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Abstract 31 

Previous research showed that verifying a pictured object mentioned in a preceding sentence 32 

takes less time when the pictured object shape is compatible with the described object 33 

location or spatial position. In the current work we asked if non-visual information is 34 

integrated into the mental model when the target object shape is implied by virtue of a 35 

description of a heavy vs. light item being dropped on it. Furthermore, we asked if the 36 

canonical target object state continues to play an important role when the context requires the 37 

activation of a non-canonical representation. In seven experiments the data provide an 38 

affirmative response to both questions. Participants (N = 766) first read sentences that 39 

implied target object state-changes as a function of the impact caused by differently-weighted 40 

items (e.g., “You drop a balloon/a bowling ball on a tomato”) and then verified pictures of 41 

“squashable” target objects in either a canonical (e.g., intact tomato) or a non-canonical (e.g., 42 

squashed tomato) state. A reaction time advantage was consistently observed when a “non-43 

canonical” target was preceded by a “heavy” (e.g., bowling ball) sentence than a “light” (e.g., 44 

balloon) sentence. However, no such advantage was observed when a “canonical” target was 45 

preceded by a “light” sentence than a “heavy” sentence. Importantly, this pattern of results 46 

remained unchanged regardless of the items used and the verbal tense of the sentence. These 47 

data suggest that when changes of state are inferred (i.e., not driven by lexical semantics), 48 

both the initial and resultant states are equally accessible. 49 

Keywords: object state, mental representation, language comprehension, weight, perception, 50 

action 51 

 52 

  53 
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Introduction 54 

Imagine you are reading a sentence about a boy dropping a balloon on a tomato. If 55 

you were asked to picture the described tomato in your mind, what image would you be 56 

likely to think of first: a round tomato, or a squashed tomato? Undoubtedly, the former image 57 

would come to mind of anyone with some knowledge of how heavy balloons are. But what if 58 

an immediately succeeding sentence described a boy dropping a bowling ball on a tomato? 59 

Would you picture the initial state of a tomato (round shape), the intermediate state 60 

(associated with the perception of a collision of one object with another) of a tomato, or the 61 

end state (deformed shape) of a tomato?  62 

The situation model theory (Kintsch & van Dijk, 1978), the mental-model theory 63 

(Johnson-Laird, 1983), and the event-indexing-model theory (Radvansky et al., 1998; Zwaan, 64 

Langston, et al., 1995; Zwaan, Magliano, et al., 1995; Zwaan & Radvansky, 1998) suggest 65 

that our ability to process the abovementioned information is facilitated through the 66 

construction of mental representations of entities and events described in a text rather than the 67 

structure of the text itself (Zwaan, 1999). In these theories, situation model consists of 68 

multiple, hierarchically-represented events, that are related to one another on several 69 

dimensions. According to the event-indexing model (e.g., Zwaan & Radvansky, 1998), for 70 

example, comprehenders index, encode, and update each event mentioned in the story on at 71 

least the following five dimensions: protagonist, motivation, time, space, and causation. 72 

Despite a long history of research on the content of such mental representations (e.g., 73 

location: Kukona et al., 2014; time: Speer & Zacks, 2005; causation: Gernsbacher, 1990), 74 

most theories of event cognition and event representation do not consider the relevance of 75 

object-state change for event representation (cf. Altmann & Ekves, 2019). To our knowledge, 76 

no study so far has considered the integration of implied visual, action, proprioceptive, and 77 

kinesthetic information into the mental model to be able to convincingly state which of the 78 
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aforementioned object states (i.e., a round tomato, a squashed tomato, etc.) may get activated 79 

or deactivated in the mental model. Therefore, over the course of seven experiments we 80 

present initial evidence consistent with (1) the idea that non-visual features of the situation 81 

(i.e., the weight of an item that falls on a target object) are taken into account when 82 

representing target object shape and (2) the proposal that, at least under some circumstances, 83 

prototypical target object information, which is initially activated (e.g., a round tomato), 84 

cannot be completely overwritten or inhibited even when the content of the linguistic input 85 

requires the activation of a different representation (e.g., a squashed tomato).  86 

Previous research 87 

A popular paradigm to reveal the content of mental representations is a sentence-88 

picture verification task in which participants read a sentence and then are shown a pictured 89 

object. For instance, Zwaan et al. (2002) asked participants to read sentences like “A ranger 90 

saw an eagle in the sky” or “A ranger saw an eagle in a nest” and then judge if a subsequently 91 

presented pictured object was mentioned in the sentence. Participants’ responses were faster 92 

when the shape of a pictured object (e.g., an eagle with outstretched wings vs. an eagle with 93 

folded wings) matched the shape of the object implied by the linguistic description. Similar 94 

findings regarding object shape were also reported by Engelen et al. (2011), Pecher et al. 95 

(2009), Rommers et al. (2013), and Zwaan and Pecher (2012).  96 

Although there is now a wealth of evidence as to what object properties are activated 97 

in mental representations (e.g.,  Horchak et al., 2014, Horchak & Garrido, 2020), researchers 98 

are now increasingly addressing the question of how readers activate such mental 99 

representations, including those for object shape. For example, Ferguson et al. (2013) 100 

illustrated that contextual uncertainty about the described event influences the content of 101 

mental representations. More specifically, they showed that participants were significantly 102 

faster to verify a matching picture of the target image (following a delay of 250 ms) after 103 
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reading a sentence such as “The old lady knows that the picnic basket is open” than a 104 

sentence such as “The old lady thinks that the picnic basket is open”, thus suggesting that in 105 

uncertain conditions a construction of a mental representation is a more time-consuming 106 

process than in certain conditions. Altmann and Kamide (2009) used eye tracking to 107 

investigate the mapping between language input and mental representations of visual scenes. 108 

By manipulating the event-related locations of objects, they found that participants landed 109 

more fixations on the table at the offset of the word “glass” in “She will pick up the bottle, 110 

and pour the wine carefully into the glass” when preceded by a sentence “The woman will 111 

put the glass onto the table” than when preceded by a sentence “The woman is too lazy to put 112 

the glass onto the table”. This finding thus suggests that during the process of object 113 

recognition comprehenders constantly update event-based representations of observed 114 

referents. Sato et al. (2013) provided direct empirical evidence for the dynamically 115 

updateable event-based representations of object shape by using Japanese language in the 116 

picture-verification task. The processing of sentences in Japanese, which has a verb-final 117 

order, created an expectation of one object state at the offset of a sentence and a different 118 

object state at the end of the sentence (e.g., first reading about a man wearing a kimono and 119 

then processing the verb that implies that the kimono has been torn apart). The researchers 120 

found that participants’ verification of shape-matching pictures was significantly faster both 121 

before (e.g., not damaged kimono) and after the presentation of the critical final verb 122 

contradicting the initially expected object state (e.g., damaged kimono), thus pointing to the 123 

conclusion that mental representations of object shape get activated both in the middle and at 124 

the end of the sentence. Finally, Hoeben et al. (2019) have recently found that the initial 125 

object state is quickly revised when the other object state is mentioned. They did so by 126 

presenting participants with a set of sentences in which an object was dynamically changing 127 

from one shape (e.g., an eagle with outstretched wings in the sky) to another (e.g., an eagle 128 
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with folded wings in the nest) as a function of location. More specifically, the data revealed 129 

that verification times were faster for the most recently implied shape (i.e., an eagle with 130 

folded wings), thus suggesting that the end object state was more activated.  131 

What remains unclear, however, from the above findings is whether the initial object 132 

state is as rapidly revised when object state-change is contingent on action. Altmann and 133 

Ekves (2019) in their “Events as intersecting object histories (IOH)” account argued that 134 

representational consequences for the changes of location (as compared to action) are 135 

different, given that changes in the surrounding context in which an object is described 136 

require encoding of that context. Indeed, when event models are established from the changes 137 

in location (e.g., “There is an egg in a fridge” vs. “There is an egg in a skillet”), the transition 138 

from an object being intact to it being crushed is occluded (although the object in its crushed 139 

state will activate semantic knowledge of the object in general), and hence the comprehenders 140 

should be, at the very minimum, less sensitive to the activation of an earlier part of an 141 

object’s trajectory. However, this is not the case when an object is described as substantially 142 

changing state due to an external action. For a sentence such as “The man dropped the glass”, 143 

it makes sense to predict that the resultant state cannot be divorced from the original state, 144 

precisely because one needs to know what an initial object state was in order to comprehend 145 

that a change in state actually occurred. Such a prediction fits with Altmann's and Ekves' 146 

(2019) theoretical account, which predicts the anticipation of goal states given all other 147 

possible states.  148 

That there may be a competition between object states in event comprehension is also 149 

supported by empirical evidence. Using functional magnetic resonance, Hindy et al. (2012) 150 

presented participants with sentences in which an object was described as changing 151 

substantially (e.g., “The squirrel will crack the acorn”) compared to changing minimally (e.g., 152 

“The squirrel will sniff the acorn”). The researchers found that a neural marker for 153 



OBJECT-STATE CHANGES DURING SENTENCE PROCESSING 
7 

 
competition was present in the “crack” case more than in the “sniff” case, and they concluded 154 

that for competition to obtain in these cases, multiple states of the acorn had to be co-155 

activated. Furthermore, a subsequent study by Solomon et al. (2015) confirmed that this 156 

competition required distinct states of the same acorn.  157 

Most recently, behavioral evidence was provided in support of an idea that language 158 

processing involves activating relevant object states both before and after object state-change. 159 

Kang et al. (2019) have conducted a series of picture verification experiments in which 160 

participants read a word or a sentence and subsequently saw a picture. The task was to 161 

indicate whether the object was mentioned in the word or the sentence. In Experiment 1, the 162 

researchers presented participants with object names (e.g., ice cream) that were followed by a 163 

picture depicting the object in a normal or a crushed state and found that the intact object 164 

state had a substantial advantage in response times (difference more than 100 ms) compared 165 

to the crushed object state. In Experiment 2, participants saw the same picture stimuli as in 166 

Experiment 1, except that these were now preceded by past-tense sentences describing an 167 

action that would leave an object in its original state (e.g., The woman chose the ice cream”) 168 

or an action that would crush the object (e.g., The woman dropped the ice cream”). The 169 

results now showed that picture verification times were shorter for both the original and 170 

modified states of the object whenever the pictured target’s state matched the end state 171 

implied by the sentence. In Experiment 3 participants saw the same sentences and pictures as 172 

in Experiment 2, with an exception that sentences were presented in the future tense (e.g., 173 

“The woman will drop/choose an ice-cream”). This time the results demonstrated that 174 

depictions of deformed objects showed the matching effect in the substantial change (“drop” 175 

sentence) condition, but pictures of intact objects did not show the matching effect in the 176 

minimal change (“choose” sentence) condition. Finally, in both Experiments 2 and 3 no 177 

significant response time advantage was observed for the pictured original object state (i.e., 178 
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intact ice- cream) relative to the pictured modified object state (i.e., squashed ice-cream) in 179 

the substantial change (“drop” sentence) condition. Kang et al. (2019) concluded that the 180 

interplay between world knowledge about objects and the grammatical tenses of sentences 181 

defines the dynamics of event representation.   182 

Three important conclusions can be drawn from Kang et al.'s (2019) study. First, 183 

when the degree of change is manipulated by using two different verbs (e.g., choose vs. drop) 184 

with “squashable” objects, the initially activated object information can only be successfully 185 

updated when the past tense of the sentence “forces” comprehenders to focus on the 186 

completed action. Second, if a sentence is in the future tense (e.g., will drop vs. will choose), 187 

the activation of the crushed change of an object is partially inhibited, given that from the 188 

participant-centered perspective an original object representation is more accessible at the 189 

moment of the action of dropping. Finally, the before and after states of an object compete 190 

during event representation, as evidenced by no response time advantage in the original 191 

pictured object state (i.e., intact ice- cream) relative to the modified pictured object state (i.e., 192 

squashed ice-cream) in the substantial change (“drop” sentence) condition.  193 

Nonetheless, if event models draw information from visual features of the situation 194 

(e.g., locations) and different actions, then it stands to reason that unmentioned, non-visual 195 

features of the situation (e.g., when the shape of a target object is implied by virtue of a 196 

description of a heavy vs. light second object being dropped on it) should also affect mental 197 

representations of described situations. In support of such an idea is a study of Scorolli, 198 

Borghi, and Glenberg (2009) showing that such an intrinsic object property as weight is 199 

simulated during language comprehension. In this research, participants lifted differently 200 

weighted (but visually identical) boxes after reading sentences describing the lifting of heavy 201 

or light boxes. Objects that were described as matching the content of the sentence elicited 202 
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larger hand and arm delay (i.e., the time after the object is grasped) relative to those described 203 

as mismatching, thus suggesting that weight information was activated.  204 

While an inferred change of state implied by object weight is not at the focus of 205 

Altmann's and Ekves' (2019) IOH work, such kind of inference is entirely compatible with 206 

one of the central tenants of their theoretical account, which is that semantic memory (world 207 

knowledge) can inform constructed events. More specifically, in the IOH account, events are 208 

comprised of contingent object histories (i.e. a current object state constrains all other 209 

possible states of the object), whereby an activation of one object state reactivates its entire 210 

history during the comprehension of the language. Importantly, spatiotemporal contingencies 211 

between events also lead to the emergence of higher-order contingencies across events, such 212 

as schemas (or events typical for a given situation) and scripts (or sequences of typical events 213 

for a given situation) that overlap during event representation. Thus, according to the IOH 214 

account, understanding a sentence “You drop a bowling ball on a tomato” should activate 215 

generalized event knowledge about the objects mentioned in the sentence and schema 216 

knowledge about likely chains of events in the context of dropping (given what we know 217 

about the weight and fragility of each object type). Therefore, the present research raises the 218 

following important question: is shape information updated differently when object state-219 

change is implied by another object’s weight rather than different locations or actions? 220 

The present research  221 

The present research used similar methods to those in a related study by Kang et al. 222 

(2019), but is different in several important respects. First, whereas in Kang et al. (2019) the 223 

shape of an object was implied by using two different verbs (e.g., dropped vs. chose), in our 224 

study the shape of an object was implied by virtue of a description of a heavy vs. light second 225 

object being dropped on it (e.g., a bowling ball vs. a balloon). Second, while in Kang et al. 226 

(2019) the object following a verb was easily “squashable” (e.g., ice cream), in our study it 227 
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was not (e.g., sponge, dumbbell). Third, in Kang et al. (2019) sentences were in the third-228 

person condition and in our study sentences were in the second-person “you” condition. 229 

Finally, and most importantly, whereas in Kang et al. (2019) the object dropped was the one 230 

participants had to verify, in our experiments participants had to verify a “squashable” object 231 

onto which another “unsquashable” heavy or light item was dropped (e.g., “You drop a 232 

bowling ball/a balloon on a tomato”). Thus, in our study verbs and, more generally, linguistic 233 

cues are not the primary “drivers” of the updating of state information. Rather, these are the 234 

unmentioned, non-visual features of the situation (e.g., the weight of a bowling bowl when it 235 

is dropped on a tomato) defined by different objects coming together in time and space. 236 

These considerations are theoretically important in respect of understanding the conditions 237 

when multiple object state representations must be simultaneously activated during event 238 

comprehension.  239 

 240 

Figure 1. Two possible patterns of activation (on the left and on the right) that may facilitate 241 

the verification of pictured stimuli after reading sentences as the ones presented in the left-242 

right arrow. 243 

 244 
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There are two hypotheses as to how the implied target object state may be represented 245 

after reading sentences such as “You drop a bowling ball on a tomato” and “You drop a 246 

balloon on a tomato”, which are summarized in Figure 1. The first possibility (arbitrarily 247 

referred to here as a “constant scenario”) is that only the consequences of the described action 248 

will be encoded, suggesting that at the time of reading how a heavy or a light item collides 249 

with a target object, participants form an immediate mental image of a target object in its 250 

context-specific form (a deformed or a non-deformed state, respectively). On this view, 251 

verification time should be shorter whenever the pictured target object matches the end state 252 

implied by the sentence. This prediction is based on the results of previous research when 253 

shape information was manipulated as a function of a location (e.g., see Zwaan & Pecher, 254 

2012, for more information).  255 

The second possibility (arbitrarily referred to here as a “competing scenario”) is that 256 

both the initial canonical and the end non-canonical states of the object would be equally 257 

integrated into the mental model. On this view, pictures depicting undeformed objects should 258 

not be verified faster after reading a sentence such as “You drop a balloon on a tomato” than 259 

a sentence such as “You drop a bowling ball on a tomato”. This is the case because 260 

comprehension of the dropping event in “You drop a bowling ball on a tomato” requires 261 

activation at “the tomato” of both the canonical state of a tomato and of the non-canonical 262 

deformed state - the consequence of the bowling ball dropping on it. On the contrary, pictures 263 

depicting deformed objects should be verified faster after reading a sentence such as “You 264 

drop a bowling ball on a tomato” than a sentence such as “You drop a balloon on a tomato”, 265 

precisely because the deformed state of an object is only implied by the “bowling ball” 266 

sentence. Such a prediction is in line with the results of an fMRI study of Hindy et al. (2012), 267 

where a competition effect was observed in sentences like “You stamp on a penny” vs. “You 268 

step on an egg”, as well as a new theory of events as intersecting object histories (Altmann & 269 
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Ekves, 2019) that attributes importance to both the initial and the end object states during 270 

event representation.  271 

Experiment 1 272 

Participants read sentences such as “You drop a bowling ball on a tomato” or “You drop a 273 

balloon on a tomato” and then decided whether the subsequently pictured object was 274 

mentioned in the sentence (see Figure 2, for samples of picture stimuli used). This experiment 275 

was designed to determine (1) whether weight information is considered when representing a 276 

target object shape and (2) whether sentence processing affects picture verification in line 277 

with a “constant” scenario or a “competing” scenario outlined earlier. 278 

 279 

Figure 2. Sample picture stimuli used in Experiments 1-7. 280 

Method 281 

Sample size and ethical requirements 282 

Power analysis was conducted in G*Power. Running a power analysis on a repeated 283 

measures ANOVA, a power of 0.90, an alpha level of 0.05, and a medium (ηp
2 = .06) effect 284 

size (Faul, Erdfelder, Lang, and Buchner, 2007), we expected to need at least 77 participants 285 

for each experiment. An estimate of medium effect size for power analysis is based on the 286 
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results of Hoeben et al. (2019) and Sato et al. (2013) whose reported effect sizes of major 287 

effects were medium and large, respectively. To account for low accuracy scores and 288 

compliance with the task requirements, we always attempted to have at least 90 participants 289 

in each of our experiments. In line with the ethical guidelines of the host institution, 290 

participants from all seven experiments gave informed consent prior to participation and were 291 

fully debriefed about the purpose of the study upon completion. 292 

Participants 293 

One hundred and four native Portuguese-speaking university students took part in 294 

Experiment 1 in exchange for course credit. The responses of five participants were discarded 295 

for having accuracy <80% on the main task (four participants) or answering <50% of the 296 

comprehension questions correctly (one participant). Overall, the results of Experiment 1 are 297 

based on data from 99 participants (Mage = 23.33, SDage = 4.53), of whom 79 were females. 298 

Materials 299 

Twenty-four experimental sentence pairs were created describing an action that involved 300 

dropping either a bowling ball or a balloon on objects that are unlikely to withstand a great 301 

deal of applied force without deformation (e.g., strawberry, light bulb). Thus, participants 302 

processed sentences involving differently weighted objects that implied contrasting degrees 303 

of applied force (i.e., bowling ball and balloon). The reason for choosing only a bowling ball 304 

and a balloon as the objects being dropped was to maximize control over other visual features 305 

that were shown to influence participants’ expectations about object weight (e.g., size-weight 306 

illusion: Brenner & Smeets, 1996; shape: Glover, 2004). All of the experimental sentences 307 

were followed by a pictured object (e.g., an intact tomato or a squashed tomato) mentioned in 308 

the sentence and required “yes” responses.  309 

Nonetheless, in order to prevent participants from paying attention to the words 310 

“bowling ball” and “balloon”, we constructed twice as many filler sentences. Twelve of these 311 
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sentences were of the same format as experimental sentences, but involved the dropping of 312 

multiple objects: 10 sentences were followed by a pictured object not mentioned in the 313 

sentence and required “no” responses; and two sentences were followed by a pictured object 314 

mentioned in the sentence and required “yes” responses. Furthermore, 36 sentences were 315 

constructed that focused on the act of seeing rather than action (e.g., “You see how a puppy is 316 

playing with a ball”). Ten of these “visual” sentences were followed by a pictured object 317 

(e.g., an intact object or a deformed object) mentioned in the sentence and required “yes” 318 

responses; and 26 of “visual” sentences were followed by a pictured object (e.g., an intact 319 

object or a deformed object) not mentioned in the sentence and required “no” responses. 320 

Finally, 24 comprehension questions1 were created to alert participants of the need to pay 321 

attention to the meaning of the sentences (e.g., “You dropped a fork on a plate?”). These 322 

questions, which were not primary dependent variables to us, appeared after half of filler 323 

items and required an even distribution of “yes” responses and “no” responses. Each 324 

participant saw 24 experimental sentence–picture pairs requiring “yes” responses, 12 filler 325 

pairs requiring “yes” responses, and 36 filler pairs requiring “no” responses. Thus, there were 326 

36 sentence–picture pairs requiring “yes” and 36 requiring “no” responses. 327 

Seventy-two same-sized (385x385 pixels) images were created to accompany the 328 

sentences. Twenty-four pictures were experimental pairs. Both members of each pair 329 

depicted the same object except for the version of the object used: undeformed (canonical) or 330 

deformed (non-canonical). The other 48 pictures were fillers, with half of the pictures 331 

depicting an undeformed version of an object and the other half depicting a deformed version 332 

of an object. Almost all experimental pictures were created for this experiment by taking 333 

pictures of real objects. Most of the filler pictures were found on the Internet.  334 

Design and procedure 335 
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There were four lists of stimuli, with each experimental sentence-picture pair appearing 336 

in only one of the following conditions per list: heavy-non-canonical; heavy-canonical; light-337 

non-canonical; and light-canonical. There were 6 trials for each condition. Each participant 338 

saw one list only and was randomly assigned to it. The idea of list was to counterbalance 339 

items and conditions, so that the same items that appeared in one sentence-picture condition 340 

for some participants were in the different sentence-picture condition for other participants. A 341 

3-way interaction between list, picture type, and sentence type was not significant (t < 2 in 342 

estimates of fixed effects using linear mixed-effects modelling). Thus, list was not included 343 

as a factor in the reporting of statistical analyses due to its little theoretical relevance 344 

(Pollatsek & Well, 1995). This led to a 2 (sentence: heavy vs. light) × 2 (picture: canonical 345 

vs. non-canonical) within-participants design.  346 

E-Prime 2.0 was used for stimulus presentation. The experiment began with six practice 347 

trials to ensure that participants understood the instructions. After each practice trial (but not 348 

main trials) participants saw different feedback screens based on whether correct or incorrect 349 

response was provided. Instructions warned participants that throughout the experiment they 350 

would be asked to respond to some comprehension questions, and hence need to read 351 

sentences attentively. Following previous similar research (e.g., Kang et al., 2019), each trial 352 

of the main part of the experiment started with a fixation cross in the middle of a computer 353 

screen for 1000 milliseconds. Then a sentence appeared at the center of the screen until 354 

participants pressed the Spacebar, thus indicating that they read and understood the sentence. 355 

After a spacebar press, the sentence was replaced by a fixation cross for 500 milliseconds, 356 

immediately followed by a picture of an object (in either a non-canonical or a canonical state) 357 

that was either mentioned or not in the preceding sentence. Participants indicated their 358 

decision by pressing an “S” button for a “yes” response and an “N” button for a “no” 359 

response. 360 
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Data treatment  361 

 Prior to analysis, and in all seven experiments, incorrect responses, filler items, and 362 

the data of participants with an overall accuracy <80% on the main task (i.e., participants 363 

were at least 80% accurate in indicating that a target object was mentioned in the sentence 364 

regardless of implied object state) and <50% on the comprehension questions were excluded. 365 

Second, response times (RTs) were checked for normality using Q-Q plots and histograms 366 

with normal curve. In all seven experiments RTs were positively skewed, and thus log10 367 

transformation was applied to get normal distributions (e.g., Baayen, 2008). Finally, 368 

responses exceeding ±3 median absolute deviations (MAD) from the condition’s median 369 

were removed. To calculate MAD, the formula MAD = median (|xi - median(x)|) was used, 370 

where median (x) is the median of the distribution and MAD equals the median of the 371 

differences between individual observations xi and the distribution. ±3 MAD is considered to 372 

be a robust method of outlier treatment that is not affected by extremely high or extremely 373 

low values, and thus eliminates the need to set upper and lower cutoff points (see Leys, Ley, 374 

Klein, Bernard, & Licata, 2013, for more information). Most of the experiments from the 375 

sentence–picture verification task used the median for the analyses (see Pecher & Zwaan, 376 

2012, for a discussion), and hence choosing the method of outlier treatment based on median 377 

absolute deviation seemed to us as the most optimal. 378 

Data analysis  379 

All statistical analyses were performed within the R programming environment version 380 

4.0.0 (R Core Team, 2020) and several R packages. We used the “tidyverse” package 381 

(Wickham et al. 2019) for data processing; the “lme4” package (Bates, Mäechler, Bolker, & 382 

Walker, 2015) and “lmerTest” package (Kuznetsova, Brockhoff & Christensen, 2017) for 383 

main statistical analyses of accuracy and response times; the “report” (Makowski & Lüdecke, 384 

2019) and “sjPlot” (Lüdecke, 2020) packages for reporting statistical results. R Markdown 385 
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files were used to generate code and the analyses were “knit” into html files that contain our 386 

comments, code, and output. We used the default R “treatment” (or dummy coding) coding 387 

scheme, where each level of the categorical variable is contrasted to a specified reference 388 

level. In the present research, the “heavy” sentence condition and the “non-canonical” picture 389 

condition were set as reference categories. Given that the interpretation of lower-order effects 390 

(such as main effects) is affected by the presence of an interaction when fitting models using 391 

treatment contrasts (Singmann & Kellen, 2020), throughout the paper we reported the full 392 

model followed by two models aimed at extracting simple effects - one for the “canonical” 393 

picture condition and one for the “non-canonical” picture condition. If the presence of an 394 

interaction was not established, we removed the non-significant interaction term from the 395 

model and reran the analysis with two fixed effects only (i.e., sentence, picture).  396 

Accuracy 397 

Logistic mixed-effects regression with crossed random effects of participants and items 398 

was used to analyze accuracy scores. For both accuracy and response times analyses, we 399 

fitted the full variance-covariance structure of random effects (the so-called "maximal" 400 

model; Barr et al., 2013). The “maximal” model for the present research is the one with 401 

sentence, picture, and their interaction considered as fixed effects; random intercepts for 402 

participants and items; by-participants random slopes for sentence, picture, as well as the 403 

interaction term; a maximum likelihood estimation parameter; and an unstructured covariance 404 

matrix. Note, however, that no random slopes were specified for items as each participant 405 

gave only one response per individual test item (see Barr et al., 2013, for more information). 406 

If the “maximal” model failed to converge, we first checked whether the model converges 407 

with a random effects structure for which no slope-intercept correlation term is specified (to 408 

minimize risks of model reduction). Only when this did not help, we reduced the model by 409 

removing a random slope that makes a model fail to converge.   410 
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Response times  411 

Linear mixed-effects models with crossed random effects of participants and items were 412 

used to analyze response times (Baayen et al., 2008). The advantage of using linear mixed 413 

effects models over traditional separate by-participants (commonly denoted as F1) and by-414 

items (commonly denoted as F2) repeated-measures ANOVAs is that this method of 415 

statistical analysis (1) handles the crossing of two random factors simultaneously (Baayen et 416 

al., 2008) and (2) takes into account all individual RTs rather than just mean or median RTs 417 

for each participant (Baayen & Milin, 2010). Similar to accuracy analyses, we fitted the 418 

“maximal” model to predict RTs and reduced the complexity of random-effects structure only 419 

if the model failed to converge (in order to prevent unknown risk of anticonservativity).  420 

Results and discussion 421 

Data trimming for RTs 422 

The removal of responses falling outside ±3 MAD from the relevant condition’s 423 

median led to the loss of 6.13 % of observations.  424 

Accuracy data 425 

Participants’ response accuracy was 97.6%. The “maximal” logistic mixed-effects 426 

regression model (estimated using ML and BOBYQA optimizer) to predict Accuracy 427 

converged successfully. The results showed that there was no interaction between sentences 428 

and pictures (beta = 2.28, SE = 3.71, z = 0.61, p = .539). Thus, we removed the non-429 

significant interaction term from the model and reran the analysis with two fixed effects 430 

(sentence, picture) only. The results demonstrated no significant main effect of sentence type 431 

(beta = -0.35, SE = 0.44, z = -0.79, p = .427) and no significant main effect of picture type 432 

(beta = -0.67, SE = 0.55, z = 1.20, p = .229).  433 

RT data 434 
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The data of major interest are provided in Figure 3. Following Baayen and Milin 435 

(2010), we present data using non-transformed means for the convenience to visualize effects 436 

in the millisecond scale. The “maximal” linear mixed-effects model (estimated using ML and 437 

BOBYQA optimizer) to predict RTs converged successfully. Most critical to our predictions 438 

was a significant interaction between sentences (heavy vs. light) and pictures (non-canonical 439 

vs. canonical), beta = -0.07, SE = 0.01, t = - 4.70, p < .001, 95% CI [-0.09, -0.04].  440 

 441 

Figure 3. Mean non-transformed response times (in milliseconds) and error bars for 442 

verification of pictures depicting objects in either a non-canonical or a canonical state in 443 

Experiment 1. Error bars indicate 95% confidence intervals of the difference between the 444 

means of “heavy” and “light” sentences in each picture condition.  445 

To investigate this interaction further, the data file was split by pictures and separate 446 

multilevel models on the “non-canonical” pictures and “canonical” pictures were conducted 447 

(Field, 2013). The models specified included a fixed effect of sentence type, a by-participant 448 

random slope for sentence type, and a random intercept for participants and items. The data 449 

showed that participants verified “non-canonical” pictures more quickly when preceded by a 450 

“heavy” sentence than when preceded by a “light” sentence, beta = 0.06, SE = 0.01, t = 6.86, 451 
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p < .001, 95% CI [0.04, 0.08]. However, participants did not verify “canonical” pictures 452 

faster when preceded by a “light” sentence than when preceded by a “heavy” sentence, beta = 453 

0.00, SE = 0.01, t = -0.36, p = .721, 95% CI [-0.02, 0.01].  454 

Overall, these results are consistent with the “competing” scenario outlined earlier, 455 

which suggests that the initial target object representation cannot be completely overwritten 456 

when the context requires activating a different representation of object state. Thus, 457 

representations of an object’s initial and final states were simultaneously active in the 458 

“heavy” (“bowling ball” sentence) condition.  459 

Experiment 2 460 

Experiment 2 was designed to replicate the results of Experiment 1 with more sentence 461 

and picture stimuli, as well as to lend more credence to our argument that processing of an 462 

object in its crushed state relies on the re-activation of an object’s history – the trajectory of 463 

the past intact state that led to the current one. To this end, in Experiment 2 we added a “non-464 

action” condition where participants processed simple sentences in which the verb solely 465 

denoted visual perception of the target object (e.g., “You see a tomato”) followed by either a 466 

“non-canonical” or a “canonical” pictured version of the object mentioned in the sentence. 467 

The purpose of this condition was to unravel what happens when both object states of a target 468 

object (e.g., squashed tomato vs. intact tomato) do not contradict sentence content. In line 469 

with the results observed in Experiment 1 of Kang et al. (2019), our prediction was that 470 

response latencies should be faster for “canonical” pictures than for “non-canonical” pictures 471 

after reading a non-action sentence like “You see a tomato”, precisely because prototypical 472 

object state should have an advantage in response times compared to the modified state.  473 

Method 474 

Participants 475 
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One hundred and eight native Portuguese-speaking university students participated in 476 

the experiment in exchange for course credit. The responses of seven participants were 477 

excluded for having accuracy <80% on the main task (four participants) or answering <50% 478 

of the comprehension questions correctly (three participants). Hence, the results of 479 

Experiment 2 are based on data from 101 participants (Mage = 22.42, SDage = 4.23), of whom 480 

79 were females.  481 

Materials 482 

The critical sentences and pictures were the same as in Experiment 1, except that an 483 

additional 12 sentences were constructed for the “non-action” condition and 12 new picture 484 

pairs were added. Each participant saw 36 experimental sentence–picture pairs requiring 485 

“yes” responses, 12 filler pairs requiring “yes” responses, and 36 filler pairs requiring “no” 486 

responses. Thus, there were 48 sentence–picture pairs requiring “yes” and 36 requiring “no” 487 

responses. 488 

Design and procedure 489 

To have a counterbalanced design, six lists were created and each list included one of six 490 

possible versions (3 sentences: heavy, light, non-action; 2 pictures: canonical, non-canonical) 491 

for each object. There were 6 trials for each experimental condition. The procedure was the 492 

same as in Experiment 1. 493 

Results and discussion 494 

Data trimming for RTs 495 

The removal of responses falling outside ±3 MAD from the relevant condition’s 496 

median led to the loss of 5.28 % of observations.  497 

Accuracy data 498 

Participants’ response accuracy was 97.9%. Given that in Experiment 2 one of the 499 

variables (i.e., sentence) had more than 2 levels, we performed a likelihood ratio test that 500 
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compares the likelihood of one model to the likelihood of another model in order to 501 

determine whether the 3x2 interaction was significant. A likelihood ratio test of the 502 

“maximal” model with fixed effects of sentence, picture, and their interaction against the 503 

“simplified” model with fixed effects of sentence and picture revealed no significant 504 

difference between models (χ2 (13) = 10.32, p = .667), thus suggesting that there was no 505 

evidence for the 3x2 interaction between sentence type (“heavy”, “light”, “non-action”) and 506 

picture type (“canonical”, “non-canonical”). Thus, we used the “simplified” model with no 507 

interaction term in the reporting of statistical analyses. The results of this model revealed that 508 

simple effects of “light” sentences (beta = 0.29, SE = 0.45, z = 0.65, p = .518) and non-509 

action” sentences (beta = 0.60, SE = 0.45, z = 1.34, p = .179) were not significant relative to 510 

the referent level (i.e., heavy sentences). Furthermore, by making a non-action sentence 511 

condition as a referent category, we found that “non-action” sentences were not verified more 512 

accurately than “light” sentences (beta = -0.31, SE = 0.53, z = -0.59, p = .554). Finally, there 513 

was no significant main effect of picture type (beta = -0.45, SE = 0.46, z = -0.98, p = .329).  514 

RT data 515 

The results of major interest are presented in Figure 4. A likelihood ratio test of the 516 

“maximal” model with fixed effects of sentence, picture, and their interaction against the best 517 

converging model2 with fixed effects of sentence and picture revealed a significant difference 518 

between the models (χ2 (12) = 81.11, p < .001), thus suggesting that there was a strong 519 

evidence for the 3x2 interaction between sentence type (“heavy”, “light”, “non-action”) and 520 

picture type (“canonical”, “non-canonical”).  521 

Consistent with our reasoning, follow-up analyses showed that verification times for 522 

“canonical” pictures were significantly faster than verification times for “non-canonical” 523 

pictures after reading “non-action” sentences, beta = -0.05, SE = 0.01, t = -6.08, p < .001, 524 

95% CI [-0.06, -0.03]. Furthermore, in line with the results of Experiment 1, the segregation 525 
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of the items by pictures showed that “non-canonical” pictures were responded to more 526 

quickly when preceded by a “heavy” sentence than when preceded by a “light” sentence, beta 527 

= 0.04, SE = 0.01, t = 5.38, p < .001, 95% CI [0.03, 0.06]; but “canonical” pictures were not 528 

responded to significantly faster when preceded by a “light” sentence than when preceded by 529 

a “heavy” sentence, beta = -0.01, SE = 0.01, t = -0.79, p = .429, 95% CI [-0.02, 0.01]. 530 

 531 

Figure 4. Mean non-transformed response times (in milliseconds) and error bars for 532 

verification of pictures depicting objects in either a non-canonical or a canonical state in 533 

Experiment 2. Error bars indicate 95% confidence intervals of the difference among the means 534 

of “heavy”, “light”, and “non-action” sentences in each picture condition.  535 

There were also some other interesting effects in the analyses of response times. More 536 

specifically, by setting a “non-action” sentence condition as a referent category we found that 537 

verification times for pictures depicting “canonical” objects were much faster when preceded 538 

by a non-action sentence than when preceded by a “light” sentence, beta = 0.08, SE = 0.01, t 539 

= 8.71, p < .001, 95% CI [0.06, 0.10]. This effect is not surprising considering the varying 540 

degree of task demands for these sentence conditions: non-action sentences mentioned one 541 

object always occurring in the subsequent picture (e.g., “You see a tomato”) and “light” 542 
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sentences mentioned two objects equally likely to occur in the subsequent picture (e.g., “You 543 

drop a balloon on a tomato”). In addition, such a result is consistent with prior research 544 

showing that the construction of mental simulations is delayed when sentences are more 545 

complex (Kaup et al., 2006). However, verification times for pictures depicting “non-546 

canonical” objects were nearly identical when preceded by both a “heavy” sentence and a 547 

non-action sentence, beta = 0.00, SE = 0.00, t = 0.03, p =. 975, 95% CI [-0.02, 0.02]. 548 

Presumably there was a response facilitation arising from the processing of “heavy” 549 

sentences in the “non-canonical” picture condition. If this were not the case, then the results 550 

for easier “non-action” sentences in the “non-canonical” picture condition should have been 551 

very much similar to the results for non-action sentences in the “canonical” picture condition. 552 

Thus, when looking at congruency effects for canonical and non-canonical picture conditions 553 

separately, the results replicate those from Experiment 1. 554 

Nonetheless, the pattern of results as a whole is not fully consistent with the findings 555 

from Experiment 1. For some reason response times for canonical objects after “heavy” and 556 

“light” sentences in Experiment 2 were on average longer than those observed in Experiment 557 

1 (see Figures 3 and 4). That is, if there was a competition of object states in the process of 558 

language comprehension, then no significant match advantage for the original object state 559 

(i.e., intact tomato) should have been observed relative to the modified object state (i.e., 560 

squashed tomato) in the substantial change (“heavy” sentence) condition. We conducted 561 

Experiment 3 to further address this issue.   562 

Experiment 3 563 

Experiment 1 showed that pictures depicting “non-canonical” objects were verified 564 

faster after participants read a sentence describing the action of dropping a bowling ball on a 565 

target object than a sentence describing the action of dropping a balloon. Experiment 2 566 

replicated the above finding and provided further support for our claim that prototypical 567 
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object information, which is initially activated (e.g., an intact tomato), is not completely 568 

overwritten or inhibited when the context requires the activation of a different representation 569 

(e.g., of a deformed tomato) and therefore it can still affect picture verification. However, 570 

response times for canonical objects after “heavy” and “light” sentences in Experiment 2 571 

were on average longer than those observed in Experiment 1 (see Figures 3 and 4). We 572 

reasoned that such variable results could be indicative of the presence of a “hidden 573 

moderator”. More specifically, we suspected that participants could have represented 574 

different kinds of balloons (e.g., air-filled vs. helium-filled) while reading the target 575 

sentences. For example, it could be that “balloon” sentences led some participants to mentally 576 

represent an upward direction of a described object’s motion (i.e., the case of a helium-filled 577 

balloon) rather than a downward direction of a described object’s motion (i.e., the case of an 578 

air-filled balloon), which could, in turn, have some consequences for the speed with which 579 

participants verified pictured targets. To test this possibility, we disambiguated the meaning 580 

of an item being dropped by now presenting participants with the sentences like “You drop a 581 

balloon full of air on a tomato”.  582 

In addition, it is also possible that verification times of “canonical” pictures were 583 

different because the responses were made in the presence (when taken experiment as a 584 

whole) of non-action sentences inviting participants to visualize the described scene (e.g., 585 

“You see a tomato”). Therefore, we replaced “non-action” sentences from Experiment 2 (e.g., 586 

“You see a tomato”) with control sentences, which were identical to critical “heavy” and 587 

“light” sentence stimuli, except that the preposition “on” was replaced with the preposition 588 

“near” (e.g., “You drop a bowling ball/a balloon near a tomato”). The idea was to (1) check if 589 

the absence of “non-action” sentences would change the pattern of results and (2) to rule out 590 

the possibility that participants simply learned to associate a bowling ball with a “deformed” 591 

pictured stimulus and a balloon with an “undeformed” pictured stimulus while providing a 592 
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response. Accordingly, we expected to show that (1) “non-canonical” pictures would be 593 

verified faster after a “heavy” sentence with a preposition “on” than a “heavy” sentence with 594 

a preposition “near”; and (2) “canonical” pictures would be verified equally fast after a 595 

“light” sentence with a preposition “on” and a “light” sentence with a preposition “near”. 596 

Thus, participants now processed the following experimental sentence types: 597 

(1) You drop a bowling ball on a tomato; 598 

(2) You drop a bowling ball near a tomato; 599 

(3) You drop a balloon full of air on a tomato; 600 

(4) You drop a balloon full of air near a tomato.  601 

It is important to note that although we had four sentence types in total, a full-factorial 602 

design was used only for “heavy” and “light” sentences with a preposition “on” (as in 603 

previous two experiments). “Bowling ball” sentences with a preposition “near” were used 604 

only in conjunction with a picture condition depicting “non-canonical” objects; and “balloon” 605 

sentences with a preposition “near” were used only in conjunction with a picture condition 606 

depicting “canonical” objects. Crucially, however, the same items that appeared in the “on” 607 

condition for some participants were in the opposite “near” condition for other participants. 608 

Each participant saw 36 experimental sentence–picture pairs requiring “yes” responses, 12 609 

filler pairs requiring “yes” responses, and 36 filler pairs requiring “no” responses. We did not 610 

use a full-factorial design for control sentences as such analyses would involve a comparison 611 

across mismatching trial types (e.g., verification of “non-canonical” pictures after “light” 612 

sentences with a preposition “on” and “light” sentences with a preposition “near”), which was 613 

of little theoretical interest to us. Thus, there were three sentence types for each picture 614 

condition (“light on”, “light near”, “heavy on” for “canonical” pictures; “heavy on”, “heavy 615 

near”, “light on” for non-canonical pictures). Given these limitations with the fixed-effect 616 
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model matrix, simple effects were computed using all sentence types and the interaction term 617 

was computed using sentences with a preposition “on” only.  618 

Method 619 

Participants 620 

One hundred and ten native Portuguese-speaking university students participated in the 621 

experiment in exchange for course credit. The responses of 10 participants were excluded for 622 

having accuracy <80% on the main task (seven participants) or having only one valid 623 

response in one of the experimental conditions (three participants). Thus, the results of 624 

Experiment 3 are based on data from 100 participants (Mage = 20.52, SDage = 5.02), of whom 625 

82 were females. 626 

Materials 627 

The critical sentences and pictures were the same as in Experiment 2, except for two 628 

changes. First, non-action sentences like “You see a tomato” were replaced by control 629 

sentences like “You drop a bowling ball near a tomato”. Second, sentences involving the 630 

balloon were changed from “You drop a balloon on a tomato” to “You drop a balloon full of 631 

air on a tomato”. 632 

Design and procedure 633 

Six lists were created for each object to counterbalance items and conditions. There were 634 

6 trials for each condition. The procedure was the same as in previous two experiments. 635 

Results and discussion 636 

Data trimming for RTs 637 

The removal of responses falling outside ±3 MAD from the relevant condition’s 638 

median led to the loss of 5.05 % of observations.  639 

Accuracy data 640 
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Participants’ response accuracy was 97.3%. The “maximal” model did not converge 641 

successfully in Experiment 3. Therefore, the random effects structure was simplified and we 642 

fitted the “reduced” logistic mixed-effects regression model (estimated using ML and 643 

BOBYQA optimizer) to predict accuracy with sentence, picture, and their interaction as fixed 644 

effects; random intercepts for participants and items; and by-participants random slopes for 645 

sentence and picture (no interaction term). The results showed that there was no interaction 646 

between sentences and pictures (beta = 1.58, SE = 1.02, z = 1.55, p = .122). Thus, we 647 

removed the non-significant interaction term from the model and reran the analysis with two 648 

fixed effects (sentence, picture) only. The results showed that simple effects of “heavy near” 649 

sentences (beta = 0.24, SE = 1.18, z = 0.20, p = .841), “light” sentences (beta = 0.08, SE = 650 

0.57, z = 0.14, p = .888), and “light near” (beta = 0.46, SE = 0.90, z = 0.52, p = .607) 651 

sentences were not significant relative to the referent level (i.e., heavy sentences). 652 

Furthermore, by making a “heavy near” sentence condition as a referent category, we found 653 

that “heavy near” sentences were not verified more accurately than “light” sentences (beta = -654 

0.16, SE = 1.19, z = -0.13, p = .896) and “light near” sentences (beta = 0.23, SE = 1.41, z = 655 

0.16, p = .872). By making a “light” sentence condition as a referent category, we found that 656 

“light” sentences were not verified more accurately than “light near” sentences (beta = 0.38, 657 

SE = 0.92, z = 0.42, p = .677). Finally, there was also no significant main effect of picture 658 

type (beta = -0.57, SE = 0.56, z = -1.02, p = .310). 659 

RT data  660 

The results of major interest are presented in Figure 5. Linear mixed-effects model 661 

analyses showed that a random slope for the sentence by picture interaction did not add to the 662 

model3, and thus the results are based on the model (estimated using ML and BOBYQA 663 

optimizer) that included sentence, picture, and their interaction as fixed effects; random 664 

intercepts for participants and items; and by-participants random slopes for sentence and 665 
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picture (no interaction term). Most central to our prediction, there was a significant 666 

interaction between sentence type (heavy vs. light) and picture type (canonical vs. non-667 

canonical), beta = -0.04, SE = 0.01, t = -3.12, p =.002, 95% CI [-0.07, -0.02].  668 

 669 

Figure 5. Mean non-transformed response times (in milliseconds) and error bars for 670 

verification of pictures depicting objects in either a non-canonical or a canonical state in 671 

Experiment 3. The left graph represents the difference in response times between the means of 672 

“heavy” and “light” sentences with preposition ON in each picture condition. The right graph 673 

represents the difference in response times between the means of (1) “heavy” sentences with 674 

preposition ON and “heavy” sentences with preposition NEAR in the non-canonical picture 675 

condition; and (2) “light” sentences with preposition ON and “light” sentences with 676 

preposition NEAR in the canonical picture condition. 677 

We segregated the items by pictures to investigate this interaction further. As shown 678 

in Figure 5 (the left graph), “non-canonical” pictures were responded to significantly faster 679 

when preceded by a “heavy” sentence than when preceded by a “light” sentence (beta = 0.02, 680 

SE = 0.01, t = 2.54, p = .011, 95% CI [0.01, 0.04]); but “canonical” pictures were not 681 

responded to significantly faster when preceded by a “light” sentence than when preceded by 682 

a “heavy” sentence (beta = -0.02, SE = 0.01, t = -1.88, p = .060, 95% CI [-0.04, 0.00]). 683 
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Furthermore, as demonstrated in Figure 5 (the right graph), “non-canonical” pictures were 684 

responded to more quickly when preceded by a “heavy” sentence with a preposition “on” 685 

than when preceded by a “heavy” sentence with a preposition “near” (beta = 0.03, SE = 0.01, 686 

t = 3.35, p = .001, 95% CI [0.01, 0.05]); and “canonical” pictures were responded to almost 687 

equally fast when preceded by a “light” sentence with a preposition “on” and a “light” 688 

sentence with a preposition “near” (b = 0.01, SE = 0.01, t = 1.19, p = .235, 95% CI [-0.01, 689 

0.03]).  690 

Overall, the results replicate those of the previous two experiments with regards to the 691 

“non-canonical” picture condition and rule out the possibility that the observed congruency 692 

effects can be solely explained by lexical associations (i.e., the expectation that when I read a 693 

“bowling ball” something is necessarily going to get squashed). Finally, the data showed that 694 

after disambiguating the type of a balloon implied by the sentence (i.e., “balloon full of air” 695 

rather than just “balloon”) and excluding non-action sentences the results were comparable 696 

with those from Experiment 1. Given that adding disambiguating information to the 697 

“balloon” condition did not change the overall pattern of results relative to Experiment 1, we 698 

are inclined to think that the inconsistency between Experiments 1 and 2 was due to the 699 

presence of non-action sentences. To lend further credence to this idea, we conducted further 700 

experiments in which a non-action condition was not included.  701 

Experiment 4 702 

Experiments 1 to 3 are clear in demonstrating that non-visual features of the situation 703 

(e.g., the weight of a bowling bowl when it is dropped on a tomato) are taken into account 704 

when representing object state (e.g., a squashed tomato). Furthermore, the data suggest that 705 

both the initial and the end states of an object are encoded, thus pointing to the strength of the 706 

initially activated representation (e.g., an intact tomato). Thus, the data are consistent with the 707 

results of Kang et al. (2019) who demonstrated that there is a competition of object states 708 
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during event representation. Several questions remain, however. For example, could it be that 709 

verification latencies for “canonical” pictures in Experiments 1 to 3 were inhibited just 710 

because participants found it very hard to associate balloons with an action of dropping? 711 

Similarly, could it be that verification latencies for “non-canonical” pictures in Experiments 1 712 

to 3 were facilitated just because participants found it very easy to associate bowling balls 713 

with an action of dropping? That such objects as bowling balls can be associated with an 714 

action of dropping is supported by research on object affordances showing that the action the 715 

object evokes may get activated independently of the described action (Tipper et al., 2006). 716 

To address these questions, in Experiment 4 we replaced “bowling ball” sentences with 717 

“brick” sentences (heavy condition) and “balloon full of air” sentences with “bath sponge” 718 

sentences (light condition). We thought that such objects as bricks and bath sponges cannot 719 

lead to any other representation of motion direction other than downward in the context of the 720 

action of dropping. Furthermore, we reasoned that action affordance effects are unlikely to be 721 

stronger for bricks than for bath sponges, given that the act of dropping does not closely 722 

resemble the situation of their natural use. If the effects observed in Experiments 1 and 3 are 723 

replicated, it would lend more credence to the claim that the encoding of both the initial and 724 

the end object states routinely occurs during sentence processing. 725 

Method 726 

Participants 727 

One hundred and thirty native Portuguese-speaking university students participated in 728 

the experiment. The responses of 16 participants were excluded for having accuracy <80% on 729 

the main task (14 participants), answering less than 50% of comprehension questions 730 

correctly (1 participant), or having only one valid response in one of experimental conditions 731 

(1 participant). Thus, the results of Experiment 4 are based on data from 114 participants 732 

(Mage = 20.78, SDage = 4.91), of whom 98 were females.  733 
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Materials 734 

The critical sentences and pictures were the same as in Experiment 3, except for the 735 

following two changes. First, “bowling ball” sentences were replaced by “brick” sentences 736 

such as “You drop a brick on/near a tomato”. Second, “balloon full of air” sentences were 737 

replaced by “bath sponge” sentences such as “You drop a bath sponge on/near a tomato”.  738 

Design and procedure 739 

Design was the same as in Experiment 3. There were 6 trials for each condition. 740 

Procedure was the same as in previous three experiments. 741 

Results and discussion 742 

Data trimming for RTs 743 

The removal of responses falling outside ±3 MAD from the relevant condition’s 744 

median led to the loss of 3.98 % of observations.  745 

Accuracy data 746 

Participants’ response accuracy was 96.7%. Similar to Experiment 3, the best 747 

converging logistic mixed-effects regression model (estimated using ML and BOBYQA 748 

optimizer) to predict accuracy was the one with sentence, picture, and their interaction as 749 

fixed effects; random intercepts for participants and items; and by-participants random slopes 750 

for sentence and picture (no interaction term). The results showed that the interaction 751 

between sentences and pictures was not significant (beta = 1.25, SE = 0.71, z = 1.76, p = 752 

.078). Thus, we removed the non-significant interaction term from the model and reran the 753 

analysis with two fixed effects (sentence, picture) only. The results showed that, relative to 754 

the referent level (i.e., heavy sentences), simple effects of “heavy near” sentences (beta = 755 

0.22, SE = 0.61, z = 0.36, p = .718) and “light” sentences (beta = -0.03, SE = 0.39, z = -0.07, 756 

p = .947) were not significant, but the simple effect of “light near” (beta = 3.01, SE = 1.52, z 757 

= 1.98, p = .047) sentences was significant. Furthermore, by making a “heavy near” sentence 758 
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condition as a referent category, we found that “heavy near” sentences were not processed 759 

more accurately than “light” sentences (beta = -0.25, SE = 0.61, z = -0.41, p = .685) and 760 

“light near” sentences (beta = 2.79, SE = 1.64, z = 1.70, p = .089). By making a “light” 761 

sentence condition as a referent category, we found that there was a statistical difference in 762 

how participants processed “light” sentences and “light near” sentences (beta = 3.09, SE = 763 

1.55, z = 1.99, p = .047). Finally, there was no significant main effect of picture type (beta = 764 

0.20, SE = 0.44, z = 0.46, p = .644).  765 

RT data 766 

The results of major interest are presented in Figure 6. The model (estimated using ML 767 

and BOBYQA optimizer) with the most maximal effects structure that converged (included 768 

sentence, picture, and their interaction as fixed effects; random intercepts for participants and 769 

items; and by-participants random slopes for sentence and picture) showed that there was a 770 

significant interaction between sentence type (heavy vs. light) and picture type (canonical vs. 771 

non-canonical), beta = -0.03, SE = 0.01, t = -2.36, p =.018, 95% CI [-0.05, 0.00].  772 

As shown in Figure 6 (the left graph), the segregation of the items by pictures showed 773 

that “non-canonical” pictures were responded to significantly faster when preceded by a 774 

“heavy” sentence than when preceded by a “light” sentence, beta = 0.03, SE = 0.01, t = 3.11, 775 

p = .002, 95% CI [0.01, 0.04]. However, “canonical” pictures were not responded to 776 

significantly faster when preceded by a “light” sentence than when preceded by a “heavy” 777 

sentence, beta = 0.00, SE = 0.01, t = -0.02, p = .983, 95% CI [-0.02, 0.02]. Furthermore, and in 778 

line with the results from Experiment 3, Figure 6 demonstrates (the right graph) that “non-779 

canonical” pictures were responded to more quickly when preceded by a “heavy” sentence with 780 

a preposition “on” than when preceded by a “heavy” sentence with a preposition “near”, beta 781 

= 0.03, SE = 0.01, t = 3.60, p < .001, 95% CI [0.01, 0.05]; but “undeformed” pictures were not 782 

responded to significantly more quickly when preceded by a “light” sentence with a preposition 783 
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“on” than when preceded by a “light” sentence with a preposition “near”, beta = -0.01, SE = 784 

0.01, t = -1.08, p = .282, 95% CI [-0.03, 0.01]. Thus, these data replicate the results of the 785 

previous experiments and demonstrate that the same pattern of responses is observed even 786 

when using differently-weighted items that do not evoke strong action-related affordance 787 

effects.            788 

 789 

Figure 6. Mean non-transformed response times4 (in milliseconds) and error bars for 790 

verification of pictures depicting objects in either a non-canonical or a canonical state in 791 

Experiment 4. The left graph represents the difference in response times between the means of 792 

“heavy” and “light” sentences with preposition ON in each picture condition. The right graph 793 

represents the difference in response times between the means of (1) “heavy” sentences with 794 

preposition ON and “heavy” sentences with preposition NEAR in the non-canonical picture 795 

condition; and (2) “light” sentences with preposition ON and “light” sentences with 796 

preposition NEAR in the canonical picture condition. 797 

Experiment 5 798 

The experiments presented so far indicate that both the initial and the end object states 799 

are integrated into the mental model during sentence processing. One interpretation of these 800 

results is that the canonical object representation, which is initially activated, can never be 801 

completely overwritten when shape is implied via the weight of an item that falls on a target 802 
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object such as a tomato, precisely because the representation of a tomato’s crushed state 803 

relies on the knowledge that the currently crushed tomato had existed in prior intact state. 804 

Alternatively, it is conceivable that the resultant state of the tomato is divorced from its initial 805 

state, but only when the verbal tense of the sentence indicates that the action has already 806 

happened (and is now over). Indeed, there remains a possibility that the canonical object 807 

representation could not be completely overwritten in Experiments 1 to 4 because the present 808 

tense of the sentence (e.g., “You drop a balloon/a bowling ball on tomato”) implied that the 809 

deformation of a target object (e.g., a tomato) had yet to happen. Such a possibility is 810 

supported, in part, by previous eye tracking research showing that the tense and the aspect of 811 

the verb are used to determine the state of the object during the unfolding of the event 812 

(Altmann & Kamide, 2009; Knoeferle & Crocker, 2006). Furthermore, Kang et al. (2019) 813 

observed congruency effects for a canonical object state with past tense sentences (e.g., “The 814 

woman chose/dropped an ice-cream”) but not with future tense sentences (e.g., “The woman 815 

will choose/drop an ice-cream”) when shape information was manipulated by different verbs. 816 

Thus, we ran one more experiment to investigate whether the verbal tense of a sentence 817 

modulates the activation of the state of an object.  818 

Method 819 

Participants 820 

Ninety native Portuguese-speaking university students participated in the experiment in 821 

exchange for course credit. The responses of four participants were excluded for having 822 

accuracy <80% on the main task. Additionally, the response of one participant had to be 823 

excluded for having unusually slow response times (>10 s). Hence, the results of Experiment 824 

5 are based on data from 85 participants (Mage = 20.32, SDage = 4.57), of whom 70 were 825 

females.  826 

Materials 827 
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The critical pictures were the same as in Experiment 1. The sentences described the 828 

same objects as in Experiment 1, but the critical verb and the verbal tense of the sentence 829 

were changed. In Experiment 1 participants were presented with the present tense sentence 830 

like “You drop a bowling ball on a tomato” that was indeterminate with respect to whether 831 

the focus of the utterance was on the start state, an intermediary state, or the end state. In 832 

contrast, in Experiment 5 participants were presented with the subjectless, past tense sentence 833 

like “A bowling ball fell on a tomato” that shifted the focus of the utterance on the state of 834 

the world after the action had been completed. Finally, whereas before the object described as 835 

dropped was either a bowling ball and a balloon (Experiments 1, 2, and 3) or a brick and a 836 

sponge (Experiment 4), in Experiment 5 all of these objects were used to increase our 837 

confidence in the generalizability of the study. Each participant saw 24 experimental 838 

sentence–picture pairs requiring “yes” responses, 12 filler pairs requiring “yes” responses, 839 

and 36 filler pairs requiring “no” responses. 840 

Design and procedure 841 

The design was the same as in Experiment 1. There were 6 trials for each condition. The 842 

procedure was the same as in all previous experiments. 843 

Results and discussion 844 

Data trimming for RTs 845 

The removal of responses falling outside ±3 MAD from the relevant condition’s 846 

median led to the loss of 2.61 % of observations.  847 

Accuracy data 848 

Participants’ response accuracy was 96.6%. The “maximal” logistic mixed-effects 849 

regression model (estimated using ML and BOBYQA optimizer) to predict Accuracy 850 

converged successfully. The results showed that there was no interaction between sentences 851 

and pictures (beta = 0.07, SE = 0.97, z = 0.07, p = .941). Thus, we removed the non-852 
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significant interaction term from the model and reran the analysis with two fixed effects 853 

(sentence, picture) only. The results demonstrated no significant main effect of sentence type 854 

(beta = 0.09, SE = 0.35, z = 0.26, p = .799) and no significant main effect of picture type 855 

(beta = 0.23, SE = 0.43, z = 0.55, p = .584).  856 

RT data 857 

The results of major interest are presented in Figure 7. The “maximal” model did not 858 

converge, and hence we fitted the “simplified” linear mixed-effects model (estimated using 859 

ML and BOBYQA optimizer) with uncorrelated intercept and slope for participants to predict 860 

RTs.  861 

 862 

Figure 7. Mean non-transformed response times (in milliseconds) and error bars for 863 

verification of pictures depicting objects in either a non-canonical or a canonical state in 864 

Experiment 5. Error bars indicate 95% confidence intervals of the difference between the 865 

means of “heavy” and “light” sentences in each picture condition.  866 

Most central to our prediction, there was a significant interaction between sentence 867 

type (heavy vs. light) and picture type (non-canonical vs. canonical), beta = -0.02, SE = 0.01, 868 

t = -2.03, p = .042, 95% CI [-0.05, 0.00].  869 
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The segregation of the items by pictures showed that “non-canonical” pictures were 870 

responded to more quickly when preceded by a “heavy” sentence than when preceded by a 871 

“light” sentence, beta = 0.03, SE = 0.01, t = 3.25, p = .001, 95% CI [0.01, 0.04]. However, 872 

“canonical” pictures were responded to equally fast when preceded by a “light” sentence and 873 

a “heavy” sentence, beta = 0.00, SE = 0.01, t = 0.45, p = .653, 95% CI [-0.01, 0.02]. These 874 

results consistently replicate the results of previous experiments (with an exception of 875 

Experiment 2, when responses were longer for canonical pictures), and thus  provide 876 

compelling evidence that the object’s initial and final states are simultaneously active even 877 

after the verbal tense “forces” one to focus on the state of the world after the action had been 878 

completed.                879 

Experiment 6 880 

Experiment 5 replicated the results of the previous four experiments in that depictions 881 

of non-canonical objects after “heavy” sentences showed a match advantage, but pictures of 882 

canonical objects after “light” sentences did not. This suggests that the past tense of the 883 

sentence did not modulate the activation of object states. Notwithstanding the consistency of 884 

our results, two issues give us pause. First, it remains possible that the absence of a subject 885 

described in the involved event in Experiment 5 (“A brick/a bath sponge fell on a tomato”) 886 

could have affected the pattern of observed results. Situation models of language processing 887 

suggest that a subject (or protagonist) is one of the most critical components of the meaning in 888 

a sentence (Zwaan & Radvansky, 1998). Furthermore, there is direct empirical evidence 889 

showing that when the subject is omitted from the sentence, then image verification may be 890 

impaired (Sato & Bergen, 2013). Another question concerns the possibility that participants 891 

could have guessed over the course of an experiment that whenever a sentence described how 892 

the bowling ball/ brick and the balloon/sponge are being dropped on a target object, then there 893 

should be a “yes” response. Indeed, all of the experimental sentences in Experiments 1 to 5 894 
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were followed by a pictured object (e.g., an intact tomato or a squashed tomato) mentioned in 895 

the sentence and required “yes” responses, thus potentially leading to a reduced sensitivity to 896 

objects in the canonical state.   897 

To address the aforementioned issues, we used an experimental design and materials 898 

almost identical to those in Experiments 1 to 5, except for the following two differences. First, 899 

we created 12 filler sentences in which the object dropped was the same as in the experimental 900 

sentences (i.e., a bowling ball, a brick, a balloon, a bath sponge), but the object subsequently 901 

shown mismatched sentence content, and thus required “no” responses. Second, we used past 902 

tense sentences all containing second person pronoun (e.g., “You dropped a brick/a bath sponge 903 

on a tomato”). Thus, apart from the verbal tense, sentences were substantially identical to those 904 

from Experiments 1 to 4.  905 

If depictions of canonical objects show the effect in Experiment 6, then this would 906 

indicate that either a sentence frame or an experimental design explain the lacking effect of 907 

sentence type on responses to objects in the canonical shape (e.g., due to reduced sensitivity). 908 

If, however, the effects observed in Experiment 6 are similar to those from previous 909 

experiments, then this would indicate that “subjectless” sentences and previous experimental 910 

design had no effect on the observed pattern of results in Experiments 1 to 5.  911 

Method 912 

Participants 913 

Due to a COVID-19 pandemic, 104 native Portuguese-speaking participants were 914 

recruited via Prolific Academic (Palan & Schitter, 2018) – an Internet platform aimed at 915 

connecting researchers with participants interested in taking part in research in exchange for 916 

monetary compensation of their time. To ensure that only Native Portuguese speakers were 917 

recruited, we entered the following custom prescreening criteria: Country of Birth = Portugal; 918 

Country of Residence = Portugal, and First (Native) Language = Portuguese. The responses 919 
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of 13 participants were excluded for having accuracy <80% on the main task (5 participants) 920 

or answering <50% of comprehension questions correctly (8 participants). Thus, the results 921 

of Experiment 6 are based on data from 91 participants (Mage = 24.05, SDage = 5.42), of whom 922 

53 were males. With regards to occupation, 53 participants were students, 34 were workers, 923 

and four were unemployed. The experiment lasted approximately 10 minutes. Participants 924 

were compensated at a rate of £5.05 (British pounds) per hour.  925 

Materials 926 

The critical pictures were the same as in Experiment 5. The critical sentences 927 

described the same objects as in Experiment 5, except that in Experiment 6 we used past 928 

tense sentences all containing a second person pronoun (e.g., “You dropped a brick/a bath 929 

sponge on a tomato”). Finally, we replaced 12 filler sentences from Experiment 5 by 12 new 930 

sentences that described the same objects dropped as in experimental sentences, but which 931 

were followed by mismatching pictures, and thus required “no” responses. Overall, in 932 

Experiment 6 participants processed 44 sentences that described something dropped on a 933 

“squashable” object (24 sentences were experimental and 20 were fillers) and 28 sentences 934 

that focused on the act of seeing rather than action.  935 

Design and procedure 936 

The design was the same as in Experiment 5, except for the 12 new sentences mentioned 937 

above. Each participant saw 24 experimental sentence-picture pairs requiring “yes” 938 

responses, 12 filler sentence-picture pairs requiring “yes” responses, and 36 filler sentence-939 

picture pairs requiring “no” responses. There were 6 trials for each condition. Thus, there 940 

were 36 pairs requiring “yes” responses and 36 pairs requiring “no” responses.  941 

The procedure was substantially the same as in all previous experiments, except that the 942 

stimulus presentation was controlled by a web-based service PsyToolkit, which was designed 943 

for setting up, running, and analyzing reaction-time (RT) experiments and online 944 



OBJECT-STATE CHANGES DURING SENTENCE PROCESSING 
41 

 
questionnaires (Stoet, 2010, 2017). Recently, Kim et al. (2019) experimentally tested the 945 

reliability of this web-based service in comparison to a lab-based service E-Prime 3.0 in a 946 

complex psycholinguistic task. The researchers found that results obtained through Psytoolkit 947 

were in line with those obtained through E-Prime 3.0.  948 

Results and discussion 949 

Data trimming for RTs 950 

The removal of responses falling outside ±3 MAD from the relevant condition’s 951 

median led to the loss of 6.33 % of observations.  952 

Accuracy data 953 

Participants’ response accuracy was 96.9%. The “maximal” logistic mixed-effects 954 

regression model (estimated using ML and BOBYQA optimizer) to predict Accuracy 955 

converged successfully. The results showed that the critical interaction between sentences 956 

and pictures was not significant (beta = 4.11, SE = 2.29, z = 1.80, p = .072). Thus, we 957 

removed the non-significant interaction term from the model and reran the analysis with two 958 

fixed effects (sentence, picture) only. The results demonstrated no significant main effect of 959 

sentence type (beta = -0.03, SE = 0.36, z = -0.08, p = .941). However, there was a significant 960 

main effect of picture type (beta = -1.32, SE = 0.54, z = -2.44, p = .015), which reflects the 961 

fact that participants were more accurate to verify “non-canonical” pictures than “canonical” 962 

pictures.  963 

RT data 964 

The results of major interest are presented in Figure 8. The “maximal” linear mixed-965 

effects model (estimated using ML and BOBYQA optimizer) to predict RTs converged 966 

successfully. There was a significant interaction between sentence type (heavy vs. light) and 967 



OBJECT-STATE CHANGES DURING SENTENCE PROCESSING 
42 

 
picture type (non-canonical vs. canonical), beta = -0.02, SE = 0.01, t = -2.21, p = .027, 95% 968 

CI [-0.05, 0.00]. 969 

Figure 8. Mean non-transformed response times (in milliseconds) and error bars for 970 

verification of pictures depicting objects in either a non-canonical or a canonical state in 971 

Experiment 6. Error bars indicate 95% confidence intervals of the difference between the 972 

means of “heavy” and “light” sentences in each picture condition.  973 

The segregation of the items by pictures showed that “non-canonical” pictures were 974 

responded to more quickly when preceded by a “heavy” sentence than when preceded by a 975 

“light” sentence, beta = 0.03, SE = 0.01, t = 3.08, p = .002, 95% CI [0.01, 0.04]. However, 976 

“canonical” pictures were responded to equally fast when preceded by a “light” sentence and 977 

a “heavy” sentence, beta = 0.00, SE = 0.01, t = 0.05, p = .957, 95% CI [-0.01, 0.01]. Thus, 978 

these results replicate those from the previous five experiments, suggesting that the resultant 979 

state of an object is not divorced from its initial state. Consequently, the “lacking” effect of 980 

sentence type on responses to objects in canonical shape was not due to a “subjectless” 981 

sentence or an experimental design.  982 

Experiment 7 983 
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One potential criticism of Experiments 1 to 6 is that all of the critical sentences that 984 

describe something dropped on a “squashable” object included either a bowling ball and a 985 

balloon (Experiments 1, 2, and 3), a brick and a sponge (Experiment 4), or both pairs 986 

(Experiments 5 and 6). Given this situation, one may suspect the possibility of unusual 987 

processing on the part of the participants. While the repetitive use of the above stimuli 988 

allowed us to control for perceptual similarity of items (i.e., have the same size but differ in 989 

weight), it remains possible that such a repetition led to the partial overtness of the 990 

manipulation and, in turn, to the reduced sensitivity regarding objects in a canonical state. If 991 

comprehension of the dropping event requires activation of both the canonical intact state and 992 

the non-canonical deformed state of a target object in a real-life language comprehension 993 

scenario, then one should expect to see the same results with other heavy and lights objects 994 

regardless of their perceptual similarity. To ensure that the observed effects for canonical and 995 

non-canonical pictures are robust, we conducted a final experiment with multiple heavy-light 996 

pairs.  997 

Method 998 

Participants 999 

We recruited 120 native Portuguese-speaking participants through Prolific Academic. 1000 

Custom prescreening criteria were the same as in Experiment 6, except that in Experiment 7 1001 

we prevented participants from Experiment 6 from accessing the study. The responses of 15 1002 

participants were excluded for having accuracy <80% on the main task (6 participants), 1003 

answering <50% of comprehension questions correctly (7 participants), or having only one 1004 

valid response in one of the experimental conditions (2 participants). Hence, the results of 1005 

Experiment 7 are based on data from 105 participants (Mage = 24.74, SDage = 5.31), of whom 1006 

68 were males. With regards to occupation, 57 participants were students, 47 were workers, 1007 
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and 1 was unemployed. The experiment lasted approximately 10 minutes. Participants were 1008 

compensated at a rate of £5.05 (British pounds) per hour. 1009 

Materials 1010 

In Experiment 7 we refined our study materials. First, all of the critical sentences that 1011 

describe something dropped on a “squashable” target object now included only those items 1012 

dropped that can be associated with the action of dropping in real-life contexts. Indeed, it 1013 

might be argued that “heavy” sentences were overall responded to more quickly in previous 1014 

experiments just because participants had a hard time drawing the causal link between the 1015 

action of dropping and the object such as a “balloon” (e.g., balloons bounce or fly more 1016 

frequently than drop). While we ruled out this possibility in Experiment 4 by replacing 1017 

“balloon” with “bath sponge”, we acknowledge that having only two pairs of items weakens 1018 

the generalization scope. To address this concern, in Experiment 7 we thus used the following 1019 

multiple heavy-light pairs: bowling ball/cotton ball; brick/sponge; dumbbell/cork; 1020 

stone/ribbon; hammer/bank note; and frying pan/envelope (see Appendix A, for samples of 1021 

critical sentences from Experiment 7). Importantly, similar to Experiment 6, we created 12 1022 

filler sentences in which all of the abovementioned dropped objects were followed by a 1023 

pictured object not mentioned in the sentence and required “no” responses. Second, we 1024 

excluded all nouns made up from more than one word used to describe a “squashable” object 1025 

participants have to verify (e.g., plastic cup) to ensure that word complexity has no effect on 1026 

the observed pattern of results. Pictures stimuli were taken from a set of pictures used in 1027 

Experiments 2 to 4. Overall, in Experiment 7 participants processed 44 sentences that 1028 

described something dropped on a “squashable” object (24 sentences were experimental and 1029 

20 were fillers) and 28 sentences that focused on the act of seeing rather than action.  1030 

Design and procedure 1031 

The design and procedure were the same as in Experiment 6.  1032 
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Results and discussion 1033 

Data trimming for RTs 1034 

The removal of responses falling outside ±3 MAD from the relevant condition’s 1035 

median led to the loss of 5.05 % of observations.  1036 

Accuracy data 1037 

Participants’ response accuracy was 95.6%. The “maximal” logistic mixed-effects 1038 

regression model (estimated using ML and BOBYQA optimizer) to predict Accuracy 1039 

converged successfully. Similar to all previous experiments, the results showed that the 1040 

interaction between sentence type and picture type was not a significant predictor (beta = -1041 

0.72, SE = 0.94, z = -0.77, p = .442) for accuracy scores (see Table 1, for an overview of 1042 

results in Experiments 1 to 7). Thus, we removed the non-significant interaction term from 1043 

the model and reran the analysis with two fixed effects (sentence, picture) only. The results 1044 

demonstrated no significant main effect of sentence type (beta = 0.02, SE = 0.32, z = 0.06, p 1045 

= .956). However, there was a significant main effect of picture type (beta = -0.61, SE = 0.31, 1046 

z = -1.98, p = .048), which reflects the fact that participants were more accurate to verify 1047 

“non-canonical” pictures than “canonical” pictures.  1048 

RT data 1049 

The results of major interest are presented in Figure 9. The “maximal” linear mixed-1050 

effects model (estimated using ML and BOBYQA optimizer) to predict RTs converged 1051 

successfully. Most central for our hypothesis, there was a significant interaction between 1052 

sentence type (heavy vs. light) and picture type (non-canonical vs. canonical), beta = -0.04, 1053 

SE = 0.01, t = -3.79, p < .001, 95% CI [-0.06, -0.02].  1054 

We segregated the items by pictures to investigate the interaction further. Similar to 1055 

previous six experiments, we found that “non-canonical” pictures were responded to more 1056 

quickly when preceded by a “heavy” sentence than when preceded by a “light” sentence, beta 1057 
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= 0.03, SE = 0.01, t = 4.09, p < .001, 95% CI [0.02, 0.05]. However, “canonical” pictures 1058 

were not responded to significantly faster when preceded by a “light” sentence than when 1059 

preceded by a “heavy” sentence, beta = -0.01, SE = 0.01, t = -1.31, p = .190, 95% CI [-0.02, 1060 

0.00]. 1061 

 1062 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

Figure 9. Mean non-transformed response times (in milliseconds) and error bars for 1072 

verification of pictures depicting objects in either a non-canonical or a canonical state in 1073 

Experiment 7. Error bars indicate 95% confidence intervals of the difference between the 1074 

means of “heavy” and “light” sentences in each picture condition.  1075 

 1076 

Thus, these results replicate those from the previous six experiments (see Table 1, for 1077 

an overview of RT results in Experiments 1 to 7) and lend further credence to our claim that 1078 

comprehension of the dropping event in a sentence like “You drop a bowling ball on a 1079 

tomato” requires activation at “the tomato” of both the canonical state of a tomato and of the 1080 

non-canonical deformed state - the consequence of the bowling ball dropping on it. 1081 

 1082 
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Table 1 1083 

Accuracy scores and mean response times (in milliseconds) for Experiments 1 to 7 1084 

 Picture Condition 
 Canonical  Non-canonical 
 Accuracy 

M [95% CI] 
 Response times 

M [95% CI] 
 Accuracy 

M [95% CI] 
Response times 

M [95% CI] 
Experiment 1 

Heavy Sentence 0.97 [0.96, 0.98] 731 [708, 754]  0.98 [0.97, 0.99] 707 [685, 729] 
Light Sentence 0.97 [0.96, 0.98] 733 [713, 754]  0.97 [0.96, 0.98] 818 [790, 847] 

Experiment 2 
Heavy Sentence 0.97 [0.96, 0.98] 787 [761, 815]  0.98 [0.97, 0.99] 710 [687, 734] 
Light Sentence 0.98 [0.97, 0.99] 777 [750, 804]  0.97 [0.96, 0.98] 789 [762, 817] 
Non-action 0.98 [0.97, 0.99] 636 [618, 656]  0.99 [0.98, 1.00] 713 [692, 735] 

Experiment 3 
Heavy Sentence 0.97 [0.96, 0.98] 798 [769, 828]  0.98 [0.97, 0.99] 790 [761, 820] 
Light Sentence 0.96 [0.94, 0.98] 773 [745, 802]  0.97 [0.96, 0.98] 828 [797, 859] 
Heavy Sent. (near) - -  0.97 [0.96, 0.98] 857 [823, 894] 
Light Sent. (near) 0.98 [0.97, 0.99] 792 [760, 825]  - - 

Experiment 4 
Heavy Sentence 0.96 [0.95, 0.97] 672 [647, 698]  0.97 [0.96, 0.98] 660 [637, 684] 
Light Sentence 0.98 [0.97, 0.99] 669 [647, 691]  0.96 [0.94, 0.98] 691 [667, 715] 
Heavy Sent. (near) - -  0.96 [0.95, 0.97] 701 [675, 727] 
Light Sent. (near) 0.97 [0.96, 0.98] 659 [635, 683]  - - 
  Experiment 5    
Heavy Sentence 0.96 [0.94, 0.98] 735 [711, 760]  0.97 [0.95, 0.99] 754 [728, 780] 
Light Sentence 0.97 [0.96, 0.98] 742 [717, 767]  0.97 [0.95, 0.99] 799 [771, 829] 
  Experiment 6    
Heavy Sentence 0.96 [0.94, 0.98] 798 [777, 819]  0.98 [0.97, 0.99] 809 [786, 833] 
Light Sentence 0.96 [0.94, 0.98] 796 [775, 817]  0.97 [0.96, 0.98] 855 [832, 879] 
  Experiment 7    
Heavy Sentence 0.94 [0.92, 0.96] 836 [809, 865]  0.97 [0.96, 0.98] 819 [795, 844] 
Light Sentence 0.95 [0.93, 0.97] 827 [803, 852]  0.97 [0.96, 0.98] 879 [853, 907] 

 1085 

General Discussion 1086 

  The current research was conducted to address questions regarding the importance of 1087 

object-state change for event representation during sentence processing. Central to these 1088 

questions is empirical and theoretical evidence (Altmann & Ekves, 2019; Altmann & 1089 

Mirković, 2009; Hindy et al., 2012; Solomon et al., 2015), according to which representations 1090 

of different object states compete. In light of this evidence, we examined whether non-visual 1091 

features of the situation (e.g., the weight of an item) are taken into account when representing 1092 

target object shape. Furthermore, we investigated if the canonical object state continues to 1093 

play an important role when the context requires the activation of a different object 1094 
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representation. The data support a conclusion that inferred changes of object state (e.g., the 1095 

weight of a bowling bowl when it is dropped on a tomato) contribute to the updating of state 1096 

information. Furthermore, the results show that understanding what happens to the tomato in 1097 

a sentence like “You dropped a bowling ball on a tomato” requires an activation of the 1098 

tomato in its final state and an activation of an earlier part of a tomato’s trajectory. Such a 1099 

conclusion follows from the results of all seven experiments that consistently demonstrated a 1100 

match advantage for a “non-canonical” object state in the substantial change (“heavy” 1101 

sentence) condition and no match advantage for a “canonical” object state in the no change 1102 

(“light” sentence) condition, regardless of (1) whether the items dropped evoked/did not 1103 

evoke action-related affordance effects, or (2) whether the tense of sentence implied/did not 1104 

imply that the action is now over.  1105 

The results are particularly striking if one considers the effect of sentences without an 1106 

action state (Experiment 2), which showed that in general “canonical” pictures are processed 1107 

faster than non-canonical pictures but this difference is gone when canonical images are 1108 

preceded by a “heavy” sentence. To make sense of this result, it is worth paying attention to 1109 

the pattern of responses with regards to pictures in the original object state (i.e., intact 1110 

tomato) and the modified object state (i.e., squashed tomato) in the substantial change 1111 

(“heavy” sentence) condition. If our prediction regarding competition between object states is 1112 

supported, then, similar to Kang et al. (2019), we should find no significant difference in 1113 

participants’ responses for the substantial change condition. And this is exactly what we 1114 

observed (see Table 1) in almost all experiments. The results for this condition were only 1115 

inconsistent to some extent in Experiment 2. At this point we are inclined to think that 1116 

increased response times in the canonical picture condition in Experiment 2 were caused by 1117 

“non-action” sentences inviting participants to visualize the described scene (“You see a 1118 

tomato”). However, as we did not investigate the contribution of these sentences across 1119 
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experiments (i.e., the manipulation was within the same experiment), it is also possible that 1120 

the results were different just because of random variability across experiments. A definite 1121 

answer to this question must await further empirical investigation.  1122 

It is interesting to note that the analysis of response times in the same way as previous 1123 

research (median RTs per condition; repeated-measures ANOVA) demonstrated a 1124 

comparable pattern of results (see Appendix B): the differences that were significant using 1125 

linear mixed-effects models were significant using repeated-measures ANOVA (all the time 1126 

in the analysis by-participants F1 and about half the time in the analysis by-items F2). That is, 1127 

the weight of the evidence across all seven experiments suggests that event comprehension 1128 

requires the representation of both the intact and the modified states of the object – no matter 1129 

what statistical method is being used to support this claim. Thus, our results are in line with 1130 

Altmann’s and Ekves’ (2019) account of event representation, which posits that mental 1131 

representations of an object’s initial state are not deactivated but rather encoded into a 1132 

situation model together with an object’s end state. 1133 

 While further work will be required to examine the extent to which the dynamics of 1134 

the different object-state changes might unfold over the course of processing the sentence, the 1135 

present study provides further constraints on theories of situation models (Johnson-Laird, 1136 

1983; Kintsch & van Dijk, 1978; Zwaan & Radvansky, 1998) in language comprehension. 1137 

Our results indicate that each particular aspect of the episodic experience associated with an 1138 

object differently defines how events should be integrated and updated into the situation 1139 

model (see Zwaan et al., 1995, for a more in-depth discussion of how events can be indexed 1140 

on such dimensions as causation, intentionality, protagonists, space, and time). Previous 1141 

research showed that the final state of an object is more accessible when changes in location 1142 

are implied (Mannaert et al., 2019; Sato et al., 2013; Zwaan et al., 2002). More recent 1143 

research, however, demonstrated that when shape information is implied by using two 1144 
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different verbs (e.g., choose vs. drop), then mental representation of object state is 1145 

dynamically updated, but in a more subtle way than could have been hypothesized. More 1146 

specifically, the match advantage for a canonical object state was revealed only after 1147 

processing past tense sentences (but not future tense sentences), thus suggesting that 1148 

linguistic information modulates the activation of the relevant object representation (Kang et 1149 

al., 2019). The present research suggests that when object weight is considered as a primary 1150 

“driver” of the updating of state information, then the representations of an object’s initial 1151 

and resultant states are equally accessible. Therefore, the primary contribution of this study is 1152 

that theories of cognition need to take account of those aspects of event meaning which are 1153 

inferred from multiple objects coming together in space and time, rather than entailed by 1154 

surrounding environment or lexical semantics.  1155 

There are a few critical factors that appear to determine the strength of activation of 1156 

both initial and resultant object states during language comprehension. First, as discussed in 1157 

the Introduction, in line with Altmann and Ekves (2019), we consider that an activation of a 1158 

prior part of an object’s trajectory depends on how useful or necessary it is to maintain that 1159 

part of an object’s trajectory. When event models are established around multiple objects 1160 

coming together in time and space due to an external action, changes in the state of one object 1161 

are casually related with changes in the state of another object. Consequently, to know what 1162 

happened in the sentence “You dropped a bowling ball on an egg”, one needs to encode the 1163 

history of all the participating objects, which, among other things, includes both the initial 1164 

and final states of an egg. In comparison, consider a study of Zwaan et al. (2002) in which the 1165 

researchers instructed participants to read sentences about an egg in the fridge vs. in the 1166 

skillet and found that verification times were shorter whenever the pictured object matched 1167 

the final state implied by the sentence. In this study event models draw information from the 1168 

surrounding context (i.e., location) in which an object is observed, and thus an object’s 1169 
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trajectory is occluded. Therefore, even though an egg in its crushed state activates semantic 1170 

knowledge about other possible states of an egg, an intact state of an egg is not a part of an 1171 

object’s trajectory we remain very sensitive to. Second, we assume that the competition of 1172 

object states is most relevant for single events, and therefore our results are not comparable 1173 

with studies that investigate multiple events (Mannaert et al., 2019). Third, we consider that 1174 

one of the most critical factors in determining whether multiple object state representations 1175 

are equally accessible during event comprehension is the critical verb used to describe action, 1176 

precisely because object state-change is contingent on action. In our study we used the same 1177 

verbs to describe action, and therefore participants should have had similar representations of 1178 

the light/heavy objects’ trajectories (i.e., downward movement) after reading both “You drop 1179 

a brick on a tomato” and “You drop a sponge on a tomato”. On the contrary, Kang et al. 1180 

(2019) used two different verbs to describe object state-change, thus making it possible that 1181 

some effects were driven by semantic associations between, for example, “drop/choose” 1182 

actions and the “crushed/intact” perceptual properties of objects. Presumably it is this 1183 

difference in sentence stimuli that explains why Kang et al. (2019) observed a match effect 1184 

for objects in the canonical state in the minimal change (“choose” sentence) condition and we 1185 

did not (“drop a balloon” sentence). Other than this difference, however, we consider our 1186 

findings compatible with the Kang et al.’s (2019) work as they observed similar results to 1187 

those reported in the present research. More specifically, they found that the initial and end 1188 

states of objects were equally accessible in the future tense (e.g. “The squirrel will crack the 1189 

acorn”), as well as that no match advantage is observed for the original object state (i.e., 1190 

intact ice- cream) relative to the modified object state (i.e., squashed ice-cream) in the 1191 

substantial change (“drop”) condition. Importantly, our results are also in line with the results 1192 

of an fMRI study of Hindy et al. (2012). In this research, although using different methods, 1193 

researchers used the same verbs (e.g., “stamp on the penny / stamp on the egg”) and 1194 
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concluded that there was a simultaneous activation of both objects states through observing a 1195 

competition effect.  1196 

 A limitation of the current study is that it does not allow us to make strong inferences 1197 

as to the types of processes that underlie the activation of representational content. On the one 1198 

hand, there is a wealth of behavioral and neuroimaging evidence that modality-specific 1199 

systems are implicated in the representation of conceptual knowledge (Binder & Desai, 2011; 1200 

Edmiston & Lupyan, 2017; Glenberg et al., 2008; Hauk et al., 2004; Horchak et al., 2014; 1201 

Horchak et al., 2016; Ostarek & Huettig, 2017). On the other hand, there appears to be no 1202 

direct experimental support for simulation-based accounts in the sentence-picture verification 1203 

task at this point. Furthermore, a recent study of Ostarek et al. (2019) suggests that the 1204 

findings from a sentence-picture verification task point to the rapid integration of implied 1205 

visual information in sentence processing, but might be silent on the specific mental 1206 

mechanisms underlying such integration. More specifically, the researchers tested a “shape 1207 

simulation effect” with a visual noise manipulation (by using the materials from the study of 1208 

Zwaan et al., 2002, where the shape of an object was implied via the location) and obtained 1209 

no evidence that perceptual simulation underlies the match effect in the sentence-picture 1210 

verification paradigm. With these caveats in mind, the current results should therefore be 1211 

interpreted as providing evidence for the informational content that is activated in different 1212 

conditions when object state information is implied via the weight of an item that falls on a 1213 

target object. The functional role of the specific mental mechanisms underlying the rapid 1214 

integration of implied visual, action, proprioceptive, and kinesthetic information during 1215 

sentence processing has yet to be secured. This could be achieved by measuring processing at 1216 

various stages (e.g., EEG method to assess temporal dynamic; Landau et al., 2010). 1217 

In conclusion, the present findings improve our insight into (1) how event information 1218 

is updated into the situation model and (2) which representational content is encoded. Here, 1219 
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we have presented evidence that when changes of state are inferred (i.e., not driven by lexical 1220 

semantics), both the initial and resultant states are equally accessible. 1221 

  1222 
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Footnotes 1394 

1. Participants’ accuracy for comprehension questions was 82% in Experiment 1; 86% in 1395 

Experiment 2; 91% in Experiment 3; 90% in Experiment 4; 88% in Experiment 5; 89% in 1396 

Experiment 6, and 83% in Experiment 7. The cutoff point of only 50% accuracy on 1397 

comprehension questions is explained by the fact that there wasn’t enough evidence to 1398 

conclude that participants’ performance on the comprehension questions was always 1399 

related to the accuracy on the main task. The results in all seven experiments are mixed. 1400 

In Experiment 1, participants with an accuracy higher than 80% on the comprehension 1401 

task had an accuracy of 98% on the main task; participants with an accuracy lower than 1402 

80% on the comprehension task had an accuracy of 97% on the main task, χ2 = 3.16, p = 1403 

.076. In Experiment 2, participants with an accuracy higher than 80% on the 1404 

comprehension task had an accuracy of 98% on the main task; participants with an 1405 

accuracy lower than 80% on the comprehension task had an accuracy of 97% on the main 1406 

task, χ2 = 2.53, p = .112. In Experiment 3, participants with an accuracy higher than 80% 1407 

on the comprehension task had an accuracy of 97% on the main task; participants with an 1408 

accuracy lower than 80% on the comprehension task had an accuracy of 96% on the main 1409 

task, χ2 = 1.11, p = .292. In Experiment 4, participants with an accuracy higher than 80% 1410 

on the comprehension task had an accuracy of 97% on the main task; participants with an 1411 

accuracy lower than 80% on the comprehension task had an accuracy of 95% on the main 1412 

task, χ2 = 4.20, p = .040. In Experiment 5, participants with an accuracy higher than 80% 1413 

on the comprehension task had an accuracy of 97% on the main task; participants with an 1414 

accuracy lower than 80% on the comprehension task had an accuracy of 96% on the main 1415 

task, χ2 = 0.93, p = .334. In Experiment 6, participants with an accuracy higher than 80% 1416 

on the comprehension task had an accuracy of 97% on the main task; participants with an 1417 

accuracy lower than 80% on the comprehension task had an accuracy of 94% on the main 1418 
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task, χ2 = 8.50, p = .004. In Experiment 7, participants with an accuracy higher than 80% 1419 

on the comprehension task had an accuracy of 97% on the main task; participants with an 1420 

accuracy lower than 80% on the comprehension task had an accuracy of 93% on the main 1421 

task, χ2 = 22.66, p <.001. 1422 

2. The “maximal” model with no interaction term failed to converge, and thus we fitted the 1423 

model with a random effects structure for which no slope-intercept correlation term is 1424 

specified. 1425 

3. If random slopes that do not add to the model are not excluded, then the model fails to 1426 

converge, thus attributing most of the variability to the participant’s slope rather than the 1427 

intercept (see Matuschek et al. 2017, for the discussion how to avoid the problem of 1428 

overfitting the model to the data).  1429 

4. Picture verification times are globally shorter in Experiment 4 than in previous three 1430 

experiments, perhaps because the participant sample for Experiment 4 consisted mostly of 1431 

undergraduate psychology students who are used to taking part in reaction time 1432 

experiments.  1433 
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Appendix A 1435 

Samples of experimental sentences from Experiment 7 1436 

 (sentences in original Portuguese language are provided in parentheses) 1437 

 1438 

 “Heavy” sentences 1439 

 You dropped a bowling ball on a tomato 1440 

(Deixaste cair uma bola de bowling num tomato) 1441 

 You dropped a brick on a plate 1442 

(Deixaste cair um tijolo num prato) 1443 

 You dropped a dumbbell on an iPhone 1444 

(Deixaste cair um halter num iPhone) 1445 

 You dropped a stone on a blackberry 1446 

(Deixaste cair uma pedra numa amora) 1447 

 You dropped a hammer on a papaya 1448 

(Deixaste cair um martelo numa papaia) 1449 

 You dropped a frying pan on a bottle 1450 

(Deixaste cair uma frigideira numa garrafa) 1451 

“Light” sentences 1452 

 You dropped a cotton on a light bulb* 1453 

(Deixaste cair um algodão numa lâmpada) 1454 

 You dropped a sponge on a tile 1455 

(Deixaste cair uma esponja num azulejo) 1456 

 You dropped a cork on an iPad 1457 

(Deixaste cair uma rolha num iPad) 1458 

 You dropped a banknote on a cup 1459 

(Deixaste cair uma nota numa caneca) 1460 

 You dropped an envelope on a strawberry 1461 

(Deixaste cair um envelope num morango) 1462 

 You dropped a ribbon on a sushi 1463 

(Deixaste cair uma fita num sushi) 1464 

*Note: In original Portuguese language all of the object names consisted of one word. 1465 

  1466 
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Appendix B 1467 

Results from repeated-measures ANOVA  1468 
 1469 

Repeated-measures ANOVA 
 

Exp.  Omnibus Test Post-hoc comparisons (segregation of the items by pictures) 
 Sentence by Picture 

Interaction 
Sentence 

Type 
 Canonical 

picture 
Non-canonical 

picture 

E.1 F1 = 20.91, p < .001 Heavy F1 = 2.03, p = .16 F1 = 25.26, p < .001 
F2 = 41.48, p < .001 Light F2 = 1.29, p = .27 F2 = 37.32, p < .001 

E.2 F1 = 12.90, p < .001 Heavy F1 = 1.15, p = .29 F1 = 12.16, p = .001 
F2 = 14.37, p < .001 Light F2 = 1.08, p = .31 F2 = 9.21, p = .005 
 *Non-action   

E.3 F1 = 18.44, p < .001 Heavy F1 = 3.62, p = .06 F1 = 11.06, p = .001 
F2 = 1.80, p = .19 Light F2 = 1.18, p = .28 F2 = 0.63, p = .43 
 **Heavy (near)   
 **Light (near)   

E.4 F1 = 8.32, p = .005 Heavy F1 = 0.01, p = .94 F1 = 13.10, p < .001 
F2 = 2.78, p = .10 Light F2 = 0.08, p = .93 F2 = 4.13, p = .05 
 **Heavy (near)   
 **Light (near)   

E.5 F1 = 7.51, p <. 01 Heavy F1 = 0.11, p = .74 F1 = 8.00, p = .006 
F2 = 0.88, p = .36 Light F2 = 0.42, p = .84 F2 = 1.25, p = .28 

E.6 F1 = 4.18, p = .04 Heavy F1 = 0.04, p = .85 F1 = 7.62, p < .01 
F2 = 0.71, p = .41 Light F2 = 0.13, p = .91 F2 = 1.17, p = .29 

E.7 F1 = 11.65, p = .001 Heavy F1 = 0.40, p = .53 F1 = 18.86, p < .001 
F2 = 8.78, p = .007 Light F2 = 0.26, p = .62 F2 = 10.17, p = .004 

 1470 

Note. The data were analyzed using the median RTs by condition procedure as in Zwaan et al. 1471 
(2002). For an accurate comparison of results from ANOVA and linear mixed-effects model 1472 
(LMEM), it is worth noting that LMEM analysis handles the crossing of F1 and F2 1473 
simultaneously and takes into account all individual RTs rather than median RTs. 1474 

* The reported post-hoc comparisons refer to heavy and light sentence conditions only for the 1475 
ease of comparison of results across experiments. With regards to the non-action sentence 1476 
condition, participants verified canonical pictures faster than non-canonical pictures after 1477 
reading non-action sentences (F1 = 11.28, p =.001, F2 = 8.92, p =.005). 1478 

** The reported post-hoc comparisons refer to heavy and light sentence conditions only for 1479 
the ease of comparison of results across experiments. Non-canonical pictures were responded 1480 
to faster after reading the “heavy sentence” with a preposition on than the “heavy sentence” 1481 
with a preposition near in the analysis by-participants (Exp.3: F1 = 9.18, p =.003, F2 = 3.65, p 1482 
=.06; Exp4: F1 = 9.71, p =.002, F2 = 2.71, p =.109). No significant difference was observed 1483 
for canonical pictures involving the “light sentence” with a preposition on and the “light 1484 
sentence” with a preposition near (all Fs < 2).  1485 
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