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Abstract—Human Activity Recognition (HAR) is an interdis-
ciplinary research area that has been attracting interest from
several research communities specialized in machine learning,
computer vision, medical and gaming research. The potential
applications range from surveillance systems, human computer
interfaces, sports video analysis, digital shopping assistants, video
retrieval, games and health-care. Several and diverse approaches
exist to recognize a human action. From computer vision tech-
niques, modeling relations between human motion and objects,
marker-based tracking systems and RGB-D cameras. Using a
Kinect sensor that provides the position of the main skeleton
joints we extract features based solely on the motion of those
joints. This paper aims to compare the performance of several
supervised classifiers trained with manually labeled data versus
the same classifiers trained with data automatically labeled. We
propose a framework capable of recognizing human actions using
supervised classifiers trained with automatically labeled data.

I. INTRODUCTION

The goal of human activity recognition is to successfully
classify an action performed by an individual or a group
of people from a video observation. Although significant
progress has been made, HAR remains a challenging area
with several problems to solve. Manual analysis of video
is labour intensive, fatiguing, and error prone. Solving the
problem of recognizing human activities from video can lead
to improvements in several application fields like surveillance
systems, human computer interfaces, sports video analysis,
digital shopping assistants, video retrieval, gaming and health-
care [1]–[5]. We are interested in recognizing high-level hu-
man activities, ideally our recognition algorithm should be
robust to changes in relative distance between the body and the
sensor (Kinect), skeleton orientation, and speed of an action. In
order to abstract ourselves from computer vision problems the
Kinect sensor will be used to extract 3D skeleton data. Usually
manually labeled data is used to perform some kind of training
of classifiers that will then recognize the human activities.
What if this labeling could be achieved automatically? How
would the results compare? This paper shows that automating
the data labeling process for the type of actions studied is
possible and results in a minor loss in accuracy.

II. RELATED WORK

Human activity recognition is a classification problem in
which events performed by humans from video data are
automatically recognized. Driven by application demands, this
field has seen a relevant growth in the past decade. The
previous approaches all used computer vision (CV) techniques
to extract meaningful features from the data. Motion capture
data (MOCAP) has also been used in this field, a relevant
approach found was [6] where they pose the problem of learn-
ing motion primitives (actions) as a temporal clustering one,
and derive an unsupervised hierarchical bottom-up framework
called hierarchical aligned cluster analysis (HACA). HACA
finds a partition of a given multidimensional time series into
m disjoint segments such that each segment belongs to one of
k clusters representing an action. They were able to achieve
competitive detection performances (77%) for human actions
in a completely unsupervised fashion. Using MOCAP data
has several advantages mainly the accuracy of the extracted
features but the cost of the sensor and the required setup to
obtain the data is often prohibitive.

There are some approaches which combine motion informa-
tion and object properties [7], [8]. In [7] the authors abstract
the problem in two stages. First, by recognizing general
motions such as moving, not moving or tool used. Second,
by reasoning about more specific activities (Reach, Take, etc.)
given the current context, i.e. using the identified motions and
the objects of interest as input information. They’ve obtained
an accuracy classification of 92%. [8] propose a two-level
hierarchical action segmentation (HAS) approach that take
into account contact relations between human end effectors,
the scene, and between objects in the scene, using 6D pose
trajectories extracted from marker-based tracking system. This
work shows that HAS allows the identification of meaningful
segments in complex human demonstrations without over-
segmentation and without omitting important demonstration
key frames.

With cost in mind Microsoft released a sensor called Kinect,
which captures RGB-D data and is also capable of providing



joint level information in a non-invasive way allowing the
developers to abstract away from CV techniques. A previous
study using Kinect [9] consider the problem of extracting a
descriptive labeling of the sequence of sub-activities being
performed by a human, and more importantly, of their in-
teractions with the objects in the form of associated affor-
dances. The learning problem is formulated using a structural
support vector machine (SSVM) approach, where labelings
over various alternate temporal segmentations are considered
as latent variables. The method obtained an accuracy of 79.4%
for affordance, 63.4% for sub-activity and 75.0% for high-level
activity labeling.

In [10] the covariance matrix for skeleton joint locations
over time is used as a discriminative descriptor for a sequence
of actions. To encode the relationship between joint movement
and time, multiple covariance matrices are deployed over
sub-sequences in a hierarchical fashion. Their experiments
show that using the covariance descriptor with an off-the-shelf
classification algorithm one can obtain an accuracy of 90.53%
in action recognition on multiple datasets.

In a parallel work [11] authors propose a descriptor for
2D trajectories: Histogram of Oriented Displacements (HOD).
Each displacement in the trajectory votes with its length in a
histogram of orientation angles. 3D trajectories are described
by the HOD of their three projections. HOD is used to
describe the 3D trajectories of body joints to recognize human
actions. The descriptor is fixed-length, scale-invariant and
speed-invariant. Experiments on several datasets show that this
approach can achieve a classification accuracy of 91.26%.

The method developed by [12] addressed an interesting
problem of transferring depth information to a target of RGB
action data (depth data is not available) and used both RGB
data and the learned depth data for action recognition. By
borrowing an auxiliary dataset, with both RGB and depth data
they are capable of uncovering missing depth information in
the target data, couple two modalities (RGB and depth) and
capture structure information. From their experiments they
achieved superior performance over existing methods with
accuracy values of 92.09%.

Recently and more directly related to our research, [3]
developed a system called Kintense which is a real-time
system for detecting aggressive actions from streaming 3D
skeleton joint coordinates obtained from Kinect sensors. In
two multi-person households it achieves up to 90% accuracy
in action detection.

III. PROPOSED PIPELINE

According to [13] human activity can be categorized into
four different levels: gestures, actions, interactions and group
activities. This paper will focus on the actions and interac-
tions category. Several datasets are available from different
sources like LIRIS (Laboratoire d’InfoRmatique en Image et
Systèmes d’information) dataset [14], CMU (Carnegie Mellon
University) MoCap dataset1, MSR-Action3D and MSRDaily-
Activity3D dataset [1].

1http://mocap.cs.cmu.edu/

In a real world situation we expect to have a subject perform
a sequence of actions instead of a single isolated action like
portrayed in the previous datasets. With this in mind we
recorded a dataset containing sequences of actions performed
by a 12 different subjects. We used Kinect indoors with arti-
ficial lighting to record the dataset with sequences of combat
movements composed of 8 different actions: right-punch; left-
punch; elbow-strike; back-fist; right-front-kick; left-front-kick;
right-side-kick; left-side-kick. Using combinations of those
8 actions we created 6 distinct sequences (each sequence
contains 5 actions). Of the 12 subjects recorded, each subject
performed 6 different sequences. A total of 72 sequences, 360
actions was recorded. The data is recorded in .xed files which
contains RBG, depth and skeleton information, and also in
.csv format containing only the skeleton data. Kinect is able
to track 20 joints of a subject’s skeleton. Skeleton frames are
generated at the rate of 30 frames per second, and each frame
consists of the 3D coordinates of 20 body joints along with
their tracking states (tracked, inferred, or not tracked). The
dataset 2 is available for public usage. Although we recorded
RGB and depth information, our framework relies solely on
the position of the skeleton joints to extracts relevant features.

A modular framework was built with several task-oriented
modules organized in a workflow (Fig.1) as follows:

1: Feature Extraction: extract features (absolute
speed) that will be used to automatically divide a
sequence in temporal segments

2: Temporal Segmentation: automatically find tem-
poral segments that represent the actions of the
sequence

3: Feature Extraction: extract meaningful features (3D
velocity, joint angle and bone orientation) for tem-
poral segment found

4: Clustering and labeling: use clustering to automat-
ically group similar actions and thus label them (in
the control experiments this task is done manually in
a frame-by-frame basis)

5: Feature Extraction: extract meaningful features (3D
velocity) for each labeled action

6: Dedicated classifiers: train a classifier per action
using the previous labeling

7: Action Recognition: recognize an action in real-time

A. Temporal Segmentation

In our previous work [15] we proved that given a sequence
of contiguous actions (Fig. 2) it is possible to automatically
divide the sequence into what we called temporal segments
that correspond to individual actions, and that these actions
correspond relatively well to our own intuitive classification.
A temporal segment is a sub-set of a sequence corresponding
to a particular action being performed in that time frame. The
sequences of our dataset are composed by 5 different actions,
ideally our temporal segmentation algorithm should divide the
sequence in 5 segments each corresponding to an action.

2https://github.com/DavidJardim/precog dataset 16



Fig. 1. Modular framework for action recognition

Fig. 2. Example of a recorded sequence with five actions (depth view)

Figure 3 illustrates an example result of our automatic
segmentation method. Each color of the plot represents a
temporal segment to which we assigned a joint as being
the dominant joint for that action. We obtained 5 temporal
segments which successfully correspond to the number of
actions that the sequence contains, in this case: right-punch;
left-punch; side-right-kick; side-left-kick; front-right-kick.

B. Sampling

In order to perform sampling the program selects all the
temporal segments found, ideally 5 per sequence which cor-
responds to the number of actions that compose the sequence.
Then the most active joint of the skeleton is assigned to that
segment. Based on the window-frame of the segment found
for a specific joint, we create new temporal segments for the
remaining joints on the same exact window-frame. This can
be portrayed as stacking the joints timeline one on top of
another and making vertical slices to extract samples of data
that correspond to temporal segments where an action has
occurred.

C. Action labeling

An action can be seen as a sequence of poses over time.
Each pose respects certain relative positions and orientation of
joints of the skeleton. Based on the positions and orientations
of the joints we extracted several features that will be used
to model the movements performed by the subjects. We have
experimented with features like absolute speed, velocity, joint
angle and bone orientation that will be used to constitute the
feature vectors for the clustering algorithm. We concluded that
K-Means performed better when a combination of features
were used. The results presented below extend those presented
in [15] not only because the impact on supervised sequence
classification is tested, but also because different features are
used for the action clustering (using K-Means).

Experiments were made with new features like angle of
the joints, bone orientation and other clustering algorithms.

From the pool of clustering algorithms used the one which
had the best performance was Hierarchical Clustering. Some
research [16] refers that K-Means is usually more efficient
in terms of its run-time, specially when dealing with large
datasets. On the other hand Hierarchical Clustering, although
slower in execution, has better clustering results. Since our
dataset is relatively small and we are performing clustering on
sub-sets of identical sequences performed by different subjects
Hierarchical Clustering revealed more appropriated obtaining
better results in the tests (Table I). Still, as seen in previous
results obtained with K-Means, results show an understandable
confusion between different (although similar) actions of the
same body part (right leg), that are classified in the same
clusters. Our efforts to distinguish clearly and unequivocally
between similar movements of the same limb have not been
entirely successful so far. This can be seen as noise in the
following Supervised Learning process.

TABLE I
HIERARCHICAL CLUSTERING RESULTS FOR SEQUENCE 1

Action Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Right punch 100,0% 0,0% 0,0% 0,0% 0,0%
Left punch 0,0% 100,0% 0,0% 0,0% 0,0%
Front right kick 0,0% 0,0% 75,0% 0,0% 25,0%
Side right kick 0,0% 0,0% 16,67% 0,0% 83,33%
Side left kick 0,0% 0,0% 0,0% 100,0% 0,0%

D. Action classification

At this point, using our temporal segmentation approach
and an off-the-shelve algorithm to perform action clustering,
we were able to automatically assign a label to an action.
Based on the assigned cluster and the set of available actions,
a procedure was created to replace the cluster with the cor-
responding action. This allowed us to create an automatically
labeled training set. In order to verify the accuracy of our
automatically labeled training set, the original dataset was



Fig. 3. Visual representation of our action segmentation method

manually labeled to be used as our ground truth. The main
goal of this paper is to compare the performance of our action
recognition framework trained with data automatically labeled
versus data manually labeled. To verify our hypothesis we
intend to use several supervised learning models, like artificial
neural networks (ANN), support vector machines (SVM) and
random decision forests. Also k-fold cross-validation will be
used to sample the data in randomly partitioned k equal sized
sub-samples with a single sub-sample being left out as a test-
set.

Fig. 4. Visual representation of skeleton joints selected for feature extraction

As previously said, Kinect is able to track 20 joints of a
subject’s skeleton. Of those 20 joints, only four were selected
to extract features (wrist-right; wrist-left; ankle-right; ankle-
left) as shown in Fig 4. The 3D coordinates are with respect
to a frame of reference centered at Kinect. Frames from the
camera are converted into feature vectors which are invariant
to relative position and orientation of the body. We achieved
this by re-calculating all the joints positions relative to the hip
joint.

One of the main tasks in any Machine Learning problem is
to select the adequate set of features to represent the learning
examples. Feature vectors are a numerical representation of
an object (in this case an action). An action can be seen
as a sequence of poses over time. Each pose respects po-
sitions and orientation of joints of the skeleton. To reduce
the dimension of the feature vector we divided the temporal
segment representing an action in 6 sub-segments containing
approximately the same number of frames. For each sub-
segment we calculated the 3D average velocity. This was
repeated for each of the selected joints in Fig. 4. The feature
vector dimension is 6 ∗ 3 ∗ 4 = 72 and it will be used to train

TABLE II
CLASSIFICATION ACCURACY (%) FOR DIFFERENT CLASSIFIERS TRAINED

WITH ALL ACTIONS USING MANUALLY LABELED DATA AND
CORRESPONDING STANDARD DEVIATION BETWEEN TRIALS

Action MLP SVM RF

right-punch 69,80 ±0,83% 72,08 ±0,17% 80,89 ±1,00%
left-punch 70,22 ±0,77% 72,03 ±0,21% 81,30 ±1,28%
front-right-kick 70,11 ±1,03% 72,01 ±0,20% 81,37 ±0,88%
front-left-kick 69,99 ±0,92% 72,11 ±0,17% 81,39 ±1,11%
side-right-kick 69,97 ±0,72% 72,07 ±0,19% 81,57 ±0,83%
side-left-kick 70,10 ±0,87% 72,10 ±0,17% 81,54 ±1,67%
backfist 69,88 ±0,80% 72,10 ±0,17% 80,97 ±0,81%
elbow-strike 70,04 ±0,75% 72,04 ±0,20% 81,12 ±0,80%

the classifiers.

IV. EXPERIMENTS

In this section, we explain our experimental results using
our dataset. Several classifiers will be trained to compare the
results of using manually labeled or automatically labeled
training sets. These classifiers are trained to recognize an
action from a sample of skeleton frames provided by Kinect
on which we perform feature extraction from 4 main joints
(wrist-right, wrist-left, ankle-right and ankle-left). The results
obtained in the tables below represent the average recognition
accuracy values of 30 trials using random seed values with
the corresponding standard deviation to quantify the amount
of variation in performance that occurred in each trial.

We experimented with the following classifiers: Multilayer
Perceptron (MLP) as in [17]; Support Vector Machines (SVM)
using pairwise classification [18] and Random Forests (RF)
which are a combination of tree predictors [19]. Table II
shows the average classification obtained for several classifiers
using all the actions in the manually labeled training set. The
results are significantly below the state-of-the-art [3] accuracy
of 90%, obtained using binary classifiers. There is also a
clear difference in performance between the classifiers. RF
has nearly 10% increase in performance compared to MLP
and SVM.

The next experiment was to train eight binary supervised
classifiers using manually labeled data for recognizing the
eight aggressive actions contained in our dataset. These classi-
fiers are binary and the training-set for each classifier contains
each instance of a given action labeled as positive examples
and all other actions labeled as negative examples. Each



TABLE III
CLASSIFICATION ACCURACY (%) OF THE BINARY CLASSIFIERS USING

MANUALLY LABELED DATA AND CORRESPONDING STANDARD DEVIATION
BETWEEN TRIALS

Action MLP SVM RF

right-punch 94,24 ±0,44% 91,52 ±0,17% 90,08 ±0,37%
left-punch 89,09 ±0,44% 92,50 ±0,26% 92,21 ±0,37%
front-right-kick 88,14 ±0,96% 87,95 ±0,21% 93,20 ±0,53%
front-left-kick 89,96 ±0,79% 90,42 ±0,28% 91,97 ±0,48%
side-right-kick 91,22 ±0,16% 91,92 ±0,07% 94,53 ±0,57%
side-left-kick 83,62 ±0,97% 84,76 ±0,23% 91,74 ±0,51%
backfist 92,55 ±0,32% 92,77 ±0,00% 93,58 ±0,46%
elbow-strike 95,02 ±0,28% 96,66 ±0,00% 96,66 ±0,00%

TABLE IV
CLASSIFICATION ACCURACY (%) OF THE BINARY CLASSIFIERS USING

AUTOMATIC LABELED DATA AND CORRESPONDING STANDARD DEVIATION
BETWEEN TRIALS

Action MLP SVM RF

right-punch 83,82 ±0,81% 88,29 ±0,16% 89,40 ±0,48%
left-punch 82,43 ±1,31% 90,20 ±0,00% 90,84 ±0,33%
front-right-kick 81,22 ±0,74% 90,75 ±0,07% 90,00 ±0,49%
front-left-kick 89,99 ±0,76% 87,91 ±0,13% 90,99 ±0,25%
side-right-kick 82,80 ±1,18% 87,88 ±0,07% 89,57 ±0,57%
side-left-kick 84,99 ±0,86% 90,28 ±0,05% 90,56 ±0,68%
backfist 83,09 ±1,44% 87,60 ±0,00% 90,05 ±0,41%
elbow-strike 95,90 ±0,31% 96,83 ±0,00% 96,83 ±0,00%

classifier is trained to distinguish one action from all others.
This approach (binary classifiers) produced the best results in
[3] using SVM classifiers. In Table III we can see that the
advantage of using binary classifiers is obvious with average
accuracies above 91% in recognizing an action. In this case
the difference in accuracy between classifiers is reduced, but
again RF manages to obtain the best results.

Table IV shows the results of the repetition of the previous
experiment with the fundamental difference of using a training
set labeled by our automatic labeling pipeline. Again the MLP
classifier has the worst performance and RF performs the
best. MLP in comparison to the values of Table III has the
largest decrease in performance, in some cases more than 10%.
Concerning SVM and RF the difference is much less, never
surpassing 3%.

As expected the usage of automatic labeling has affected the
accuracy of the classifiers. This can be explained by the error
that our automatic labeling method introduces. The temporal
segmentation method can add frames to a segment that do
not belong to that action or remove frames from a segment
that do still belong to the same action where the segmentation
performed when using the manually labeled data is inferred
from the labeled frames. Also our clustering and labeling
method confuses similar actions (Tab. I) which can lead to an
incorrect labeling of the actions. Nonetheless, the difference
is relatively small, and depending on the application, it could
be negligible and remove completely the necessity of having
to rely on human resources to manually label data. Finally,
in Table V we calculate the difference in performance for

TABLE V
DIFFERENCE IN PERFORMANCE (%) BETWEEN THE TWO APPROACHES
(MANUAL VS AUTOMATIC) FOR EACH BINARY CLASSIFIER PER ACTION

Action MLP SVM RF

right-punch -10,42 % -3,23 % -0,68 %
left-punch -6,66 % -2,30 % -1,37 %
front-right-kick -6,92 % 2,80 % -3,2 %
front-left-kick 0,03 % -2,51 % -0,98 %
side-right-kick -8,42 % -4,04 % -4,96 %
side-left-kick 1,37 % 5,52 % -1,18 %
backfist -9,46 % -5,17 % -3,53 %
elbow-strike 0,88 % 0,17 % 0,17 %

average -4,95 % -1,09 % -1,97 %

each classifier accuracy using manually labeled data and
automatically labeled data. In some cases the classifier that
was trained using automatically labeled data outperformed his
counterpart.

V. CONCLUSION

In this paper, we described a framework capable of rec-
ognizing human actions using supervised classifiers trained
with automatically labeled data. We used our own dataset
of sequences of actions recorded with Kinect. We performed
automatic temporal segmentation of a sequence of actions,
automatically labeled the actions using a clustering algorithm
(where we improved our previous results), and compared the
performance of several supervised classifiers used on the state-
of-the-art to recognize human activity, using manually labeled
and automatically labeled training sets. Previous studies, ex-
tended here, showed how clustering and filtering techniques
can be combined to achieve unsupervised labeling of human
actions recorded by a camera with a depth sensor which tracks
skeleton joints that will be used to train a supervised classifier.
This work clarified the difference between using manually,
versus automatically labeled data for simple action sequences
such as the ones used. The objective was to measure the
impact of the noise introduced by automatic labeling on action
classification. Of the three supervised classifiers used (MLP,
SVM and RF) to recognize an action, Random Forests had
the best performance. The best possible results were obtained
when manually labeled data was used to train the classifiers.
Using automatically labeled data did introduce a decrease
in performance due to the error that our automatic labeling
method introduces. Nonetheless, the difference is relatively
small and, depending on the application, the use of automatic
labeling can indeed be considered as an option.

Our results proved that, for a dataset of simple combat
actions, obtained with a standard Kinect camera with no
special acquisition conditions, a temporal segmentation and
clustering algorithm can be used to label identical actions
performed by different users. Also, we have established that
this labeling can be used to train supervised classifiers that will
be capable of identifying specific actions in a RGB-D video
feed without relying on any human resources, with a minor
loss of precision relative to training with human labeled data.



We would like to replicate these results using other existing
datasets. Recent research had its efforts shifted to the problem
of action prediction. As future work, we would like to add
action prediction capabilities to our action recognition frame-
work using conditional random fields, enabling prediction of a
future action executed by a subject in the context of a sequence
of actions like in our dataset.
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