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Abstract: Currently, an echocardiography expert is needed to identify calcium in the aortic valve, 

and a cardiac CT-Scan image is needed for calcium quantification. When performing a CT-scan, the 

patient is subject to radiation, and therefore the number of CT-scans that can be performed should 

be limited, restricting the patient’s monitoring. Computer Vision (CV) has opened new 

opportunities for improved efficiency when extracting knowledge from an image. Applying CV 

techniques on echocardiography imaging may reduce the medical workload for identifying the 

calcium and quantifying it, helping doctors to maintain a better tracking of their patients. In our 

approach, a simple technique to identify and extract the calcium pixel count from echocardiography 

imaging, was developed by using CV. Based on anonymized real patient echocardiographic images, 

this approach enables semi-automatic calcium identification. As the brightness of echocardiography 

images (with the highest intensity corresponding to calcium) vary depending on the acquisition 

settings, echocardiographic adaptive image binarization has been performed. Given that blood 

maintains the same intensity on echocardiographic images—being always the darker region—blood 

areas in the image were used to create an adaptive threshold for binarization. After binarization, 

the region of interest (ROI) with calcium, was interactively selected by an echocardiography expert 

and extracted, allowing us to compute a calcium pixel count, corresponding to the spatial amount 

of calcium. The results obtained from these experiments are encouraging. With this technique, from 

echocardiographic images collected for the same patient with different acquisition settings and 

different brightness, obtaining a calcium pixel count, where pixel values show an absolute pixel 

value margin of error of 3 (on a scale from 0 to 255), achieving a Pearson Correlation of 0.92 

indicating a strong correlation with the human expert assessment of calcium area for the same 

images. 

Keywords: ultrasound images; coronary artery disease; echocardiograms; CT-scan; computed 

tomography; coronary artery calcium; feature extraction; image classification; computer vision 

 

1. Introduction 

The morphology and function of cardiac valves can be assessed in vivo in patients 

using echocardiography, which is widely used, does not use radiation, and can therefore 

be repeated throughout one’s life; it has a high temporal and spatial resolution that can 

evaluate valve morphology and mobility for every cardiac cycle in either 2D tomographic 

or 3D models; and it can evaluate the valve morphology and mobility for every cardiac 

cycle, as well in either 2D tomographic or 3D models. 

Aortic valve stenosis is the most common cardiac valvular disease and is highly 

prevalent nowadays [1], affecting 7% of the population over 65 years old. It has a 60% 

annual mortality rate in untreated severe cases, with survival <5 years when symptoms 
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evolve. The incidence and prevalence of the degenerative type is increasing as this 

segment of the population grows older [2]. It is estimated that 2,262,325 people are at risk 

in Portugal, accounting for 22% of the population [3]. According to the European Society 

of Cardiology’s recommendations for diagnosing and treating aortic stenosis, 

echocardiography is the first-line method to make the diagnosis and monitor the patient 

and valve calcification is a main feature to assess severity. The current European 

guidelines for diagnosing and treating aortic stenosis recommend also echocardiography 

as a first-line method to establish every patient’s diagnosis, and repeat echocardiography 

every 6 months for severe cases or yearly for the moderate disease [4]. Consequently, a 

standardized diagnostic tool is needed to diagnose, assess the severity of the stenosis, and 

follow-up this large population. 

Computed tomography (CT) provides a calcium quantification method, expressed as 

a calcium score, based in the Agatston method [5]. When applied to aortic valve stenosis, 

this calculation is useful since calcification is a hallmark of this disease, and it has been 

shown that the amount of valve calcification is related to disease severity [6]. The severity 

of stenosis is directly related to prognosis and has an impact on the decision to replace the 

valve. This is particularly important when assessing severity with echocardiography, 

which may be difficult or debatable in up to 20% of cases [7], namely in cases of a low-

flow low-gradient when the amount of calcium is often calculated in order to establish the 

stenosis severity. Previous studies have shown the value of cardiac CT-scans for 

determining the aortic calcium score, which is the only current imaging modality available 

for this purpose. Nevertheless, this approach bears costs, not only monetary, but from 

health too, since it is an ionizing technique which uses radiation to extract the amount of 

calcium [8], which may have long-term effects on the health condition of the patient. The 

development of a fully automated method able to identify and quantify the amount of 

valve calcium using echocardiography should be most valuable due to the non-ionizing 

character of this technique as well as the possibility of repeatability and long-term follow-

up. 

Before performing a CT-scan to obtain a calcium score, the calcium is first identified 

from the early stages of the disease by echocardiography [4], a non-invasive non-radiation 

method that uses ultrasound to scan the heart. 

The standard of calcium detection is visual and requires training from medical 

professionals. The process is dependent on human performance and quantitation based 

in visual methods is time-consuming and prone to estimation errors. Moreover, when 

using ultrasound, the results may depend on the settings used for the image acquisition. 

Previous studies have addressed calcium quantification by echocardiography using 

commercial software for the identification of calcium. Using CT calcium scores as a 

reference, correlations between the two modalities was only moderate, with debatable 

usefulness for clinical application [9]. 

In fact, there are several approaches to this problem, such as adopting Machine 

Learning (ML) techniques. An example of this approach in the healthcare field can be seen 

in predicting the probability of lethal pneumonia to optimize costs, manage low-risk 

patients as outpatients, and to hospitalize high-risk patients [10]. A key ML technique, 

Convolutional Neural Networks (CNN), is the engine behind many of the recent advances 

in the field. A major drawback of CNN-based approaches is that it inherently works as a 

‘black box’, with little visibility into the rationale and explanation of the classification 

decision provided by CNN [11]. As a black-box metaphor, CNN suffers from a lack of 

human interpretability, which is fundamental in understanding the methods’ operation. 

Besides, implementing CNNs requires large amounts of labeled data to meet the 

technique training requirements [12], which is out of the scope of this exploratory study, 

forcing us to look for alternative methods. 

A Standard Computer Vision technique was selected as the best option, since it 

brings the added advantage of a supporting explanation. With this approach, we propose 

a binarization of the grey-level echocardiography image input, with an adaptive image 
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threshold technique for image segmentation, where in the end, the binary image results 

in a white foreground (the calcium regions), with all other anatomic structures in black. 

This model should be able to identify aortic valve calcification and obtain a quantification 

of the pixel’s intensity and white pixel count, proportional to the amount of calcium, in 

parallel to a CT-scan calcium scan analysis. 

This study aims to develop and evaluate a Computer Vision model/algorithm 

applicable to echocardiographic images, via adaptive image segmentation of 

echocardiography imaging, avoiding a Machine Learning approach and access to large 

amounts of labeled data, for identifying and quantifying the amount of calcium in aortic 

valve stenosis, in a fully automated process. 

2. Materials and Methods 

Our artifact envisages the identification of the presence of calcium in the aortic valve. 

Several image enhancement processes were tested, aiming to highlight the areas with a 

high concentration of calcium, which are described in the next sections. Our main goal is 

to develop an approach that can be implemented in hospital to perform a semi-automatic 

approach of calcium score from echography to reduce work from doctors and reduce the 

need for CT-scans. 

2.1. Methodology 

A systematic literature review was made by following the PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis) Methodology [13], and with 

the following research question: “What is the state of the art of analyzing Ultrasound and 

CT-scan imaging, to find the calcium score of the aortic valve?”. 

Information Systems (IS) research risks losing leverage over the fields where its 

applicability is critical if it lacks a strong component that provides applied research 

solutions [14]. The IS study is characterized by two major paradigms. 

On one side, there’s behavioral science, which tries to come up with theories that 

predict personal or organizational conduct. On the other hand, design-science seeks to 

extend human and organizational capacities by developing creative artifacts [15]. 

In light of this, the Design Science Research Methodology (DSRM) and the six 

principles suggested by Peffers et al. [14] are used in the development of this article. This 

approach has its roots in engineering and artificial sciences, and its main goal is to create 

relevant artifacts that add value to the fields in which they are used.  

The DSRM process has four different entry points, also known as methods, the first 

one being used in this research work, Problem-Centered-Initiation, since it is, by 

definition, the starting point of our methodology. 

Since DSRM takes a problem-solving approach, it is critical to evaluate the artifacts 

to provide feedback and a better understanding of their problems, emphasizing in the 

improving of both their quality and design in subsequent iterations of the process. Before 

the final artifact is produced, this build-and-assess loop is normally repeated several times 

[16]. 

The first two activities are introduced in the Section 1, the third activity—Design and 

Development—is explained and demonstrated in Section 2, as well as the evaluation of 

the first results representing the robustness of our artifact. The evaluation is made in 

Section 3.6. The last activity—communication—is achieved in this article. 

2.2. Echocardiography Binarization Process 

Our developments adopted the OpenCV library [17]. In the first stage, the image 

histogram was equalized in order to improve the contrast of the image and stretch the 

intensity range, using the “equalizeHist” function [18]. This equalization relies on the 

mapping of one distribution to another distribution—a more uniform and wider 
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distribution of the pixel intensity values—to spread the intensity values over the whole 

range. For the histogram of the input image �(�), its cumulative distribution �′(�) is: 

�′(�) = ∑ �(�)����� , (1)

where i is the intensity values from the given histogram and j the more uniform 

distribution of intensity values. 

To use this as a remapping function, �′(�)  has to be normalized. Since the pixel 

grayscale intensities go from 0 to 255, the new intensity values of the equalized image can 

be obtained by applying the following remapping function to the source 

echocardiography image, ���(�, �): 

���������(�, �) = �′����(�, �)�, (2)

Subsequently, to improve the contrast of ���������(�, �) , a Contrast Limited 

Adaptive Histogram Equalization algorithm [19] was implemented that will divide the 

image into several non-overlapping regions of almost equal sizes, creating several 

histograms that will redistribute the image brightness, achieving the results in the overall 

image contrast depicted in Figure 1. To conclude the process, a thresholding technique 

was used, to segment the image into foreground and background, for further 

interpretation. 

Nevertheless, this simple approach relying solely on histogram equalization leads to 

poor and inconclusive results in terms of visualizing and extracting the presence of 

calcium, as shown in Figure 1. The red circle represents where there is calcium on the 

aortic valve, and in yellow, other structures are marked, which are indistinguishable from 

each other. 

In a second approach, a Region-based Segmentation [20] was attempted, where the 

aim was to segment different objects (calcium/non-calcium) by analyzing their pixel 

values. This technique classifies the pixels—based on a threshold applied to each pixel 

value—as an object or background. Moreover, since we may have multiple objects—given 

that calcium can go from severe to none in different scale values—multiple thresholds 

were initially defined to segment multiple objects, as represented by Figure 2. However, 

if we have an image with no significant grayscale difference, this approach will fail to get 

accurate segments. To mitigate this issue, another approach was attempted to have a more 

comprehensive and interpretable image. An Edge Detection algorithm [21] was used 

where the pixel brightness is scaled to an embossed image, where the height of each 

“mountain” corresponds to the pixel brightness. Figure 3 shows us the application of Edge 

Detection on an echocardiography image of the left ventricle. This approach turned out to 

be redundant since it represents the pixel values by “mountains heights”. This could be 

immediately calculated if the first step were extracting the pixel’s exact value and 

minimizing computation time. Otherwise, after implementing this algorithm, it would be 

another one would be needed to find each “mountain” height. 
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Figure 1. Echocardiography image with CLAHE—The red circle represents the region of interest 

(ROI) where the calcified aortic valve is located, and in yellow, other structures are marked, which 

are non-calcified structures. 

 

Figure 2. Echocardiography image with region-based segmentation. 
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Figure 3. Echocardiography image with edge detection. 

After the above-described initial approaches to our problem, it was concluded that 

instead of focusing our interest on mimicking human eye comprehension of the calcium 

presence, we could address our challenge in a different way, a third approach, by 

extracting the region of interest’s pixel values and seeing how they correlate with the 

amount of calcium present in the aortic valve. 

In a first step, image binarization [22] was performed with a fixed threshold of 140 in 

the pixel grayscale value (in a scale from 0 to 255), where the pixels with an intensity above 

140 were transformed in white (255), and the remaining in black (0), thus helping to 

identify the regions where there is a presence of calcium. 

To deal with some natural constraints in terms of noise that characterize 

echocardiography imaging, particularly the process of sampling still images from the 

echocardiography video, different blurring treatments were performed to clean some of 

the image’s noise due to the echocardiography’s motion. Blurring an image will average 

rapid changes in the different pixel intensities, and this corresponds to a low-pass filter 

applied to the image [23], which removes noise while leaving the majority of the image 

structures still present in the image as depicted in Figure 4. 

As it can be seen from Figure 4, when the Blur = 11 (experimentally adjusted with 

trial and error)), it can be easily identified, visually, in the regions where there is a 

presence of calcium (identified by the red circles). On this operation the central element 

of the image is replaced by the median of all the pixels in the kernel region, where the 11 

means that it takes into consideration a kernel of 11 by 11. 

To the resulting images of this blurring phase, a binarization operation with a fixed 

pixel threshold value of 160 was produced, experimentally obtained by analyzing 48 cases 

of echocardiography images, where 255 corresponds to calcium, as seen in Figure 5. This 

initial approach of a using a fixed threshold is not sufficient for our problem at hand, since 

our images’ brightness may vary, given different data collection conditions. To tackle this 

issue, an adaptive binarization technique has to be performed, which will be further 

explained. 
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Figure 4. Echocardiography image with four levels of blurring applied—the red circle represents 

our ROI where the aortic valve is located. 

 

Figure 5. Binarization of an echocardiography image, for each size of the kernel parameter applied—

The red circle represents our ROI (aortic valve). 

In Figure 5, it is noticeable that when the blurring parameter increases from 5 to 11, 

we get a cleaner image (without small white dots—noise). However, we can also notice 

that in the region of interest (marked with red circles), when the blur increases, we lose 

pixels, since the region gets smaller. To mitigate this, a mask dilation operator was applied 

to each region of interest. 
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As shown Figure 6, the pixels lost in the blurring phase can be recovered by applying 

the dilation mask to the regions of interest in the image. 

 

Figure 6. Application of the dilation mask to the regions of interest of the image, in order to recover 

the pixels lost in the blurring phase. 

The next phase was to make our binarization adaptive and not based solely on a fixed 

threshold (initially set to 160), given the high variability in the imaging data collection 

procedures. 

2.3. Adaptive Binarization Process 

To achieve this adaptive binarization based on a fixed threshold, we need to confer 

to it a normalization value, in order to adapt to the various image changes resulting from 

the settings applied to the echocardiographic image acquisition. 

The echocardiographic image suffers two steps of processing: (1) a post-processing 

stage where gains are imposed in the image after data acquisition, defined by windowing 

or grey-scale mapping, using the window width (WW) and level (WL) (2) and followed 

by an image analysis stage performed by the specialist. 

2.3.1. Post-Processing Normalization 

After the echocardiography raw data acquisition, gains are added to the image in a 

post-processing procedure. In our process, it is necessary to compensate for the new 

brightness that the image acquires by such a process. To accomplish this, a region outside 

the ultrasound sector was selected that would act as a normalization boundary of “dark” 

regions, as represented in Figure 7. 

Once we had this sub-matrix, we subtracted the mean of its values from our calcium 

ROI pixel values, thus compensating for the image gain of this stage. 

This method was tested on several images. Figure 8 depicts the example of one 

echocardiography with the most used different types of gains set in a post-processing 

stage, with the settings Window Width fixed at 250 and Window Level (WL) permuting 

between 75, 100 and 125. 
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Figure 7. Normalization region of interest (red square) to compensate the post image processing. 

 

Figure 8. Echocardiography examples with different Windrow Levels (WL) and fixed Window Width of 250 (1) WL = 75, 

(2) WL = 100, and finally, (3) WL = 125. 

In Figure 9 we have the normalized result of the calcium threshold obtained with 

these representative echocardiography cases, showing coherent results, extracted from 

the calcium present in the aortic valve, where we have the mean and the median of the 

values extracted from our ROI, the scale being from 0 to 255 (the greyscale pixel values). 
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We can see that the values of pixels intensity extracted have a low absolute variation, 

suggesting the validity of our model since we have the same image with different gains. 

 

Figure 9. Threshold values of pixel intensity for calcium, extracted from echocardiographic 

images with different post-processing gains. Windrow Levels (WL): (1) WL = 75, (2) WL = 100, 

and finally, (3) WL = 125, all with a fixed Window Width of 250. 

2.3.2. Ultrasound Settings Normalization 

After post-processing (prior stage), we proceeded with a second normalization 

process, related to the ultrasound settings that alter the image brightness and contrast 

during the echocardiography raw data acquisition, and which have direct consequences 

on the echocardiography pixel’s intensity levels. To mitigate this, we needed to 

interactively find a darker region of the echocardiography (inside the ultrasound range) 

and consider the mean of the values of that region as a “black threshold”, a reference area. 

By means of a manual step performed by the specialists, an area of the image was 

interactively selected from a structure which was expected to have very low brightness, 

typically corresponding to blood flow and subject to the same acquisition and post-

processing (window width and level). 

Firstly, the right ventricle cavity was chosen as a potential candidate for a reference 

ROI, given its minimal signal refractions. An ROI is selected in this image (as shown in 

Figure 10), corresponding to a darker region and allowing us to define the “dark” level of 

the image, by taking the mean of the values in that ROI) and then normalizing all pixel 

values of the image, by subtracting the “dark” value from their values. This would create 

a dynamic threshold, changing every time the brightness varies due to modifications in 

the ultrasound properties. With the ROI placed at the left atrium cavity, as shown in 

Figure 11, the same measurements were performed. 

The normalization process implemented in Figures 10 and 11 was applied to three 

different patients, and both showed that the tests performed with the normalized ROI in 

the left atrium cavity (a) were more consistent and accurate than the right ventricle cavity 

and b), as shown in Figure 12 and demonstrated by the standard deviation of the threshold 

value of region a, were lower than that of region b (3.7 < 5.9). Therefore, our image 

normalization process relied on a “dark” ROI to be interactively defined on the left atrium 

cavity. 

After image normalization, the final binarization result with this adaptive threshold 

is depicted in Figure 13. 

Once the calcium regions are identified (Figure 13), we proceed with defining a 2D 

pixel mask for each region (inspecting the ROI and keeping the 2D coordinates of the 
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white pixels). Applying these masks to the original image, we can extract the pixel values 

of each sub-image that we consider as calcium, allowing us to compute some simple 

descriptive statistical measures, such as mean and median. Given that pixel values vary 

with the ultrasound properties, we subtracted the mean value of the normalization region 

from the values of the original image, to get normalized values regardless of the 

ultrasound properties. From the descriptive statistics analysis, we noticed that for all the 

different cases studied, the one with the lowest variation was the mean, as shown in Table 

1. Taking this finding into consideration, we used this metric to validate all new cases. 

 

Figure 10. Normalization region (right ventricle cavity). 

 

Figure 11. Normalization region (left atrium cavity). 
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Figure 12. Standard deviation of binarization threshold values between normalized regions. 

Window width and level were kept constant. 

 

Figure 13. Binary image of the Aortic Valve (region of interest) where our algorithm found two areas 

with calcium. 

Table 1. Descriptive statistics, where Echocardiography 1 to 9 belongs to patient 1, 10 to 16 belongs 

to patient 2, and 17 to 24 belongs to patient 3. 

Echocardiography Normalization by Mean Normalization by Median 

1 181 184 

2 171 175 

3 184 193 

4 187 193 

5 191 199 

6 174 175 

7 174 181 

8 189 190 

9 171 173 

10 173 179 

11 171 185 

12 182 187 

13 176 186 

14 175 186 

15 168 168 

16 176 184 

17 178 182 

181
170172

183.5178 172

3.7 5.9

0

50

100

150

200

250

Normalization w/ a Normalization w/ b

patient 1 patient 2 patient 3 variation
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18 178 180 

19 180 179 

20 182 183 

21 176 176 

22 182 183 

23 180 180 

24 176 175 

Standard Deviation 5.78 6.94 

These tests were performed on three different patients, where each of them 

performed nine echocardiographic acquisitions with different settings. These settings 

have interchanged between Image Compression (IC) and Ultrasound Frequency (UF), 

with the values of 45%, 50% and 55% for IC and 30 Hz, 50 Hz and 70 Hz for UF, resulting 

in 27 echocardiographic images, aiming to validate the normalization method. From these 

echocardiography images, 3 of them had not enough quality to be analyzed, and were 

discarded. In Table 1, we can see that the mean pixel values extracted from each of these 

three different patients are coherent, with a low absolute difference between them, 

showing a low standard variation as well, which suggests that our normalization method 

is valid. 

3. Implementation Process and Results 

Considering the method developed performed in the previous section, our goal was 

to create an artifact that uses, as its input, the echocardiography and identifies calcium 

providing a score, considering the different acquisition settings. The major effort is the 

normalization due to the different acquisition settings. Figure 14 explains the complete 

process that was developed to achieve our goals. 

The image processing consisted of nine different stages with two different 

operators—user and machine. The stages where the user is an operator, along with the 

image processing, will be described in this chapter. 

3.1. Image Input 

In the first stage, the user must select the image from which he intends to extract the 

calcium severity, allowing the machine to transform this image into grayscale and 

obtaining all the values scaled within the grayscale range (from 0 to 255), as shown in 

Figure 15. 

3.2. Remove Post-Processing Gains 

In this section, the system asks the user if the echocardiography selected has post-

processing gains. If the image was subjected to such a processing stage, it is crucial to 

compensate them to get the real acquisition values and to ensure a more precise result. To 

do this, the user needs to select a region out of the sector, as represented in Figure 7. 

This process will exclude the new brightness and treatment given on post-processing, 

achieving the original image collected by the specialist. 

3.3. Image Processing 

Once the image is scaled, a blur will be applied to it, fading some of the image’s noise, 

since this process averages out rapid changes in the different pixel intensities, as shown 

in Figure 16. 
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Figure 14. Process Description. 

 

Figure 15. Image loaded in grayscale. 
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Figure 16. Blurred image. 

3.4. Select Normalization Region and Image Segmentation 

To identify the calcium, we need to compute a threshold for image segmentation. 

This means that the image will be binarized where the foreground (the calcium region) is 

white. 

For the threshold, we started with a constant threshold for the pixels, of 160. Pixel 

values above such a figure are considered calcium and the ones under this value are non-

calcium pixels (blood, fat, muscle, or fibrous). 

This initial constant threshold was weighted and defined by the experts in cardiology 

and echocardiography and the co-authors of this paper (AGA and LR), who have more 

than 20 years of experience. However, pixel intensities from echocardiographic images 

change with the acquisition parameter settings, such as image depth, ultrasound pulse 

frequency, and image compressing. Moreover, the post-processing level of gain intensity 

also changes the overall pixel intensity. Images collected with a combination of different 

parameter settings were analyzed, to test our normalization intensity values approach, 

and to identify an cut-offs for calcification in patients, with and without calcification, for 

controlling these parameters. Visual assessment by experts was used as our reference for 

calcium analysis. Since after collecting the echocardiography image there is a processing 

stage (gains are applied to the image), we would end up with an echocardiography image 

with different values of brightness and setting a constant binarization threshold would 

not provide good image segmentation. To tackle this issue, an adaptive normalization of 

our threshold was performed by adding the extra-brightness. This extra-brightness is 

taken from a region of the echocardiography that should be completely black, the left 

atrium cavity, as shown in Figure 17. 
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Figure 17. Left atrium cavity region that will create a dynamic threshold for binarization. 

Achieving a dynamic threshold will normalize our echocardiography images, 

allowing our model to identify the calcium in different cases with different gains. The 

calcium presence can be seen in Figure 18 and is marked by a red circle. 

 

Figure 18. Calcium in the binarized image. 

3.5. Select Region of Interest 

Once the image is binarized, the system asks the user to interactively select the 

Region Of Interest (ROI) that should contain the aortic valve. When the ROI submatrix is 

retrieved, we will loop over the image to extract the coordinates of the white pixels. Figure 

13 depicts the end result: the submatrix with the binarized ROI. 

Having the exact coordinates from where the calcium is present on the aortic valve, 

we will go to our original images and obtain the pixel values of the region of the aortic 

valve with calcium, from the coordinates extracted previously. After getting such pixel 
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values, we will calculate the mean of our matrix of pixels. In order to get these values 

normalized, we compute the difference between the calcium selected from the 

echocardiography and the normalization region selected in Figure 17. 

Regions identified as calcium—with an intensity above the dynamic threshold—will 

allow, after binarization, counting the number of white pixels, a proxy to the region area 

and an indication similar to the calcium score identified by a CT-scan. This approach 

requires validation performed by means of visual analysis conducted by 

echocardiography experts. 

3.6. Implementation at Hospital Environment 

For this study it was used Philips’s ultrasound equipment, model Epiq 7 (Eindhoven, 

The Netherlands). 

After the performed tests, a validation set was created with 12 echocardiographic 

studies (from 12 different patients with calcific aortic stenosis) chosen randomly from the 

database, where we aimed to check our model’s accuracy in terms of classifying whether 

we had, or had not, a presence of calcium on the echocardiography image, based on the 

amount of calcification as assessed by CV-based calculation of the number of pixels, in 

comparison with the calcium area measured manually by planimetry in cm2 [24]. 

In Table 2, we present the results extracted from the validation set composed of these 

12 samples, from which we have found a high correlation between the amount of calcium 

based in the number of white pixels, and the calcium area measured manually by the 

echocardiography experts (AGA and LR). 

Table 2. Validation Study in a controlled patient representative—the number of white pixels 

(showing calcium) versus planimetry area measured manually. 

 Number of White Pixels Planimetry Area (cm2) Normalized Mean 

Patient 1 325 1.12 166 

Patient 2 722 1.44 174 

Patient 3 242 0.81 168 

Patient 4 669 1.96 170 

Patient 5 2251 2.67 175 

Patient 6 2565 2.82 190 

Patient 7 1026 1.98 188 

Patient 8 917 1.45 174 

Patient 9 1007 1.62 178 

Patient 10 1315 1.77 172 

Patient 11 206 0.72 165 

Patient 12 1771 1.99 186 

Pearson correlation between the number of white pixels and the area calculated by 

planimetry was 0.92, with a Coefficient of Determination of 0.91 and a p-value of 0.00048, 

as depicted in the correlation graph in Figure 19, showing that there is a high positive 

correlation [25], and a p-value lower than 0.001 shows that our test results are highly 

significant [26]. 
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Figure 19. Correlation Graph, where the Y-axis is planimetry and the X-axis is the number of white 

pixels taken from our approach. 

4. Discussion and Conclusions 

We have concentrated our efforts on evaluating what the research studies are 

assessing regarding the score of calcium in the aortic valve and in the coronary, since from 

a standard coronary artery calcium computed tomography scan, we can measure the 

aortic valve calcification [27]. 

Several studies have been conducted to predict cardiovascular events, calcium being 

presented in the aortic valve as an accurate predictor of these events [28]. From our 

analysis, it became clear that all of our analyzed studies focused on utilizing CT-scans. In 

terms of getting coronary score calcium, this is only possible using this resource [8]. 

Nevertheless, this approach bears costs, namely, monetary and health costs, since it 

corresponds to a very invasive scan, considering that it uses radiation to extract the 

amount of calcium [8]. More recently, the CT-calcium score of the aortic valve has been 

used to identify aortic stenosis severity. 

This degenerative disease evolves with ageing and is an epidemiological issue due 

to the high mortality, if left untreated. Literature studies performed with a cardiac CT 

calcium score, showed that the amount of valve calcification is related to severity and may 

help identify high-risk patients with an indication of valve replacement. 

According to the Agatston method, calcium quantification by cardiac CT is usually 

presented as a calcium score and has been validated by histopathology [28]. Although it 

is a reference method for calcification, currently established by medical guidelines, CT is 

an ionizing method and its use in repeated studies should be avoided. On the other hand, 

echocardiography is a non-invasive, non-ionizing technique based on ultrasound that 

could be used for calcium detection quantification if an automated method were available 

and reliable. There is a lack, so far, of a reliable quantification method for calcium by using 

echocardiography, although this could be an appropriate method since it is free of 

negative effects on human health and is a widely available technique. However, the 

quantification of calcium based on echocardiography imaging is a challenge. Calcium is 

reliably detected visually by experts, but visual quantification is unreliable and is subject 

to variability. In this paper, calcification of the aortic valve was used in the scope of a 

proof-of concept study. 

From the studies found, only one work regarding aortic valve calcification 

quantification recurring to echocardiography has been published. This means that there 

is a lack evaluation of the calcium score using only the echocardiography information, 

and only detection and prevention has been studied. 
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Once we add to our search CT-Scan imaging, we start obtaining published works 

related to quantifying the calcium, including some papers adopting deep learning. From 

our study we noticed that there is a larger sample in terms of studies when we are dealing 

with CT-scans. In fact, there are four times more papers regarding CT-scans than papers 

with echocardiography imaging analysis. 

From our analysis, we can see that cardiac CT-scan imaging has been used for 

coronary calcium calcification and prognosis prediction, and some literature works adopt 

deep learning algorithms, while, as mentioned, there is no published work on obtaining a 

calcium score from echocardiography, which would avoid the disadvantages of an 

ionizing method such as CT-scan. 

In our study, in order to avoid the use of CT-scans and the algorithm training 

requiring large data sets, we aimed to assess this technique for identifying and quantifying 

calcium in aortic valves of patients with aortic stenosis. 

A Computer Vision approach enabled us to identify and quantify the amount of 

calcium based on echocardiography imaging analysis, in calcific aortic valve stenosis 

using as reference the calcium quantification by echocardiography experts. 

From echocardiographic studies of calcific aortic stenosis, we analyzed the effect of 

changing the post-processing windowing conditions (width and level) and found a high 

level of agreement of intensity pixel values after normalization (by subtracting from the 

values of an ROI in a dark part of the image, at flow echogenicity void). An adaptive cutoff 

was found for pixel intensity that ensured the presence of calcium as validated by visual 

inspection. 

Furthermore, in additional echocardiographic studies, we analyzed the pixel values 

when changing the settings of acquisition that affect the brightness and contrast 

(ultrasound frequency and compression) and the final values for pixels and normalized 

pixels at the reference ROI, which just showed a small difference between exams, opening 

the potential for wider application in the clinical setting. 

Additionally, a validation set of 12 cases of calcific aortic stenosis, chosen randomly 

from a database, was selected for calcium quantification in the valves by assessing pixel 

number counting after applying the proposed cutoff for calcium. As a proxy of the amount 

of valve calcification, this number, in parallel to the CT calcium score, showed an excellent 

correlation with valve calcification measured manually via planimetry by 

echocardiography experts. Few studies have also addressed quantification of calcium in 

aortic valve and so far, only one study has shown a moderate correlation between the 

echocardiographic calcium amount and CT calcium score [9]. From our validation results 

we expect that our method will show a better performance and ability to identify the 

severe cases. 

A limitation of this study is the small number of cases analyzed. This was in 

accordance, however, with its exploratory purpose. A further study should be undertaken 

in the future with the inclusion of a larger number of aortic valves with a large range of 

calcification to validate these results. Besides expert image validation, as used in this 

paper, a comparison with an additional validated method must be undertaken, as well as 

a comparison with aortic valve stenosis severity and the impact of calcification assessed 

by this new method on prognosis. Additionally, our method, if proved successful, will 

most likely be used in patients with good acoustic windows, excluding the ones with 

difficult ones, up to 10–12% in the clinical arena and should use a fixed number of 

acquisition and post-processing settings. 

Moreover, this study was developed using specific echocardiographic equipment. 

Findings must be compared in further studies using other machines that may possibly 

provide different kinds of ultrasound images regarding pixel intensity and different 

cutoffs possibly need to be considered. 

This work was a collaborative approach between a computer science university and 

a social science university with a medical university and a hospital to provide a solution 

to a real problem. 
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