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Resumo 

Atualmente, é necessário um perito em ecocardiografia para identificar o cálcio na válvula 

aórtica, e é necessária uma imagem Tomográfica Computorizada (TAC) cardíaca para a 

quantificação do cálcio. Ao realizar uma TAC, o paciente é sujeito a radiação, pelo que o 

número de TACs que podem ser realizadas deve ser limitado, restringindo a monitorização do 

paciente. A Visão por Computador (VC) abriu novas oportunidades para uma maior eficiência 

na extração de conhecimentos de uma imagem. A aplicação de técnicas de VC na 

ecocardiografia pode reduzir a carga de trabalho médico para identificar o cálcio e quantificá-

lo, ajudando os médicos a manter um melhor acompanhamento dos seus pacientes. Na nossa 

abordagem, desenvolvemos uma técnica simples para identificar e extrair o número de pixéis 

de cálcio da ecocardiografia, através da utilização de VC. Com base em ecocardiografias 

anónimas de doentes reais, esta abordagem permite a identificação semiautomática do cálcio. 

Como o brilho das imagens de ecocardiografia (com a intensidade mais elevada corresponde 

ao cálcio) varia consoante os parâmetros de aquisição, realizámos a binarização das 

ecocardiografias de forma adaptativa. Dado que o sangue mantém a mesma intensidade nas 

ecocardiografias - sendo sempre a região mais escura - utilizámos estruturas sanguíneas na 

imagem para criar um limiar adaptativo para a binarização. Após a binarização, a região de 

interesse (ROI) com cálcio, foi selecionada interactivamente por um especialista em 

ecocardiografia e extraída, permitindo-nos calcular o número de pixéis de cálcio, 

correspondente à quantidade espacial de cálcio. Os resultados obtidos com as nossas 

experiências são encorajadores. Com a nossa técnica, a partir de ecocardiografias recolhidas 

para o mesmo paciente com diferentes configurações de aquisição e diferentes brilhos, 

conseguimos obter uma contagem de pixéis de cálcio, onde os valores de pixéis mostram uma 

margem de erro absoluta de 3 (numa escala de 0 a 255), que se correlacionou bem com a 

avaliação humana perita da área de cálcio para as mesmas imagens. 

Palavras-chave: Imagens de ultrassom; Ecocardiografia; Cálcio da Válvula Aórtica; 

Classificação da imagem; Visão por computador 
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Abstract 

Currently, an echocardiography expert is needed to identify calcium in the aortic valve, and a 

cardiac CT-Scan image is needed for calcium quantification. When performing a CT-scan, the 

patient is subject to radiation, and therefore the number of CT-scans that can be performed 

should be limited, restricting the patient's monitoring. Computer Vision (CV) has opened new 

opportunities for improved efficiency when extracting knowledge from an image. Applying 

CV techniques on echocardiography imaging may reduce the medical workload for identifying 

the calcium and quantifying it, helping doctors to maintain a better tracking of their patients. 

In our approach, we developed a simple technique to identify and extract the calcium pixel 

count from echocardiography imaging, by using CV. Based on anonymized real patient 

echocardiographic images, this approach enables semi-automatic calcium identification. As the 

brightness of echocardiography images (with the highest intensity corresponding to calcium) 

vary depending on the acquisition settings, we performed echocardiographic adaptive image 

binarization. Given that blood maintains the same intensity on echocardiographic images – 

being always the darker region – we used blood structures in the image to create an adaptive 

threshold for binarization. After binarization, the region of interest (ROI) with calcium, was 

interactively selected by an echocardiography expert and extracted, allowing us to compute a 

calcium pixel count, corresponding to the spatial amount of calcium. The results obtained from 

our experiments are encouraging. With our technique, from echocardiographic images 

collected for the same patient with different acquisition settings and different brightness, we 

were able to obtain a calcium pixel count, where pixels values show an absolute pixel value 

margin of error of 3 (on a scale from 0 to 255), that correlated well with human expert 

assessment of calcium area for the same images.   

Keywords: Ultrasound images; Echocardiography; Aortic Valve Calcium; Image 

Classification; Computer Vision. 
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1 Introduction 

Aortic valve stenosis is the most common cardiac valvular disease highly prevalent nowadays 

[1], affecting 7% of the population over 65 years old. It has a 60% annual mortality rate in 

untreated severe cases, with survival <5 years when symptoms evolve. The incidence and 

prevalence of the degenerative type is increasing as this segment of the population grows older 

[2]. It is estimated that 2 262 325 people are at risk in Portugal, accounting for 22% of the 

population [3]. According to the European Society of Cardiology's recommendations for 

diagnosing and treating aortic stenosis, echocardiography is the first-line method to make the 

diagnosis and monitor the patient and valve calcification is a main feature to assess severity. A 

standardized diagnostic tool is needed to diagnose, assess the severity of the stenosis, and 

follow-up this large population. 

Computed tomography (CT) provides a calcium quantification method, expressed as 

calcium score, and when applied to aortic valve stenosis, it has been shown that valve 

calcification is related to disease severity. The amount of valve calcium must often be calculated 

because the severity of stenosis is directly related to prognosis and has impact on the decision 

to replace the valve. This is particularly important when assessing severity with 

echocardiography, which may be difficult or debatable in up to 20% of cases [4]. Previous 

studies have shown the value of cardiac CT-scans for determining the aortic calcium score, 

which is the only current imaging modality available for this purpose. Nevertheless, this 

approach bears costs, not only monetary but from health too, since it is an ionizing technique, 

that uses radiation to extract the amount of calcium [5], which may have long-term effects on 

the health condition of the patient.   

Before performing a CT-scan to obtain a calcium score, the calcium is first identified from 

the early stages of the disease by echocardiography [6], non-invasive non-radiation method that 

uses ultrasound to scan the heart. The reliable quantification of the calcium amount has not 

been done, using only echocardiography data analysis.  

The standard of calcium detection requires training from medical professionals, and the 

process is dependent on human performance and is time-consuming. Moreover, results may 

depend on the settings used for the image acquisition. No quantitative method was published 

for detecting and measuring valve calcium for clinical decisions to the authors knowledge. 

There are several approaches to this problem, such as by adopting Machine Learning (ML) 

techniques. An example of this approach in the healthcare field can be seen in predicting the 

probability of lethal pneumonia to optimize costs, manage low-risk patients as outpatients, and 
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hospitalize high-risk patients [7]. A key ML technique, Convolutional Neural Networks (CNN), 

is the engine behind many of the recent advances in the field. A major drawback of CNN-based 

approaches is that it inherently works as a 'black box', with little visibility into the rationale and 

explanation of the classification decision provided by CNN [8]. As a black-box metaphor, CNN 

suffers from a lack of human interpretability, which is fundamental in understanding the 

methods' operation. Besides, implementation CNNs requires large amounts of labeled data to 

meet the technique training requirements [9], which we do not have access to, in this thesis, 

forcing us to look for alternative methods. Therefore, the we have looked to a standard 

Computer Vision technique, which brings the added advantage of supporting explanation. With 

this approach we performed the binarization of the grey-level echocardiography image input, 

with an adaptive image threshold technique for image segmentation, where in the end, the 

binary image results in white foreground (the calcium regions), with all other anatomic 

structures in black.  

 

 

1.1 Objectives 

This work aims to develop and evaluate an aortic valve stenosis Computer Vision model 

applicable to echocardiographic images. Our model identifies aortic valve calcification and 

obtains a quantification of the pixel’s intensity and area, proportional to the amount of calcium, 

in parallel to a CT-scan calcium scan analysis. 

In this thesis, we present our Computer Vision algorithm and prototype system able to 

identify and quantify calcium in the aortic valve via adaptive image segmentation of 

echocardiography imaging. We aim at helping doctors and patients having better track of aortic 

valve disease, using a non-invasive and non-ionizing approach. 

 

1.2 Methodology 

Information Systems (IS) research risks losing leverage over the fields where its applicability 

is critical if it lacks a strong component that provides applied research solutions [10]. IS study 

is characterized by two major paradigms.  

On one side, there's behavioral science, which tries to come up with theories that predict 

person or organizational conduct. On the other hand, design-science seeks to extend human and 

organizational capacities by developing creative artifacts [11].  
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In light of this, the Design Science Research Methodology (DSRM) and the six principles 

suggested by Peffers et al. [10] are used in this dissertation. This approach has its roots in 

engineering and artificial sciences, and its main goal is to create relevant artifacts that add value 

to the fields in which they are used. According to the authors, Figure 1.1 represents a nominal 

sequence of six activities that resumes the DSRM operation. 

 

Figure 1.1 DSRM process model, Peffers et al. [10] 

The DSRM has four different entry points, also known as methods, but we used the first 

one, Problem-Centered-Initiation, since it is, by definition, the starting point of our method.  

Since DSRM takes a problem-solving approach, it's critical to evaluate the artifacts to 

provide feedback and a better understanding of their problems, emphasizing in the improving 

of both their quality and design in subsequent iterations of the process. Before the final artifact 

is produced, this build-and-assess loop is normally repeated several times [12].  

The DSRM method was used in two iterations in our work: (1) the initial entry point to the 

design and construction where we have done the assessment on a controlled environment. (2) 

We performed a clinical evaluation of our work, in this exploratory study, where we performed 

a set of tests in several different echocardiographies. 

According to the methodology, a single initial meeting was held to determine all of the 

assessment criteria, as stated in our work's objectives. 

Our main goal with this project is to create a prototype that can identify and quantify 

calcium from echocardiographies. To perform the evaluation, we have chosen the Calcium 

Identification (CI) and Calcium Quantification (CQ) as the capabilities to be evaluated in our 

work.  
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Despite the fact that DSRM is a unified concept, artifact evaluation is still a topic of 

discussion within the DSRM community, as evaluation parameters are described in a 

fragmented or incomplete manner in the DSRM literature [13]. To get around this stumbling 

block, we agreed to use Prat et al [13] hierarchical assessment criteria for IS objects. This 

hierarchy is depicted in Figure 1.2, where we test our objects using the highlighted parameters 

having in consideration that this evaluation was performed on this exploratory study. 

 

Figure 1.2 Hierarchy of criteria for IS artifact evaluation, Prat et al.[13] 
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Table 1.1 shows the generated objective statements, which serve as goals to be assessed in 

the two iterations of the DSRM method, based on both the chosen capacity and criteria (Chapter 

5). 

 

Table 1.1 Objective statements to be used in the DSRM evaluation 

Capability Dimension Criteria Objective statement 

CI & CQ Goal Efficacy To improve the doctors time 

on identifying and evaluating 

the calcium severity 

CI & CQ Environment Consistency with 

people / utility 

It can help doctors to save 

time on doing the prognostics. 

CI & CQ Environment Consistency with 

people / 

understandability 

Provides understandable 

results. An identification and 

an absolute quantification 

CI & CQ Environment Consistency with 

people / ease of use  

Easily understandable, and 

can be used with barely 

training 

CI & CQ Environment Consistency with 

organization / utility 

Provides an alternative on 

automatically identify and 

quantifying calcium 

CI & CQ Environment Consistency with 

organization / fit with 

organization 

Can keep better tracking of the 

patients 

CI & CQ Structure Simplicity Click and Run application 

with no extra implementation 

CI & CQ Structure Level of detail Provides knowledge extracted 

from the image 

CI & CQ Activity Consistency It gives consistent results 

despite the different image 

settings 

CI & CQ Activity Performance Has good performance on 

loading and interpreting the 

images 
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CI & CQ Evolution Robustness Must be prepared for any 

usage without resulting in 

errors 

 

Each evaluator assigns a score based on proof that the objective statement's added value 

has been achieved. With this in mind, we've chosen to use the ISO 15504 four-level NLPF scale 

[14], which is divided into four levels: 

• Not Achieved (NA) - [0-15%] 

• Partially Achieved (PA) - ]15-50%] 

• Largely Achieved (LA) - ]50-85%] 

• Totally Achieved (TA) - ]85-100%] 

 

1.3 Outline of the Dissertation 

Having the objectives and methodology defined, we will have six chapters (Introduction 

included). The chapters are: 

Chapter 2: Outlines a systematic literature review on the state-of-the-art of calcium 

identification and scoring from echocardiographies and CT-scans, based on computer vision, 

using the PRISMA method. 

Chapter 3: Provides the description of the artifact as the process of image classification, 

covering the binarization process, the normalization of the image and ultrasound properties. 

Chapter 4: Outlines the Prototype Demonstration, following Figure 1.1, covering the steps 

where the user is an operator and where there is image processing. 

Chapter 5: Presents the evaluation of our artifacts, based on the DSRM process. Providing 

the validation of our study, where we performed test on echocardiographies never previously 

seen, in order to evaluate the robustness and capabilities of the prototype. 

Chapter 6: Presents the discussion and conclusions of the work developed, where we 

highlight the contributions and limitations of our work.  
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2 State of the art 

 

2.1 Search Strategy and Inclusion Criteria 

The current European guidelines for diagnosing and treating aortic stenosis recommend 

echocardiography as first-line method to establish every patient's diagnosis, and repeat 

echocardiography every 6 months for severe cases or yearly for the moderate disease [6].  

The morphology and function of cardiac valves can be assessed in vivo in patients using 

echocardiography, which is widely used, does not use radiation, and can therefore be repeated 

throughout one's life; it has a high temporal and spatial resolution that can evaluate valve 

morphology and mobility for every cardiac cycle in either 2D tomographic or 3D models; it 

can also evaluate the valve morphology and mobility for every cardiac cycle, as well in either 

2D tomographic or 3D models.  

We have concentrated our efforts on evaluating what the research studies are assessing 

regarding the score of calcium in the aortic valve and in the coronary. 

Several studies have been conducted to predict cardiovascular events, being calcium 

presented in the aortic valve an accurate predictor of these events [15]. From our analysis, it 

became clear that all of our analyzed studies focused on utilizing CT-scans, since from a 

standard coronary artery calcium computed tomography scan, we can measure the Aortic valve 

calcification [16]. In terms of getting coronary score calcium, this is only possible using this 

resource [5]. Nevertheless, this approach bears costs, namely, monetary and health costs, since 

it corresponds to a very invasive scan, considering it uses radiation to extract the amount of 

calcium [5]. More recently, the CT-calcium score of the aortic valve has been used to identify 

aortic stenosis severity.  

No work regarding aortic valve calcification quantification has been published from the 

studies found, as demonstrated in Figure 2.1. This means that there is no evaluation of the 

calcium score using only the echocardiography information, only detection and prevention has 

been studied. Figure 2.1, was created using the VOS Viewer tool using as input all the papers 

found, except those that use CT-Scan imaging. 



 

26 

 

 

Figure 2.1 Topics relations from the literature review in echocardiography imaging 

 

 

Once we add to our search CT-Scan imaging, we start obtaining published works related to 

quantifying the calcium in the coronaries, including some papers adopting deep learning. Figure 

2.2 depicts the correlation of relevant terms in the literature with CT-scan imaging. 

 

Figure 2.2 Topics relations from the literature review in echocardiography and CT-Scan imaging 

A systematic literature review was made by following the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis) Methodology [17], and with the following 
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research question: “What is the state of the art of analyzing Ultrasound and CT-scan imaging, 

to find the calcium score of the aortic valve?”. 

Paper repositories searched were Scopus and Web of Science Core Collection (WoSCC), 

and the research was conducted through March 2021.  All the results had to be journal papers, 

articles, or reviews published between 2016-2021 and written in English. The collected papers 

were only about Computer Science or Medicine. or Medicine. 

From our search queries and selection regarding Coronary Artery Disease scoring using 

CT-Scans and Echocardiographies, we found a list of 10 papers, as shown in Table 2.1. 

We can notice that there is a larger sample in terms of studies when we are dealing with 

CT-Scans. In fact, we can see that we have four times more papers regarding CT-Scans, than 

papers with echocardiography imaging analysis. 

Using echocardiography, studies [18] and [19] use intravascular ultrasound (IVUS) in order 

to differentiate fibrous tissue and fibro-fatty tissue from the necrotic core and dense calcium, 

leaving behind the intention of getting the calcium score from the IVUS. In [20] researchers 

aim to detect a coronary artery disease, using only echocardiography automatically. However, 

IVUS is an invasive study not applicable for aortic valve study. 

Going through the studies performed with CT-Scans, we can see that in [21] researchers 

try to categorize the Mitral Annular calcification and predict its valve embolization. Study [22] 

aims to investigate which calcium score is a predictor of the coronary artery disease recurring 

to CT-Scans. The validation study [23] tries to use deep learning to perform calcium 

quantification on CT-Scans. In the study [24], researchers automatically exclude negative CT 

examinations for coronary artery calcium through algorithm training. The validation study [25] 

evaluates the performance of deep learning for automatic calcium scoring. Study [26] proposes 

a computationally efficient method to automatically extract the coronary artery calcium by 

employing convolutional neural networks on CT-Scans. On [27], we are again presented with 

other deep learning methodologies to automatically get a CT-Scan coronary artery calcium 

score.  
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Table 2.1 Selected papers comparison 

paper [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] 

Year 2018 2018 2018 2020 2017 2021 2020 2020 2019 2021 

Echocardiography X X X        

CT-Scan    X X X X X X X 

Coronary artery disease          X 

Coronary Calcium Score     X  X X X  

Mitral Annular 

Calcification 
   X       

Coronary artery disease 

characterization (plaque) 
X X X        

Deep Learning      X X X X X 

Risk Assessment           

With training X X X   X X X X X 

IVUS image X X         

coronary  plaque 

classification 
X X         

Validation Study        X   

 

From our analysis, we can see that cardiac CT-scan imaging has been used for coronary 

calcium calcification and prognosis prediction, and some literature works adopt deep learning 

algorithms, while, as mentioned, there is no published work on obtaining a calcium score from 

echocardiography, which would avoid the disadvantages of an ionizing method such as CT-

scan.  

In our study, in order to avoid the use of CT-scans and the algorithm training requiring 

large data sets, and since no work was identified by the authors, using echocardiography 

imaging analysis, we aimed to assess this technique for identifying and quantifying calcium in 

aortic valves of patients with aortic stenosis. 

 

2.2 Study Selection 

The initial selection of papers was made using the tittle, abstract and keywords of the study, 

and in some cases when that information was insufficient, the full document was analyzed. 
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2.3 Data extraction and synthesis 

The data was managed and stored using Zotero [28] and Microsoft Excel. It included title, 

author, year, journal, subject area, keywords and abstract. 

For data analysis and synthesis, a qualitative assessment was conducted based on PRISMA. 

All the paper repositories – Scopus and WoSCC – were searched systematically regarding the 

published work related with the concepts “Ultrasound Image” or “Echocardiogram” or “CT-

Scan”, the target population “aortic valve calcium” or “aortic valve” and within the context of 

the study “Image Binarization” or “Computer Vision” or “Calcium Score”. 

 

2.4 Results 

Our query was performed in each repository. Figure 2.3 shows our PRISMA workflow for the 

total of studied papers. 

Our search query was “("Ultrasound image*" OR "echocardiogram*" OR "CT-scan") AND 

("Coronary artery calcium" OR "coronary artery*" OR "aortic valve calcium" OR "aortic 

valve") AND ("Image classification" OR "computer vision" OR "calcium score")”, retrieving 

100 different papers. Considering that our study is focused on echocardiography, we have 

excluded the studies that involve CT-scans, having only a sample of 14 papers related to 

echocardiography imaging what shows that this is an area yet unexplored by the community. 

After performing a manual process towards identifying significant topics, research 

questions, and methods, identifying the outcomes, and removing the duplicates, 10 documents 

were obtained. Our research systematization considered year, area, RQ topic, and a small 

description. 
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Figure 2.3 PRISMA Workflow Diagram 
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3 Design and Prototype Development 

Our technique envisages the identification of the presence of calcium in the aortic valve. We 

tested several image enhancement processes aiming to highlight the areas with a high 

concentration of calcium, which is described in the next sections. 

 

3.1 Echocardiography Binarization Process - Initial approaches 

Our developments adopted the OpenCV library [29] – an open source library for image and 

video analysis [30]. In the first stage, we equalized the image histogram in order to improve the 

contrast of the image and stretch the intensity range, using the “equalizeHist” function. This 

equalization relies on the mapping of one distribution to another distribution - more uniform 

and wider distribution of the pixel intensity values - to spread the intensity values over the 

whole range. For the histogram of the input image 𝐻(𝑖), its cumulative distribution 𝐻′(𝑖) is: 

(3.1) 

𝐻′(𝑖) =  ∑ 𝐻(𝑗)

0 ≤ 𝑗 < 𝑖

 

 

Where i is the intensity values from the given histogram and j the more uniform distribution 

of intensity values. 

To use this as a remapping function, we have to normalize 𝐻′(𝑖). Since the pixel grayscale 

intensities go from 0 to 255, the new intensity values of the equalized image can be obtained 

by applying the following remapping function to the source echocardiography image, 

𝑠𝑟𝑐(𝑥, 𝑦):  

(3.2) 

𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦) = 𝐻′(𝑠𝑟𝑐(𝑥, 𝑦)) 

 

Subsequently, to improve the contrast of 𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑(𝑥, 𝑦), a Contrast Limited Adaptive 

Histogram Equalization algorithm [31] was implemented that will divide the image into several 

non-overlapping regions of almost equal sizes, creating several histograms that will redistribute 

the image brightness, achieving the results in the overall image contrast depicted in Figure 3.1. 

To conclude the process, a thresholding technique was used, to segment the image into 

foreground and background, for further interpretation. 
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Figure 3.1 Echocardiography image with CLAHE 

Nevertheless, this simple approach relying solely on histogram equalization leads to poor 

and inconclusive results in terms of visualizing and extracting the presence of calcium, as 

shown in Figure 3.1. The red circle represents where there is calcium on the aortic valve, and 

in yellow, other structures are marked, which are indistinguishable from each other. 

In a second approach, we tried Region-based Segmentation [32], where we aimed to 

segment different objects (calcium/non-calcium) by analysing their pixel values. This technique 

classifies the pixels – based on a threshold applied to each pixel value – as an object or 

background. Moreover, since we may have multiple objects – given that calcium can go from 

severe to none in different scale values – we initially defined multiple thresholds to segment 

multiple objects, as represented by Figure 3.2. However, if we have an image with no significant 

grayscale difference, this approach will fail to get accurate segments. 
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Figure 3.2 Echocardiography with Region-based Segmentation 

 

To mitigate this issue, we tried another approach to have a more comprehensive and 

interpretable image. We tried an Edge Detection algorithm [33] where the pixel brightness is 

scaled to an embossed image, where the height of each “mountain” corresponds to the pixel 

brightness. Figure 3.3, shows us the application of Edge Detection on an echocardiography 

image of the left ventricle. This approach turned out to be redundant since it is representing the 

pixels values by “mountains heights”. This could be immediately calculated if the first step 

extracted the pixel's exact value and minimised computation time. Otherwise, after 

implementing this algorithm, we would need to implement another one to find each “mountain” 

height. 



 

34 

 

 

Figure 3.3 Echocardiography with Edge Detection  

 

After the above-described initial approaches to our problem, we concluded that instead of 

focusing our interest in mimicking human eye comprehension of the calcium presence, we 

could address our challenge in a different way, by extracting the region of interest's pixel values 

and see how they correlate with the amount of calcium present in the aortic valve. 

In a first step, we performed image binarization with a fixed threshold of 140 in the pixel 

grayscale value (in a scale from 0 to 255), where the pixels with an intensity above 140 were 

transformed in white (255), and the remaining in black (0), thus helping to identify the regions 

where we have the presence of calcium.  

To deal with some natural constraints in terms of noise that characterize echocardiography 

imaging, particularly the process of sampling still images from the echocardiography video, we 

performed different blurring treatments to clean some of the image's noise due to the 

echocardiography's motion. Blurring an image will average rapid changes in the different pixel 

intensities, and this corresponds to a low-pass filter applied to the image [34], which removes 

noise while leaving the majority of the image structures still present in the image as depicted in 

Figure 3.4. 
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Figure 3.4 Echocardiography image with four levels of blurring applied 

As we can see from Figure 3.4, when we have a Blur = 11 (experimentally adjusted with 

trial and error)), we can easily identify visually the regions where there is a presence of calcium 

(identified by the red circles). On this operation the central element of the image is replaced by 

the median of all the pixels in the kernel area, where the 11 means that takes into consideration 

a kernel of 11 by 11. 

We then applied to the resulting images of this blurring phase, a binarization operation with 

a fixed pixel threshold value of 160, experimentally obtained by analysing 48 cases of 

echocardiography images, where 255 corresponds to calcium, as seen in Figure 3.5. This initial 

approach of a using a fixed threshold, is not sufficient for our problem at hand, since our images' 

brightness may vary, given different data collection conditions. To tackle this issue, we need to 

perform and adaptive binarization technique, which will be further explained. 
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Figure 3.5 Binarization of an echocardiography image, for each size of the kernel parameter 

 

In Figure 3.5, it is noticeable that when the blurring parameter increases from 5 to 11, we 

get a cleaner image (without small white dots – noise). However, we can also notice that in the 

region of interest (marked with red circles), when the blur increases, we lose pixels, since the 

region gets smaller. To mitigate this, we applied a mask dilation operator to each region of 

interest.  

As shown in Figure 3.6, by applying the dilation mask to the regions of interest of the 

image, we can recover the pixels lost in the blurring phase. 

The next phase is to turn our binarization adaptive and not based solely on a fixed threshold 

(initially set to 160), given the high variability in the imaging data collection procedures.  
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Figure 3.6 Application of the dilation mask to the regions of interest of the image in order to recover the pixels lost in the 

blurring phase 

 

3.2 Adaptive Binarization Process 

To achieve this adaptive binarization, starting with a fixed threshold, we need to confer it a 

normalization value, in order to adapt to the various images changes resulting from the settings 

applied to the echocardiographic image acquisition. 

The echocardiographic image suffers two steps of processing: (1) a post-processing stage, 

where specialists introduce gains in the image, immediately after data acquisition, defined by 

windowing or grey-scale mapping, using the window width (WW) and level (WL) (2), and an 

image analysis stage performed by the specialist. 

 

3.2.1 Post-processing Normalization 

After the echocardiography raw data acquisition, specialists add gains to the image in a post-

processing procedure. In our process, we need to compensate for the new brightness that the 

image acquires by such a process. To accomplish this, the specialist selects a region outside the 

ultrasound sector, that will act as a normalization boundary of “dark” regions, as represented in 

Figure 3.7. 
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Figure 3.7 Normalization Region to mitigate the post image processing 

 

Once we have this sub-matrix, we subtracted the mean of its values from our calcium ROI 

pixel values, thus compensating for the image gain of this stage. 

This method was tested on several images. Figure 3.8 depicts the example of one 

echocardiography with 3 most used different types of gains set in a post-processing stage, with 

the settings Window Width fixed at 250 and Window Level (WL) permuting between 75, 100 

and 125. 
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Figure 3.8 Echocardiography examples with different Window Levels (WL) and fixed Window Width of 250 (1) WL= 75, 

(2) WL = 100, and finally, (3) WL = 125 

In Figure 3.9 we have the normalized the result of the calcium threshold obtained with these 

representative echocardiography cases, showing coherent results extracted from the calcium 

present in the aortic valve, where we have the mean and the median of the values extracted 

from our ROI. We can see that the values of pixels intensity extracted have a low absolute 

variation, suggesting the validity of our model since we have the same image with different 

gains. 

 

Figure 3.9 Threshold values of pixels intensity for calcium, extracted from echocardiography with different post-

processing gains. 
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3.2.2 Ultrasound Properties Normalization 

After post-processing (prior stage), we proceeded with a second normalization process that is 

related to the configuration of the ultrasound properties (related to acquisition settings that alter 

the image brightness and contrast) during the echocardiography raw data acquisition, which has 

direct consequences on the echocardiography brightness. To mitigate this, we needed to 

interactively find a darker region of the echocardiography (inside the ultrasound range) and 

consider the mean of the values of that region as a “black threshold”, a reference area. By means 

of a manual step performed by a specialist, he/she interactively selects an area of the image (or 

of a different image belonging to the same sequence of still frames that share the same data 

collection tunning parameters), where a structure with very low brightness is known to exist, 

typically corresponding to blood flow. 

 

Figure 3.10  Normalization Region (right ventricle cavity) 

 

We started to look to an image of the right ventricle cavity as a potential candidate for a 

reference ROI, given its substantial presence of blood and minimal signal refractions. We 

selected a ROI in this image (as shown in Figure 3.10), corresponding to a darker region 

allowing us to define the “dark” level of the image, by taking the mean of the values in that 

ROI and then normalized all pixel values of the image, by subtracting the “dark” value from 

their values. This would create a dynamic threshold, changing every time the brightness varies 

due to modifications on the ultrasound properties changes. We performed the same test with 

the ROI placed at the left atrium cavity, as shown in Figure 3.11.  



 

41 

 

 

  

 

Figure 3.11 Normalization Region (left atrium cavity) 

 

The normalization process implemented in Figure 3.10 and Figure 3.11, were applied to 

three different patients, and both concluded that the tests performed with the normalized ROI 

in the left ventricle cavity (a) were more consistent and accurate than the right ventricle cavity 

(b), as shown in Figure 3.12. 

 

 

Figure 3.12 Variation between normalization regions 
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Our image normalization process relies on a “dark” ROI to be interactively defined in the 

same left ventricle cavity where we are detecting the calcium presence. 

After image normalization, the final binarization result with this adaptive threshold is 

depicted in Figure 3.13. 

 

 

Figure 3.13 Binary image of the Aortic Valve (region of interest) where our algorithm found 2 areas with calcium. 

 

Once we have the calcium regions (Figure 3.13), we can easily define a 2D pixel mask for 

each region (inspecting the ROI and keeping the 2D coordinates of the white pixels). If we 

apply these masks to the original image, we can extract the pixel values of each sub-image that 

we consider as calcium, allowing us to compute some simple descriptive statistics measures, 

such as mode, median, mean and standard deviation. Given that pixel values vary with the 

ultrasound properties, we subtracted the mean value of the normalization region from the values 

of the original image, to get normalized values regardless of the ultrasound properties. From 

the descriptive statistics analysis, we noticed that for all the different cases studied, the one with 

the lowest variation was the mean, as shown in Table 3.1. That said, we used this metric to 

validate all new cases. 
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Table 3.1 Descriptive statistics Variation, where Echocardiography 1 to 9 belongs to patient 1, Echocardiography 10 to 16 

belongs to patient 2 and 17 to 24 belongs to patient 3 

Echocardiography Normalization by Mean Normalization by Median 

1 181 184 

2 171 175 

3 184 193 

4 187 193 

5 191 199 

6 174 175 

7 174 181 

8 189 190 

9 171 173 

10 173 179 

11 171 185 

12 182 187 

13 176 186 

14 175 186 

15 168 168 

16 176 184 

17 178 182 

18 178 180 

19 180 179 

20 182 183 

21 176 176 

22 182 183 

23 180 180 

24 176 175 

Variation 5.78 6.94 

 

These tests were performed on three different patients, where each of them performed 9 

echocardiographic acquisitions with different settings - with the most representative parameters 

– resulting in 27 echocardiographic images, aiming to validate the normalization method. From 

these echocardiographies, 3 of them had not enough quality to be analyzed, being discarded. In 
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Table 3.1 we can see that the mean pixel values extracted from each of these 3 different patients 

are coherent, having a low absolute difference between them, showing a low standard variation 

as well, which suggests that our normalization method is valid. 
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4 Prototype Demonstration 

Considering the research approach performed in the previous section, our goal was to develop 

a prototype that uses, as input, the echocardiography and identifies calcium providing a score. 

considering the different acquisitions settings. The major effort is the normalization due to the 

different acquisition settings. The following flowchart in Figure 4.1 explains the complete 

process that was developed to achieve our goals. 

 

Figure 4.1 Process Description 

 The image processing consisted of 9 different stages with two different operators – user 

and machine. The stages where the user is an operator and there is image processing will be 

described in this chapter.  
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4.1 Image input 

In the first stage, the user must select the image from which he intends to extract the calcium 

severity, allowing the machine to transform this image into grayscale and obtaining all the 

values scaled within the grayscale range (from 0 to 255), as shown on Figure 4.2. 

 

Figure 4.2 Image loaded in Grayscale 

 

4.2 Remove Post-processing Gains 

In this section, the system asks the user if the echocardiography selects has post-processing 

gains. If the image was subjected to such processing stage it is crucial to compensate them to 

get the real acquisition values and ensure a more precise result. To do this, the user needs to 

select a region out of the sector, as represented in Figure 4.3. 

 

Figure 4.3 Normalization Region to mitigate the post image processing 
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This process will exclude the new brightness and treatment given on post-processing, 

achieving the original image collected by the specialist.  

 

4.3 Image Processing 

Once the image is scaled, it will be applied a blur to it, fading some of the image's 

noise, since this process averages out rapid changes in the different pixel intensities, as shown 

in  Figure 4.4. 

 

Figure 4.4 Blurred image 

 

4.4 Select Normalization Region & Image Segmentation 

To identify calcium, we need to compute a threshold for image segmentation. This means that 

the image will be binarized where the foreground (the calcium region) is white. 

For the threshold, we started with a constant threshold for the pixels, of 160. Pixel values 

above such figure are considered calcium and the ones under this value are non-calcium pixels 

(blood, fat, muscle, or fibrous). 

This initial constant threshold was weighted and defined by the experts in cardiology and 

echocardiography, Professor Ana Gomes de Almeida and Professor Luís Rosário with more 

than 20 years of experience.  However, pixel intensities from echocardiographic images change 

with the acquisition parameters settings, such as image depth, ultrasound pulse frequency, 

image compressing. Moreover, the post-processing level of gain intensity also changes the 
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overall pixel intensity. We analysed images collected with a combination of different parameter 

settings, to test our normalization intensity values approach, and identify cutoffs for 

calcification in patients, with and without calcification, for controlling these parameters. Visual 

assessment by experts, was used as our reference for calcium analysis. Since after collecting 

the echocardiography image there is a processing stage (gains are applied to the image), we 

would end up with an echocardiography image with different values of brightness and setting 

a constant binarization threshold would not provide good image segmentation. To tackle this 

issue, we performed an adaptive normalization of our threshold by adding the extra-brightness. 

This extra-brightness is taken from a region of the echocardiography that should be completely 

black, the left atrium cavity, as shown in Figure 4.5: 

 

Figure 4.5 Left atrium cavity that will create a dynamic threshold for binarization 

 

Achieving a dynamic threshold will normalize our echocardiography images allowing our 

model to identify the calcium in different cases with different gains. The calcium presence can 

be seen in Figure 4.6, marked by the red circle. 
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Figure 4.6 Calcium in the binarized image 

 

4.5 Select Region of Interest 

Once the image is binarized, the system asks to the user to interactively select the Region Of 

Interest (ROI) that should contain the aortic valve. When the ROI submatrix is retrieved, we 

will loop over the image to extract the coordinates of the white pixels. Figure 4.7, depicts the 

end result: the submatrix with the binarized ROI. 

Having the exact coordinates from where the calcium is present on the aortic valve, we will 

go to our original images and obtain the pixel values of the region of the aortic valve with 

calcium, from the coordinates extracted previously. After getting such pixel values, we will 

calculate the mean of our matrix of pixels. In order to get these values normalized, we compute 

the difference between the calcium selected from the echocardiography and the normalization 

region selected in Figure 4.5. 

Regions identified as calcium – with an intensity above the dynamic threshold – will allow, 

after binarization, counting the number of white pixels, a proxy to the region area, and an 

indication similar to the calcium score identified by a CT-scan. This approach requires 

validation performed by means of visual analysis conducted by echocardiography experts. 
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Figure 4.7 ROI binarized 
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5 Evaluation 

We used the DSRM process model in two different iterations in our research. 

Each iteration had a different entry point, which was determined by the stage of the process 

as well as the feedback we got after each demonstration and evaluation. 

Figure 5.1 summarizes and shows all of the iterations we've gone through so far. 

 

Figure 5.1 DSRM Iterative cycles scheme 

 

5.1 First DSRM Iteration 

The first iteration took the most time. It started with the initial identification of the problem and 

goals and ended with the creation of the first tested version of the artifacts on the demonstration, 

which made up the vast majority of the established work. 

For this study we used Philips's ultrasound equipment, model Epiq 7 (Eindhoven, The 

Netherlands). 

After the performed tests, we created a validation set with 12 echocardiographic studies 

(from 12 different patients with calcific aortic stenosis) chosen randomly from the database, 

where we aimed to check our model's accuracy in terms of classifying whether we have, or 

have not, a presence of calcium on the echocardiography image, based in the amount of 

calcification as assessed by CV-based calculation of the number of pixels, in comparison with 

the calcium area measured manually by planimetry in cm2 [35].  

In Table 5.1, we present the results extracted from the validation set composed of these 12 

samples, from which we have found a high correlation between the amount of calcium based 
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on the number of white pixels, and the calcium area measured manually by the 

echocardiography experts (Professor Ana Gomes de Almeida and Professor Luís Rosário). 

Table 5.1 Validation Study in a controlled patient representative – the number of white pixels (showing calcium) versus 

planimetry area measured manually. 

  Number of white pixels Planimetry area (cm2) normalized mean 

case 1 325 1.12 166 

case 2 722 1.44 174 

case 3 242 0.81 168 

case 4 669 1.96 170 

case 5 2251 2.67 175 

case 6 2565 2.82 190 

case 7 1026 1.98 188 

case 8 917 1.45 174 

case 9 1007 1.62 178 

case 10 1315 1.77 172 

case 11 206 0.72 165 

case 12 1771 1.99 186 

 

Pearson correlation between the number of white pixels and the area calculated by 

planimetry was 0.92, p=0.00048, as depicted in the correlation graph in Figure 5.2. 
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Figure 5.2 Correlation Graph, where Y-axis is planimetry and X-axis the number of white pixels taken from our 

approach. 

 

5.2 Second DSRM iteration 

This iteration's evaluation was carried out to ensure that our artifacts were suitable for their 

intended use, as described by the objective statements presented in Chapter 1.2 and defined in 

consultation with our experts. 

For the evaluation, as stated previously we've used the standard ISO 15504 four-level NLPF 

scale [14], having the following levels: 

• Not Achieved (NA) - [0-15%] 

• Partially Achieved (PA) - ]15-50%] 

• Largely Achieved (LA) - ]50-85%] 

• Totally Achieved (TA) - ]85-100%] 

 

Table 5.2 Results of the evaluation (2nd DSRM iteration) 

Criteria Objective statement Expert  #1 Expert #2 

Efficacy 

To improve the doctors time on identifying and 

evaluating the calcium severity TA PA 

Consistency with 

people / utility 

It can help doctors to save time on doing the 

prognostics. LA LA 
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Consistency with 

people / 

understandability 

Provides understandable results. An 

identification and an absolute quantification LA LA 

Consistency with 

people / ease of use  

Easily understandable, and can be used with 

barely training LA LA 

Consistency with 

organization / utility 

Provides an alternative on automatically identify 

and quantifying calcium TA PA 

Consistency with 

organization / fit with 

organization Can keep better tracking of the patients LA PA 

Simplicity 

Click and Run application with no extra 

implementation TA LA 

Level of detail Provides knowledge extracted from the image TA PA 

Consistency 

It gives consistent results despite the different 

image settings LA LA 

Performance 

Has good performance on loading and 

interpreting the images TA LA 

Robustness 

Must be prepared for any usage without resulting 

in errors PA PA 
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6 Discussion and Conclusions 

In this exploratory study, a Computer Vision approach enabled us to identify and quantify the 

amount of calcium based on echocardiography imaging analysis, in calcific aortic valve 

stenosis. This degenerative disease evolves with ageing and is an epidemiological issue due to 

the high mortality, if left untreated. Literature studies performed with cardiac CT calcium score, 

showed that the amount of valve calcification is related to severity and may help identify high-

risk patients with indication for valve replacement.  

According to the Agatston method, calcium quantification by cardiac CT is usually 

presented as a calcium score and is validated by histopathology [36]. Although it is a reference 

method for calcification, CT is an ionizing method and its use in repeated studies should be 

avoided.  On the other hand, echocardiography is a non-invasive non-ionizing technique based 

in ultrasound that could be used for calcium detection quantification if an automated method 

was available and reliable.  There is a lack, so far, of a reliable quantification method for 

calcium by using echocardiography, although this could be a most appropriate method since it 

is free of negative effects on human health and is a widely available technique. However, the 

quantification of calcium based on echocardiography imaging is a challenge. Calcium is 

reliably detected visually by experts, but visual quantification is unreliable and subject to 

variability. In this thesis, calcification of aortic valve was used in the scope of a proof-of 

concept.  

From echocardiographic studies of calcific aortic stenosis, we analyzed the effect of 

changing the post-processing windowing conditions (width and level) and found a high level 

of agreement of intensity pixel values after normalization (by subtracting from the values of a 

ROI in a dark part of the image, at flow echogenicity void). An adaptive cutoff was found for 

pixels intensity that ensured the presence of calcium as validated by visual inspection.  

Furthermore, in additional echocardiographic studies, we analyzed the pixels values when 

changing the settings of acquisition that affect the brightness and contrast (ultra-sound 

frequency and compression) and the final values for pixels and normalized pixels at the 

reference ROI, just showed a small difference between exams, opening the potential for wider 

application in the clinical setting. 

Additionally, a validation set of 12 cases of calcific aortic stenosis, chosen randomly from 

a database, was selected for calcium quantification in the valves by assessing pixel number 

counting after applying the proposed cutoff for calcium. As a proxy of the amount of valve 

calcification, this number, in parallel to the CT calcium-score, showed an excellent correlation 
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with valve calcification measured manually via planimetry by echocardiography experts. Being 

the entire process represented by Figure 6.1. 

 

Figure 6.1. Summarized process description 

A limitation for this study is the small number of cases analyzed, in accordance however 

to its exploratory purpose. A further study should be undertaken in the future with the inclusion 

of a larger number of aortic valves with a large range of calcification to validate these results. 

Besides expert image validation, as used in this thesis, a comparison with an additional 

validated method must be undertaken. 

Moreover, this study was developed using a specific echocardiographic equipment. 

Findings must be compared in further studies using other machines that may possibly provide 

different kind of ultrasound images regarding pixels intensity and possibly different cutoffs 

need to be considered. 

This work was a collaborative approach between a computer science and social sciences 

university with a medical university and hospital to solve and provide a real problem. 

 

6.1 Future Work 

Despite the positive findings, further iterations to the work we have done in this dissertation 

would be beneficial. 

As pointed out in the introduction, we did not follow a ML approach, since we were lacking 

in data. Now, for each echocardiography that our prototype analyses, we are not only using one 

new echocardiography images each time we use it, but we are also annotating those images 

with the ROI and the normalization region, what would be fundamental for a ML approach – 

annotated images – therewith, we may save these images for a future ML model.  

We aim in the future to apply the model to a larger number of echocardiographic images 

with a broad range of calcification amount, as validated by an additional method, such as CT 

calcium score. 
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Finally, performing tests in a production environment would be critical, in order to evaluate 

the robustness of our prototype and correct any failures that may occur in a production 

environment.  
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