fronts. The grid search on the possi-753

ble combinations (within a certain tolerance), generated very intuitive solutions.754

The solutions obtained by this method were good approximations for global755

optimizers, avoiding the convergence of the algorithms to local minimizers that756

may be far away from global solutions. We also argued that more accurate757

solutions could be obtained via multi-objective optimization algorithms [35,54]758

that could be used starting from the referred solutions. In a practical context,759

however, the solutions with more accurate precision would not add value, given760

the tolerances that are needed, and the errors associated with the objective761

function, which is obtained by simulation.762

The allocations given by the Pareto fronts generate a considerable portion763

in loans, given the high returns and no market fluctuations associated to the764

valuation at book-value. Fair-value assets, such as equity and Treasury bonds765

are much more volatile and thus the optimizer generates a lower allocation to766

these asset classes.767

One critical feature of our model is that risk is dependent on return. This is768

also a critical feature evaluated by rating agencies. In fact, under our framework,769

if a bank generates returns in good years, it will become better capitalized and770

thus less risky. A solid income stream is a guarantee of low risk for any bank.771

Under this reasoning, and as a result of the lower interest rates witnessed in the772

past few years, the simulations indicate that under the most recent environment773

banks are subject to lower prospective returns and higher risk.774

We also evaluated minimum risk portfolios. In standard textbooks, the775

minimum risk allocation would be full investment in cash. In our setting, we776

incorporate operating costs, so that the minimum risk allocation is not full777

allocation to cash. In fact, under the current environment of low rates, a bank778

that completely invests in cash will very likely face failure, as its income will779

not be sufficient to cover operating costs.780

We have also documented the effect of leverage. Leverage makes the bank781

less riskier, so that the bank can introduce equity in its investments in case it782

wants to generate higher returns. For a similar level of risk, a bank with lower783

leverage will allocate more to stocks.784

We hope that this framework will be used by academics and practitioners in785

the areas of risk management, asset-liability management, treasury and strategic786

planning. It can serve as a management flight simulator that can help boards at787

banks to have robot-advisory on the management of the balance sheet and the788

strategic choices. Our model is a first step in this direction. The approach can789

be used in practice to advise boards at banks on optimal asset allocation, which790

can be an important input for strategic plans. In this case, the methodology791

needs to be adapted to the segments, products and data for the bank.792
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Much research in this field still needs to be done. We point out a few possible793

directions. In particular, the methodology may be extended to other liability794

classes, such as repos, as these have played an important role in past financial795

crises. The model can also be generalized or adapted to other contexts, such as796

the case of investment banks, where there is typically a significant exposure to797

derivatives, and therefore to other risk factors, such as commodity price risk,798

volatility risk and correlation risk.799

Finally, the multi-year scenario methodology can be extended to capture800

the interconnections between the different types of risks. For example, interest801

rates on mortgages should depend on the default intensity: one could investigate802

whether banks will tend to price their loans at higher spreads to the Treasury803

rates in times of crisis. Liquidity outflows from customers and creditors could804

also relate to funding costs: when there is a liquidity drought, funding costs may805

rise. These liquidity outflows are also possibly linked to credit risk. In many806

financial crises, many banks faced simultaneous defaults on their assets and807

withdrawals from customers and creditors (these tend to become more reluctant808

to lend money to banks when the balance sheet deteriorates). New research809

should shed light on all these possible connections.810

As highlighted in the risk integration literature, addressing the nonlinear811

interrelations between risk factors is also of great importance. Given the ex-812

amples before, the correlation between liquidity outflows, defaults, and funding813

costs may become higher during crises, showing its nonlinear nature. Undertak-814

ing this research will comprise understanding these interactions first and then815

posit a nonlinear model to explore such interactions. One possible direction816

is to specify the risk factors under nonlinear vector autoregressive processes or817

nonlinear time series processes dependent on common macroeconomic factors.818
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[2] Birge, J. R., and Júdice, P. Long-term bank balance sheet manage-827

ment: Estimation and simulation of risk-factors. Journal of Banking &828

Finance 37 (2013), 4711–4720.829

[3] Boender, G. A hybrid simulation/optimisation scenario model for as-830

set/liability management. European Journal of Operational Research 99831

(1997), 126–135.832

[4] Bohn, J., and Crosbie, P. Modeling default risk. KMV Corporation833

(2003).834

33



[5] Bradley, S. P., and Crane, D. B. A dynamic model for bond portfolio835

management. Management Science 19 (1972), 139–151.836

[6] Bradley, S. P., and Crane, D. B. Management of commercial bank837

government security portfolios: An optimization approach under uncer-838

tainty. Journal of Bank Research 4 (1973), 18–30.839

[7] Brennan, M. J., and Schwartz, E. S. An equilibrium model of bond840

pricing and a test of market efficiency. Journal of Financial and Quantita-841

tive Analysis (1982), 301–329.842
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