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Abstract

Context. Modern software projects require the proper allocation of human, technical and

financial resources. Very often, project managers make decisions supported only by their per-

sonal experience, intuition or simply by mirroring activities performed by others in similar

contexts. Most attempts to avoid such practices use models based on lines of code, cyclomatic

complexity or effort estimators, thus commonly supported by software repositories which are

known to contain several flaws.

Objective. Demonstrate the usefulness of process data and mining methods to enhance the

software development practices, by assessing efficiency and unveil unknown process insights,

thus contributing to the creation of novel models within the software development analytics

realm.

Method. We mined the development process fragments of multiple developers in three

different scenarios by collecting Integrated Development Environment (IDE) events during their

development sessions. Furthermore, we used process and text mining to discovery developers’

workflows and their fingerprints, respectively.

Results. We discovered and modeled with good quality developers’ processes during pro-

gramming sessions based on events extracted from their IDEs. We unveiled insights from

coding practices in distinct refactoring tasks, built accurate software complexity forecast mod-

els based only on process metrics and setup a method for characterizing coherently developers’

behaviors. The latter may ultimately lead to the creation of a catalog of software development

process smells.

Conclusions. Our approach is agnostic to programming languages, geographic location or

development practices, making it suitable for challenging contexts such as in modern global

software development projects using either traditional IDEs or sophisticated low/no code plat-

forms.

Keywords: Software Development Process Mining, Process Mining, Empirical Software Engi-

neering, Software Development Analytics, Programming Practices, Efficiency Assessment
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Resumo

Contexto. Projetos de software modernos requerem a correta alocação de recursos huma-

nos, técnicos e financeiros. Frequentemente, os gestores de projeto tomam decisões suportadas

apenas na sua própria experiência, intuição ou simplesmente espelhando atividades executa-

das por terceiros em contextos similares. As tentativas para evitar tais práticas baseiam-se em

modelos que usam linhas de código, a complexidade ciclomática ou em estimativas de esforço,

sendo estes tradicionalmente suportados por repositórios de software conhecidos por conterem

várias limitações.

Objetivo. Demonstrar a utilidade dos dados de processo e respetivos métodos de análise na

melhoria das práticas de desenvolvimento de software, colocando o foco na análise da eficiência

e revelando aspetos dos processos até então desconhecidos, contribuindo para a criação de

novos modelos no contexto de análises avançadas para o desenvolvimento de software.

Método. Explorámos os fragmentos de processo de vários programadores em três cenários

diferentes, recolhendo eventos durante as suas sessões de desenvolvimento no IDE. Adicional-

mente, usámos métodos de descoberta e análise de processos e texto no sentido de modelar o

fluxo de trabalho dos programadores e as suas características individuais, respetivamente.

Resultados. Descobrimos e modelámos com boa qualidade os processos dos programadores

durante as suas sessões de trabalho, usando eventos provenientes dos seus IDEs. Revelámos fac-

tos desconhecidos sobre práticas de refabricação, construímos modelos de previsão da comple-

xidade ciclomática usando apenas métricas de processo e criámos um método para caracterizar

coerentemente os comportamentos dos programadores. Este último, pode levar à criação de um

catálogo de boas/más práticas no processo de desenvolvimento de software.

Conclusões. A nossa abordagem é agnóstica em termos de linguagens de programação,

localização geográfica ou prática de desenvolvimento, tornando-a aplicável em contextos com-

plexos tal como em projetos modernos de desenvolvimento global que utilizam tanto os IDEs

tradicionais como as atuais e sofisticadas plataformas "low/no code".

Palavras-chave: Análise de Processo de Desenvolvimento de Software, Análise de Processos,

Engenharia de Software Experimental, Análise de Desenvolvimento de Software, Práticas de

Programação, Avaliação de Eficiência
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CHAPTER 1. INTRODUCTION

“...All things -from the tiniest virus to the greatest galaxy- are, in reality, not things at all, but
processes...”1

—Alvin Toffler(1928-2016)2

1.1 Motivation and Scope

Failed software development projects happen neither unexpectedly, nor by coincidence. They

are the result of a sequence of activities, events, and decisions that produce, unfortunately,

undesirable outcomes.

As common examples, we may find that inaccurate planning and/or project plan devia-

tions, improper resource allocation, or the inability to take corrective actions adequately, cause

substantial financial losses on software development projects [62, 145].

On the opposite side, when one faces a successful project, the search for the most rele-

vant factors towards success is the groundwork to comprehend how to prosper in software

development related activities [7, 45].

Software development is intrinsically a process3 - "a series of actions that you take in order to
achieve a result". Accordingly, a software development process is a series of activities performed

by developers in order to create a new product or maintain an existing one.

Regardless of the business domain under consideration, it is commonly accepted that better

processes tend to produce higher quality products. This rationale is supported by many rep-

utable authors, which spent a major part of their research and professional lives around quality

and process improvement in production lines, companies, or even entire industries [48, 58, 60,

66, 74, 98, 193].

To fully understand a process, it is required that all the facets of it are, in a timely manner,

properly mined [206]. In trying to comprehend the software development process, many data

sources, methods, and tools have been used and validated, but some others are yet to be fully

exploited [136]. For example, since Version Control Systems (VCS), are widely used by devel-

opers, researchers get easy access to historical data of many projects and use file-based VCS

as the primary source of code evolution data. Although it is practical to use such repositories,

research based on VCS data is incomplete and imprecise. Moreover, answering questions that

correlate code changes with development process activities (e.g., test runs, refactoring) becomes

almost impossible [157].

In the following sections, we highlight some of the limitations in mining traditional soft-

ware repositories with the purpose of improving the software development process. In the

subsequent chapters, we elaborate on a few proposals to mitigate them.

1In "Future Shock", 1970.
2American writer, futurist, and businessman known for his works discussing modern technologies, including

the digital and the communication revolutions, with emphasis on their effects on cultures worldwide.
3https://dictionary.cambridge.org/dictionary/english/process

4



1.1. MOTIVATION AND SCOPE

1.1.1 Aviation Industry Metaphor

Fortunately, tragic aviation accidents are rare. However, when they occur, we hear the media

mention something about the search for the planes’ black boxes. These devices contain vital

information that can reveal why a particular airplane might have crashed. In fact, they helped

airline manufacturers, aviation professionals, and accident investigators, improve flight safety

for everyone since the 1950s. Black boxes were proposed by David Warren, an Australian re-

search scientist which helped to investigate the repeated plane crashes of a commercial airliner

back in those days. He argued that if researchers had knowledge of what happened on the plane

right before it went down, it would help them figure out how to improve the next flight.

Black boxes are technically made of two parts — the Flight Data Recorder (FDR), and

the Cockpit Voice Recorder (CVR). During a flight, the FDR tracks information about the

plane itself, like its direction, speed, altitude, weather conditions, and many other metrics

flight related. The CVR records audio of the crews’ conversations, radio transmissions, engine

sounds, and alarm noises.

While mechanical or electronic failure is always a possibility, it has been noted by several

sources that the most common cause of airline crashes is pilot mistake [187]. Since 1950, ≈50%

of the crashes are assigned to pilot error, ≈23% to mechanical failures, and the rest to other

causes, such as weather conditions or sabotage [16]. This is arguably why the CVR exists, and

not solely the FDR.

Software development researchers and practitioners have long been using software repos-

itories to study the software development process. However, it has been repeatedly claimed

that these repositories have many flaws in terms of the process data [8, 112, 204]. Many studies

claim to study the process underneath the product being developed. However, most of them use

only artifact-related repositories to study what is frequently associated with human behavior

and/or teams’ activities.

Mapping the software development domain to the aviation industry, we may say that re-

searchers are mainly using the equivalent of the FDR, which contains artifact-related data. We

will show in this dissertation that a CVR-like mechanism could be of great value in the software

development realm, and we argue that the IDE might be a fundamental component towards

that goal. It aggregates some fine-grain data related to the communications, activities, decisions,

and actions taken by software developers, testers, and project managers, which can be easily

pushed to a common events repository for posterior analysis.

This dissertation leverages on this rationale by using fine grain event data captured from

the IDE to discover developers’ processes and behaviors, to confront executed tasks with initial

plans, and to comprehend and improve the software development process in general.

1.1.2 ”Pollock Effect”

The XX century has seen the birth of one of the most talented painters and a major figure in

the abstract expressionist movement, Jackson Pollock [100, 101]. Despite many controversies

around his lifestyle, he was admired for his innovative painting technique. It consisted of pour-

ing or splashing liquid household paint onto a horizontal surface (‘drip technique’), enabling

him to view and paint his canvases from all angles. The final work would be the culmination of

5



CHAPTER 1. INTRODUCTION

numerous layers of paint on top of each other, resulting from multiple sessions of creative work,

which, only when combined produce the overwhelming visual effects we found in Pollocks’ art.

For many years, art critics, historians, and admirers have looked at Pollocks’ art only as

of the result of his geniality from the creative perspective. Nowadays, researchers, mainly

physicists, argue that his work is not just the product of a creative session, it is also supported

by a few laws of physics [89]. Many are convinced that these laws are able to capture the author

fingerprints and authenticity, thus allowing to distinguish a genuine Pollock painting from a

similar product created by another artist4 that was inspired by Pollocks’ technique.

Figure 1.1: Pollock Process/Painting

Despite many style differences to antecedent painters, one thing remained unchanged

between them - the painting was the final delivery. However, the means by which Pollock

achieved it, coins the variation to other artists. The workspace conditions were different: canvas

on the floor, ability to paint from multiple perspectives, using different materials and objects,

exploring fluid dynamics, and finally, letting gravity perform the final touch.

Jackson Pollock, unconsciously, created not only a new painting technique that inspired

many artists after him, but he also authored a new painting process5.

Software development processes have some similarities with Pollock’s process. It consists

of many overlaid sessions of work of one or many individuals, having a multitude of workspace

conditions, looking and interacting with it from multiple angles, and yet contributing to a

unified product build. These work sessions overlap in time and when we look at them globally

and from different perspectives, many insights come to the daylight. Several aspects, which

initially may appear the result of an intrinsic talent, can potentially be seen as the outcome of a

structured process that science may explain.

4In Figure 1.1 (right), Adam Zafrian art inspired by Pollocks’ painting process - https://bit.ly/35aivrK
5In Figure 1.1 (left), Jackson Pollock at work in 1949, photographed by Martha Holmes. Pollock appears to be

using a relatively viscous paint that forms a continuous jet of fluid he controls by moving a trowel up, down, or
across the canvas. (Photograph @ Time, Inc, Getty Images) - Adapted from [89].
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1.1. MOTIVATION AND SCOPE

In the software development process, developers’ implicit behaviors, actions, and decisions

are yet to be fully researched and understood. As such, in the next sections and chapters, we

will emphasize how important is to mine infrequently used software development repositories,

from different perspectives and with refreshingly new methods.

1.1.3 Software Development Process

Even if a uniform definition for the software development life cycle does not exist, we find its

phases generally grouped as: Requirements Elicitation, Coding, Debugging, Unit and Func-

tional Testing, Maintenance, Deployment, and Operation.

Software projects outcomes and pertinent tasks are frequently evaluated across four per-

spectives: quality, scope, time, and cost [45]. These perspectives, are related with the planning

and execution of the project’s main activities. Each perspective contains its own critical success

and failure factors, which can be grouped into five different dimensions: organizational, people,

project, technical, and finally, the followed process[195].

Starting a software development project from scratch is a complex activity on its own [95],

mainly due to the frequent absence of a methodology or formalized process [160] which may

acts as a referential. We now have enough evidence to suggest, that in addition to the initial

project planning, the way people are organized, the tools they use and the processes they follow

are fundamental features for the success or failure of any software project [160].

Even if prescribed process models exist, projects often do not comply with them. This

happens mainly because each developer or team has some freedom to interpret the process and

because its compliance is not verified on the run, since it is mainly intangible. As a consequence,

researchers found that process executions (i.e. projects) often deviate from what was planned

[120].

Software development became a fundamental process on any business or organization,

therefore, it is vital to carefully study, understand, and improve it[72]. It is surprising though,

that so many studies around the software development process, end up using, as a data source,

data/metrics not about the activities, tasks, or actions taken by the developers along the way, but

instead, about the outcome: the product [1]. Moreover, when those studies use process metrics,

they are based on inputs from management tools like Software Configuration Management

(SCM) or Bug/Issue Tracking Tools (BTT), meaning, they are based on what the developers said

they have done, and not on irrefutable evidence of what (and how) they actually did. Besides,

some repositories, as seen in 1.1, have flaws that may lead managers to make estimations, such

as effort and duration of projects, based on potentially problematic illusions.

1.1.4 Software Effort Estimation Illusions

Developers following best practices use some sort of repository6 to keep track of changes made

to the artifacts. They perform check-outs to start adding, deleting, or changing code, and then

execute check-ins when those tasks are finished. By accessing those repositories, one will know

with some detail how the software was in moment t0 and then, how the software became on

moment t1 once changes were committed.
6(Concurrent Versions System (CVS), Subversion, Mercurial, Github, etc)
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However, the period between t0 and t1 remains a black box. What were the developers

doing between commits? What features of the IDE were mostly used? What third-party IDE

plugins were used ? What type of environment had the developer? (IDE version, Java version,

Operating System). Are there any correlations between the complexity of the process and the

final complexity of the product? What are, in reality, the causes and effects of a development

process?

As we will see in chapter chapter 2, the literature does not provide good examples answer-

ing those questions, even if only partially.

t1 t15t0 t8t7t6t5t4t3t2

Changed	100	lines	of	code

check-incheck-out

t14t13t12t11t10t9

Changed	95	lines	of	code
	

Time

Absent/Idle	time	(usually	not	tracked)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

t16

t16

t17

t17

t18

t18

t19

t19

check-out

file	1 file	1

check-in

file	2file	2

t8	-	t1

t15	-	t0

Source	Code	
Repository

Mary

Paul

User	
Statistics	Reports

Figure 1.2: Productivity estimation illusion between developers

Figures 1.2 and 1.3 show two practical examples of how data gathered from traditional

source code repositories may mislead an analysis of estimating the effort of a project.

• In 1.2, developers Paul and Mary check-out two different files(file1, file2) for refactoring,

with a single time unit difference. Paul check-in his file much later than Mary and with

less absolute changes. However, because absent time is usually not tracked by source code

control systems, Paul seems to be less productive than Mary. This is simply not correct,

because Paul produced more code per effective period of work time than Mary. Besides,

the complexity of the tasks they both performed is not possible to measure accurately in

the statistics report.

• In 1.3, developer Paul, check-out two different files(file1, file2) for debugging. He checks-

in both files at the same time. During the working period, in reality, he was idle for

certain periods in both files, and in some other periods, he worked in only one file at

a time. Statistics reports will show the same work time for both files, and more code

changed in the file where he in fact worked less.

Possible Assumptions. A powerful insight we get from this analysis is that the empirical

software engineering community might have been working with very erroneous/misleading

8
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Figure 1.3: Developer workload allocation estimation illusion

datasets obtained from traditional software repositories, such as BTT and/or Source Code

Systems (SCS) tools. If these datasets are used to derive conclusions on the effective effort taken

by developers when working with some artifacts, those conclusions might very well be invalid.

1.2 Software Analytics

As a result of the direct or indirect dependence on software in our daily lives, and the impor-

tance it represents for the software industry, the software development process has become the

focus for many studies and analysis [15, 43].

Defining new processes and allocating the right resources, particularly for large organiza-

tions, is a stimulating task for project managers, primarily because it requires acquaintance with

existing processes and tools, the understanding of different stakeholders, and the coordination

of technical expertise in multiple domains.

Failing to attain the above requirements may cause software development projects to pro-

duce non-coherent deliveries, with scattered technical artifacts that are hard to maintain, quite

often overpass the allocated budget, and even more important, they may not have the quality

which was initially aimed.

To mitigate the above risks, analytics was also brought into the software domain as a

way to gather insights about the software products and processes. The goal was to provide

stakeholders’ decision-making process with data-driven evidence instead of the very often used

gut feeling or personal experience from past projects.

Analytics has seen widespread adoption as a way to gather insights on many different

realms. How people use collaborative/productivity management suites (see figure 1.4) and

personal device usage (see figure 1.5) are among a few examples one may find present on our

daily lives.

9
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Figure 1.4: Email/Skype Usage Figure 1.5: iPhone Usage

Software Analytics (SA) was first coined and proposed by Dongmei Zhang, founder of the

SA Group at Microsoft Research Asia (MSRA). After a series of articles, tutorials and talks, the

term became well known in the Software Engineering research community.

1.2.1 Software Development Analytics

In late 2010, the term SDA (Software Analytics with focus on Software Development) was

proposed by Thomas Zimmermann and his colleagues at the Empirical Software Engineering

(ESE) at Microsoft Research Redmond (MSRR) in their FoSER 2010 paper [34].

Since then, a vast amount of literature was produced presenting stakeholders with new

ways of improving the efficiency and effectiveness in developing software products by providing

insights to streamline the processes or to optimize resource allocation [1].

SDA is currently a widespread method to gather insights from the software development

process [76, 142, 166]. As this method evolved, the Software Engineering practice took advan-

tage of lessons learned and applied them in real live scenarios [135].

Recently we have seen the birth of a multitude of analytics related companies, solutions, and

methodologies [135, 166, 202]. This was promoted mainly by the large attention practitioners

gave to Artificial Intelligence, more precisely, to Machine Learning techniques. It was also a

period where Process Mining saw boundless adoption in several business domains [73, 206,

208].

Both approaches, Machine Learning, and Process Mining are today being used to reduce

the costs of producing new software products, to improve their quality, reduce time-to-market

and support the decision-making process. These practices would not be possible or effective

without the possibility of mining multiple repositories.

10
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1.2.2 A Multitude of Repositories

Together with other emergent technologies, new development platforms (IDEs) are being cre-

ated, mainly in the cloud (e.g., Eclipse Orion, Cloud9, Codio), requiring different approaches

on the way software development can be studied.

Empirical studies on software development most often are based on data taken from repos-

itories such as: SCM, SCS, BTT, App Stores and Wikis, just to name a few. Rarely, IDEs are

used as a data source, either because they do not easily record data regarding developers’ activ-

ities and the associated context, or because new perspectives to analyze that data were not yet

unfolded, as we show in chapter 2.

The increasing role of the open-source movement has allowed a considerable increase in

the availability of free software engineering tools, namely in Eclipse, the dominant IDE for its

most widespread programming language, Java. That availability has led to the progressive use

of a multitude of tools during a software development project, far beyond the traditional ones

that dominated the first decades of computer programming, namely the code editor, compiler,

and linker.

Figure 1.6 shows in single clipart, a large set of repositories7 mentioned in [202] with

potential to advance analytics in the software development practice.

Nowadays, developers use code and test generators, modeling, and code recommendation

tools, code smell detection and refactoring plugins, metrics collection adapters, and software

structure visualization tools, to name just a few. Those tools are becoming increasingly inter-

twined within the IDE and the latter is progressively integrated with cloud-based services that

allow cooperative work (e.g. GitHub, Sourceforge) that provide services such as Configuration

Management System (CMS), BTT, project documentation and Wikis. The importance of the

IDE is the foundation for this dissertation, therefore, we will provide details on it in the next

sections.

1.2.3 The Integrated Development Environment

Nowadays, most software practitioners develop their work upon an IDE, such as Eclipse,

IntelliJ IDEA, Netbeans or Visual Studio Code. To a greater or lesser extent, those IDEs

support different software development life cycle activities, such as requirements elicitation,

producing analysis and design models, programming, testing, dependencies management, or

continuous integration. As an example, Eclipse, which owes its wide adoption to the vast

plethora of plugins available in its marketplace, is customized for specific users/purposes, such

as for modelers, programmers, testers, integrators, or language engineers.

An IDE, in addition to the artifacts it handles, contains metadata about the developers’

activities that may reveal the reasons why some individuals and teams are more efficient than

others. Moreover, it may have hidden in its usage, parts of the logic why some projects are

successful and others fail.

We advocate that those development activities can be identified by mining the large number

of events created during the execution of the IDE core components and the installed plugins.

7The IDE was kept in the middle to represent a fundamental component in studying the software development
process.
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Figure 1.6: A few repositories identified in the Dagstuhl 2014 Seminar Report on SDA [202].

From those, one may expect to discover process models and consequently, detect hidden pat-

terns or build prediction models to provide operational support to the software development

process.

1.3 On the Role of Process Mining

Process Mining is now a mature discipline with validated techniques producing accurate out-

comes on several business domains [165, 208]. A process mining project, if best practices are

followed [126], should use goals, questions to answer, and event logs as inputs, and produces

actions to implement as outputs as seen in Figure 1.7. The goals may consist of improving

some performance indicators, such as time, risks, and costs associated with a specific process,

or simply maximizing a service level. Actions may be the redesign of a specific project, adjust a

current process or, if there is a fluctuation in process instances, one may want to include more

resources.
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Figure 1.7: Process Mining: Data Science in Action. Adapted from [206]

Within the most used process mining tasks we have:

• Discovery. This stands for the ability to construct a process model, thus capturing its

behavior based on an event log [206]. Several well-known algorithms exist to discover

process models, such as the α-algorithm, the heuristics, genetic, inductive, and fuzzy

miner, amongst others [73]. Table 1.1 shows the most relevant algorithms and their

applicability in real-life scenarios.

• Conformance Checking. Commonly used to confront the model discovered with the

reality consisting of events in the event log. It can be used to check for deviations from

prescribed processes, detect differences and/or similarities between cases and verify the

accuracy of documented processes [206].

It can also be used to calculate the efficiency or to measure the quality of a process model.

Quality is normally assessed considering four dimensions:
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- Fitness. Represents how much behavior in a log is correctly captured (or can be

reproduced) by a discovered model.

- Precision. Refers to how much more behavior is captured in the model than what

was observed in the log. It deals on avoiding overly under fitted models.

- Generalization. Focuses on avoiding overly precise models based on the assumption

that logs are by their nature incomplete, meaning that, to a certain extent, a model should

be able to reproduce not yet seen behavior in the log.

- Simplicity. Alludes to the rule that the simplest model that can describe the behavior

found in a log, is indeed the best model. This means that the complexity of a model is

dependent on the number of nodes and arcs in the underlying graph.

• Enhancement. This stands for how relevant information can be used to extend the model.

It is the type of activity that provides operational support, the most ambitious form of

process mining. Quite often involves the combination of process mining, statistics, and

machine learning to improve process models aiming at understanding deeply processes

and optimize them [206].

Figure 1.8 summarizes the best practices methodology for a process mining project.

Figure 1.8: Process Mining Process Methodology. Adapted from [126]
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Table 1.1: Commonly Used Process Mining Algorithms(Miners)

A/A+ Heuristics Miner Inductive Miner Genetic Miner Fuzzy Miner

Cannot handle loops of length
one and length two / A+ Can
handle loops of length one and
length two

Takes frequency into ac-
count

Can handle invisible tasks Mimics the process of evo-
lution in biological sys-
tems

Support large numbers of activities
and highly unstructured behavior

Invisible and duplicated tasks
cannot be discovered

Detects short loops Model is sound Use elitism, crossover and
mutation to build the pop-
ulation elements of the
next genetic generation

Uses significance/correlation met-
rics to interactively simplify the
process model at desired level of ab-
straction

Discovered model might not be
sound

Does not guarantee a
sound model

Most used process mining
algorithm

Tackle non-free-choice,
invisible and duplicate
tasks

Cannot be converted to other types
of process modeling languages

Computationally Expen-
sive

Can leave out less important activi-
ties (or hide them in clusters) if hun-
dreds of them exist

Weak against noise Robust to noise Strong against noise

Inputs
Event log file Event log file Event log file Event log file Event log file

Outputs
Petri Net Heuristic Net Petri Net or Process Tree Petri Net or W-F Net Fuzzy Model

When to Use
Not recommended for real-life
data (Obsolete)

When you have real-life
data with not too many
different events, or when
you need a Petri net
model for further analysis

For discovering process
delays, deviations, and an-
imation of the model

When all the behavior in
the log needs to be repre-
sented by the model

When you have complex and un-
structured log data, or when you
want to simplify the model in an in-
teractive manner
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1.4 Research Drivers

In section 1.4.1, we initiate our research process by formulating the main problems we are

undertaking and highlight why they are important. This drives the research objectives pre-

sented on section 1.4.2. The methods used to answer them, and the main contributions of this

dissertation are described in section 1.4.3.

1.4.1 Research Problems

Software development is a socio-technical activity. Every project has its own needs in terms

of requirements, technologies, and human resources that should be allocated to each task.

Successful software development projects not only require people with the right programming

skills, but also with the right behavior. Productivity is derived from both: skills and behavior

[71].

A major difficulty in identifying the best human resources for a specific project is caused

by the fact that we often have no clue on how programmers behave individually or in groups.

In some cases, reports are not accurate, as seen in 1.1.4. In other situations, studies on software-

related topics cover only product issues. As for the ones targeting the process dimension and

developers behavior, many open research problems have been identified [8, 71, 155].

As such, we summarize the main problems as follows:

• RP1. Incompleteness of the repositories used to assess software processes. Many stud-

ies use software repositories as data sources for software development process-related

analysis. These repositories, although important, have many flaws and do not reflect all

the activities developers perform during their daily duties, as recognized by researchers

and practitioners [106, 196, 203]. Alternative and/or complementary perspectives have

been called for [32, 34, 35, 78, 111, 135, 136, 137, 202, 226].

To the best of our knowledge, only a few satisfying approaches have been made public.

The Eclipse Usage Data Collector8, with filtered datasets published9 [135], Mylar [149]

and the Mylyn Monitor [109, 150], the Fluorite10 [220, 221, 222], the Coding Spectator

[155, 157, 204, 205], and more recently, the ActivitySpace11 [17] . All of these projects

seem to be on hold, discontinued, or not anymore available for public use. Apart from

that, as we don’t have the context associated with the data collected, none of them is very

useful when one wants to make use of advanced process mining techniques.

• RP2. Inability to accurately express developers’ workflows and assess their impact on

the software product and process dimensions. A common practice in analyzing software

development processes is the use of methods such as statistics, machine learning, time

series, and others. These methods are proved efficient in producing descriptive statistics

and valid results on predicting the number of software failures, time to solve defects, and

summarize developers time on certain tasks [14, 18, 52, 83, 138]. However, mere numbers

8https://www.eclipse.org/epp/usagedata/
9https://archive.eclipse.org/projects/usagedata/

10http://www.cs.cmu.edu/f̃luorite/research.html
11http://baolingfeng.weebly.com/ase2015-demonstration.html
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are just not enough, the above methods lack the ability to express the software develop-

ment process as a sequence of activities with a clear beginning and end. In summary,

they fail to represent the real processes followed, or in other words, they do not discover

processes. As an example, one may want to know (discover) the real process followed by

a team of developers and check the conformance against the process that was prescribed

as guidelines or best practices by their organization.

Regarding the measurement of product and process dimensions, we observe they have

been seriously debated in the software development domain [30, 39, 136, 209, 210]. Nev-

ertheless, the comprehension of the liaison between them is still in its infancy [137].

• RP3. Improper methods used in profiling developers due to the great variability of

behaviors during their development sessions. Software development analytics aiming

to build models for development aid are frequently executed based on metrics extracted

from the source code systems. In modern software projects, with the existing diversity

of languages, methodologies, and tools, quite often, those metrics are not possible to

be properly collected or shared. This, limits the ability to implement already proven

models in the SDA practice [42, 129, 160]. Furthermore, the clustering techniques used to

profile developers use probabilistic models that take mainly into consideration only the

frequencies of activities and disregarding their order. Such an approach does not perform

well in situations where the variability between developers is related to the flow of the

activities, instead of the frequencies.

Detailed information about these and other research challenges are presented in chapter 2

- State of the Art where a Systematic Literature Review (SLR) is given.

1.4.2 Research Objectives

To address the research problems of section 1.4.1, the following research objectives were formu-

lated:

• RO1. Evaluate IDE-based event data and Process Mining as valid options to advance SDA

practices.

• RO2. Using only process-driven metrics to comprehend developers’ coding practices and

the entanglement of product and process dimensions.

• RO3. Profiling developers’ behaviors during software development sessions.

Each RO is related with a correspondent RP with the same index number located in section

1.4.1.
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1.4.3 Main Contributions

This section presents a summary of the main contributions delivered with the development of

this dissertation:

• C1. To address the incompleteness of data sources related to software repositories, we

proposed the mining of software development processes based on the IDE usage data

and by adopting process mining techniques. This approach, Software Development

Process Mining (SDPM), which we proposed [36], allows us to reverse engineer the soft-

ware development process by mining event logs taken from real software development

activities. The artifacts used to collect the data, their installation manuals, user guides and

a sample event instance are presented in Appendix A.2 - Software Development Process

Mining Plugin for Eclipse and A.2 - Software Development Process Mining Plugin for

PyCharm. The proven methodology we followed to embrace this approach, is detailed in

[126].

Process Mining (PM) is expected to be a valid contribution to expand comprehension of

a software process by introducing one more of the so needed different data perspectives

[34, 35, 202]. Analytics was imported to the software development domain (SDA) to

provide stakeholders with data-driven insights. With our proposed method, SDA become

expanded in breadth and depth, thus enabling software project managers and developers

to make even more meticulous decisions.

• C2. To express developers’ interactions and compliance adherence to prescribed

processes, we proposed the process discovery and conformance checking methods. To

foster a shared understanding of what the current software process really is, we used

process discovery techniques. Activities are expected to characterize the underlying

process model, since a given execution flow (sequence of consecutive or parallel) of ac-

tivities, from start to end, corresponds to what we call a “process instance”. We used

conformance checking techniques for diagnosing if actual software development activ-

ities (again captured as event logs) were following a given process model, and if not,

how close were they. The implementation for this approach is presented in chapters 3 -

Assessing Teams’ Efficiency and 4 - Unveiling Process Insights.

• C3. To improve the comprehension about developers behaviors and characterize de-

velopment processes by means of fingerprints, we propose a stack of process mining

and n-gram language models. We used a stack of text and process mining algorithms to

validate the outcomes of the fingerprints detected by assessing the behaviors of a group of

developers. The implementation and validation for this approach is presented in chapter

5 - Practices and Fingerprints.
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The main contents presented in this dissertation were submitted in the following venues:

1. Software Development Process Mining: Discovery, Conformance Checking and En-

hancement. Proceedings of 10th International Conference on the Quality of Information

and Communications Technology, QUATIC2016, Lisbon, Portugal. - Accepted.

2. Assessing Software Development Teams’ Efficiency using Process Mining. Proceedings

of 1st ICPM2019, Aachen, Germany. - Accepted.

3. Software Development Analytics in Practice: A Systematic Literature Review. Infor-

mation and Software Technology Journal, 2020. - Conditionally accepted.

4. Unveiling process insights from refactoring practices. Computer Standards and Inter-

faces Journal, 2020. - Submitted.

5. Profiling Software Developers with Process Mining and N-Gram Language Models,

Journal of Systems and Software, 2021. - Submitted.

Our approach is aligned with European recommendations for Software Engineering related

studies [163] and has the potential to inspire some software industry businesses and, coinci-

dentally or not, some products in the portfolio of established players in Software Development

Analytics and Process Mining domains.

ProcessLabs.ai.

“Joao’s work on Software Processes analysis has inspired us for years, and his latest research
getting inside the developers IDEs has done it again. Gaining insights into Software Developers Be-
haviors opens a whole set of products and possibilities to help both the developer and the organization
improve at multiple levels, João is laying out the map for us. Just to name a few, Joao’s research can
be the inception of beyond state-of-the-art products to better assess candidates prior to hiring them,
to help developers improve in their craft by letting them learn from top tier developers, to ensure
certain desired practices are enforced inside an organization (like Test-Driven Development (TDD)
for example), or to understand or even predict the reasons of defects in software. Improving software
developers productivity is a $300B untapped market, and we strongly believe Joao’s work is a corner-
stone for anyone willing to take on that challenge.”

—Pablo Ferrari12

Celonis.

Recently introduced Task Mining into their portfolio. In Figure 1.10, we have an example

of user interactions across different tools used on their daily process activities. This approach

is based on the principles also addressed by this research.

12ProcessLabs Co-Founder and CEO(2020), https://www.processlabs.ai/, https://www.linkedin.com/in/pablo-
ferrari/
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Pablo	Ferrari
ProcessLabs.ai

San	Francisco,	California,	USA

Figure 1.9: ProcessLabs portfolio covers a few aspects addressed by this dissertation contribu-
tions

Figure 1.10: Celonis Task Mining product features

20



1.5. DISSERTATION OUTLINE

1.5 Dissertation Outline

This dissertation is organized in four parts, each containing a set of chapters which are briefly

summarized as follows:

Part I - Fundamentals . Introduces this dissertation, the fundamental topics and a SLR.

Chapter 1 - Introduction. Provides context to this work, identifies some of the main prob-

lems in research, and detail the solutions prescribed to mitigate them. Finally, it summarizes

the benefits and highlights the dissertation structure.

Chapter 2 - State of the Art. Gives an overview of the related work, proposes a taxonomy

to categorize it and identifies research gaps within the SDA area.

Part II - Software Process Immersion. The solution proposed and its applications.

Chapter 3 - Assessing Teams’ Efficiency. Presents the experiment conducted and the find-

ings of assessing software development teams’ efficiency using process discovery and confor-

mance checking.

Chapter 4 - Unveiling Process Insights. Assesses the process vs. product complexities,

their correlations and builds novel software models using only process metrics.

Part III - Towards the Prescriptive Commitment. An extension to the methods proposed to-

wards the prescription of best practices to software developers.

Chapter 5 - Practices and Fingerprints. Demonstrates the feasibility of understanding

deeply the developers behaviors and is a foundation for building a catalog of software process

smells.

Part IV - Conclusion. Draws the conclusions and raises new research opportunities.

Chapter 6 - Conclusions and Future Work. Concludes and summarizes the achievements

of this dissertation. As an evolutionary step it also provides some guidance and opens the

discussion for challenges and future work in this area.

1.6 Summary

The first chapter provides an overview of the research work developed in the scope of this

dissertation. Starts with a brief introduction of what a Software Development Process is

in section 1.1.3, how Process Mining can help in studying such a process in section 1.3

and justifies the research problems present in section 1.4.1. Research objectives and main

contributions are described, respectively, in section 1.4.2 and 1.4.3. Finally, it outlines, in

section 1.5, what is included in each chapter. Figure 1.11 shows how the six chapters of

this dissertation are organized, and how they are linked with the methods used to solve the

problems and the correspondent contributions and benefits obtained.
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CHAPTER 2. STATE OF THE ART

“Science is a way of thinking much more than it is a body of knowledge.”

—Carl Sagan(1934-1996)1

2.1 Introduction

Defining new processes and allocating the right resources, particularly for large organizations, is

a challenging task for software project managers, primarily because it requires acquaintance on

existing processes and tools, the understanding of different stakeholders, and the coordination

of technical expertise in multiple domains [134]. Failing to properly manage these various

aspects, namely when decisions are based on "gut feeling"(often dubbed "personal experience

from past projects") may cause software development projects to produce hard to maintain

technical artifacts, to surpass budget and schedule, and deliver defective products [62, 145].

The Software Development Analytics SDA research field aims at mitigating the aforemen-

tioned risks by providing the stakeholders’ decision-making process with data-driven pieces of

evidence, such as insights on software products and processes.

2.1.1 Motivation

The term “software analytics"SA was coined by Dongmei Zhang, founder of the Software An-

alytics Group at Microsoft Research Asia MSRA [224]. After a series of articles, tutorials and

talks, the term became well-known in the software engineering research community. The SDA

research field was proposed by Thomas Zimmermann and his colleagues from the Empirical

Software Engineering Group ESE at Microsoft Research Redmond MSRR [34]. Since then, a

vast amount of literature was produced presenting stakeholders with new ways of improving

the efficiency and effectiveness in developing software products, by providing insights on how

to streamline the processes or to optimize resource allocation [1].

2.1.2 Contributions

A decade has elapsed since the first discussions on methodologies, techniques and tools to

boost the adoption of analytics in the software development practice. This systematic literature

review SLR on SDA identifies, analyzes and aggregates the relevant primary studies in this

period, following a well defined protocol, aligned with the best practices [61, 114]. Its main

objectives are to:

• summarize the main types of empirical studies performed, target software life cycle ac-

tivities, and corresponding data sources;

• identify the mining methods and analytics that were applied;

• evaluate the contributions of the selected primary studies;

1American astronomer, cosmologist, astrophysicist, astrobiologist, author, science popularizer, and science
communicator in astronomy and other natural sciences.
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• define a taxonomy to classify the impact provided by each primary study on software

development dimensions such as: quality/technical debt, time, costs, risks and security.

2.2 Background

Mining software repositories is currently a widespread method to gather insights from the soft-

ware development process [76, 141, 165]. As these methods evolved, the software engineering

practice took advantage of lessons learned and applied them in real live scenarios [135]. The

last decade has seen the birth of a multitude of analytics related companies, solutions and

methodologies [135, 165, 202], often powered by machine learning techniques. It was also a pe-

riod where process mining saw boundless adoption in several business domains [73, 206, 208].

Both approaches, machine learning and process mining, are nowadays being used to reduce

the costs of producing software products, to improve their quality, reduce time-to-market, and

support the decision making-process.

2.2.1 Related Work

Many SLRs have been published in the field of software engineering [114]. However, the

ones addressing SDA concerns, from a holistic perspective, are scarce and often insufficiently

detailed, since several aspects we deem relevant to advance the current state of the art are

lacking or did not have exhaustive scrutiny. Notwithstanding, we briefly describe hereinafter

all the systematic reviews whose scope somehow intersects the usual topics of SDA.

A SLR covering primary studies from 2000 to 2014, aiming to identify gaps in knowledge

and open research areas in SA was presented in [1]. It considered 19 primary studies out of

135 and the authors concluded that the practitioners who benefited most from SA studies were

developers, testers, project managers, portfolio managers, and higher management, with 47%

of the considered studies supporting only developers. Maintainability and reverse engineer-

ing, team collaboration and dashboards, incident management and defect prediction, the SA

platform, and software effort estimation were among the domains mostly studied, with 47% of

them analyzing only one artifact. Based on their analysis, since most of the research addresses

only the low-level analytics of source code, the authors recommended researchers to use more

datasets, to achieve higher confidence level in the results. They also suggested to target higher-

level business decision making profiles, like portfolio management, marketing strategy, and

sales directions.

A survey of the publicly available repositories and the classification of the most common

ones is presented in [176]. Authors also discussed the problems faced by researchers when

applying machine learning or statistical techniques to them. The conclusions highlight the fact

that some of the problems, such as outliers or noise, have been extensively studied in software

engineering, whilst others need further research. They authors pointed out the need of further

research work to deal with the imbalance and data shifting from the machine learning point of

view and replication of primary studies.

A mapping study on the investigation of frequently applied empirical methods, targeted

research purposes, used data sources, and applied data processing approaches and tools in
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empirical software engineering ESE was reported in [225]. The goal was to identify new trends

and obtain interesting observations of ESE across different sub-fields of software engineering

on 538 selected articles from January 2013 to November 2017. The authors observed that the

trend of applying empirical methods in software engineering is continuously increasing and the

most commonly applied methods are experiments, case studies and surveys, with open source

projects being frequently used as data sources.

A systematic mapping study aiming at identifying the quantity, topic, and empirical meth-

ods used, targeting the analysis of how software development practices are influenced by the

use of a distributed social coding platform like GitHub, was presented in [47]. The authors

assessed 80 publications from 2009 to 2016, and the results showed that most works focus on

the interaction around coding-related tasks and project communities. They also identified some

concerns about how reliable were those results based on the fact that, overall, papers used small

data sets and poor sampling techniques, employed a scarce variety of methodologies and/or

were hard to replicate. As a conclusion, they attested the high activity of research work around

the field of open source collaboration, identified shortcomings and proposed actions to mitigate

them.

A systematic mapping study providing an overview of the concerns addressed in the dif-

ferent phases of the software development life cycle Software Development Life Cycle (SDLC),

was published in [55]. Results are reported from different viewpoints and conclusions highlight

that there is a considerable variation in the use of terminologies and addressing concerns in

different phases of the SDLC.

Inspired by the increasing usage of data analytics in all areas of science and engineering,

a systematic mapping study, aiming to investigate the usage of different types of analytics for

software project management was presented in [154]. The authors analyzed the accessibility

of the data, as well as the degree of validation reported in the final 115 studies selected for

appraisal. Results provided evidences that the majority of studies were focusing on predictive

and prescriptive analytics, with almost half of the studies being essentially predictive. When

comparing information versus insight as the direction of analytics, the authors found that

information oriented analytics (descriptive and predictive) had a greater number of related

studies (60% of papers) than analytics searching for insight (diagnostic or prescriptive). As a

final remark, their systematic mapping findings was compared with the results obtained by

[35].

A systematic mapping study published in [9] aims at providing an overview of the sub-

domains, contribution types, research types, research methods and identify the role of software

analytics in the field of “green software engineering". Findings show, that 163 papers out of

the 260 initially found on digital libraries, used software analytical methods like statistical

analysis and static analysis. Furthermore, only 11 out of the 50 papers kept for final data

extraction, used software analytics techniques to foster green software engineering. Results

revealed the need to develop new/improved automated software analytics tools for software

practitioners, along with metrics explaining the correlation between energy usage and other

quality attributes.

Our SLR aims to expand the existing knowledge about SDA, by adapting and extending

the data perspectives, dimensions, and concerns identified and used by the above works. The
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target properties we deem as most important for a primary study to be considered relevant in

this SLR are the following:

• Quality. To assess the delivery of a good product or project outcome.

• Scope. To evaluate the meeting of requirements and objectives.

• Time. To track the project delivering on time.

• Cost. To manage the delivery within estimated cost and effort.

• Reusability. The use of existing assets in some form within the software product devel-

opment process.

• Maintainability. To asses the degree to which an application is understood, repaired, or

enhanced.

• Evolvability. Used to describe a multifaceted quality attribute to evaluate a software

system’s ability to easily accommodate future changes.

• Performance. To measure how effective a software system is with respect to the allocation

of resources and correspondent time constraints.

• Security. A cross-cutting appraise that takes into account mechanisms, such as access

control, and robust design to prevent software attacks.

• Risk. To address the possibility that one or more of the above properties are exposed to

such levels of uncertainty that may lead them to produce undesired outcomes.

Based on this set, we propose a taxonomy to classify primary studies.

2.3 Research Methodology

In contrast to a non-structured review process, a SLR reduces bias and follows a precise and

rigorous sequence of methodological steps to research literature [113, 212]. A SLR relies on a

well-defined and evaluated review protocols to search, extract, analyze, and document results

as stages. This section describes the methodology applied for those activities.

2.3.1 Planning the Review

2.3.1.1 Research Questions

This work is driven by the following research questions:

RQ1. What type of empirical studies have been conducted in SDA?
Justification. The list of the main types of studies reported in SDA literature can provide

a comprehensive view, both for practitioners and researchers, not only to identify areas of

opportunity, but also to optimize established methods.

RQ2. What are the main data sources used for SDA related studies?
Justification. Identifying those data sources is helpful, to provide soundness to the correspond-

ing studies, to facilitate replication, and to stimulate the appearance of new datasets to address

knowledge gaps in the field.
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RQ3. What type of process/project perspective analysis was conducted?
Justification. It refers to the ability to identify if the studies are being done before (pre-

mortem) or after (post-mortem) a process/project is finished. While the latter is more

frequent, namely due to the use of existing software repositories, a pre-mortem perspective can

add additional value in the decision making process, as taking corrective actions on a timely

manner is fundamental to keep projects or processes on track.

RQ4. What are the most studied SDLC activities?
Justification. Understanding what SDLC activities are targeted the most (and those that

are not), will help practitioners identify where most concerns and challenges are within the

software development practice. It can also contribute to open new research streams to foster a

deeper understanding of the complete SDLC.

RQ5. Who were the target stakeholders of these studies?
Justification. Software projects are risky to conduct and continue to be difficult to predict [34].

SDA in practice, holds out the promise to provide decision-makers with data-driven evidences

in order to better manage risk, improve efficiency and effectiveness on development projects.

Studies should address the needs of different stakeholders. Identifying those beneficiaries is

vital to understand if the right tools, methods and insights are reaching the ones that most

need support on their daily activities.

RQ6. What are the main mining methods being used?
Justification. Assessing the types of mining methods utilized helps to comprehend deeper the

goals of past and current research, the limitations of their methods, benefits and conclusions

and, highlight opportunities for novel approaches in future research.

RQ7. Which type/form of analytics was applied?
Justification. When exploring large volumes of data and many types of metrics, one may

exploit different levels of analytics; descriptive/diagnostics, predictive and prescriptive

[57]. Providing stakeholders in the development process with deep insights and potentially

prescribing actions to take under certain circumstances is desirable. Predicting the future and

prescribing actions are advanced forms of analytics which researchers and practitioners in the

software development domain are expected to use.

RQ8. What were the relevant contributions to the SDLC?
Justification. On every single software development study, we should have clear benefits iden-

tified, either from using a new tool or by improving a process using a specific method. Failing

to do so, reduces substantially the interest we may find in that literature and shortens the ap-

plicability of those methods in the field. SDA in practice is expected to contribute at least (but

not limited to) to the following areas of concern in a software project: technical debt/quality,

costs, time, risk and security.
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2.3.1.2 Search Strategy

Search Terms. Based on the research questions, keywords were extracted and used to search

the primary study sources. The search string consists of determine the main terms from the

topics being researched, including synonyms, related items and alternative spelling. It is based

on the same strategy used by [42] and is presented as follows:

("software analytics"OR "software development analytics") AND ("process mining"OR "data
mining"OR "big data"OR "data science") AND ("study"OR "empirical"OR "evidence based"OR
"experimental"OR "in vivo")

Digital Libraries Searched. A significant phase in a SLR is the search for relevant literature

within the domain under study. To search for all the available literature pertinent to our

research questions, the following digital libraries were queried:

• ACM Digital Library

• IEEE Xplore

• ScienceDirect

• Scopus

• SpringerLink

• Web of Science

• Wiley Online

• Google Scholar

Publications Time Frame. As mentioned earlier, the SDA research field emerged a decade ago.

Since then, as studies have gained a more structured and formal approach, it makes sense to

only account for publications in journals, conferences papers, workshops and book chapters,

starting from January, 1st of 2010 till July, 15th of 2019.

2.3.1.3 Selection Criteria

We selected the above libraries based on the eagerness of collecting as many articles/papers as

possible, not only because they are recognized as the most representative for Software Engineer-

ing research, but also are used in other similar works. Google Scholar was selected to account

for articles eventually not published, but yet relevant to the software development domain.

Search Stages Overview. The outputs of the process followed to conduct the search is depicted

in Figure 2.1. It compounds 4 sequential stages, which are described as:

Stage 1 - Retrieve automatically results from the digital libraries - The referred libraries

were searched using the specific syntax of each database. The search was configured in each

repository to select only papers carried out within the prescribed period. The automatic search

was later complemented by a manual search, according to the guidelines of Wohlin [212],

followed by backward snowball to complete the list of studies.

Stage 2 - Read titles and abstracts to identify potentially relevant studies - Identification

of potentially relevant studies based on the analysis of title and abstract. Studies that are clearly

irrelevant to the search and duplicates were discarded across the digital libraries. If there was
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any doubt about whether a study should be included or not, it was included for consideration

in a later stage.

Stage 3 - Apply inclusion and exclusion criteria on reading the introduction, methods and

conclusion - Selected studies in previous stages were reviewed, by reading the introduction,

methodology section and conclusion. Afterwards, exclusion and inclusion criteria were applied

as defined in Table 2.1. At this stage, in case of doubt preventing a conclusion, the study was

read in its entirety.

Stage 4 - Obtain primary studies and assess them - A list of primary studies was obtained

and later submitted to critical examination using the 13 quality assessment criteria which is

set out in Table 2.2.

Table 2.1: Exclusion and Inclusion Criteria applied at Stage 3.

Criterion Description

Exclusion Criteria(EC)
EC1 Studies published before 2010.
EC2 Studies not written in English.
EC3 Studies not related to the software development process.
EC4 Studies not supported by data collected on any well designed

experiment or did not use empirical data from a third party.
EC5 Studies merely theoretical or based on expert opinion with-

out locating a specific experience, as well as editorials, pref-
aces, summaries of articles, interviews, news, analysis/re-
views, readers’ letters, summaries of tutorials, workshops,
panels, round tables, keynotes and poster sessions.

EC6 Studies aiming only at describing new development tools or
works with the goal of simply assessing and/or validating new
analytical methods without a clear statement to the benefits
they may provide for the SDLC.

Inclusion Criteria(IC)
IC1 Publications should be “journal” or “conference” or “work-

shop” or “book”.
IC2 Works that put validated analytical methods into practice with

the goal of understanding and/or improving the software de-
velopment process.

IC3 Articles that clearly addressed any of the analytics depth
(RQ7) and provided benefits for the SDLC on any dimension
identified in RQ8.

2.3.1.4 Quality Assessment

The strategy to evaluate the quality of the studies is based on a checklist with thirteen criteria.

The criteria were based on good practices for conducting empirical research [114] and in the

Critical Appraisal Skills Programme (CASP) used in different types of publications [61].

The criteria developed to assess quality covered four main quality issues considered neces-

sary when evaluating primary papers:

• Reporting. Three criteria (QC1-QC3) assess if the rationale, goals and context have been

clearly stated.

30



2.3. RESEARCH METHODOLOGY

• Rigor. Five criteria (QC4-QC8) evaluate if a meticulous and convenient approach have

been applied.

• Credibility. Two criteria (QC9-QC10) check if the findings are well presented and the

gathered insights plausible and/or credible.

• Relevance. The remain criteria (QC11-QC13) are related with the relevancy of the study

for the SDLC, stakeholders and the research community.

Selection of primary studies. The quality of each publication should be assessed by the authors

after the selection process in Stage 3. The checklist presented in Table 2.2 was used to assess the

credibility and thoroughness of the selected publications. The steps that guided the selection

of primary studies to reach the final results, are presented in Figure 2.1.

Table 2.2: Quality Criteria.

Criterion Description

QC1 Is the paper based on research (or merely a “lessons learned”
report based on expert opinion)?

QC2 Is there a clear statement of the aims of the research?
QC3 Is there an adequate description of the context in which the

research was carried out?
QC4 Was the research design appropriate to address the aims of

the research?
QC5 Was the recruitment strategy appropriate to the aims of the

research?
QC6 Was there a control group with which to compare treatments?
QC7 Was the data collected in a way that addressed the research

issue?
QC8 Was the data analysis sufficiently rigorous?
QC9 Has the relationship between researcher and participants been

adequately considered?
QC10 Are the datasets available to the public, thus allowing replica-

tion ?
QC11 Is there a clear statement of findings?
QC12 Is the study of value for research or practice?
QC13 Did the study identified any clear benefits for the SDLC ac-

cording to RQ8?

Each question was marked as "Yes", "Partially"or "No". We considered a question answered

as "Partially"in cases where we could derive relevant contents from the text, even if the details

were not clearly reported. These answers were scored as follows: "Yes"=1, "Partially"=0.5, and

"No"=0. For each selected study, its quality score was computed by summing up the scores of

the answers to all the quality criteria questions, being the minimum value admissible "0"and

the maximum "13", in case all the questions were marked with a "1".

2.3.1.5 Data Extraction

To gather standard information regarding the papers under analysis, we created a data collec-

tion form as represented in Table B.1 in B.1. This data collection form helped us to identify the

date, venue and authors of the publications and also how each of them addressed the topics of

our research questions.
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2.3.1.6 Data Synthesis

The synthesis aimed at grouping findings from the studies in order to: identify the answers to

the RQs presented earlier in section 2.3.1 and were organized in a spreadsheet form. This data

extraction process was manually conducted by the main author. The spreadsheet was loaded

and analyzed using the R statistical engine2 and has now been disclosed3. Obtained results,

plots and findings are presented in section 2.3.2.

2.3.2 Conducting the Review

This phase is responsible for executing the actions defined in section 2.3.1.

2.3.2.1 Execute Search

We started the review with an automatic search followed by a manual search and afterwards ap-

plied the inclusion/exclusion criteria. The search as detailed in section 2.3.1.2, was performed

in mid July, 2019, with the search string syntax being adapted to support the different search

engines. Initially we identified 2769 articles, and upon reading their titles and abstracts, the

dataset was reduced to 611 articles. Following, we filtered them with the inclusion and exclu-

sion criteria. The complete workflow and results of the initial search and subsequent filtering

phases, is depicted in Figure 2.1.

2.3.2.2 Apply Quality Assessment Criteria

The selection criteria was based on exclusions and inclusions. Table 2.1, defined, in section

2.3.1.3 those criteria used to assess remaining works in Stage 3. In case of any doubt, the

study was kept for analysis at a later stage. Stage 3 provided as inputs for Stage 4, 153 articles,

which were then assessed in their quality dimension. At Stage 4, we applied the quality criteria

described in section 2.3.1.4, resulting in 32 articles to further extract data and to answer the

eight research questions.

2https://www.r-project.org, https://rstudio.com
3doi:10.17632/d3wdzgz88s.2
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We classified the studies quality level by plotting their descriptive statistics and analyzing

the correspondent quartiles:

• Min:6, 1st Qu:8.5, Median:9.0, Mean:9.007, 3rd Qu:9.5, Max:12

As seen above, the third quartile is at score 9.5, therefore, we selected only the studies

scoring above that mark. Based on the high level of quality, 32 studies were selected for final

data extraction. Figure 2.2 shows the distribution of all studies per Year right after the quality

assessment scoring task.
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Figure 2.2: Studies score per Year at Stage 4

2.4 Document the Review

All selected studies and the details to support the statistics we show in section 2.4.1, are pre-

sented in Table B.2 in B.2. In section 2.4.2, we present the main findings, comments and answers

to each of the research questions.

2.4.1 Demographics

Figure 2.3 shows clearly that the majority of the selected studies were published in journals.

An increasing trend in these publications is also present.

The remaining articles were published in conferences with the exception of one which

comes from a workshop. As it is possible to observe, only studies published between 2014 and
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Figure 2.3: Number of studies per Venue Type per Year

2019 made the final stage of this SLR, and 75% of them were published in the last 3 years. This

provides some indication that, not only SDA is a relatively new practice, but also, that it is

becoming mature only in the very last few years of this decade.

Looking in-depth to the publication where the studies appeared, we easily find that the

Empirical Software Engineering Journal has a strong dominance among all the others. The

distribution of studies per Publication over the Years is presented in Figure 2.4. Here we can

observe that only the Software Quality Journal and the Journal of Systems and Software have

more than one study published within our final set of articles.

Regarding authorship, which we present the details in Figure B.1, we found that only 3

main authors appear with 2 studies in the selected papers. All the remaining authors are present

with only one publication and none of them appear with more than one study per year. This

may resonate the difficulty that is to setup, document and publish such type of studies. Figure

2.5 present the frequency of contributions regarding continents, countries and institutions

involved, either as primary or secondary authors, on all studies.

2.4.2 Analysis and Findings

It is widely accepted that we lack experimentation in Software Engineering in general. This

phenomenon is even more acute on what concerns experimentation related with analytics in

practice for software development. Even if this work is scarce, we should look at it collectively

to try to draw some picture of the current state-of-the-art. For that purpose, a summary table

with the complete information extracted to answer all the RQs, is presented in Table B.6 in B.5.
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In this section we present each research question and the correspondent dimension findings

and their frequencies4.

RQ1. What type of empirical studies have been conducted?

According to the type of empirical studies provided by [223], from the total number of pub-

lications, more than half, 53.12%, are Exploratory Case Studies. Quasi-Experiments and Ex-

ploratory Case Studies combined account for 90.62%. This is probably not a surprise, since the

remaining study types are, quite often, harder to setup due to technical limitations in the data

collection process or blocked by data privacy concerns raised by the involved entities.

One publication, [S13], combines three study types: Exploratory Case Study, Quasi-

Experiment and a Survey. Having two types of empirical studies presented, we find [S31]

and [S23] which combine a Exploratory Case Study and a Survey. Having a Quasi-Experiment

and a Survey we have [S6] and [S24]. The remaining publications have only one empirical study

type given. Study Types found and the plot of their distribution per Year is shown on Figure

2.6.

No Controlled Experiment, Meta-Analysis, Experience Report or Discussion had quality to

reach the final stage of this SLR. Particularly for the Controlled Experiment studies absence,

4The sum of frequencies might be bigger than the total number of selected studies(n=32) because some publica-
tions have more than one Study Type, Data Source, SDLC Activity, Stakeholder, Mining Method and/or Analytics
Scope.
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Figure 2.5: Number of studies per Continent, Country and Institution( > 1 study only)

its worth elaborate that a controlled experiment is one in which all factors are held constant

except for one: the independent variable. It is common to compare a control group against an

experimental group where all factors are identical between the two groups except for the factor

being tested. This approach has the advantage that is easier to eliminate uncertainty about the

significance of the results, however, it also has a considerable drawback: the effort needed to

design and execute such experiments.

We believe that sufficient conditions needed to conduct such experiments are not yet being
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met in software development organizations. Experiments where treatments are applied to some

factors in order to later evaluate the outcomes are almost non-existent in real live scenarios.

This may reveal that, due to revenue generation pressure, costs control and/or time restric-

tions, organizations are not willing to spend time and resources to test and experiment novel

approaches on analytics even when they promise potential benefits.

RQ1. Summary

i) Controlled Experiment studies look neglected by the community.

ii) 84.3% (27/32) of works pertain to only one study type (Table B.6).

iii) Evidences suggest an increasing trend in the publications quality.

RQ2. What are the main data sources used for software development related studies?

The top four data sources: Github Repositories, Google Play Store, Git Repositories and BugZilla

combined are the data sources for more than 80% of the studies. This was somehow expected

as they are generally under the public domain and contain the code, issue reports and product

compilations of the most used open source projects, which are, very often used in empirical
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studies. This provides some evidence that the community is probably studying the most what

is possible to study, simply because the datasets are under the public domain.

Interesting to mention is the high number of publications using datasets from App Stores

such as Google Play Store. This might be a relevant indicator that the researchers’ focus, the

profile of the end-user and the developers’ characteristics are quickly and fundamentally chang-

ing.

Figure 2.7 plots the frequencies of all studies regarding RQ2. It is proper to highlight that,

from all the data sources used in more than one study, 4 are related with software configuration

management systems, 2 with App Stores and each of the remaining 3 with: Bug/Issue Tracking

Systems, a Q&A Service and an Online Survey.

RQ2. Summary

i) Code management and bug/issue tracking systems are used frequently.

ii) App Stores, Q&A services, Wikis and Forums are promising sources.

iii) Repositories containing developers’ project interactions are scarce.
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RQ3. What type of process/project perspective analysis was conducted?

We found that all the studies were focused on a Post-Mortem approach, meaning the study

was not designed to help the product/project managers take any corrective measures on a

timely manner to the artifact under study. As such, any insights gathered could only impact

future developments. A Post-Mortem approach provides benefits for the next product release

or project, but usually, not for the one being studied as it brings no added value when proactive

corrective actions are desired.

RQ3. Summary

i) Ineffective approach to improve project under study.

ii) Real-time development operational support is missing.

iii) Worthless approach if project actions recommendation is needed.

RQ4. What are the SDLC activities mostly studied?

According to [95], in Table 2.3 we summarize which activities of the SDLC, are being researched

the most. Our findings show that 93.75% and 65.62% of the studies were targeting the Imple-

mentation and Maintenance phases, respectively. Regarding Testing, we found only 3 studies,

[S01], [S24], [S30], focused on that activity. These results, which confirm that some phases

are under-researched, require the attention of practitioners and eventually the opening of new

streams of investigation on the SDLC. Software under operation was the focus of 5 studies

and those were mainly related with software deployed to App Stores. Figure 2.9 present the

statistics about all the activities studied.

Table 2.3: SDLC Activities Findings

Activity Freq. Perc. Ref.

Implementation 30 93.75% [S01], [S02], [S04], [S06], [S07], [S08],
[S09], [S10], [S11], [S12], [S13], [S14],
[S15], [S16], [S17], [S18], [S19], [S20],
[S21], [S22], [S23], [S24], [S25], [S26],
[S27], [S28], [S29], [S30], [S31], [S32]

Maintenance 21 65.62% [S07], [S08], [S09], [S10], [S11], [S12],
[S13], [S14], [S17], [S18], [S20], [S21],
[S22], [S23], [S24], [S25], [S26], [S27],
[S28], [S29], [S30]

Debugging 6 18.75% [S07], [S08], [S09], [S10], [S11], [S12]
Operations 5 15.62% [S03], [S05], [S18], [S20], [S28]
Testing 3 9.38% [S01], [S24], [S30]
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RQ4. Summary

i) Around 93.75% of articles focus on coding/programming activities.

ii) Analytics for Testing tasks appears less than on Debugging practices.

iii) Requirements Engineering and Design activities are not studied.

RQ5. Who were the target stakeholders of these studies?

All the studies targeted the Developers, and 7 were addressing Product Managers concerns.

Only 5 publications could bring any value to Testers: [S01], [S24], Educators: [S29], End-Users:

[S20] and Requirements Engineers: [S18]. These findings are aligned with the results found

in previous SLRs mentioned in section 2.2.1. We are predisposed to think that these results

are related with the data sources also identified previously. When the majority of data sources

used are product code related, it is somehow plausible that the stakeholder for that study is a

developer. On summarizing the data about the individuals that could benefit from each study,

we argue that the proper insights are not reaching all those who need support on their daily

activities, namely Project Managers, Testers and Requirements Engineers. Figure 2.9 supports

our comments by plotting the frequencies of all stakeholders targeted.

RQ5. Summary

i) Developers keep being the main target stakeholder for SDA.

ii) SDA for Testers are less frequent than expected.

iii) High-Level management needs are not being addressed.

RQ6. What are the main mining methods being used?

All articles, as expected, present descriptive statistics about the domain under study. We know

that, very often, research starts with just exploratory actions. However, understanding “What

happened"is a reduced perspective for what analytics can do for software development. It is

also not surprising that the following most frequent methods used are approaches which target

the extraction of knowledge, either by correlating factors or by classifying or grouping subjects.

Hypothesis testing appears less frequently as one would expect. This may be related with

the fact that all studies have, as mentioned earlier, a post-mortem approach and any results

obtained are not to be used immediately to perform any corrections in the studied project. If

used properly, that is what hypothesis testing may bring in advanced forms of analtyics.

Being software development a process, one would expect to find Process Mining methods

often in the assessed studies. Looking deep into the data, we can confirm that it does not hold

true, which may reveal that practitioners are studying processes without the proper plethora

of methods and tools. Figure 2.8 provide evidences for the most used mining methods.
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RQ6. Summary

i) Few studies try to make any predictions.

ii) Hypothesis Testing appear in only 7(21.88%) of the studies.

iii) Only 1 study (3.12%) used Process Mining methods and tools.

43



C
H
A
P
T
E
R

2
.
S
T
A
T
E
O
F
T
H
E
A
R
T

32

19

9
8

7

4
3

2 2 2
1 1 1 1 1 1 1

0

10

20

30

Asso
cia

tio
n

Rule
s

Clas
sif

ier

Lea
rn

ing Clus
ter

Ana
lys

is

Cor
rel

ati
on

Ana
lys

is

Des
cri

pti
ve

Stat
ist

ics

Fea
tur

e

Extr
ac

tio
n

Gen
era

liz
ed

Suf
fix

 T
ree

s

Gen
eti

c

Algo
rit

hm
s

Heu
ris

tic
Fea

tur
es

Hyp
ho

tes
is

Tes
tin

g
M

ixe
d-

Effe
ct

M
od

els

Natu
ral

Lan
gu

ag
e P

ro
ce

ssi
ng Patt

ern

Extr
ac

tio
n

Pro
ce

ss
M

ini
ng

Red
un

da
nc

y
Ana

lys
is

Reg
res

sio
n

M
od

els Top
ic

M
od

eli
ng

Figure 2.8: Frequencies of studies for Mining Methods
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RQ7. Which type/form of analytics was applied?

Following the rationale in RQ6, we found all studies used Descriptive and Diagnostics Analyt-

ics together. It makes sense that understanding “hat happened"is complemented with “Why it

happened". However, this observation is not fully aligned with the results mentioned in previ-

ous SLRs, namely in [154]. Although 28.12% of the studies had some sort of prediction as a goal,

that is not reflected in the prescriptive domain, where only 1 study, [S30] aims at suggesting

stakeholders actions to improve or correct a development activity. Figure 2.9 complements the

analysis to this RQ.

RQ7. Summary

i) Descriptive and Diagnostics Analytics seems to be found together.

ii) An increasing trend exists in predictive studies (Tables B.2 & B.6).

iii) Management actions recommendation is not a common practice.

RQ8. What were the relevant contributions to the SDLC?

Technical Debt. All the studies had some sort of contribution to the quality dimension of

software and no study was found to be classified with “Absent" under this realm. With

“Moderate" contributions we find [S03], [S22], [S23], [S26], [S28], [S31]. Having a “Strong"

impact we identify [S01], [S02], [S04], [S05], [S06], [S07], [S08], [S09], [S10], [S11], [S12], [S13],

[S14], [S15], [S16], [S17], [S18], [S19], [S20], [S24], [S25], [S30], [S32]. Very few studies have

“Weak" benefits identified.

Time Management. The management of project times looks forgotten since around 65% of the

studies provide no contribution under this dimension. We identify only 3 studies, [S15], [S21],

[S26] with “Moderate" contributions to manage the duration of product/project development.

“Weak" benefits are present in 8 (25%) studies.

Costs Control. The same scenario happens with the control of costs as only 6 studies, [S01],

[S02], [S04], [S08], [S11], [S21], provide contributions to this dimension and they are “Weak".

Risk Assessment. Despite the fact that risk is cross-cut to all other dimensions identified in

RQ8, we found only one study, [S01], concerned exactly with the risk associated with the

security of software. The contribution given was “Weak" though.

Security Analysis. Regarding software security implementation and operations, we found

very few studies where their main contributions were around this domain. We found 4 studies,

[S27], [S29], [S01] and [S30]. Only the latter has a “Strong" classification regarding this

contribution.
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Most of the works focus on the software quality dimension and other features are barely

touched by practitioners. Improving or understanding better a project costs, risks and security

aspects are contributions rare to find. Only one study, [S1], provides contributions across all

the dimensions we assessed and 3 of those 5 dimensions have “Weak" contributions. We got

5 studies providing contributions in 3 dimensions and 8 have 2 contributions. The remaining

studies contribute to only one dimension. No study was classified as “Complete" on any of the

contribution areas identified for the SDLC.

RQ8. Summary

i) The software quality dimension consume most research resources.

ii) Time and Costs concerns are not being addressed sufficiently.

iii) Security and Risks matters need extra and aligned effort to evolve.

Figure 2.9, which supports our answers to RQ1, RQ4, RQ5, RQ7, plots the frequencies of

studies related with the analytics depth, study types, stakeholders and SDLC activities studied.

Figure 2.10 renders the evaluation off all studies across the five dimensions used to answer

RQ8. As it is clear from the plots, Technical Debt and Time are the dimensions mostly studied.

A list of all studies with a short summary, their context, methods and results are presented in

B.2. A holistic perspective of all the RQs findings is presented in B.5.
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2.4.3 Threats to Validity

The following types of validity issues were considered when interpreting the results from this

review.

2.4.3.1 Construct Validity

The studies identified from the systematic review were accumulated from multiple literature

databases covering relevant journals, proceedings and books. One possible threat is bias in

the selection of publications. This is addressed through specifying a research protocol that

defines the objectives of the study, the research questions, the search strategy and search strings

used. Inclusion, exclusion criteria and blueprint for data extraction and quality assessment

complements the approach to mitigate such bias.

Although supported by important literature under the software engineering domain, we

followed a self-defined classification criteria for some RQs, specifically for RQ8. This method

is somehow subjective as someone else might have chosen any other classification categories.

Our dataset contains studies published until mid July, 2019. There are some evidences

pointing to an increasing trend in the publishing of studies in the SDA domain, however, arti-

cles published in the second-half of 2019 which might also had good quality, were not included

in this review. We excluded works where their goal was only to propose new algorithms and/or

methods to analyze software development. Some of these studies had also validation experi-

ments, however, their conclusions were related with the quality of the methods and not with

any benefits potentially provided by them for the software development process. Some of those

studies had also interesting approaches to improve analytics as a practice, however, they are

not present in this review.

2.4.3.2 Internal Validity

One possible threat is the selection bias and we addressed it during the selection step of the

review, i.e. the studies included in this review were identified through a thorough selection

process which comprises of multiple stages. We were aiming to find high quality studies,

therefore, a quality assessment was introduced and a final selection for studies ranking above

the third quartile was conducted. This approach may have excluded studies with very important

contributions on any of the dimensions we assessed in RQ8 or other dimensions not covered by

this review. We used an ordinal/categorical taxonomy to assess the studies regarding RQ8. This

classification method is still subjective and depends on the authors’ contents interpretation.

2.4.3.3 External Validity

There may exist other valid studies on other digital libraries which we did not search. However,

we tried to reduce this limitation by exploiting the most relevant software engineering litera-

ture repositories. Studies written not in English were excluded which can also have excluded

important work which otherwise would have been also mentioned.
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2.4.3.4 Conclusion Validity

There may be bias in the data extraction phase, however, this was addressed through defining

a data extraction form to ensure consistent extraction of proper data to answer the research

questions. We should also refer that, the findings and further comments are based on this

extracted data. Despite the fact that high levels of validation were applied in the statistics

computation of this study, there is always a small chance that any figures might be inaccurate.

For this reason, we publish our final dataset to enable replication and thus allowing for further

validation.

2.5 Conclusions

We conducted a Systematic Literature Review on SDA in practice, covering a time span be-

tween 2010 and mid 2019. From an initial population of 2,769 papers, we kept 32 of them for

appraisal.

It targeted eight specific aspects related with the goals, sources, methods used and con-

tributions provided in certain areas of the SDLC. Our goal was to extract the most relevant

dimensions associated with software development practices and highlight where and what

were the potential contributions given by those works to the SDLC. From a quality assessment

perspective, our aim was also to classify the benefits provided by those studies to significant

software development concerns such as: quality/technical debt, time, costs, risks and security,

therefore, a taxonomy was created to evaluate them.

Source code repositories, such as GitHub and Git, and App stores like Google Play Store

are the most common data sources used in SDA. The most frequent study type is Experimental

Case Study and the most common stakeholder of those studies are the developers. Product

and Project Managers are also often present but in a less prevalence that one would expect.

Mining methods have evolved in the last few years and that is reflected in the long list we got.

Not surprisingly we found that descriptive statistics are the most usual method followed by

correlation analysis. Being software development an important process on every organization, it

was remarkable to find that process mining is present in only one study. Most contributions for

the SDLC were given in the software quality dimension. Time Management and Costs Control

were softly debated. The Security Analysis aspect, although with a weak evidence, leads us to

think that this is an increasing topic of concern for organizations and researchers. However,

we were expecting more work in this area because security is persistently in the forefront of

concerns in the field. Risk Management contributions are almost non existent in the literature

we evaluated.

Our analysis highlighted a number of limitations and shortcomings on the SDA practice

and bring the focus to open issues that need to be addressed by future research. It is our

understanding, that our work may provide a baseline for conducting future research and the

findings presented here will lead to higher quality research in this domain.
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2.5.1 Call for Action

As a final remark and to trigger a call for action in the research community, the following issues

should be addressed:

• Repository Diversity. We suggest researchers to explore different and non trivial software

development related repositories, such as the IDE or other archives containing develop-

ment events(eg: decisions, fine grain actions executed, etc). More and distinct datasets

are expected to expand the analytics coverage on software development.

• Keep working on the needs of different stakeholders. We have evidences that the practi-

tioners who benefit most from the current SDA studies are the developers and many other

profiles are left behind. We suggest to increase the focus on the real needs of requirements

engineers, project, product and portfolio managers and higher level executives.

• Aim at Software Development Operational Support. No studies were found providing

clear evidences that the outcome of that study could benefit on a timely manner the on-

going project or product versions. If organizations want to focus effectively on detecting,

predicting and recommending corrective actions on a timely manner, meaning, any in-

sights gathered will have impact on current project and not solely on the next project or

product version, researchers and practitioners should focus on designing advanced tools

and methods to address software development operational support.

• Software Development Process Mining. Despite the fact that Process Mining is now a

mature topic, almost no software process related studies uses it. We suggest its techniques

and tools, to study deeper the interaction of software development stakeholders and to

complement the effectiveness of assessing certain software development tasks, such as,

project effort prediction, code maintenance activities and/or bug detection methods.

• Project Time and Costs. We suggest more and deeper studies covering the Time and Costs

of software projects. These are dimensions barely addressed by the studies we evaluated.

The aforementioned topics are extremely relevant to forecast resource allocation for future

projects.

• Address Security and Risks holistically. Due to the unceasing digital transformation

present nowadays in the society, the security of information systems will be even more

critical to any organization. We now have robust methods to assess security vulnerabilities

in software code. However, very little is known about the developers behaviour during

the Implementation and Maintenance phases, just to name a few. Even if, in the last years,

security in general became quickly a pertinent topic, the security around development

processes and the involved resources are still not clearly addressed. This is a topic with

increasing relevance and deserves the rapid and focused attention from the practitioners.

• Blockchain. One of the most interesting, promising and relevant technological contribu-

tions to the society, was created roughly ten years ago - the birth of bitcoin [153]. Although

bitcoin is an implementation of electronic money, it is supported by something very pow-

erful, which can be used for many other use cases, called - blockchain [197]. The blockchain
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is a mechanism which is able to keep a book of data records immutable and distributed

across a multi-node network of servers. It is virtually indestructible since it has no central

authority controlling it and preserves data integrity by potentially not allowing rollback

on any past transactions. Additionally, if required, it guarantees that only the data own-

ers are able to view or change their personal records and yet permit third-parties to be

granted view only privileges to a selected dataset. This technology may be used embedded

in SDA to anonymize and grant privacy to organizations sharing data without spoil the

context associated with the development process under study.
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This chapter presents a preliminary study about the usage of process mining techniques, eval-

uates the quality of process models discovered from mining software development sessions

during a code smells detection activity and assess teams’ efficiency on the tasks performed.
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CHAPTER 3. ASSESSING TEAMS’ EFFICIENCY

“If you torture the data long enough, it will confess.”

—Ronald Coase(1910-2013)1

3.1 Introduction

Inaccurate planning and/or project plan deviations cause substantial financial losses on soft-

ware development projects [145]. Further, constant inaccuracies and losses may degrade the

reputation of development teams as they become perceived as non-compliant to organizational

plans and budget forecasts.

Critical success factors have always been at the forefront of the research related with soft-

ware development projects [7, 29, 45, 195]. The existence of a vast literature about this topic,

either about successes [145] or failures [62, 132], reveals the concerns and doubts that still

haunt software development practitioners regarding the efficiency and effectiveness of their

own projects.

It is frequently suggested that software projects can be assessed across four perspectives:

quality, scope, time and cost [45], which are related with the planning and execution of the

project’s main activities. Each perspective has its own critical success and failure factors, that

can be grouped into five different dimensions: organizational, people, process, technical, and

project [195]. In this work, we will be mainly concerned with the effect of the human factor in

process variability.

To start a software development project from scratch is a complex activity on its own [95],

specially in the absence of a formalized process or methodology [160] that acts as a referential.

Evidences found suggest that in addition to the initial project planning, the way people are

organized, the tools they use and the processes they follow are key features for the success or

failure of any software project [160]. As for software development, although prescribed process

models may exist, projects often do not comply with them, both because each developer or team

usually has some freedom to interpret the process and because its compliance is not verified on

the run, since it is mainly intangible. As a result, it has been noted that process executions (i.e.

projects) often deviate from what was planned [120]. In this work we bring further evidence

that the human factor is a very important source of process variability and the latter will have

an impact on process efficiency and effectiveness.

To understand how the process was actually performed by its practitioners, we used process

mining techniques. Our approach, initially proposed in [36], captures events due to practition-

ers activities executed in the IDE, as well as records which artifacts were used and when, plus

additional details on the ecosystem of components supporting the process. This new perspective

on software development analytics, that uses process mining, allows the discovery of the actual

processes practitioners are following, as well as deviations from those they were supposed to

comply to, without the complexity and workload of collecting and merging information from

different information systems, such as, source code systems, configuration management repos-

itories or bug tracking tools. As we will show later in this article, we were able to identify

1British economist, author and Nobel Prize in Economics in 1991.
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the most and less efficient teams, and the ones that drifted less from the same process when

executed by an expert.

3.2 Background

3.2.1 Software Development and the IDE

Nowadays, most software practitioners develop their work upon an IDE, such as Eclipse,

IntelliJ IDEA, Netbeans or Visual Studio Code. To a greater or lesser extent, those IDEs

support different software development life cycle activities, such as requirements elicitation,

producing analysis and design models, programming, testing, configuration management, de-

pendencies management or continuous integration. In this work we will consider Eclipse,

which owes its wide adoption to the vast plethora of plugins available in its marketplace.

Eclipse distributions are customized for specific users / purposes, such as for modellers, pro-

grammers, testers, integrators or language engineers. Herein, we will consider the standard

distribution, which is particularly suited to programmers.

An IDE, in addition to the artifacts it handles, contains metadata about the developers’

activities that may reveal the reasons why some individuals and teams are more efficient than

others. Moreover, it may have hidden in its usage, parts of the logic why some projects are

successful and others fail. Those development activities can be identified by mining the large

amount of events created during the execution of the IDE core components and the installed

plugins.

3.2.2 Process Mining within the IDE

Process Mining is now a mature discipline with validated techniques producing accurate out-

comes on several business domains [165, 208]. A process mining project, if best practices are

followed [126], should use goals and event logs as inputs, and produces actions to implement as

outputs. The goals may consist of improving some performance indicators, such as time, risks

and costs associated to a specific process, or simply to maximize a service level. Actions may

be the redesign of a specific project, adjust a current process or, if there is a fluctuation in case

volume, one may want to include more resources.

Our short-term goal, whose fulfillment we will describe in this work, was to assess teams’

efficiency by mining the software development process flow and variability that occurs due

to the human factor. Our medium-term goal is to provide operational support to software

developers, systematically and continuously using current event data to recommend the best

activity, adequate resource or action to execute now or in the future. In both cases we will take

as input the events emerging from using the IDE. Those events convey a spaghetti-like process

[206] mainly because there is a very large number of possible commands/tasks to execute

within any IDE that will grow exponentially with the number of installed plugins and, as a

consequence, so grows the potential complexity of any mined process.
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3.2.3 Related Work

This work is in the crossroads of software development practices and process mining techniques.

Much have been said in literature about software development processes [72, 133] and process

mining separately [127]. However, elaborating about works combining these two disciplines

requires a careful approach, mainly because their intersection is vague in some cases and not

fully explained in others. Going back almost a decade, [165] have mined software repositories

to extract knowledge about the underlying software processes, and [180, 181] have learned

about user behavior from software at runtime. Recently, [96] was able to extract events from

Eclipse and have discovered, using a process mining tool, basic developers’ workflows. Some

statistics were computed based on the activities executed and artifacts edited. In [18], the

authors have extracted development activities from non-instrumented applications and used

machine learning algorithms to infer a set of basic development tasks, but no process mining

techniques were used to discover any pattern of application usage. [52] used a semi-automatic

approach for analyzing a large dataset of IDE interactions by using cluster analysis [52] to

extract usage smells. More recently, [119] used process mining to gain knowledge on software

in operation by analyzing the hierarchical events produced by application calls(eg: execution of

methods within classes) at runtime. The studies mentioned above, extracted data from several

different sources and have used a multitude of statistics methods, machine learning and process

mining techniques. However, to the best of our knowledge, none of these works combine data

from the IDE utilization with process mining methods with the aim of measuring individuals

or teams efficiency. Even in the case of [96], where the approach is similar to ours, nothing was

done related to conformance checking on the processes followed by developers, as there was

no existing reference model to compare with. Our work introduces a valid approach for this

purpose, and bring a new perspective to software development analytics by filling this gap.

3.3 Study Setup

We analyzed several teams performing independently the same well-defined task on software

quality assurance. To block additional confounding factors in our analysis, all teams had

similar backgrounds and performed the same task upon the same software system. To provide

authenticity, the task targeted a real-world (large) open-source Java system, the Jasml (Java

Assembling Language)2.

To understand what happened in each team, we mined the corresponding process model

based on its events (process discovery phase). Then, we compared each discovered process with

a reference model (process conformance checking phase), to assess the overall similarities and

processes’ quality.

3.3.1 Research Questions

The following research questions emerged from our previously stated research goals:

2http://jasml.sourceforge.net/
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• RQ1: To what extent can process mining discover accurate models representing develop-

ers’ behavior?

• RQ2: Can we assess the efficiency of software development teams by using process mining

techniques ?

• RQ3: The assessment of teams’ proficiency, performed by a process expert, is reflected in

the quality of the produced models?

3.3.2 Experimental Setup

3.3.2.1 Subjects

Subjects were finalists (3rd year) of a BSc degree on computer science at the Iscte university,

attending a compulsory software engineering course. By this time they had been trained across

the same set of almost 30 courses and therefore had similar backgrounds. They worked in teams

up to 4 members each and were requested to complete a code-smells detection assignment,

aiming at identifying refactoring opportunities, using the JDeodorant tool3. This tool allowed

the detection of four different types of code smells: Long Method, God Class, Feature Envy

and Type Checking [20]. Once they have detected the occurrences of those code smells, they

were required to apply JDeodorant’s automatic refactoring features to the critical ones.

3.3.2.2 Data Collection Instrument

The Eclipse IDE has an internal event bus accessed by the interface IEventBroker4 which is

instantiated once the application starts. It contains a publishing service to put data in the bus,

whilst the subscriber service reads what’s in that bus. This allows a subscriber to read all or

part of the events being managed within the IDE. Using this feature we developed an Eclipse

plugin5 capable of listening to the actions developers were executing. Before the experiment,

the plugin was installed on each subject work environment, and later, all received a unique

username/key pair as credentials. This method was useful to unlock all the plugin features and

allowed us to identify each subject and the corresponding team.

3.3.2.3 Collected Data

A sample event instance collected with our plugin is represented in listing 3.1 in JavaScript

Object Notation (JSON) format. The field tags are self explanatory.

3https://marketplace.eclipse.org/content/jdeodorant
4https://wiki.eclipse.org/Eclipse4/RCP/Event_Model
5https://github.com/jcaldeir/iscte-analytics-plugins-repository
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Listing 3.1: Sample Eclipse Event Instance
1 {
2 " team " : "T−01" ,
3 " s e s s i o n " : " a5d63j− jd i3 −ikd912 " ,
4 " timestamp_begin " : "2018−05−07 1 6 : 5 3 : 5 2 . 1 4 4 " ,
5 " timestamp_end " : "2018−05−07 1 6 : 5 4 : 0 4 . 4 6 8 " ,
6 " fullname " : "Ana Sample " ,
7 " username " : " ana " ,
8 " workspacename " : " Workspace1 " ,
9 " projectname " : "/ jgrapht −core " ,

10 " f i lename " : "/ jgrapht −core / AncestorTest . j ava " ,
11 " extens ion " : " j ava " ,
12 " categoryName " : " E c l i p s e Editor " ,
13 "commandName" : " F i l e Edit ing " ,
14 " categoryID " : " org . e c l i p s e . ui . i n t e r n a l . EditorReference " ,
15 "commandID" : " i s c t e . plugin . e c l i p s e . commands . f i l e . e d i t " ,
16 " platform_branch " : " E c l i p s e Oxygen " ,
17 " platform_vers ion " : " 4 . 7 . 3 . M20180330−0640" ,
18 " java " : " 1 . 8 . 0 _171−b11 " ,
19 . . . .
20 }

3.3.2.4 Data Storage

Collected data was stored locally in a Comma Separated Values (CSV) file. Whenever Internet

connection was available, the same data was stored in the cloud6. This storage replication

allowed offline and online collection. The final dataset, combining the two different sources,

was then loaded into a MySQL database table where the username and event timestamps that

formed the table’s unique key were used for merging duplicated data. Figure 3.1 presents a

schema of the data collection workflow.

Microsoft	Azure	Platform Researcher	Infrastructure

Developers	Computers

Real-Time	Streaming	to	Event	Hub

Azure	Storage	Service

CSV	File

Azure	Event	Hub

Events	Repository
Eclipse	IDE CSV	File

Download	
Blobs	
using	
Storage	
Explorer

Process	Blob	Files	
and	converto	to	JSON

JSON	file	with	events	to	
Import	into	Repository

Load	Events

Load	Events

Export	events	to	
load	into	ProM

Figure 3.1: Experiment Data Collection Workflow

6https://azure.microsoft.com/en-us/services/event-hubs/
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3.3.2.5 Data Preparation

When the software quality task ended, all events stored in the database were converted to the

IEEE eXtensible Event Stream (XES) standard format [80] and imported into ProM process

mining tool7. The following event properties were mapped when converting to XES format:

• team was used as CaseID since we were interested to look into process instances of teams,

not of individual programmers.

• Properties categoryName and commandName forming a hierarchical structure were used

as the activity in the process.

• The timestamp_begin and timestamp_end were both used as activity timestamps.

• Other properties were used as a resource in the process.

3.3.2.6 Data Demographics

As previously mentioned, we only analyzed data collected on the same software system, to

block confounding factors. The chosen system was Jasml (Java Assembling Language)8. s

Table 3.1: Collected Events Statistics

Team TM UCC UCA UEA PE (#/%) GE (#/%) TE (#)

T-43 4 10 38 39 790 / 85.13% 138 / 14.87% 928
T-41 2 10 37 40 615 / 77.75% 176 / 22.25% 791
T-02 3 12 41 24 552 / 74.80% 186 / 25.20% 738
T-26 2 8 28 22 360 / 77.25% 106 / 22.75% 466
T-23 1 9 23 22 276 / 93.24% 20 / 6.76% 296
T-21 1 9 27 23 272 / 77.71% 78 / 22.29% 350
T-24 1 8 26 13 181 / 89.60% 21 / 10.40% 202
T-01 4 13 45 16 105 / 29.49% 251 / 70.51% 356
REF. 1 4 12 20 134 / 97.10% 4 / 2.90% 138

TM - Team members, UCC - Unique Command Categories
UCA - Unique Command Actions, UEA - Unique Edited Artifacts

PE - Project related Events, GE - Generic Eclipse Events, TE - Total events

The plugin collected two types of events: events within a project context(PE) and generic

events(GE) at the Eclipse global context. The former summarizes events for which we have

associated project and file names. This information expresses actions done by each developer in

the project where JDeodorant features, such as, detecting a God Class, Long Method, File

Open, File Edit, Refactoring, Delete Resources, were applied. The latter represents

events captured from Eclipse command actions not associated with any project (e.g. Update

Eclipse Software, Install New Software, Open Eclipse View Task List, etc).

We present their statistics in Table 3.1. Project events should be seen as fundamental

events for the task programmers were requested to execute, and, in a certain way represent

the focus their are putting into that work. Generic events are seen as collateral actions not

7Version 6.8, available at http://www.promtools.org
8http://jasml.sourceforge.net/
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mandatory for the task in hand, but that programmers may need or want to execute to prepare

their environment. These generic events somehow convey a lack of focus on the task developers

were supposed to execute.

The REFERENCE(also identified as REF.) team, corresponds to the professor that proposed

the task itself. Being the main expert, he executed it in one of the most efficient ways. The full

dataset, that includes data on all teams with fine grained details that is not addressed in this

work, is publicly available.9

3.3.3 Data Analysis

3.3.3.1 Context

Several approaches have been proposed to evaluate the quality of discovered process models.

Software quality metrics were mapped to process metrics in [209]. Groups of metrics were also

used in [178, 179] to evaluate several dimensions in a process model and, more recently, artifacts

were created to support process quality evaluation and perform process variants comparisons

[27, 119]. All of these fit within the well defined [206] and generally accepted four dimensions

to assess the quality of a model: fitness, precision, simplicity and generalization.

3.3.3.2 Process Discovery

Several well known algorithms exist to discover process models, such as, the α-algorithm, the

heuristics, genetic and fuzzy miner. However, our need to discover and visualize the processes

in multiple ways lead us to choose the ProM’s StateChart Workbench plugin [119]. This

plugin, besides supporting process model discovery using multiple hierarchies and classifiers,

also allows to visualize the model as a Sequence Diagram and use notations such as Petri Nets

and Process Trees. This plugin is particularly suitable for mining software logs, where an event

structure is supposed to exist, but it also supports mining of other so-called generic logs.

Events collected from software in operation (e.g. Java programs) reveals the presence of a

hierarchical structure, where methods reside within classes, and classes within packages [118].

The same applies to IDE usage actions, since identified menu options and executed commands

belong to a specific category of command options built-in the Eclipse framework. Supported by

this evidence, we used the Software log Hierarchical discovery method with a Structured Names

heuristic, to discover the models based on the fact that the events were using a category|command
structure (e.g. Eclipse Editor|File Open). Several perspectives can be used to discover and

analyze a business process and the most commonly used are: Control-Flow, Organizational,

Social and Performance. We have mainly focused on the Control-Flow perspective in this

experiment. It defines an approach that consists in analyzing how each task/activity follows

each other in an event log, and infer a possible model for the behavior captured in the observed

process.

9doi:10.17632/8dmdwpgdy4.1
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3.3.3.3 Process Variant Comparison

Our goal was also to compare the behaviour among the teams involved in the experiment against

the "best practice"process, as performed by the expert, and identify the ones with less differences.

For this purpose, we used the Process Comparator plugin [27], which is a tool that compares

a collection of event logs, using a directed flow graph. It uses transition systems to model

behavior and to highlight differences. Transition systems are annotated with measurements,

and used to compare the behavior in the different variants. The annotations of each variant are

compared using statistical significance tests, in order to detect relevant differences.

3.4 Study Results

Control-Flow Perspective.

Figure 3.2 presents team T-26 process variant, showing the code smells detection activities,

and the correspondent statistics about the process followed to execute the requested task. It is

clear, based on the different levels of blue in the activities performed, that they executed more

often the activities related with the code smells detection and correction. We confirm this by

observing the Eclipse Editor | File Editing activity which was executed more than any

other activity.

Globally, our attention went to the evaluation of the Simplicity (or Complexity) of the

models discovered. Simplicity allude to the rule that the simplest model that can describe the

behavior found in a log, is indeed the best model.

Software artifacts with higher cyclomatic complexity tend to be harder to maintain. It has

been claimed that the same rationale is applicable to process models [39]. Based on this, we

were looking for the teams with less complexity in their processes. As shown, teams T-26, T-24

and T-41 are the ones with less Cyclomatic Complexity (as represented by different levels of

green), therefore closer to the complexity of the REFERENCE model. That is also reflected

by the number of Simple and Composite States, and Activities discovered in each of those

models. Team T-26 modelled behavior was also the one discovered with best precision (45%)

among these 3 teams.

On the opposite pole (as represented by different levels of black) with an unique charac-

terization, we have team T-01, with four members, which did not delivered the results of the

requested task. Its proficiency was insufficient and careful review of the process revealed this

team produced more generic events than project related events, as shown in Table 3.1. From

Figure 3.4 we can also learn this team used more unique command actions and respective cate-

gories than any other team, and that did not increase the number of edited files, as one would

have expected. This leads us to think its members did not understand or follow the process at

all, since many of their actions in the IDE apparently were not aligned with the required task.

The high values of complexity, activities, number of transitions and composite states metrics

observed in Table 3.2 complements this assumption.

We can, therefore, state the following: T-01 was an "expensive"team and the one that

presented more risks from a project management perspective. When compared with other

teams, this team had a similar process duration (see table 3.4) in executing the task, but did
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Figure 3.2: Team T-26 Process Variant: Activity Frequency View
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Figure 3.3: Team T-26 Process Variant: Activity Duration View

not deliver the expected outcomes at all. This team was not only non effective, but also showed

major inefficiencies in whatever they tried to produce.

An interesting case to study deeper is team T-02 which had a good proficiency in the task,

as seen in Table 3.4, but showed high levels of complexity in the model. This means we are

dealing with a case where the team was effective, because they achieved the task with success,

although without being efficient. This is confirmed by the high number of different commands

executed showed in Table 3.1.

We also compared the behaviour between the 3 teams with less complex models against

the reference model. The level of Control-Flow differences based on activity frequencies, as

calculated with the Process Comparator plugin, is plotted in table 3.3. Team T-24 was the one

with less differences when compared with the reference model, followed very closely by T-26.

Based on the complexity measurements, control-flow differences and team size, we advocate
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Figure 3.4: Collected Events Statistics

that T-26 had accomplished the task with the best overall efficiency and effectiveness. In fact,

that is also reflected in the proficiency mark given by the professor (that acted as the task

expert), as shown in table 3.4. This raises a set of other research questions, such as: can process

mining be used to assess the proficiency of developers in general, or just for specific kinds of

tasks?

Table 3.3: Behavior Differences Comparison

Ref. Log Team Control-Flow Differences(%)

T-41 87.60 %
REFERENCE T-26 85.11 %

T-24 85.04 %

Organizational Perspective. Figures 3.5 and 3.6 provide an overview of the handover and

collaborative tasks performed by team T-26. From here, one can easily know the peers who

have worked more time on the tasks and which were the most common transitions of work
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Table 3.2: Models Discovered - Metrics Summarization

Team F(%) P(%) A HD SS CS T PCC

T-43 85.8% 39.9% 37 2 93 12 130 35
T-41 74.2% 43.9% 38 2 88 11 121 31
T-02 81.6% 33.8% 47 2 109 11 159 48
T-26 80.1% 45.0% 25 2 60 6 85 23
T-23 79.7% 32.3% 31 2 104 16 141 35
T-21 94.2% 46.5% 36 2 93 12 131 36
T-24 94.4% 35.9% 30 2 74 8 103 27
T-01 91.7% 43.0% 52 2 147 18 209 60
REFERENCE 85.1% 53.7% 16 2 47 6 64 15

F-Fitness, P-Precision, A-Activities, HD-Hierarchical Depth
SS-Simple States, CS-Composite States, T-Transitions

PCC-Process Cyclomatic Complexity

within this team.

Table 3.4: Assignment Duration

Team Proficiency Process Duration

T-43 0 23h:49m
T-41 0.73 18d:3h
T-02 0.75 11d:22h
T-26 0.75 12d:16m
T-23 0.72 12d:13m
T-21 0.02 8d:12h
T-24 0.64 47m:14s
T-01 0 10d:7h
REFERENCE – 23m:05
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3.5 Threats to Validity

Internal Validity. Since some teams worked in shared laboratories at the university campus,

different team members may have used, in the same computer, the same user/key pair to

activate the collection plugin. This may be a source of non accuracy in collected data.

Some users have stopped the collection mechanism which makes it impossible to under-

stand what they were doing during that period. We also found that a few teams have made a

pause in the task, causing it to express more execution time than what was really needed. The

mined processes reflects these times, but indeed, that was idle time. Nevertheless, other reasons

may exist for these delays, and therefore, their model is in fact accurate, because it plots what

really happened.

External Validity. Since we wanted to block some factors such as the degree of previous

experience (background) in the proposed process, and repeat the data collection process in a
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between groups design, to avoid the learning effects of paired designs, the only feasible solution

was to use students as subjects, as referred in subsection 3.3.2.1. We cannot claim that these

students are adequate surrogates for professional software developers.

3.6 Summary

Improving the efficiency and effectiveness of software development projects implies under-

standing their actual process. Given the same requirements specification, different software

development teams may follow different strategies and that may lead to inappropriate use of

tools or non-optimized allocation of effort on spurious activities, non-aligned with the desired

goals. However, due to its intangibility, the actual process followed by each developer or team

is often a black box.

The overall goal of this initial study was to improve the knowledge on how to measure
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efficiency in development teams where a great deal of variability may exist due to the human-

factor. The main focus was on the discovery of the underlying processes and compare them

in terms of efficiency and effectiveness. By doing so, we were expecting to reveal potentially

hidden costs and risks, so that corrective actions may take place on a timely manner during the

software project life cycle.

Several independent teams of Java programmers, using the Eclipse IDE, were assigned

the same software quality task, related to code smells detection for identifying refactoring

opportunities and the quality of the outcomes were assessed by independent experts. On the

events collected from the IDE, we used process mining techniques to discover development

process models, evaluate their quality and compare variants against a reference model used as

"best practice".

Figure 3.7: SDPM Team Dashboard - Geographic View

The main findings of this work also gave birth to a dashboard tool that will ingest event

data and provide near real-time software development process insights, at the individual or

team level, such as in the Personal Software Process (PSP) [93], or Team Software Process

(TSP) approaches [94], but in an automated fashion. Figure 3.7 presents from a geographic

perspective the developers’ location, whilst Figure 3.8 provide project details for a specific

developer. On Appendix A, we present the plugin to capture the events in section A.2 and the

dashboard tool10, installation guidelines and extra screenshots are shown in section A.4.

Regarding the main findings, teams whose process model was less complex, had the best out-

comes and vice-versa. Comparing less complex process variants with the "best practice"process,

10Expected to be generally available as a Docker container soon
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Figure 3.8: SDPM Personal Dashboard - Projects View

showed that they were also the ones with less differences in the control-flow perspective, based

on activities frequencies. We have also determined which teams were most efficient through

process analysis.

RQ1. We can not underestimate the fact that software development IDEs provide the

users with a vast number of commands and menus to execute from, as seen in 3.2.3. Trying

to model these, is indeed a challenge, and, most times, a spaghetti-like process is the result of

a successful process discovery. However, from an event log containing user actions, we were

able to model teams’ behavior with moderate-to-strong Fitness and Precision values and yet

achieve readable models. We are however well aware that these values should be validated with

more experiments and different data. The need to answer RQ1 was vital to understand if we

could indeed discover processes followed by different people, that may be using different tools,

in different locations but contributing to the same final outcome or product. The importance

of understanding and measure teams’ dynamics has grown with the current business trends

that lead to Global Software Engineering (GSE) and Global Software Development (GSD). This

is one of the main challenges faced by GSE and GSD, as in those kinds of projects the usual

monitoring techniques are obsolete [105].

RQ2. We were able to discover and reconstruct process models representing the efficiency

of software development teams, where, in some cases, members were working individually,

each with their own IDE setup configurations. We confirmed that process mining may play a

fundamental role in assessing the efficiency of software development teams and in potentially

contributing to keep them focused on their tasks by checking and enforcing compliance to the

prescribed processes. Every project manager wants to have in the projects he/she manages
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the most efficient and/or adequate resources. As this is expected to increase productivity in

the development, measuring which teams or individuals are more efficient is a step further for

better planning future software development projects.

RQ3. By assessing the way a task is executed and the proficiency achieved, as we did to

answer RQ3, we were looking if there was any relation between those on the software develop-

ment realm. This study can contribute to extend the discussion for the fact that the quality of

a software product may well be dependent on the complexity of the processes followed. This

research was resumed in a study presented in Chapter 4.

In general, teams with less complexity in their models were among the most proficient

in the task. This means that, they not only understood what was requested, but also had the

maturity to deliver what was expected by following a simple process. They were not only

effective, they were also efficient by being focused in the task.

On the contrary, teams with insufficient proficiency produced long and complex models

or, in very short time, they created very fuzzy models with too many generic events. These

teams were the ones where more risk aroused from a development project perspective due to

their erratic behavior and uncertainty around the expected deliveries. Some of those teams did

not perform very well and quality was impacted, and some others did not even deliver what

was expected. In a real-world scenario, these teams would have been identified as the most

expensive teams because their productivity was indeed very low.

This gives us some evidence that teams’ proficiency can be inferred by analyzing mined

process models representing their behavior. We don’t see this as a coincidence, however, to

sustain this evidence, we may need to replicate this experiment in other contexts and with a

larger number of teams and developers.

No relevant performance or bottleneck patterns were identified in the processes, and the

reason for this may be related with the type of task requested, which did not impose restrictions

on times to work on any artifact, and/or the reduced schedule imposed on the task.

We confirmed that, even for a well-defined software development task, there may be a great

deal of process variability due to the human factor. We were able to identify when developers

were more or less focused in the essential tasks they were required to perform. Less focused

teams had the more complex process models, due to the spurious / non-essential actions that

were carried out. In other words, they were less efficient. Experts’ opinion confirmed that

those teams also were less effective in their expected delivery. We therefore concluded that a

self-awareness of the performed process rendered by our approach, may be used to identify

corrective actions that will improve process efficiency (less wasted effort) and may yield to

better deliverables, i.e. improved process effectiveness.
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in order to understand the liaison of software and process complexities on refactoring sessions.
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“Information is the resolution of uncertainty.”

—Claude Shannon(1916-2001)1

4.1 Introduction

A process2 is "a series of actions taken in order to achieve a result". In many business areas,

either on delivering products and/or services, the quality of the outcome is very often related

with the process followed to build it [58, 98, 193]. This is expected to be no different in the

software development domain. Therefore, to fully comprehend how software quality and

improved maintainability are achieved, one should look carefully to the process perspective to

complement any code related analysis [71].

Software development is intrinsically a process and, accordingly, it is a blend of activities

performed by developers, often working from different locations and using a multitude of

languages, tools and methodologies in order to create a new product or maintain an existing

one [71]. Since the early days of software development, it was understood that programming is

an inherently complex and error-prone process, and to fully understand it, we should mine, in a

timely and proper manner, all facets of that process [206]. Any relevant insights one may obtain

should therefore originate from the activities and/or artifacts recorded in software repositories

during the development life cycle.

Studies on estimating the effort to develop a certain artifact, the identification of software

defects, the prediction of time to solve bugs or on software comprehension, and the detection

of refactoring opportunities, are amongst the most common use cases for those repositories [19,

108, 109, 128, 143, 150, 156].

Refactoring on its own is still a very challenging activity. The identification of components

to refactor and the forecast of which methods to embrace continue to be relevant topics for re-

search [8, 174, 204, 205]. These challenges emerge partially due to the significant functionality

limitations software repositories contain and the type of data they use [158].

Some authors confirm that developers perform refactoring tasks manually more frequently

than automatically [156]. Furthermore, it has been observed, in a real-life scenario, that refac-

toring can be harmful when done manually, using only IDE native features or simply driven by

developers’ skills, as it may introduce non-expected defects in the code [112].

On trying to comprehend software development processes, including refactoring practices,

many data sources, methods, and tools have been used with validated outcomes, but some

others are yet to be fully exploited [136]. For example, since VCS are widely used by develop-

ers, researchers get easy access to historical data of many projects and use file-based VCSs as

the primary source of code evolution data [110]. Although it is often convenient to use such

repositories, research-based on VCS data is imprecise and incomplete [158].

As such, answering questions that correlate code changes with other activities (e.g., test

runs, refactoring) is often unfeasible. Several reasons may contribute to it, as for instance:

1American electrical engineer and mathematician, known as "the father of information theory", and was the
founder of practical digital circuit design theory.

2Adapted from https://dictionary.cambridge.org/dictionary/english/process
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• developers may not commit all their tests and/or refactorings;

• there are many ways to refactor one version of the code, therefore it is important to

determine the refactoring activities sequences and frequencies;

• often we cannot distinguish if a refactoring was done manually or through a tool, just by

comparing source code snapshots [151].

4.1.1 Code vs. Process Analysis

Most published work on software quality-related issues is based on source code metrics, espe-

cially on Java systems [43, 67, 121]. Tools for collecting those metrics upon other frequently

used languages, such as JavaScript or Python, are often not available, which expose well the

difficulties to reproduce the same research on projects having diverse languages. In case those

metric collection tools exist, they often require to share the source code with third-party or-

ganizations [164], particularly on cloud-based platforms. Such scenarios raise privacy and

ownership issues on sensitive data. Source code obfuscation does not mitigate this problem

because developers need to keep code semantics for interpreting the metrics in context.

Instead, mining the developers’ activities and behaviors, the same is to say, to mine their

development process fragments, may be a more feasible approach since it is not specific to any

programming language, geographic location or development methodology followed.

Event data can be obfuscated without losing the process structure and coherence, therefore,

whoever is responsible to analyze the logs can apply algorithms to discover process models

in very similar ways as if the logs were not obfuscated [64]. In other words, events from

the development tools and support activities can be collected, transformed and aggregated

with fewer privacy concerns and technical hurdles. As such, it has been pointed out that

software development event logs can be used to complement, or even replace, source code data

in software development analytics-related tasks [40].

4.1.2 Contributions

It is frequent to find software prediction models using source code and ownership metrics [8].

However, periodically this data is not easily accessible or has imprecisions. Nowadays, develop-

ment teams use a diversity of languages, methodologies and tools, therefore, the collection and

aggregation of data from software projects remains a challenge. Additionally, process metrics

have been found to be good predictors for modeling software development tasks [171].

Thus, we proposed earlier [36] and are now evaluating deeper the use of process metrics

gathered from the IDE, as a way to enhance existing models or eventually, build new ones.

Software product and process metrics have long been proposed, as well as techniques for

their collection [2, 3, 30, 39, 136, 209, 210]. However, the association between product and

process dimensions is only marginally discussed in the literature [137]. In order to improve

our understanding on the liaison between the type of development activities executed and the

resulting software product characteristics, namely to ascertain if developers’ behavior has an

impact on software product quality, we collected data during a software quality improvement

75



CHAPTER 4. UNVEILING PROCESS INSIGHTS

task (application of refactoring operations) given to 71 development teams. Regarding devel-

opers’ behavior, we recorded all events corresponding to the activities/tasks/operations team

members performed within their IDE and used those events to mine the underlying process

and extract their metrics. Regarding software quality, we collected complexity metrics before

and after the refactoring actions took place. The main objectives for this work are, therefore:

• to assess the use of software process metrics to facilitate and improve the analysis and

predictions on refactoring tasks and/or other generic software activities;

• to evaluate a possible association between the complexity of the produced code and de-

velopers’ practices in different refactoring tasks;

• to build classification models for refactoring practices using only process metrics and

assess the prediction accuracy of such approach.

4.2 Background

Empirical software engineering and software analytics are now mature research areas with

substantial contributions to the software development best practices [224]. The knowledge base

created to support those achievements took a great advantage from the experience gathered

on analyzing past software projects. Based on the maturity obtained, it was possible to derive

several models to measure software complexity, effort and relationships.

4.2.1 Early Models

Lines of Code(LOC). The identification and quantification of software

size/defect relationship did not happen overnight. The first known “size” law, saying the

number of defects D was a function of the number of LOC; specifically, D = 4.86 + 0.018 * i,

was the result of decades of experience and was presented by Fumio Akiyama [6].

Cyclomatic Complexity. One of the most relevant propositions to assess the difficulty to

maintain software was introduced by Thomas McCabe when he stated that the complexity of

the code was more important than the number of LOC. He argued that when his “cyclomatic

complexity” metric was over 10, the code is more likely to be defective [130]. This metric,

underpinned by graph theory, went through thorough validation scrutiny and then became the

first software metric recognized by a standardization body, the NIST [210], what makes it even

more relevant in the context of this journal.

Halstead Complexity. On trying to establish an empirical science of software development,

Maurice Howard Halstead, introduced the Halstead complexity measures [82]. These metrics,

which are computed statically from the code, assume that software measurement should reflect

the implementation or expression of algorithms in different languages, but be independent of

their execution on a specific platform. Halstead’s metrics were used, among other things, to

assess programmers’ performance in software maintenance activities (measured by the time to
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locate and successfully correct the bug) [50].

Effort Estimators. Later, Barry Boehm proposed an estimator for development effort that was

exponential on program size: effort = a ∗KLOCb ∗ Ef f ortMultipliers, where 2.4 ≤ a ≤ 3 and

1.05 ≤ b ≤ 1.2 [25].

Henry and Kafura Metrics. These two authors defined and validated a set of software metrics

based on the measurement of information flow between system components. Specific metrics

are defined for procedure complexity, software modules complexity, and module coupling [87].

The above models were the foundation knowledge for what is nowadays often categorized

as Software Development Analytics [34]. However, current development methods, tools and

data repositories are very different from the past. Back in those years, software developers were

mainly using a text editor and a compiler. Software projects were essentially built employing

a single programming language, following a fairly simple development methodology and the

developers were rarely located in different geographies or across multiple time zones. These

workspace conditions have changed.

4.2.2 Modern Days

In 2019, JetBrains3 polled almost 7000 developers about their development ecosystem. Results

show that more than 30 different programming languages are being used and confirmed that

web back-end, web front-end and mobile applications are the type of applications mostly de-

veloped, with figures of 60%, 46% and 23%, respectively. It was unanimous the adherence

of cross-platform development frameworks and 80% said they use any type of source code

collaboration tool, 75% use a standalone IDE and 71% use a lightweight desktop editor. Almost

50% said they use Continuous Integration (CI) and Continuous Deployment (CD) and issue

tracking tools. Less than 15% responded that they use any sort of static analysis, code review

and in-cloud IDE tools. Table 4.1 presents the key takeaways from the mentioned survey.

In summary, currently, a software development ecosystem has to deal with at least the

following facets:

• Multi-Language Ecosystem. According to a recent work about multi-language software

development [129], the authors present evidences that non-trivial enterprise software

systems are written in at least 7 programming languages and, a previous work showed

that in the open source world alone, the average is 5 languages per project. Among these,

one may find General-Purpose Languages (GPL) general-purpose languages(GPL) such

as Java or C# and also domain-specific languages(DSL) like SQL and HTML, and cross-

language links are also quite common, meaning some code artifacts are shared between

languages. As a result, developers confirm they find more problems in activities such as

implementing new requirements (78%) and in refactoring (71%).

3https://www.jetbrains.com/lp/devecosystem-2019/
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Table 4.1: Survey Key Takeaways*

Findings

Programming Languages Overall Results
Java The most popular primary programming language

JavaScript The most used overall programming language

Go The most promising language as 13% said they will adopt it

Python Most studied language as 27% said they used it in the last 12 months

Languages used in last 12 months
JavaScript(69%), HTML/CSS(61%), SQL(56%), Java(50%), Python(49%)

Shell Scripting(40%), PHP(29%), TypeScript(25%), C#(24%), C++(20%)

Development Environments(Operating Systems)
Windows(57%), macOS(49%), Unix/Linux(48%), Other(1%)

Type of Application Development
Web Back-End(60%), Web Front-End(46%), Mobile(23%), Libraries(14%)

Desktop(12%), Other Back-End(16%), Data Analysis(13%), Machine Learning(7%)

Type of Tests Used
Unitary(71%), Integration(47%), End-to-End(32%), Other(2%), Don’t Test(16%)

Targeted Mobile Operating Systems & Frameworks Used
Android(83%), iOS(59%), Other(3%)

React Native(42%), Flutter(30%), Cordova(29%), Ionic(28%), Xamarin(26%)

Regularly Used Tools
Source Code Collaboration Tool(80%), Standalone IDE(75%)

Lightweight Desktop Editor(71%), CI/CD Tool(45%), Issue Tracker(44%)

Static Analysis Tool(13%), Code Review Tool(10%)

*All values(%) represent the percentage of affirmative responses to each item

• IDE Evolution. A substantial change was carried in the IDEs. Software development

moved away from the early days of the code editor. As confirmed by the Jetbrains poll,

developers now use powerful platforms and frameworks which allow them to be more

productive on their jobs. This results from the combination of different software develop-

ment life cycle activities, such as: requirements elicitation, producing analysis and design

models, programming, testing, configuration management, dependencies management or

continuous integration into one single tool such as Eclipse, IntelliJ IDEA, Netbeans

or Visual Studio Code. These tools support the needs of different stakeholders, as they

embed a myriad of plugins available in their marketplaces. These plugins are not just

available, they are properly customized for specific users/purposes, such as for modellers,

programmers, testers, integrators or language engineers.

• Low Code and No Code Paradigms. Modern software development practices make con-

sistent use of both approaches. They enable faster development cycles requiring little
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to no coding in order to build and deliver applications and processes. Low-code de-

velopment platforms are seen as advanced IDEs which employ drag-and-drop software

components and visual interfaces to replace extensive coding. With high-level visual mod-

eling languages, they provide higher levels of abstraction that allow a major reduction in

hand-coding to develop an application [86]. In the extreme case we have no-code devel-

opment where, by definition, textual programming is banned, giving rise to the so-called

citizen developers. The most notable examples are Online Application Generators (OAG)s

that automate mobile and web app development, distribution, and maintenance, but this

approach is claimed to be pledged with security vulnerabilities [161]. This paradigm

shift in software development may also require a change in the way we assess critical

properties of a software project, such as, quality, maintainability, and evolvability.

• Global Software Development. The aforementioned IDE platforms facilitated collabora-

tion and the adoption of GSD. Nowadays, a single software project often has developers,

testers and managers located in different time zones and distinct world regions or coun-

tries [160].

• Continuous Integration and Continuous Deployment (CI/CD) and DevOps. CI/CD

have seen an incremental usage in the last few years. However, efficient CI/CD pipelines

are rare, particularly in the mobile apps world where developers seem to prefer the exe-

cution of ad hoc tasks [49]. Whilst CI/CD focuses more on the automation of tools along a

defined software life cycle, DevOps has major concerns with the responsiveness, responsi-

bilities and processes within the development, the deployment and the operational phases

of software projects. Keeping these intertwined processes compliant with organizational

rules is therefore a persistent requirement.

• Resource Coordination. It is still one of the fundamental problems in software engineer-

ing [88] and it can be characterized as a socio-technical phenomenon. Understanding the

dependencies between development tasks and discover teams’ behaviours continues to be

a challenge in resource allocation and coordination of modern software projects.

Software product repositories have many limitations in terms of the process data they han-

dle. For example, these repositories usually deal only with source code and do not track the

developers’ geographic location, their workflows within the IDE nor the developers’ environ-

ment characteristics. A complete repository of process related data with the communications,

activities, decisions and actions taken by developers, testers and project managers, are, most

of the time, if not always, neglected when the goal is to study a development process. Usually,

even if the authors claim they are studying a process, they are often doing it using only artifact

related data [137].

With the existing diversity of languages, methodologies, tools and the fact that resources

are now distributed across the world and originate from multiple cultures with different skills,

it is somewhat an anachronism to keep using old methods to assess, for example, complexity or

build cross-cutting analytical models in current software projects. New approaches, supporting

multi-languages, being multi-process aware, and keeping geography diversity transparent are

called for, such as our pioneering approach for mining of software development processes based
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on the IDE event logs. That approach, dubbed Software Development Process Mining [36],

allows reversing engineer a complete software development process, just a process fragment or

simply ad hoc activities performed by developers, by mining event logs taken from real software

development activities.

4.2.3 Related Work

To address the incompleteness of data sources related with software repositories, we strongly

believe that Software Development Process Mining based at least on the IDE(but not limited

to) can play that role and Process Mining tools and methods can be the vehicles to achieve that

goal. Many authors have followed similar paths, bringing not only evidences for its usefulness

but also valid contributions to improve established methods.

A decade ago, [165] mined software repositories to extract knowledge about the underlying

software processes, and [180, 181] have learned about user behavior from software at operations.

[97] was able to extract events from Eclipse and have discovered, using a process mining tool,

basic developers’ workflows. Some statistics were computed based on the activities executed

and artifacts edited.

[141] presented an application of mining three software repositories: team wiki (used

during requirement engineering), version control system (development and maintenance) and

issue tracking system (corrective and adaptive maintenance) in the context of an undergraduate

Software Engineering course. Experimentation revealed that not only product but process

quality varies significantly between student teams and mining process aspects can help the

instructor in giving directed and specific feedback. However, in this case, IDE usage mining

was not contemplated.

The working habits and challenges of mobile software developers with respect to testing

were investigated by [49]. A key finding of this exhaustive study, using 1000 Android apps,

demonstrates that mobile apps are still tested in a very ad hoc way, if tested at all. A another

relevant finding of this study is that CI/CD pipelines are rare in the mobile apps world (only

26% of the apps are developed in projects employing CI/CD) - authors argue that one of the

main reasons is due to the lack of exhaustive and automatic testing. Therefore, distinguishing

during development sessions the type of tests being done can contribute to the overall software

quality.

[217] explored if one can characterize and identify which commits will be reverted. An

identification model (e.g., random forest) was built and evaluated on an empirical study on

ten open source projects including a total of 125,241 commits. The findings show that the

’developer’ is the most determinant dimension of features for the identification of reverted

commits. This suggests that assessing developers behaviors can lead to better understand

software products quality.

[85] studied the dialogue between users and developers of free apps in the Google Play

Store. Evidences found, showed that it can be worthwhile for app owners to respond to reviews,

as responding may lead to an increase in the given rating and that studying the dialogue

between user and developer can provide valuable insights which may lead to improvements

in the app store and the user support process. We believe the same rationale may be applied
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to comprehend the workflows and dialogues between developers and project owners, and how

that may impact software products.

Development activities were extracted by [18] from non-instrumented applications and

used machine learning algorithms to infer a set of basic development tasks. However, in this

case, no process mining techniques were used to discover any pattern of application usage.

The extraction of usage smells was the focus of [52], where a semi-automatic approach was

adopted to analyze a large dataset of IDE interactions using cluster analysis. Again, process

mining techniques were not used. Process mining was indeed used by [119] to gain knowledge

on software under operation (not under development) by analyzing the hierarchical events

produced by application calls(eg: execution of methods within classes) at runtime.

[216] collected events from the IDE to measure program comprehension and evaluated the

correlation between developers’ activities and the time they spent on them. Despite the fact

that a process was being studied, no evidence of using process mining methods was provided.

A few authors have also followed the route we suggested earlier and resumed in [37]. As

such, we are witnessing more evidences that it is indeed a valid approach, therefore, [11] used

process mining to evaluate developers’ coding behavior in software development processes.

Process models were discovered and used to classify the developers as low-performing and

high-performing profiles. With a similar goal, in [12], a different miner algorithm was assessed

to obtain complementary results and in [10], developers’ profiling was achieved by mining

event logs from a web-based cloud IDE.

Finally, [8] highlights the importance of having more fine-grained process metrics in pre-

diction models and evaluated several machine learning algorithms in predicting software refac-

toring opportunities. This work focuses on deciding when, what and why to refactor, however,

it does not address which refactor practice was indeed applied.

The studies mentioned above used a multitude of process mining techniques, statistics and

machine learning methods. Different data source types have been used to extract the infor-

mation needed to support them. However, to the best of our knowledge, none of these works

combine process and product metrics with the aim of assessing potential correlations and/or

impacts between the process and the product. Moreover, none uses only process metrics to

discover work patterns or to predict development behaviors, particularly, refactoring practices.

4.3 Study Setup

We setup an environment where the same well-defined tasks on software quality assurance was

performed independently by several teams.

Our research guaranteed that all teams had similar backgrounds and performed the same

task upon the same software system. This approach was used to block additional confounding

factors in our analysis. The task targeted a complex open-source Java system named Jasml

(Java Assembling Language)4.

To understand the work developed by each team in each task, we collected the correspond-

ing IDE events for mining the underlying process. At the end of each task, we also collected the

4http://jasml.sourceforge.net/
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modified Jasml project code for each team and obtained the corresponding product metrics.

4.3.1 Subject Selection

Our subjects were the finalists (3rd year) of a B.Sc. degree on computer science at the Iscte

university, attending a compulsory software engineering course. They had similar backgrounds

as they have been trained across the same set of courses along their academic path. Teams were

assembled with up to 4 members each and were requested to complete a code smells detection

assignment, aiming at identifying refactoring opportunities and then to apply them.

4.3.2 Data Collection

The participants were requested to perform the refactoring tasks in two different ways: Auto-

matically and Manually.

The refactoring tasks had the following requirements:

• Automatic Refactoring(AR). Executed from March 1st to March 20th, using JDeodorant5.

This tool suggests refactoring opportunities by detecting, among others, the following four

well-known code smells: Long Method, God Class, Feature Envy and Type Checking

[20]. Once participants have detected the occurrences of those code smells, they were

required to apply JDeodorant’s fully automated refactoring features to fix the critical

ones.

• Manual Refactoring(MR). This task was pursued from March 21st to 28th and differed

from the previous one because JDeodorant automatic refactoring capabilities were

banned. Instead, subjects could use Eclipse’s native interactive refactoring features or

perform the refactorings manually.

The Eclipse IDE has an internal event bus accessed by the interface IEventBroker6 which

is instantiated once the application starts. It contains a publishing service to put data in the

bus, whilst the subscriber service reads what’s in that bus. Using this feature we developed

an Eclipse plugin7 capable of listening to the actions developers were executing. Before the

experiment, the plugin was installed on each subject’s IDE, and later, all subjects received an

unique username/key pair as credentials.

A sample event instance collected with our plugin is presented in listing 4.1. The field tags

are self explanatory.

5https://users.encs.concordia.ca/ nikolaos/jdeodorant/
6https://wiki.eclipse.org/Eclipse4/RCP/Event_Model
7https://github.com/jcaldeir/iscte-analytics-plugins-repository
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Listing 4.1: Sample Eclipse Event Instance
1 {
2 " team " : "Team−10" ,
3 " s e s s i o n " : " dkoep74−ajodje5 −63j3k2 " ,
4 " timestamp_begin " : "2019−05−03 1 6 : 5 3 : 5 2 . 1 4 4 " ,
5 " timestamp_end " : "2019−05−03 1 6 : 5 4 : 0 4 . 4 6 8 " ,
6 " fullname " : " John User " ,
7 " username " : " john " ,
8 " workspacename " : " Workspace1 " ,
9 " projectname " : "/ jasml_0 . 1 0 " ,

10 " f i lename " : "/ jasml_0 .10/ s r c / jasml . java " ,
11 " extens ion " : " j ava " ,
12 " categoryName " : " E c l i p s e Editor " ,
13 "commandName" : " F i l e Edit ing " ,
14 " categoryID " : " org . e c l i p s e . ui . i n t e r n a l . EditorReference " ,
15 "commandID" : " i s c t e . plugin . e c l i p s e . commands . f i l e . e d i t " ,
16 " platform_branch " : " E c l i p s e Oxygen " ,
17 " platform_vers ion " : " 4 . 7 . 3 . M20180330−0640" ,
18 " java " : " 1 . 8 . 0 _171−b11 " ,
19 " cont inent " : " Europe " ,
20 " country " : " Portugal " ,
21 " c i t y " : " Lisbon " ,
22 . . . .
23 " hash " : "00 b7c0ef94e02eb5138d33daf38054e3 " //To d e t e c t event tampering
24 }

4.3.2.1 Data Storage

Collected data was stored locally on each subject’s computer in a CSV file. Whenever Internet

connection was available, the same data was stored in real-time in the cloud8. This storage

replication mechanism allowed for offline and online collection9. The final dataset, combining

the two different sources, was then loaded into a MySQL database table where the username and

event timestamps that formed the table’s unique key were used to detect and avoid duplicated

data insertions. Figure 4.1 presents the complete schema for the data collection workflow. We

use the Business Process Model and Notation (BPMN) standard process definition language for

that purpose [44].

4.3.2.2 Data Preparation

When the software quality task ended, we collected from each team their projects’ code together

with the events files containing the actions performed during the aforementioned activities. As

such, each team produced and delivered two new Jasml projects, one for the automatic and

another for the manual refactoring. The events files would map events for the two different

tasks, as they were done in different time frames.

All events stored in the database were imported into the ProM process mining tool10 and

converted to the IEEE XES standard format [80]. The following event properties were mapped

8https://azure.microsoft.com/en-us/services/event-hubs/
9The plugin currently supports the collection of events locally in CSV and JSON files; stream events to Azure

Event Hub and Kafka remotely; and uses an integration with Trello to extract project activities which can be triggered
as manual events by the developers. Kafka and Trello integrations were not used in this experiment.

10Version 6.8, available at http://www.promtools.org

83

https://azure.microsoft.com/en-us/services/event-hubs/
http://www.promtools.org


CHAPTER 4. UNVEILING PROCESS INSIGHTSExperiment Data Collection

M
ic

ro
so

ft
 A

zu
re

 P
la

tf
or

m

Microsoft Azure Platform

Event
Hub

Events Storage

Forwards
Stored
Events

D
ev

el
op

er
's

 C
om

pu
te

r

Em
ai

l C
lie

nt

Email Client

Forward
Working

Session Data Files Sent

Ec
lip

se
 ID

E
Ba

si
c

D
is

tr
ib

ut
io

n Eclipse IDE - Basic Distribution

Start
Plugin

Working Session Ended

IDE Shutdown
Provide

IDE
Features

Project Files (ZIP)

Export
Projects

SD
PM

 P
lu

gi
n

Eclipse IDE - SDPM Plugin

Capture and
Send IDE

Event

Plugin InnactiveIDE Shutdown

Events File (CSV)

Re
se

ar
ch

er
's

 C
om

pu
te

r

Ja
va

Sc
ri

pt
 In

te
rp

re
te

r

JavaScript Interpreter

Request
Stored
Events

Create
Storage
Service

Download
Events

Converts
Events'
CSV to
JSON

Converts
Events'
BLOB to

JSON

Events (JSON)

Events (JSON)

M
yS

Q
L 

W
or

kb
en

ch

MySQL Workbench

Events Database (MySQL)

Create
Events

Database

Import
JSON

Event Files

Filter and
Generate

ProM Input
File Experiment

Collection Ended

ProM File (CSV)

D
ev

el
op

er
Developer

Re
se

ar
ch

er Researcher

Storage Explorer

Events File (BLOB)

Events File (CVS)

Detected Event

Events File (CSV)

Project Files (ZIP)

Append Events

Exports Projects Send Working Session
Data to Researcher

Start IDE Uses IDE Features

Launches
Storage Service

Start
Events Collection Select

Event Types

Figure 4.1: Experiment Data Collection Workflow

when converting to XES format:

• team and session were used as CaseID since we were interested to look into process in-

stances of teams and their multiple development sessions, not of individual programmers.

• Properties filename, categoryName and commandName forming a hierarchical structure

were used as the Activity in the process.

• The timestamp_begin and timestamp_end were both used as activity Timestamps.
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• Other properties were not used in the process discovery phase, however, they were later

used for metrics aggregation and context analysis.

4.3.3 Data Analysis

4.3.3.1 Context

All teams started with the same version of Jasml 0.10, therefore, we had two relevant moments

to get measures from:

1. The initial moment (t0), when we extracted the metrics for the initial product version.

However, we didn’t know how it was built, therefore, we were missing11 the process

metrics.

2. The end of the task (t1), when we extracted again the product metrics for the changed

Jasml 0.10 project of each team as they stand after the refactoring sessions. In addition,

we had also IDE usage events which provide evidences on how the product was changed.

Following data extraction, we computed, for each product metric defined in Table 4.2, their

relative variance as shown by Equation 4.1. The relative variance variables were the ones we

used in all RQs.

∆product metrics(t1-t0) =
product metrics(t1) − product metrics(t0)

product metrics(t0)
∗ 100 (4.1)

The relative variance was used in order to generalize our approach, thus, making it applic-

able in scenarios where different teams work on distinct software projects.

Process metrics described in Table 4.3 were derived from the events dataset captured be-

tween moments (t0) and (t1), either by summing the events or using the method described in

4.3.3.3. These metrics may be seen as a representation of the effort done by each team during

the refactoring practices.

The complete workflow followed in data pre-processing, aggregation and analysis is pre-

sented in Figure 4.2.

4.3.3.2 Product and Process Metrics

To extract software metrics we used the plugin built by Sauer12. Although having more than

a decade of age, it is still one of the more proven and popular options regarding open source

metrics plugins for Eclipse.

The plugin itself offers a simple interface and reporting capabilities with which users can

define optimal ranges and issue warnings for certain metrics, as well as being able to export

calculated metrics to XML files. The set of metrics obtained by this plugin are presented in

Table 4.2.

11In reality we may consider all of them to be zero
12http://metrics.sourceforge.net
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Figure 4.2: Study Computation and Analysis Process

4.3.3.3 Process Discovery

Several well known algorithms exist to discover process models, such as, the α-algorithm, the

heuristics, genetic and the fuzzy miner amongst others [73, 127]. Our need to discover and

visualize the processes in multiple ways lead us to choose the ProM’s StateChart Workbench

plugin [119]. This plugin, besides supporting process model discovery using multiple hierar-

chies and classifiers, also allows to visualize the model as a Sequence Diagram and use notations

such as Petri Nets and Process Trees. This plugin is particularly suitable for mining software
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Table 4.2: Product Metrics Description

Name Description Scale

VG McCabe Cyclomatic Complexity (Avg. per Method) Numeric
PAR Number of Parameters (Avg. per Method) Numeric
NBD Nested Block Depth (Avg. per Method) Numeric
CA Afferent Coupling (Avg. per Package Fragment) Numeric
CE Efferent Coupling (Avg. per Package Fragment) Numeric
RMI Instability (Avg. per Package Fragment) Numeric
RMA Abstractness (Avg. per Package Fragment) Numeric
RMD Normalized Distance (Avg. per Package Fragment) Numeric
DIT Depth of Inheritance Tree (Avg. per Type) Numeric
WMC Weighted methods per Class (Avg. per Type) Numeric
NSC Number of Children (Avg. per Type) Numeric
NORM Number of Overridden Methods (Avg. per Type) Numeric
LCOM Lack of Cohesion of Methods (Avg. per Type) Numeric
NOF Number of Attributes (Avg. per Type) Numeric
NSF Number of Static Attributes (Avg. per Type) Numeric
SIX Specialization Index (Avg. per Type) Numeric
NOP Number of Packages Numeric
NOC Number of Classes (Avg. per Package Fragment) Numeric
NOI Number of Interfaces (Avg. per Package Fragment) Numeric
NOM Number of Methods (Avg. per Type) Numeric
NSM Number of Static Methods (Avg. per Type) Numeric
MLOC Method Lines of Code (Avg. per Method) Numeric
TLOC Total Lines of Code Numeric

VG_LEVEL Different levels of ∆VG (LOW, MEDIUM, HIGH) Categorical

logs, where an event structure is supposed to exist, but it also supports the mining of other

so-called generic logs.

Events collected from software in operation (e.g. Java programs) reveals the presence of

a hierarchical structure, where methods reside within classes, and classes within packages

[118]. The same applies to IDE usage actions where identified menu options and executed com-

mands belong to a specific category of command options built-in the Eclipse framework. Sup-

ported by this evidence, we used the Software log Hierarchical discovery method with a Struc-

tured Names heuristic to discover the processes based on the fact that the events were using a

filename|category|command structure (e.g. /jasml0.10/src/jasml.java|Eclipse Editor|File
Open).

Several perspectives can be used to discover and analyze a business process. The commonly

used are: Control-Flow, Organizational, Social and Performance. We have focused on

the Control-Flow perspective in this work. It defines an approach that consists in analyzing

how each task/activity follows each other in an event log, and infer a possible model for the

behavior captured in the observed process.

Process metrics, shown in Tables 4.3 and 4.4 were obtained using the discovery method

described in 4.3.3.3, and by running queries into the events database as presented in Figure 4.2.
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Table 4.3: Process Metrics Description

Name Description Scale

DEV Number of Developers Numeric
SES Number of User/Development Sessions Numeric
EVTS Number of Events Collected Numeric
NFILES Number of Unique Files Touched Numeric
NCOM Number of Unique Commands Issued in IDE Numeric
PCCPF Process Cyclomatic Complexity per File Touched Numeric
EC Number of Event Classes Numeric
NOA Number of Activities Numeric
NSS Number of Simple States Numeric
NCS Number of Composite States Numeric
NOT Number of Transitions Numeric
PCC Process Cyclomatic Complexity Numeric
NVER Number of Unique IDE Versions Numeric
NCAT Number of Unique Command Categories Numeric
NPLA Number of Unique IDE Platforms Numeric
NISP Number of Unique Geographic Locations Numeric
NOS Number of Unique Operating Systems Numeric
NPER Number of Unique Perspectives used in the IDE Numeric

PCC_LEVEL Different levels of PCC (LOW, HIGH) Categorical

4.3.3.4 Data Partitioning

We used the k-means clustering algorithm to compute new variables based on the partition of

the teams across different levels (clusters) of Process Cyclomatic Complexity (PCC) and McCabe

Cyclomatic Complexity variance (∆ VG). The decision of how many clusters to use (k) was

supported by a detailed analysis of the Elbow and Silhouette methods:

• Elbow Method. It is frequently used to optimize the number of clusters in a data set.

This heuristic, consists of rendering the explained variation as a function of the number

of clusters, and picking the elbow of the curve as the optimal number of clusters to use.

In cluster analysis, the elbow method runs k-means clustering on the dataset for a range

of values for k (say from 2-10), and then, for each value of k computes an average score

for all clusters. The distortion score is computed as the sum of square distances from

each point to its assigned center [170].

• Silhouette Method. It is a commonly used approach of interpretation and validation of

consistency within clusters of data. Provides a concise graphical representation of how

well each object has been classified within the corresponding cluster. The Silhouette

value is a measure of how similar an object is to its own cluster (cohesion) compared to

other clusters (separation). The silhouette can be calculated with any distance metric,

such as the Euclidean distance or the Manhattan distance, and ranges from -1 to +1. A

high value indicates that the object is well matched to its own cluster and poorly matched

to neighboring clusters. The clustering configuration is appropriate if most objects have a

high value. If many objects have a low or negative value, then the clustering configuration
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Table 4.4: Process-Extended Metrics Description

Category Name Scale

Refactor

Java-Extract Method Numeric
Java-Move - Refactoring Numeric
Java-Extract Class... Numeric
Java-Rename - Refactoring Numeric
Delete Resources Numeric
Java-Encapsulate Field Numeric
Java-Change Method Signature Numeric
Java-Move Type to New File Numeric

Eclipse Editor
File Open Numeric
File Editing Numeric
File Close Numeric

Eclipse View

Project Explorer Numeric
Package Explorer Numeric
Long Method Numeric
God Class Numeric
Code Smell Visualization Numeric
Type Checking Numeric
Feature Envy Numeric
Duplicated Code Numeric

Edit

Find and Replace Numeric
Copy Numeric
Paste Numeric
Cut Numeric
Delete Numeric
Undo Numeric
Redo Numeric

File

Import Numeric
Refresh Numeric
Save Numeric
Save All Numeric

Source Generate Getters and Setters Numeric
Compare Select Next Change Numeric

....... //List is truncated on purpose

....... //List size is ≈250

Text Editing Delete Previous Word Numeric

may have too many or too few clusters and, as such, requires further research before a

decision on the optimal number of k clusters is made [107].

4.3.3.5 Model Selection with Hyperparameter Optimization

To build, tune model parameters as recommended [140, 215], train, evaluate and select the

best-fit classification models presented in Tables 4.8 and 4.9, we used Weka and the Auto-Weka

plugin. Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine

learning software written in Java. It’s workbench contains a collection of visualization tools and

algorithms for data analysis and predictive modeling, together with graphical user interfaces for

easy access to this functionality [102]. Auto-Weka is a plugin that installs as a Weka package
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and uses Bayesian optimization to automatically instantiate a highly optimized parametric

machine learning framework with minimum user intervention [200].

4.3.3.6 Model Evaluation

Several evaluation metrics can be used to assess model quality in terms of false positives/nega-

tives (FP/FN), and true classifications (TP/TN). However, commonly used measures, such as

Accuracy, Precision, Recall and F-Measure, do not perform very well in case of an imbalanced

dataset or they require the use of a minimum probability threshold to provide a definitive

answer for predictions. For these reasons, we used the ROC13, which is a threshold invariant

measurement. Nevertheless, for general convenience, we kept present in Tables 4.8 and 4.9 all

the evaluation metrics. ROC gives us a 2-D curve, which passes through (0, 0) and (1, 1). The

best possible model would have the curve close to y = 1, with and area under the curve (AUC)

close to 1.0. AUC always yields an area of 0.5 under random-guessing. This enables comparing

a given model against random prediction, without worrying about arbitrary thresholds, or the

proportion of subjects on each class to predict [171].

4.3.4 Research Questions

The research questions for this work are:

• RQ4: How different refactoring methods perform when the goal is to reduce complexity,

future testing and maintainability efforts?.

Methods Used. Process Mining Model Discovery, Descriptive statistics and Cluster

Analysis.

• RQ5: Is there any association between software complexity and the underlying develop-

ment activities in refactoring practices?

Methods Used. Process Mining Model Discovery, Correlation Analysis using the Spear-

man’s rank correlation.

• RQ6: Using only process metrics, are we able to predict with high accuracy different

refactoring methods?

Methods Used. Supervised and Unsupervised Learning Algorithms with Hyperparameter

Optimization.

• RQ7: Using only process metrics, are we able to model accurately the expected level of

complexity variance after a refactoring task?

Methods Used. Supervised and Unsupervised Learning Algorithms with Hyperparameter

Optimization.

13Receiver operating characteristic (ROC) is a curve that plots the true positive rates against the false positive
rates for all possible thresholds between 0 and 1.
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4.4 Study Results

In this section, we present the experiment results with respect to our research questions.

RQ4. How different refactoring methods perform when the goal is to reduce complexity,

future testing and maintainability efforts?

In this RQ, we used as product metrics, the ones identified in section 4.3.3.2. Since IDE

usage is a sequence of actions (it can be seen as a process, or at least, as a process fragment), we

used as process metrics the ones identified in 4.3.3.3. Notice that both, product and process

metrics, have been computed to obtain the ∆ between t1 and t0.

Table 4.5: Teams’ Statistics

Task Mode Teams Dev. Ses. Evts. ∆ VG PCC

Automatic Refactoring 32 65 150 10443 7.81% 166.5
Manual Refactoring 39 52 170 22676 2.69% 300.3
Total 71 117 320 33119
Dev - Developers, Ses - Sessions, Evts - Events,
∆ VG - McCabe Cyclomatic Complexity Reduction %(mean),
PCC - Process Cyclomatic Complexity(mean)

Table 4.6: Teams’ Refactoring Results

Metric Name Min. 1st Qu. Median Mean 3rd Qu. Max.

Automatic Refactoring
∆ VG 2.68% 5.87% 6.95% 7.81% 8.84% 16.77%
PCC 24.0 77.0 168.5 166.5 218.2 407.0

Manual Refactoring
∆ VG 0.32% 0.62% 0.94% 2.69% 3.92% 13.98%
PCC 53.0 152.0 275.0 300.3 407.0 738.0

Data Partition

VG_LEVEL LOW = [0%, 4%]; MEDIUM = [4.1%, 9%]; HIGH = [>9%]
PCC_LEVEL LOW = [0, 285]; HIGH = [>285]
∆ VG - McCabe Cyclomatic Complexity Reduction %,
PCC - Process Cyclomatic Complexity

We had 32 teams performing automatic refactoring using the JDeodorant plugin, and 39

doing manual refactoring supported only by the Eclipse native features and/or driven by the

developers experience and skills. Table 4.5 shows the total number of developers and their

activities, here referred as development sessions. In Table 4.6 we show measures of central

tendency and measures of variability regarding the distribution of ∆VG and PCC, together with

how both were partitioned.

Figure 4.3 provides evidence for selecting the optimal number of clusters to partition the

data according to LOW or HIGH levels of process cyclomatic complexity used in Figure 4.4.

The same clustering method was used to partition the different levels of software cyclomatic

complexity as LOW, MEDIUM or HIGH.
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Figure 4.3: Detecting optimal partitions of PCC

Observation 1: Automatic Refactoring achieves higher levels of McCabe Cyclomatic

complexity reduction. Consider relevant in Table 4.5, how the mean of code cyclomatic

complexity reduction (∆ VG) for automatic refactoring is almost three times the reduction

when doing manual refactoring. It is also relevant to mention, by looking at Figure 4.4, that

only four teams had high complexity levels in their work sessions when doing refactoring

using JDeodorant. Furthermore, from those, one team had the major software complexity

reduction(16.77%), whilst other had near the lowest value of reduction(2.68%) within the

automatic refactoring practice. The observation of such different results raised the doubt about

the comprehension, focus and behaviour of those two teams in the given task. This demanded

further investigation on their efficiency, for which, we provide some evidences later using

Figures 4.6 and 4.7.

Observation 2: Manual refactoring practices have higher process cyclomatic complexity.

We observe that teams doing manual refactoring almost double the mean of process cyclomatic

complexity (PCC), when compared with the ones using the automatic features of JDeodorant.
Being deprived of the code smell detection plugin, these teams had to do more manual work to

potentially achieve the same results as the ones doing automatic refactoring. This suggest that
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Figure 4.4: Refactoring Practices Comparison

the refactoring plugin was working as expected, thus reducing software complexity with less

effort simply because several code snippets may have been introduced automatically.

On the contrary, teams doing the task manually needed to do more code, and therefore,

more actions within the IDE to detect and correct the code smells. As shown earlier in section

4.1, manual refactoring tasks can introduce non expected defects in the code and is seen as a

practice to avoid.

Figure 4.4 plot the percentage of McCabe Cyclomatic Complexity per method reduction

obtained after both refactoring sessions. The different colors plot the different levels of process

cyclomatic complexity as discovered from mining each team events log.
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Figure 4.5: Plotting teams according to levels of software and process cyclomatic complexity

Observation 3: Even using JDeodorant, similar work efforts does not mean the same

level of gains in software complexity reduction. If it is apparent that, when using JDeodorant,
the processes tend to have lower levels of complexity and obtained globally more gains in prod-

uct complexity reductions, the same cannot be said for teams doing manual refactoring. These

teams have a more heterogeneous process behavior since they were free to apply refactoring

functionalities without any guidelines in detection and correction from a dedicated plugin.

Figure 4.5 identifies all teams and distributes them according to their levels of software and

process complexity.

From Figure 4.4, we can also observe that the team (11A) with the highest reduction in

code complexity (≈ 16.77%), had also a high level of process complexity even if they were using

the JDeodorant plugin. We can also identify a team(51) doing automatic refactoring with high

levels of process complexity but having instead, very low gains in code cyclomatic complexity

reduction (≈ 2.68%). As such we investigated the activities of both teams in order to identify

potential reasons for this substantial variation.

Figures 4.6 and 4.7, represent the process flow views of both individual teams regarding the

files browsed and/or changed during the refactoring practice14. Based on the same values for

the activities and paths, we can clearly identify that the team with high gains in VG reduction

worked in less files (number of nodes) and was focused evenly on all of them (dark blue nodes

means more actions on those files).

On the contrary, the team with low gains in VG, visited more files but worked frequently on

14We acknowledge that the labels in these two diagrams, produced by the Disco tool, are illegible in a printing
version. However, since the figures are in vectorial format, they can be zoomed in easily if this work is read in its
electronic version (pdf), the most probable access medium.
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Figure 4.7: Team 51 : High PCC but Low VG reduction (20% activities/files, 80% paths)

only 3 of them. This fuzzy behavior suggests lack of focus and/or knowledge about the task to

accomplish, and present a good way to measure efficiency on development teams or individual

developers. That can be confirmed by comparing both teams statistics in Figure 4.8, where we

present product metrics, process metrics and extended process metrics scaled to represent their

position to the mean value of each action for both teams.

We highlight in the extended process metrics the fact that the team with bigger VG

95



CHAPTER 4. UNVEILING PROCESS INSIGHTS

-2.77%-16.77%

-0.43% 22.96%

-1.53%-8.00%

-0.00% 100.00%

-0.00% 130.00%

-0.00% 5.64%

-0.00% 45.45%

-0.00%-9.98%

-1.27% 2.07%

-3.20%-18.03%

-3.75% 7.50%

-3.75%-21.67%

20.00% 72.50%

-2.72%-20.06%

-3.85%-21.88%

-0.52% 2.50%

-0.10%-17.25%

-3.67%-21.56%

4.00% 28.00%

0.82% 6.04%

-3.03%-19.15%

VG

PAR

NBD

CA

CE

RMI

RMA

RMD

DIT

WMC

NSC

NORM

LCOM

NOF

NSF

NOM

NSM

SIX

NOC

TLOC

MLOC

0 50 100

Variation

P
ro

du
ct

 M
et

ri
cs

2 3

3 7

623563

3528

11

11

386300

7458

1007762

193153

14051069

396305

DEV

SES

EVTS

UF

PCCPF

EC

NOA

NSS

NCS

NOT

PCC

0 500 1000

P
ro

ce
ss

 M
et

ri
cs

-0.50

-0.25

0.00

0.25

0.50

Ecli
ps

e E
dit

or
-F

ile
 E

dit
ing

Ecli
ps

e V
iew

-L
on

g M
eth

od

Edit
-U

nd
o

Ecli
ps

e V
iew

-P
ac

ka
ge

 E
xp

lor
er

Ecli
ps

e E
dit

or
-F

ile
 C

los
e

Ecli
ps

e E
dit

or
-F

ile
 O

pe
n

Ecli
ps

e V
iew

-G
od

 C
las

s

File
-S

av
e

Ecli
ps

e V
iew

-F
ea

tur
e E

nv
y

Edit
-C

op
y

Unc
ate

go
riz

ed
-Ja

va
 E

dit
or

 R
ule

r S
ing

le-
Clic

k

Ecli
ps

e V
iew

-D
up

lic
ate

d C
od

e

Ecli
ps

e V
iew

-T
yp

e C
he

ck
ing

Exe
cu

tin
g T

as
ks

-M
an

ua
l E

ve
nt

Ecli
ps

e V
iew

-G
it 

Stag
ing

Ecli
ps

e V
iew

-C
od

e S
mell

 V
isu

ali
za

tio
n

Edit
-P

as
te

Ecli
ps

e V
iew

-M
etr

ics
 V

iew

Ecli
ps

e V
iew

-O
utl

ine

Ecli
ps

e V
iew

-C
od

e S
mell

 P
ac

ka
ge

 E
xp

lor
er

Edit
-D

ele
te

View
s-S

ho
w V

iew

File
-E

xp
or

t

Unc
ate

go
riz

ed
-E

cli
ps

e M
ark

etp
lac

e

Refa
cto

rin
g-

Dele
te 

Res
ou

rce
s

Pro
ce

ss 
M

ini
ng

 P
lug

in-
Abo

ut

Ecli
ps

e V
iew

-M
etr

ics
 - 

src

Edit
-C

ut

File
-Im

po
rt

Nav
iga

te-
Ope

n D
ec

lar
ati

on

TEAM High VG Reduction, High PCC Low VG Reduction, High PCC

Figure 4.8: Teams(11A vs. 51) with distinct VG variance positioning but similar PCC levels

reduction was the one with less frequencies in commands such as : Undo, Cut, File Open,

File Close plus other navigational and less productive actions. This team had also bigger
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frequencies in commands to detect and fix code smells, such as: God Class, Duplicated Code

and Type Checking. However, the gains in the VG reduction were achieved at the cost of

increasing 28% the number of classes(NOC) and the lack of cohesion of methods(LCOM) by

≈72%. On the process side, despite the fact that this team had more work sessions(7), they

touched less files, meaning their activities were less complex, and that is confirmed by the UF,

NOA and PCC metrics.

RQ5. Is there any association between software complexity and the underlying devel-

opment activities in refactoring practices? With the evidences shown in RQ4 for the two

distinct refactoring methods, one may question if the product complexity reduction gains are

monotonically correlated with the development activities which originated them.

We used the Spearman correlation coefficient to measure the strength of correlation be-

tween metrics of these two dimensions, product and process complexities. This coefficient

ranges from -1 to 1, where -1 and 1 correspond to perfect negative and positive relationships

respectively, and 0 means that the variables are independent of each other.

To validate our results, we performed a significance test to decide whether based upon this

sample there is any or no evidence to suggest that linear correlation is present in the population.

As such, we tested the null hypothesis, H0, and the alternative hypothesis, H1, to gather

indication of which of these opposing hypotheses was most likely to be true.

Let ps be the Spearmans’ population correlation coefficient both for automatic and manual

refactoring, then we can thus express this test as:

H0: ps = 0 : No monotonic correlation is present in the practice.

H1: ps , 0: A monotonic correlation is present in the practice.

Automatic Refactoring. After computing the Spearman correlation coefficient on the subset of

teams doing automatic refactoring, and despite the fact that some correlations were slightly

negative as we expected, we got no significant statistics on the correlation of ∆VG and PCC or

any other pair of metrics, as shown by Spearmans’ rho and p-value in Table 4.7.

Observation 4: No significant correlation was found between product and process met-

rics on automatic refactoring practices. Hence, we can say that we cannot reject the null

hypothesis, H0, meaning that a monotonic correlation cannot said to be found between code

cyclomatic complexity and process cyclomatic complexity or any other process metric.

Manual Refactoring. When analyzing the dataset with manual refactoring activities, we found

that product complexity reduction was moderately correlated with the process cyclomatic

complexity and several other metrics process related. Table 4.7 presents Spearmans’ rho and

p-value, highlighting the significant correlations15.

Observation 5: A moderate correlation was found between product metrics and process

metrics on manual refactoring tasks. It is relevant to highlight the presence of a moderate pos-

itive correlation between the product cyclomatic complexity reduction (∆VG) and the overall

15Other product and process metrics were omitted due to the absence of significant correlations
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Table 4.7: Spearmans’ Correlation - Refactoring Tasks

Automatic Refactoring Manual Refactoring
∆VG ∆VG

Factors Spearmans’ rho p-value Spearmans’ rho p-value

PCC -0.02 0.9707 0.43 0.0432*
UF 0.01 0.5218 0.32 0.3427

SES 0.15 0.7489 0.24 0.2814

DEV -0.05 0.7342 0.03 0.8193

NPER -0.19 0.4976 0.32 0.0197*
NISP -0.10 0.6875 0.35 0.0120*
PCCPF -0.01 0.7787 0.45 0.0059*
NCAT -0.11 0.6309 0.39 0.0096*
NCOM -0.05 0.6240 0.42 0.0712

*Statistically significant if p-value < 0.05

process cyclomatic complexity(PCC) and per unique file touched(PCCPF). This means that the

more actions the teams have done within the IDE the bigger the gains obtained in complexity

reduction.

Observation 6: Weak to moderate correlations were found between product complexity

reduction and IDE command categories. Weak to moderate correlations emerge when we pair

the product complexity reduction with the number of the IDE command categories(NCAT),
IDE perspectives activated(NPER) and the number of distinct physical locations from where

the task was performed(NISP). Based on the significance tests, we can reject H0, and accept H1,

meaning that a monotonic correlation exists between code cyclomatic complexity and process

cyclomatic complexity as well as with the other highlighted metrics.

Observation 7: No significant correlations were found between any process metrics and

product metrics, except for ∆VG. All product and process metrics collected are shown in

Tables 4.2 and 4.3.

Figure 4.9 plot only the significant correlations16 among all those we studied. As expected,

process metrics show strong correlations between themselves, however, we find this result

obvious and not relevant withing the context of this work.

RQ6. Using only process metrics, are we able to predict with high accuracy different

refactoring methods?.

Process metrics have been confirmed as suitable predictors for many software development

prediction models. They were found not only suitable, they performed significantly better than

code metrics across all learning techniques in several studies [125, 171].

Our goal was to use the process metrics described in Table 4.3, to predict if a refactoring

task executed by a group of teams had been done automatically, using the JDeodorant features,

or manually, using only the Eclipse native functionalities or driven by developers skills. Each

subject in our dataset has the class to predict labelled as AR and MR for automatic and manual

refactoring, respectively. In this case, we did not use metrics from Table 4.4 because that

16Blank squares means non significant values
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Figure 4.9: Manual Refactoring correlation results

would introduce bias in our models since the process extended metrics can easily be used

to understand if developers used or not IDE built in features or their own skills during a

refactoring practice.

Table 4.8 present the results for the 5 best models we got out of the ≈30,000 we evaluated

on our research. In this context, the machine learning models used were built by assembling

and testing supervised or unsupervised algorithms adjusted with feature selection and

hyperparameter optimization. From the models built, the ones with higher ROC were chosen.

A brief explanation of each algorithm can be found on section C.1 in Appendix C, and the code

obtained from training Model 1 is presented in Listing 4.2.
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Table 4.8: Detailed Model Evaluation

Model TP FP Pre. Rec. F-M. MCC ROC PRC

Model 1, RandomCommittee/RandomForest, Accuracy = 92.95%
AR 0.906 0.051 0.935 0.906 0.921 0.858 0.983 0.980

MR 0.949 0.094 0.925 0.949 0.937 0.858 0.983 0.987

W. Avg. 0.930 0.075 0.930 0.930 0.929 0.858 0.983 0.984

Model 2, RandomCommittee/RandomForest, Accuracy = 90.14%
AR 0.875 0.077 0.903 0.875 0.889 0.801 0.939 0.923

MR 0.923 0.125 0.900 0.923 0.911 0.801 0.939 0.948

W. Avg. 0.901 0.103 0.901 0.901 0.901 0.801 0.939 0.937

Model 3, Logistic Model Trees, Accuracy = 90.14%
AR 0.906 0.103 0.879 0.906 0.892 0.802 0.945 0.938

MR 0.897 0.094 0.921 0.897 0.909 0.802 0.945 0.951

W. Avg. 0.901 0.098 0.902 0.901 0.902 0.802 0.945 0.945

Model 4, RandomSubSpace/REPTree, Accuracy = 88.73%
AR 0.844 0.077 0.900 0.844 0.871 0.772 0.929 0.907

MR 0.923 0.156 0.878 0.923 0.900 0.772 0.929 0.935

W. Avg. 0.887 0.120 0.888 0.887 0.887 0.772 0.929 0.922

Model 5, Logistic Regression, Accuracy = 83.09%
AR 0.750 0.103 0.857 0.750 0.800 0.659 0.939 0.940

MR 0.897 0.250 0.814 0.897 0.854 0.659 0.939 0.950

W. Avg. 0.831 0.184 0.833 0.831 0.829 0.659 0.939 0.945

TP-True Positive, FP-False Positive, Pre-Precision, Rec-Recall,
F-M-F-Measure, MCC-Matthews Correlation Coefficient,
ROC-Receiver Operating Characteristic, PRC-Precision-Recall Curve,
AR-Automatic Refactoring, MR-Manual Refactoring,
W. Avg-Weighted Average

Listing 4.2: Best-Fit Model Code for Refactoring Practice Detection
1 /* * Java code to implement the best model found . */
2

3 /* * Attr ibute Search * */
4 A t t r i b u t e S e l e c t i o n as = new A t t r i b u t e S e l e c t i o n ( ) ;
5 ASSearch asSearch = ASSearch . forName ( " weka . a t t r i b u t e S e l e c t i o n . GreedyStepwise " , new

↪→ S t r i n g [ ] { "−C" , "−R" } ) ;
6 as . se tSearch ( asSearch ) ;
7

8 /* * Attr ibute Evaluation and S e l e c t i o n * */
9 ASEvaluation asEval = ASEvaluation . forName ( " weka . a t t r i b u t e S e l e c t i o n . CfsSubsetEval " ,

↪→ new St r i ng [ ] { "−M" , "−L" } ) ;
10 as . se tEva luator ( asEval ) ;
11 as . S e l e c t A t t r i b u t e s ( i n s t a n c e s ) ;
12

13 /* * Reduce Dimensions * */
14 i n s t a n c e s = as . reduceDimensionality ( i n s t a n c e s ) ;
15

16 /* * Build C l a s s i f i e r * */
17 C l a s s i f i e r c l a s s i f i e r = A b s t r a c t C l a s s i f i e r . forName ( " weka . c l a s s i f i e r s . meta .

↪→ RandomCommittee " , new S tr i ng [ ] { "− I " , " 64 " , "−S " , " 1 " , "−W" , " weka . c l a s s i f i e r s .
↪→ t r e e s . RandomForest " , "−−" , "− I " , " 29 " , "−K" , " 13 " , "−depth " , " 3 " } ) ;

18 c l a s s i f i e r . b u i l d C l a s s i f i e r ( i n s t a n c e s ) ;
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Observation 8: Random Forest confirms its accuracy. Random Forest models were found

to be the ones with higher accuracy in predicting refactoring opportunities in previous studies

[8]. We observe the same behaviour. Random Forest shows twice in the top 5 of our best models,

with a ROC value of 0.983 and 0.939 for Model 1 and 2, respectively. In both cases, the models

were computed by a meta learner which builds an ensemble of randomizable base classifiers,

the Random Committee.

Our dataset is not imbalanced, thus, we have almost the same number of subjects for each

class, meaning we may use also the Accuracy metric to complement our analysis. Model 1 and

2 had respectively, an accuracy of 92.5% and 90.14%.
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Figure 4.10: Feature importance for models on Table 4.8

During models computation phase, we also assessed which of the features were more or

less important to predict the refactoring practices: automatic(AR) or manual(MR). Figure 4.10

shows their average importance.
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Observation 9: Number of Activities, Developers and Commands are the most relevant

model features. These features show among the ones with highest importance in the models we

computed. We recall that the number of activities (NOA) is a composite metric obtained by the

process mining extraction plugin using a hierarchical structure composed of the filename, com-

mand category and commands issued during the coding phase. Having a mid level importance

we find the process cyclomatic complexity and the number of development sessions.

Observation 10: Distinct IDE Perspectives and Operating Systems have almost irrele-

vant importance. In our models, the different types operating system used by the developers,

the different number of IDE perspectives and number of development locations (NISP) are

irrelevant predictors in modeling the type of refactoring performed. We argue that, particularly

the number of different locations from where the developers performed their work require

additional research in order to get any generalized conclusions about this insight.

RQ7: Using only process metrics, are we able to model accurately the expected level of

complexity variance after a refactoring task?

To answer this RQ, we used not only the metrics from Table 4.3, but also the ones from

Table 4.4. During our analysis, it was clear that process extended metrics, representing the

commands issued by each developer/team, added significant predictive power to the models

computed. Therefore, to predict the expected software cyclomatic complexity we needed to

include individual commands frequencies in addition to the process metrics used in previous

RQ. By doing this we were able to achieve models with higher accuracy and good ROC values.

However, in general, these models have lower accuracy than the ones in RQ6.

Table 4.9 shows the top five models computed to predict the complexity level gains obtained

after a refactoring session, either using a dedicated plugin or simply by using Eclipse features.

Observation 11: Locally Weighted Learning combined with a Decision Table outper-

forms Random Forrest. Contrary to the previous RQ, in this case the best model is not based

on a Random Forrest algorithm. However, the latter show as the second best model in terms

of accuracy. The Locally Weighted Learning method uses an instance-based algorithm to as-

sign instance weights which are then used by a specified weighted instances handler. It uses

a stack of methods, initially a cluster like mechanism such as the LinearNNSearch and then a

Decision Table to classify the outcome. This shows up at no surprise since Decision Tables use

the simplest hypothesis spaces possible and usually outperform state-of-the-art classification

algorithms.

A brief explanation of each algorithm can be found on section C.1 in Appendix C, and the

code obtained from training Model 1 is presented in Listing 4.3.

Observation 12: Teams with LOW level of software complexity gains are frequently

spotted with higher F-Measure and ROC values. Our models perform better in detecting

subjects achieving low levels of complexity reduction. These are the most critical cases, as such,

a software development project manager can quickly detect the teams or individuals respon-

sible for those outcomes and implement actions to bring the project under acceptable quality

parameters.

Observation 13: Process extended metrics have in general higher importance than
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Table 4.9: Detailed Model Evaluation

Model TP FP Pre. Rec. F-M. MCC ROC PRC

Model 1, LWL/LinearNNSearch/DecisionTable, Accuracy = 94.36%
LOW 0.968 0.000 1.000 0.968 0.984 0.972 0.991 0.992

MEDIUM 1.000 0.095 0.879 1.000 0.935 0.892 0.994 0.992

HIGH 0.727 0.000 1.000 0.727 0.842 0.832 0.992 0.967

Weighted Avg. 0.944 0.039 0.950 0.944 0.942 0.917 0.993 0.988

Model 2, Bagging/RandomForest, Accuracy = 83.09%
LOW 0.839 0.075 0.897 0.839 0.867 0.771 0.938 0.94

MEDIUM 0.828 0.095 0.857 0.828 0.842 0.737 0.971 0.945

HIGH 0.818 0.083 0.643 0.818 0.720 0.668 0.971 0.827

Weighted Avg. 0.831 0.085 0.841 0.831 0.834 0.741 0.957 0.926

Model 3, KStar, Accuracy = 78.87%
LOW 0.935 0.225 0.763 0.935 0.841 0.707 0.948 0.951

MEDIUM 0.862 0.143 0.806 0.862 0.833 0.713 0.945 0.915

HIGH 0.182 0.000 1.000 0.182 0.308 0.398 0.982 0.904

Weighted Avg. 0.789 0.157 0.818 0.789 0.755 0.661 0.952 0.929

Model 4, RandomCommittee/REPTree, Accuracy = 74.64%
LOW 0.903 0.300 0.700 0.903 0.789 0.603 0.895 0.873

MEDIUM 0.759 0.143 0.786 0.759 0.772 0.619 0.886 0.847

HIGH 0.273 0.000 1.000 0.273 0.429 0.491 0.932 0.738

Weighted Avg. 0.746 0.189 0.781 0.746 0.726 0.592 0.897 0.842

Model 5, LWL/LinearNNSearch/DecisionTable, Accuracy = 71.83%
LOW 0.871 0.300 0.692 0.871 0.771 0.569 0.843 0.803

MEDIUM 0.759 0.190 0.733 0.759 0.746 0.565 0.800 0.729

HIGH 0.182 0.000 1.000 0.182 0.308 0.398 0.823 0.541

Weighted Avg. 0.718 0.209 0.757 0.718 0.689 0.541 0.822 0.732

TP-True Positive, FP-False Positive, Pre-Precision, Rec-Recall,
F-M-F-Measure, MCC-Matthews Correlation Coefficient,
ROC-Receiver Operating Characteristic, PRC-Precision-Recall Curve,
LOW-Low level of Cyclomatic Complexity,
MEDIUM-Medium level of Cyclomatic Complexity,
HIGH-High level of Cyclomatic Complexity,
W. Avg-Weighted Average

process standard metrics. From Figure 4.11 we can understand that 18 out of 30 metrics are

related with the commands issued by the developers. In general, these metrics have also higher

importance in the models. It is not surprising to find methods and class extraction commands

in the top of the list, with ≈86% and ≈56% importance, respectively. It was however unexpected

to find project export actions being so relevant (≈70%).
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Listing 4.3: Best-Fit Model Code for Expected Cyclomatic Complexity Level Setection
1 /* * Java code to implement the best model found . */
2

3 /* * Attr ibute Search * */
4 A t t r i b u t e S e l e c t i o n as = new A t t r i b u t e S e l e c t i o n ( ) ;
5 ASSearch asSearch = ASSearch . forName ( " weka . a t t r i b u t e S e l e c t i o n . GreedyStepwise " , new

↪→ S t r i n g [ ] { "−C" , "−R" } ) ;
6 as . se tSearch ( asSearch ) ;
7

8 /* * Attr ibute Evaluation and S e l e c t i o n * */
9 ASEvaluation asEval = ASEvaluation . forName ( " weka . a t t r i b u t e S e l e c t i o n . CfsSubsetEval " ,

↪→ new St r i ng [ ] { "−L" } ) ;
10 as . se tEva luator ( asEval ) ;
11 as . S e l e c t A t t r i b u t e s ( i n s t a n c e s ) ;
12

13 /* * Reduce Dimensions * */
14 i n s t a n c e s = as . reduceDimensionality ( i n s t a n c e s ) ;
15

16 /* * Build C l a s s i f i e r * */
17 C l a s s i f i e r c l a s s i f i e r = A b s t r a c t C l a s s i f i e r . forName ( " weka . c l a s s i f i e r s . lazy .LWL" , new

↪→ S t r i n g [ ] { "−K" , " 60 " , "−A" , " weka . core . neighboursearch . LinearNNSearch " , "−W" , "
↪→ weka . c l a s s i f i e r s . r u l e s . DecisionTable " , "−−" , "−E" , " auc " , "−S " , " weka .
↪→ a t t r i b u t e S e l e c t i o n . GreedyStepwise " , "−X" , " 2 " } ) ;

18 c l a s s i f i e r . b u i l d C l a s s i f i e r ( i n s t a n c e s ) ;
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Figure 4.11: Feature importance for models on Table 4.9 (Top 30 only)

4.5 Threats to Validity

The following types of validity issues were considered when interpreting the results from this

article.

Construct Validity. We acknowledge that this work was supported by an academic en-

vironment and using subjects with different maturity and skills which we did not assessed

deeply upfront. Additionally, although some work has been done in this domain, we are still

just scratching the surface in mining developers’ activities using process mining tools. Some

of these tools are not ready yet to automate the complete flow of: collecting data, discover

processes, compute metrics and export results. As a consequence, the referred tasks were

mostly done manually, thus, introducing margin for errors in the data metrics used in the ex-

periment. To soften this, and to reduced the risk of having incoherent data, we implemented

the validation of metric values from multiple perspectives. Another possible threat is related
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with the event data pre-processing tasks before using the Process Mining tools to discover the

processes and associated metrics. Events were stored initially in a database, and from there,

queries were issued to filter, aggregate and select some process related metrics. We used all the

best practices in filtering and querying the data. However, there is always a small chance for

the existence of an imprecise query which may have produced incorrect results and therefore,

impacted our data analysis.

Internal Validity. We used a cluster analysis technique supported by the Elbow and Sil-

houette methods. This was used to partition the subjects according to different software and

process cyclomatic complexity levels. Even if this is a valid approach, other strategies could

have been followed, thus, results could vary depending on the alternative methods used, since

the models computed to address RQ6 and RQ7 make use of this data partition approach. As

mentioned earlier, our population was not very large and we had to use it for training and test

purposes. As such, our prediction models were all trained using k-fold cross validation and

using feature selection methods.

External Validity. We understood from the beginning there was a real possibility that

events collected and stored in CSV/JSON files on developers’ devices could be manually

changed. We tried to mitigate this threat of having data tampering by using a hash function on

each event at the moment of their creation. As such, each event contain not only information

about the IDE activities, but also a hash code introduced as a new property in the event for

later comparison with original event data. For additional precautions regarding data losses, we

implemented also real-time event streaming from the IDE to a cloud event hub.

Our initial dataset contains events collected from a group of teams when performing an

academic exercise. Each user was provided with a username and password to enter in the Eclipse

Plugin. With this approach, we can easily know which user was working on each part of the

software and their role in the whole development process. However, we cannot guarantee that

each developer used indeed their own username. This does not cause any invalid results in the

number of activities for example, but may introduce some bias in the number of developers per

team17.

Conclusion Validity. We performed an experiment using data from 71 software teams exe-

cuting well defined refactoring tasks. This involved 320 sessions of work from 117 developers.

Since this is a moderate population size for this type of analysis, we acknowledge this may be

a threat to generalize conclusions or make bold assertions. The Spearmmans’ correlation, a

nonparametric measure (therefore having less statistical power) of the strength and direction of

association that exists between two variables, was done on 32 and 39 teams for automatic and

manual refactoring tasks respectively. These figures, although valid, are close to the minimum

admissible number of subjects for this type of analysis. Nevertheless, the insights we unveil

in this work should be able to trigger additional research in order to confirm or invalidate our

initial findings.

17A metric used on almost all RQs and identified as having a high importance
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4.6 Summary

Software comprehension and maintenance activities, such as refactoring, are said to be nega-

tively impacted by software complexity. The methods used to measure software product and

processes complexity have been thoroughly debated in the literature. However, the discernment

about the possible links between these two dimensions, particularly on the benefits of using

the process perspective, has a long journey ahead.

In this work, we tried to understand deeper the liaison of process and software complexity.

Moreover, we assessed if process driven metrics and IDE issued commands are suitable to build

valid models to predict different refactoring methods and/or the expected levels of software

cyclomatic complexity variance on development sessions.

We mined source code metrics from a software product after a quality improvement task

was given in parallel to (117) software developers, organized in (71) teams. Simultaneously,

we collected events from their IDE work sessions (320) and used process mining to model their

processes and extract the correspondent metrics.

We found that teams using a plugin for refactoring (JDeodorant) reduced software com-

plexity more effectively and with simpler processes than the ones that performed refactoring

using only Eclipse native features. We were able to find moderate correlations (≈43%) between

software cyclomatic complexity and process cyclomatic complexity. Using only process driven

metrics, we computed ≈30,000 models aiming to predict the type of refactoring method (au-

tomatic or manual) teams had used and the expected level of software cyclomatic complexity

reduction after their work sessions. The best models found for the refactoring method and

cyclomatic complexity level predictions, had an accuracy of 92.95% and 94.36%, respectively.

Main conclusions. To the best of our knowledge, this is the first work where, using proven

process mining methods, process metrics were gathered and combined with product metrics

in order to understand deeper the liaison of product and process dimensions, particularly the

cyclomatic complexities. Furthermore, it brings to the attention of researchers the possibility

to adopt process metrics extracted from the IDE usage as a way to complement or even replace

product metrics in modeling the development process.

We can’t compare our work to any previous studies, however, with a small set of features,

we were able to unveil important correlations between product and process dimensions and

obtain good models in terms of accuracy and ROC when predicting the type of refactoring done

or the expected level of cyclomatic complexity variance after multiple sessions of development.

We used a refactoring task as our main use case, however, by taking a snapshot of product and

process metrics in different moments in time, one can measure other development practices the

same way.

We have also demonstrated the feasibility of an approach that allows building cross-cutting

analytical models in software projects, such as the one we used for detecting manual or auto-

matic refactoring practices. Events from the development tools and support activities can be

collected, transformed, aggregated, and analyzed with fewer privacy concerns or technical con-

straints than source code-driven metrics. This makes our approach agnostic to programming

languages, geographic location, or development practices, making it suitable for challenging
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contexts such as in modern global software development projects. Initial findings are encourag-

ing, and lead us to suggest practitioners may use our method in other development tasks, such

as, defect analysis and unit or integration tests.

Relevance for practitioners. This approach can be particularly relevant in cases where

product metrics are not available or are difficult to obtain. It can be also a valid approach

to measure and monitor productivity within and between software teams. As we showed by

analyzing the sessions complexity and the software cyclomatic complexity variance, non effi-

cient teams can easily be detected. Our method easily support real-time data collection from

individuals located in different geographic zones and with a multitude of development envi-

ronments. Because the data collection is not dependent on code repositories and is decoupled

from check-ins and/or commits, process and code analysis can be performed before repositories

are updated. Development organizations can leverage this approach to apply conformance

checking methods to verify the adherence of developers’ practices with internally prescribed

development processes. This facilitates mainly the detection of low performance practices and

may trigger quick correction actions from project managers.

We also consider that the following aspects deserve further research efforts:

• Software Repository Diversity. Traditional software repositories have limitations and

imprecisions. To expand the analytics coverage on the mining of software development

processes, we should explore non trivially used repositories, such as the IDE. This is

particularly interesting to drive studies aiming to combine development perspectives: i)

product quality and ii) the underlying development process.

• Software Development Process Mining Pipeline. Many process mining tools are not

ready for non-human intervention. Due to this reality, many metrics in this work had to

be extracted semi-automatically, using a tool but not dispensing user interaction. This is

a strong limitation in advancing research based on event data and current process mining

methods. A microservices-based architecture seems to be a good alternative for building

a coherent pipeline for software development process mining.

• Data Sharing. Research combining software product and process data is scarce and ex-

periments in this area are difficult to design and execute. To mitigate this problem, we

expect an increment in shared datasets containing this hybrid data, providing that privacy

and/or anonymity on sensitive information is guaranteed.
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CHAPTER 5. PRACTICES AND FINGERPRINTS

“You can discover more about a person in an hour of play than in a year of conversation.”

—Plato1

5.1 Introduction

5.1.1 Motivation

Software development can be characterized as a socio-technical phenomenon [71]. Understand-

ing the actual dependencies between development tasks and teams’ behaviors to fulfill them

is a serious challenge for most software project managers concerned with the allocation and

coordination of resources [88]. Being able to group developers with similar behaviors, for in-

stance, based on the time they spent on each activity or working on a specific artifact, is a

step forward in that understanding. This requires analyzing developers’ traces (i.e. executed

actions/commands) within the IDE.

Traditional process mining techniques come to the rescue of such concerns. However,

within the software development context, the latter usually assumes a structured and noise-free

input and produces spaghetti-like processes. As such, a lot of variances may mislead the results

and correspondent interpretation [91]. Process variant analysis is a research stream within

the process mining domain. In the last decade, several novel approaches to effectively mine

process variants have been proposed [26, 28, 198]. The latter evolved to detect the existence

of similarities and differences in behaviors within a common business process, which can be

considered as “fingerprints” left by process instances [46, 207].

Applying process mining algorithms on large event logs, containing a significant number

of cases and events, usually requires the use of powerful computational systems and, even then,

may lead to long processing times. Process variant comparison techniques, in particular due

to massive manipulation of vectors and matrices, are computationally heavy. Software devel-

opment event logs, generated from IDE usage, often have events at the thousands, hundreds

of different activities, hierarchical states, and many different resources associated with events.

Therefore, the aforementioned performance problem is usually noticeable. Natural language

techniques can mitigate it by performing initial filtering, aggregation of events and in finding

local regularities. Even if event aggregation is not desired in mining processes, the trade-off
between the practical aspects versus the accuracy of certain algorithms should be carefully

evaluated in the software development realm.

In this paper, we propose an approach to profile developers using a stack of text mining

to express developers’ fingerprints, and process mining to discover, model and assist in hy-

pothesis evaluation regarding their workflows. We used events collected from the IDE during

development sessions as input for the unsupervised learning techniques and process mining

algorithms. Additionally, since the process of coding can be represented as a grammar with

a specific semantic [90], we find it useful to assess how similar this grammar is to a natural

language, and in finding optimal parameters for the text mining algorithms.

1Athenian philosopher during the Classical period in Ancient Greece, founder of the Platonist school of thought,
and the Academy, the first institution of higher learning in the Western world.
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A development session executed by one developer at his/her IDE can be considered an

instance of a process, where the goal is to produce a software product or maintain an existing

one. Its workflow of activities depends on many factors, such as the development methodology,

program design or individual experience [37]. Furthermore, developers are usually free to

produce code without a referential model or guidelines on how to execute the coding tasks and,

most often without any intelligent guidance from traditional development tools. This poses

challenges when one wants to detect similarly or deviating programming profiles to assess

productivity and optimize resource planning.

To validate our approach for profiling developers, while controlling for spurious effects, we

performed a controlled experiment where, in the realm of a Python programming contest, a

group of developers had the same well-defined set of requirements specifications and a well-

defined sprint schedule. Events were collected from the PyCharm IDE, and from the Mooshak

automatic judge where subjects checked-in their code stepwise.

5.1.2 Students as Surrogates for Professional Software Developers

In this study we use students as surrogates for professional software developers. Therefore it is

worth reviewing the discussion in the literature on using students as surrogates for profession-

als.

Almost half a century ago, the practice of using students in research was already wide-

spread, due to the convenience of their availability and usual willingness to participate in ex-

periments. For instance, in consumer behavior (marketing) studies, researchers tested whether

students could be used as consumer surrogates, but results were inconclusive [63, 81, 188].

Also since the seventies, as reported in [175], students have been used as surrogates for man-

agers on Decision Support Systems (DSS). The same study reports that undergraduate students

were more used than graduate students, which could be a validity hindrance in that case, since

graduate students are more closer to managers in age, maturity and education.

Students have also been extensively used as surrogates in Software Engineering studies.

For instance, a study carried out with students on detection methods for software requirements

inspections [168] was replicated with similar results using professionals as subjects [167]. An-

other study on lead-time impact assessment for software development projects did not find

significant differences between students and professionals [92]. In [182], the performance in

PSP improvement tasks was compared between freshmen students, graduate students, and in-

dustry people, and again no significant differences were found between the three groups. Two

separate studies in Requirements Engineering provided somehow complementary conclusions.

While in [22] definitive conclusions about the suitability of students in projects could not be

drawn, in [191] the authors argue that it may be possible to influence students to provide an-

swers that are in line with industrial practice, although it was not clear under which conditions

could that influence be exerted in empirical investigations. A systematic literature review on

using students as surrogates for professionals can be found in [115]. The author concludes

that many factors influence the results of experimental studies such as the number of subjects,

nature of tasks and previous experience on that, motivation levels of subjects, training pro-

vided, and incentives for participation in the experiment. In other words, the appropriateness
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of students as surrogates for professionals depends on current study conditions. In section 5.5,

we argue why this may hold in our study.

5.1.3 Contributions

The main objectives for this work are the following:

• To evaluate if software development sessions can be mined as any natural language;

• To assess if coherent development fingerprints can be discovered from an event log con-

taining developer’s IDE interactions and submission of answers to several coding prob-

lems;

• To appraise the impact of individual behaviors in the outcome of a programming task

given a group of developers.

The remainder of this paper is organized as follows: section 5.2 provides background

related to the research area and emphasizes the need for the proposed approach. Subsequent

sections, outline the related work in section 5.2.4, detail the methodology and experiment setup

in section 5.3 and present the results, its corresponding analysis and implications in section 5.4.

Threats to validity are presented in section 5.5 and the concluding comments and future work

in section 5.6.

5.2 Background

5.2.1 Language Models

Natural languages (e.g., English, Portuguese, etc.) possess a rich vocabulary and therefore are

complex and powerful. A programming language or a sequence of development actions in

plain English, as seen in Figure 5.12, is an artificial language but is expected to follow the

same principles of a natural language. The rationale is that although a given piece of software

is written with an artificial language, it is a natural product of the human mind as prose or

poetry in natural language [90]. As such, it is also amenable to statistical analysis like the

ones performed in the area known as “text mining”, where Natural Language Processing (NLP)

algorithms and analytical methods are used.

We argue that development sessions viewed as a sequence of actions like those in Figure

5.1 and represented by a well-defined vocabulary, can be regarded from the same perspective.

In this paper, we describe a novel method to detect different developers’ profiles based on

models built from development interactions using n-gram probabilistic language models [54].

Furthermore, we combine these unsupervised learning models, which present a good fit in

capturing local regularities in text data, and process mining algorithms, which are known to

perform well in the modelling of complex business processes.

2This word cloud, where the size of each word is proportional to its relative frequency, was generated from data
collected during the validation experiment of our proposed approach.
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Figure 5.1: Word cloud with example of frequent activities on interactions in PyCharm and
submissions to Mooshak

5.2.2 Topic Modeling

Understanding unstructured data is a major challenge in software development, and having a

predefined data model is not a common scenario when dealing with such type of data. Moreover,

those data are typically text-heavy. As such, topic modeling has become one of the most used

methods to mine software repositories [42].

Topic modeling is a method for unsupervised classification of documents, by modeling

each document as a mixture of topics and each topic as a mixture of words [159]. Despite

some limitations, such as the order of the documents, it is frequently used to build models

from unstructured textual data, as it presents an effective means of data mining where subjects

represent documents or even a textual representation of actions executed in certain contexts

[5].

Within the most prevalent methods used to mine software repositories, we find algorithms

such as LDA and many of its variations, Latent Semantic Indexing (LSI), Latent Semantic Analy-

sis (LSA), Probabilistic Latent Semantic Indexing (PLSI) and Independent Component Analysis

(ICA) [24, 43]. These algorithms are used to cluster documents, identify features, derive source

code metrics for bugs prediction, assess code evolution, trace links between pairs of artifacts

and detect code clones, among other things [42, 135].

5.2.3 Software Development Process Mining

Process modeling is a persistent topic in the research literature concerned with software devel-

opment practices. The analysis of fingerprints in event logs [198], the discovery of deviating

cases using trace clustering [91] and mining of sequences of developers interactions [53] are

examples of topics covered by researchers to overcome or mitigate recurrent problems. How-

ever, often the suggested solutions are complex and difficult to automate in a coherent software

development process mining pipeline. These constraints led researchers to highlight that soft-

ware analytics does not need to be hard and, on the contrary, it can and should be simplified [4,

68, 69].

In Table 5.1, we present a comparison of typical text mining characteristics and purposes,

along with how we view topic modeling applied in software development process mining.
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Table 5.1: Traditional Text Mining (TM) vs. Software Development Process Mining (SDPM)

TM SDPM

Inputs
Corpus Documents/Articles Development Work Sessions

Document Mixture of Topics Mixture of Behaviours

Topic Frequent Words/Terms Frequent Actions/Commands

Outputs
Discovers Distinct Subjects/Topics Development Patterns

Usefulness Identify Social Trends Optimize Resource Allocation
Frame Research Interests Detect Practices Deviations
Sentiment Analysis Forensic Project Analysis

Software developers execute a stream of actions/commands when using their IDE. Those

commands, seen as a work session, can also be represented textually as a narrative along the

timeline. We expect that stream to contain the semantics required to identify different developer

profiles. Therefore, logs containing a sequence of IDE commands/actions can be mined with

topic modeling as any other document would be in searching for different topics. In this context,

we are searching for different behaviors such as programming styles or patterns of IDE usage.

5.2.3.1 Preliminary definitions

To justify the usefulness of collecting IDE events, and provide context to our proposal, we

introduce in this section some preliminary definitions required to understand concepts such as

development actions, development sessions, development actions repository and development

profiles.

Definition 1. Development action

• A development action is an event defined as a tuple (a, c, t, (p1,v1),...,(pn,vn)) where a is the
command action or process activity name, c is a development session or case id, t is the timestamp
and the set (p1,v1),...,(pn,vn) (where n > 0) contains the event or case properties/attributes and
corresponding values, such as developer location, operating system or IDE type.

• A development action is defined by a token t included in the development session vocabulary to be
formed by a set containing all the possible IDE commands, denoted by V:

V = (t0,t1,...tn) : ∀t ∈ V, t = 〈ide_command_or_activity〉

Definition 2. Development session

• A development session is a trace, defined by a non-empty sequence σ=e1,...,en of command actions
such that ∀i,j ∈ [1..n] ei.c=ej.c.

• A development session is defined by a sentence formed by a set of tokens from vocabulary V, denoted
by:

ω = (t0,t1,...tn) : ∀t ∈ ω, t ∈ V

116



5.2. BACKGROUND

Definition 3. Development actions repository

• A repository of actions or event log is a set of development actions mapped to a variable number of
development sessions, defined as L=σ1,...,σn.

• We consider an event log a set of sequential tokens t from the vocabulary V, where t can be repeated.

Definition 4. Development profile

• An event log L can be partitioned into a finite set of groups called process variants or, in our case,
profiles or fingerprints, ς1,ς2,...,ςn, where ∃p such that ∀ ςk and ∀ σ i,σ j ∈ ςk, σ i.p=σ j.p.

The definition of process variant emphasizes that process executions in the same group

must have the same value for a given attribute, and each process execution belongs uniquely to

a process variant. In our approach, the same value for a given attribute will be dynamically

computed and concatenated into the original dataset. The algorithms to model processes will

then be based on this clustering action.

Definition 5. N-gram language models.

• A language model is a statistical model that allows computing the probability of a sentence, or
predict the next word in a sentence for a given language [31]. From a generative perspective, all
sentences of a (natural) language can be described in terms of the product of a set of conditional
probabilities [185]. Hence, the probability of a sentence ω = (t0,t1,...tn) is given by :

P(ω) = P(t0)P(t1|t0)P(t2|t0t1)...P(tn|t0t1...tn-1)

5.2.4 Related Work

5.2.4.1 Natural Language Models

Language Modeling. The use of natural language models was presented as an approach to

recommend analogical libraries based on a knowledge base of analogical libraries mined from

tags of millions of Stack Overflow questions [41]. This approach used a combination of a word

embedding technique and domain-specific relational and categorical knowledge mined from

Stack Overflow. Evidence showed that accurate recommendation of analogical libraries is not

only possible but also a desirable solution.

In [185], a system was built to assists developers in Application Program Interface (API)

usage with code completion recommendation, using a n-gram probabilistic language model,

supported by API sentences extracted from source code corpora.

Topic Modeling. A survey on the use of topic models when mining software repositories is

presented in [43]. The authors found that only a limited number of software engineering tasks

were being targeted, and researchers use topic models as black boxes without fully evaluating

their fundamental assumptions. Finally, they provide guidelines on how to apply topic models

to specific software engineering tasks.

With the goal of predicting future developer behavior in the IDE and to make better rec-

ommendations to developers, [51] used topic models and specifically applied the Temporal

Latent Dirichlet Allocation algorithm on two large interaction datasets for two different IDEs,
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Microsoft Visual Studio and ABB Robot Studio. The authors concluded that the approach was

promising for both predicting future IDE commands and producing empirically-interpretable

observation.

An approach to detect duplicate bug reports, using information retrieval and topic model-

ing, namely LDA, was presented in [159]. The latter revealed an improvement of up to 20% in

accuracy, when compared to other state-of-the-art approaches.

A study of software logging using topic models, with the aim of understanding the rela-

tionship between the topics of a code snippet and the likelihood of a code snippet being logged

(i.e. to contain a logging statement) is described in [122]. The findings highlight the topics con-

taining valuable information that can help to guide and driving developers’ logging decisions.

A similar approach is presented in [219], based on the structure and dynamics of knowledge

network in domain-specific Q&A sites, particularly on Stack Overflow.

A large-scale study on security-related questions on Stack Overflow was presented in [218].

Two heuristics were used to extract the questions that are related to security from the dataset

based on the posts’ tags. Later, to cluster different security-related questions based on their

texts, the authors used LDA tuned with a Genetic Algorithm (GA).

5.2.4.2 Mining Software Repositories

An application of mining three software repositories: team wiki (used during requirement

engineering), version control system (development and maintenance), and issue tracking system

(corrective and adaptive maintenance) in the context of an undergraduate Software Engineering

course was presented in [142]. Visualizations and metrics provided insights into practices and

procedures followed during various phases of a software development life-cycle, granting a

multi-faceted view to the instructor and serving as a feedback tool on the development process

and quality by students. Examples of insights produced by mining software repositories include

understanding and assessing: (i) the degree of individual contributions in a team, (ii) the quality

of commit messages, (iii) the intensity and consistency of commit activities, (iv) the trend and

quality of the bug fixing process, (v) the component and developer entropy and, (vi) process

compliance and verification. Experimentation revealed that not only product quality but also

process quality varies significantly among student teams and mining process aspects can help

the instructor in giving directed and specific feedback.

Mining Developers’ Behavior. An investigation on how developers spend their time based

on a fine-grained IDE interaction events dataset is presented in [139]. Its authors propose

an inference model of development activities to precisely measure the time spent in editing,

navigating and searching for artifacts, interacting with the user interface, and performing

corollary activities, such as inspection and debugging.

In [184], the authors present an empirical study where app stores were mined to find out if

developers update third-party libraries in mobile apps and also to identify update patterns. Ev-

idence found unveiled that mobile developers rarely update their apps regarding used libraries

and when they do, they mainly update Graphical User Interface (GUI)-related ones.

The measurement of developers’ elapsed time in program comprehension activities beyond

their IDE interactions is described in [216] in a field study with professionals. Findings showed
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that, on average, developers spend 58% of their time on program comprehension activities,

and they frequently use web browsers and document editors to perform program comprehen-

sion activities. Regarding the impact of programming languages, developers’ experience, and

project phase on the time spent on program comprehension, evidences shown that senior de-

velopers spend significantly fewer percentages of time on program comprehension than junior

developers.

The assessment of development behaviors and testing practices in real-world projects is

reported in [21]. The authors performed a study involving thousands of developers who were

monitored closely on their development activities during the usage of four different IDEs. Re-

sults demonstrated that half of the developers’ population does not test programs and they

rarely run their tests in the IDE. Regarding the behaviors and beliefs towards TDD, findings

show this activity as a non-frequent practice, and software developers only spend a quarter of

their time engineering tests, whereas they think they test half of their time.

Mining End-Users’ Behavior. Guidelines for the analysis of data collected during software

in operation (i.e. when a software product is used by its end-users) are presented in [162].

The authors adopted techniques for extracting knowledge on software operation data, such as

users’ profiling, clickstream analysis, and classification analysis.

Wrap-up. The aforementioned approaches use a series of n-gram models, topic modeling,

and process mining methods mainly to assist programmers in their most basic daily duties, and

to discover how end-users operate software products.

Our work uses similar methods however, it focuses on finding developers’ fingerprints with

the aim of understanding and profiling programmers’ behaviors. This approach may provide

professors a way to assess students’ performance within class tasks. Regarding software and

project managers, at an enterprise level, they may use it to improve their task assignment

strategies depending on project characteristics, devising adequate replacements in turnover

situations, and balancing the constitution of software teams. As for process quality monitoring

and enhancement, it can help in finding the good and bad processes followed by a development

team or organization.

5.3 Study Setup

In a controlled experiment where the main objective is analysing programmers’ behavior, there

is an obvious main source of variability that should be blocked: the nature of the programming

task itself. In other words, the optimal setting is to have several programmers3 performing the

same task. Other sources of variability are the programming language used, the IDE used, the

working conditions and available schedule.

Being able “recruit"participants in industry for such an experiment, while blocking all the

aforementioned factors is not feasible in a professional context. However, we were able to do

that during an academic event dubbed Pythacon4. In this event, the same well-defined tasks

on software development were performed individually by many participants. Pythacon’s first

3as many as possible to achieve statistical significance
4A twisted contraction of Python + Hackaton : https://sites.google.com/iscte-iul.pt/pythacon
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phase consisted of taking a Python in-class Massive Open Online Courses (MOOC) [75]. The

second phase consisted in a programming contest with six problems with increasing difficulty.

The Mooshak5 automatic judge was used to assess participants’ performance in their quest for

producing solutions in Python for the aforementioned problems [117].

The subjects of this experiment were undergraduate students from three 1st cycle Bologna

degrees6 at Iscte, a public university in Lisbon, Portugal. LCD students did not attend the first

phase because their syllabus already included two courses on Python. As such, they acted as

the control group regarding the “treatment” of taking an in-class MOOC.

All subjects acted as Python developers while trying to build solutions to the proposed prob-

lems, upon the PyCharm IDE7, in the same premises8 and an equal sprint duration (4 hours).

As such, the aforementioned confounding factors were blocked. We developed a PyCharm plu-

gin that captures all relevant IDE events, such as, navigational, editing and debugging actions.

Each Pythacon participant installed it in its IDE right after reading and signing an informed

consent. When starting the IDE for the first time after plugin installation, they were requested

to provide their student id number, that was added to the events log. As for the Mooshak auto-

matic judge, that somehow mimics a continuous integration pipeline with an acceptance test

battery, it has embedded login and logging mechanisms that allow identifying each participant

and its events (problem submissions and corresponding outcomes).

5.3.1 Development Sessions Extraction and Storage

Interaction events collected with our PyCharm plugin, were stored in a JSON file on each sub-

ject’s computer. A sample event instance is presented in Listing 5.1. The field tags are self-

explanatory.

By the end of Pythacon’s programming contest, all event files were uploaded to a central

server. Data were then stored into a MySQL database table where the username and event

timestamp were composed as an unique key for purging duplicated data. The BPMN model in

Figure 5.2 presents the complete schema for the data collection workflow.

5Available from its home page at http://www.ncc.up.pt/mooshak
6LEI (Computer Engineering), ETI (Telecommunications and Computer Engineering), IGE (Computer Science

and Business Management) and LCD (Data Science)
7https://www.jetbrains.com/pycharm/
8A large open-space where each participant had an individual table, a portable computer and good natural light
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Listing 5.1: Sample PyCharm Event Instance
1 {
2 " s e s s i o n " : " c51973e3−562a−4b65−b6df−49f4c37792e1 " ,
3 " timestamp_begin " : "2020−09−18T09 :0 0 : 06 . 0 54Z" ,
4 " username " : "87788" ,
5 " graduation " : " IGE " ,
6 " projectname " : " PythaconResolution " ,
7 " f i lename " : " P4 . py " ,
8 " extens ion " : " py " ,
9 " categoryName " : " NavBarToolbar " ,

10 "commandName" : "Run " ,
11 " platform " : " J e t B r a i n s s . r . o . / PyCharmCore " ,
12 " platform_branch " : "PyCharm " ,
13 " platform_vers ion " : " 2 0 2 0 . 2 . 1 " ,
14 " java " : "11.0.8+10 −b944 . 3 1 " ,
15 " os " : "Mac OS X 1 0 . 1 5 . 6 " ,
16 " os_arch " : " x86_64 " ,
17 " country " : " Portugal " ,
18 " c i t y " : " Lisbon " ,
19 . . . .
20 " hash " : "0000 a3a2cf78485419f15d7913789b16 " //To d e t e c t event tampering
21 }

5.3.2 Data Analysis

The complete workflow followed in data pre-processing, aggregation and analysis is presented

in Figure 5.3.

5.3.2.1 N-gram language models evaluation

Documents containing natural language, software code or development sessions, are often

repetitive and highly predictable. A good language model should capture the regularities in the

corpus. If carefully produced from a representative corpus, it will predict, with high confidence,

the contents of a new document drawn from the same population. In other words, the model

will not find a new document particularly surprising. In NLP, this idea is captured by a measure

called perplexity, or its log-transformed version, cross-entropy [90].

Given a document containing the textual representation of a development session within

the IDE, s = a1, . . . , an, where terms represent development commands or activities, and a lan-

guage model M, we assume that the probability of the document estimated by the model is

pM(s). We can write down the cross-entropy measure as:

HM(s) = −1
n

logpM(a1, . . . , an) (5.1)

and by the formulation presented in earlier:

HM(s) = −1
n

n∑
1

logpM(ai |a1, . . . , an) (5.2)

This measures how “surprised” a model is by looking at an unseen document. A model

with low entropy for target documents is expected to be a good model. Higher probabilities

are given (closer to 1, and thus lower absolute log values) to more frequent words, and lower
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Figure 5.2: Data Collection Workflow

probabilities to rare ones. If a hypothetical optimal model is deployed to predict developers’

actions, it is possible to guess what the next action would be and at the same time characterize

developers’ behaviors.

To shed light on how regular development sessions are, we performed a series of experi-

ments with both natural language and development sessions corpora, first comparing the “nat-

uralness” (using cross-entropy) of IDE actions on development sessions with English texts, and

then comparing various session corpora to each other to further gain insight into the similarities

and differences between sessions corpora.

Our natural language studies were based on a R package with widely used corpora from
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Jane Austen’s novels9. To compute the models perplexity and obtain the correspondent cross-

entropy, we used the SRI Language Modeling (SRILM) package10. All the models were evaluated

using a 5-fold cross validation strategy, meaning the corpus was randomly divided into 5 parts,

where 80% was used as the training set and 20% as the test set, and this process was repeated 5

times.

5.3.2.2 Topic models evaluation

To determine the optimal number of topics to model developers’ sessions, we used the R pack-

age ldatuning11, that applies an empirical approach rather than intuition. Metrics such as

9https://cran.r-project.org/web/packages/janeaustenr/index.html
10SRILM Toolkit - http://www.speech.sri.com/projects/srilm
11https://cran.r-project.org/web/packages/ldatuning/ldatuning.pdf
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CaoJuan2009 [38] and Arun2010 [13] are to be minimized (tend to 0), whilst metrics like De-

veaud2014 [59] and Griffiths2004 [77] are expected to be maximized (tend to 1). The lower the

distances to the objective values, the better the model and, consequently, the optimal number

of topics are found in that particular point.

5.3.2.3 Process models evaluation

Process Mining is now a mature discipline with validated techniques producing accurate out-

comes on several business domains [165]. Discovery is the ability to construct a process model,

by capturing the behavior of a process based on an event log [206].

Following model discovery, conformance checking stands for the confrontation of a process

model with the “reality” represented by the logged events during the actual execution of the

corresponding deployed process. Conformance checking can be used to detect deviations from

prescribed processes, determine differences and/or similarities between process variants or

verify the accuracy of documented processes [206]. It can also be used to calculate the efficiency

or to measure the quality of a process model. Quality is normally assessed considering four

metrics:

• Fitness. Represents how much behavior in a log is correctly captured (or can be repro-

duced) by a discovered model [23].

• Precision. Refers to how much more behavior is captured in the model than what was

observed in the log. It deals with avoiding overly under fitted models [148].

• Generalization. Focuses on avoiding overly precise models based on the assumption that

logs are by their nature incomplete, meaning that, to a certain extent, a model should be

able to reproduce not yet seen behaviour in the log [33].

• Simplicity. Alludes to the rule that the simplest model that can describe the behavior

found in a log is indeed the best model. Model complexity, the opposite of simplicity, is

dependent on the number of nodes and arcs in the underlying graph [177].

To calculate the previous metrics we used the Process Mining library for Python (PM4Py)12.

5.3.3 Research Questions

The research questions for this work are the following:

• RQ8: Do n-gram language models capture local regularities in software development

sessions?

Methods used. Computation of n-gram language models perplexity/cross-entropy using

SRILM and LDA with n-gram windows.

• RQ9: Can we coherently characterize development sessions in terms of fingerprints?

Methods used. Topic Modeling using the LDA algorithm with n-gram window tuning.

12https://pm4py.fit.fraunhofer.de/documentation#discovery
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• RQ10: Are there any significant variation in sessions simplicity and interactions magni-

tude between distinct participants?

Methods used. Process models discovery using the Directly Follows Graph (DFG) mining

algorithm and hypothesis testing.

5.4 Study Results

In this section, we present the results of our experiment, regarding its research questions.

Table 5.2: Participants Statistics

LEI ETI IGE LCD Total

Participants 12 9 7 9 37

Attended MOOC Yes Yes Yes No 28

RQ8. Do n-gram language models capture local regularities in software development

sessions ?

Local syntactic structure. To answer this question we estimated n-gram models of plain

English corpus and the development session IDE commands and their categories.

From Figure 5.4, we observe that, although English has a higher level of cross-entropy

across all n-gram models, it declines rapidly, saturating around tri- or four-grams. The same

happens with our development sessions models, which have generally lower cross-complexity

for unigram models, and also saturate around tri-grams models. This indicates, as expected,

that development sessions repetitive context can also be captured by language models.

Plain English IDE Action/Commands IDE Action/Commands Categories
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Figure 5.4: Plain English vs. Python Development Sessions Cross-Entropies using n-gram
models
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We find that a typical development session is far more regular than English, with entropies

starting from 4.2 bits and declining to 2.7 bits by IDE command and starting at 2.2 bits and

saturating around 0.7 bits for command categories.

Our findings may have implications in the way we manage developers’ activities. They

provide more and detailed evidence to confirm what was already mentioned by [51], the

possibility to design and build even more optimized recommendation systems to help and

guide developers on the activities they are executing or should be doing next. Moreover, they

shed light on the optimal number of n-grams to use, thus avoiding the waste of computing

resources and at the same time provide further evidence for the usefulness of using text mining

techniques to detect and monitor developers’ behaviors.

Semantics. In the context of IDE usage, each development session may have its own se-

mantics. Whilst to capture the local syntactic structure of a language we used n-gram language

models, to assess the semantics of the development sessions we used LDA. Figure 5.5 shows

the cross-entropy regarding the semantics analysis for the development sessions. It consists in

finding the entropy for n-gram models, each having k topics, where k varies from 2 to 10, and

where each combination of n-grams and k topics was calculated with a 5-fold cross-validation

strategy.
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Figure 5.5: Development sessions modeling using LDA with k topics and n-grams

As one can easily observe, when using LDA to assess the number of topics, entropy grows

with the order of the n-grams. The higher the n-gram window the less the model is able to

predict future cases because the perplexity is higher. Regarding the number of topics on each

n-gram model, we can confirm the expected behavior, when the number of topics increase,

independently of the n-gram model, the entropy tends to decline.

Concerning the interpretation of the n-gram results perspective, they show that, given the

randomness of IDE actions performed by developers, to increase the n-gram value in character-

izing a session, decreases the ability for LDA to find similar ones. As for the number of topics,

the bigger the number of topics the better the model can detect similar sessions.
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Based on Figure 5.5, we argue that, when using LDA to detect similarities within develop-

ment sessions, we should evaluate carefully the use of more than tri- or four-gram models. In

one hand we know that the higher the n-gram model, the higher the computational resources

needed. On the other hand we have evidences that five-gram models have an entropy of around

5 bits, which is by itself a high value.

RQ9. Can we coherently characterize development sessions in terms of fingerprints ?

Figure 5.1 in section 5.2.1 provided a small sample of the activities aggregating the com-

mands issued by developers. Those were defined according to the method used by [139], and

by adding extra activities reflecting the results of the submission events. Regarding IDE in-

teractions, the commands were recoded into activities like: Editing, Navigating, Debugging,
Refactoring, Executing and Spurious. As for the submission actions, we used their native identi-

fiers : Accepted_Answer, Wrong_Answer, Compile_Time_Error, Invalid_Submission, Runtime_Error
and Time_Limit_Exceeded. From these, we computed the optimal number of patterns(topics) by

assessing the probabilistic coherence of multiple topics using the metrics described in 5.3.2.2

and uni-gram, bi-grams, tri-grams and four-grams models only.
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Figure 5.6: Assessing the optimal number of distinct patterns to search

Optimal number of patterns. To decide the optimal number of patterns, we took into

account the highest value for the number of topics where any of the metric is close to the

objective value, either when minimizing or maximizing its value and therefore, we picked 37.

This number represents the size of the population, which in reality confirms that there is a great

deal of variance between sessions. When applying the LDA algorithm with k=37, due to the

average of the probabilities of an activity to belong to a session and the average of probabilities

of a participant to belong to a specific session pattern, LDA has placed the participants in only

19 different patterns. Figure 5.6 shows the optimal number of topics evaluation.
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High performers. Figure 5.7 shows the topics, or in our case, the referred fingerprints,

identified to characterize what we call the high performers13, the same is to say, the ones with

good process smells. In this group we have those who ranked above quartile 3, meaning that

they have answered correctly to at least four exercises. From the six fingerprints found for those

participants, we can observe the following:

• Fingerprint 19. Cautious coder. Aggressive executor. Contains a profile of development

centered in frequent editing actions, mixed with permanent execution of the code to

validate the result before submitting to Mooshak. This pattern was the fingerprint of

participant D.

• Fingerprint 20. Cautious coder. Reveals a similar pattern, however, with less prevalence

of program execution and therefore less testing actions. Exercise submission actions are

very rare. With this fingerprint we find 2 participants, G and H.

• Fingerprint 24. Cautious coder. Test skipper. With no surprise, in this fingerprint, we

find editing also as the most frequent action. However, the next common action is not

program execution, but submissions for validation. This pattern was the fingerprint of

participant C.

• Fingerprint 26. Insecure. Testers. Participants characterized in this group followed ex-

plicitly a permanent program execution, followed by editing activities. They have submit-

ted their answers infrequently, meaning that they have probably tested well their work

before any submission. This pattern was the fingerprint of participant F.

• Fingerprint 30. Insecure. Debuggers. This pattern reveals participants more focused on

debugging activities, followed by a mix of editing and navigational actions. In a certain

sense, it looks as if they have replaced their program execution tests with fine grain

debugging practices. This pattern was the fingerprint of participant E.

• Fingerprint 35. Balanced coders. Confident. Provides evidence for a pattern of high

frequency in editing, followed by a balanced persistence of program execution practices

and navigational activities. There were however no frequent activities related with

the submission of code to answer the exercises. It suggests these participants only

submitted their answers after careful review of their code and without the need for

deeper debugging tasks. With this fingerprint we find the top 2 participants, A and B.

Low performers. Figure 5.8 represents the characteristics of those who had more difficulties

in executing the tasks and which we may consider as having bad process smells. It plots the

unique fingerprints of the last eight participants, the ones with zero or just one correct answer.

• Fingerprint 7. General coding limitations. Reveals a practice focused almost exclusively

on editing actions, and a very small prevalence (near zero) of navigational, program exe-

cutions or exercise submission activities. This pattern was the fingerprint of participant

V.
13Eight participants were in this condition.
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Figure 5.7: Development fingerprints for the top(8) performers

• Fingerprint 18. General coding limitations. Shows a similar profile as fingerprint 7 re-

garding editing practices. However, program executions and answer submissions appear

more often in the complete work sessions, yet with a low frequency (near zero) when

compared with editing. This pattern was the fingerprint of participant U.

• Fingerprint 25. Limited python/algorithmic skills. It characterizes a practice where

editing is also the prevalent action and combines this frequently with debugging and

program execution activities. Answer submission is however infrequent, as none shows

in the most common actions. This pattern was the fingerprint of 5 participants, S, T, W, X

and Y. None of them has attended the MOOC training sessions.

• Fingerprint 33. Limited python/algorithmic skills. This practice is characterized as

usual by frequent editing actions, and then followed by a decreasing and balanced edit-

ing, navigational and refactoring decisions. However, submission actions are absent. This

pattern was the fingerprint of participant Z.

It is striking to observe that the fingerprints characterizing the high performers are signifi-

cantly different, either in the top activities and also in probabilities, from the ones describing

the low performers. Figure 5.9 presents the distinct fingerprints detected to characterize all

participants. Based on these findings, one may argue that the variation in the participants

scores was only due to the quality of the code they have produced, moreover, that the variation

in the fingerprints was due to their own programming skills. Additionally one may suggest as

129



CHAPTER 5. PRACTICES AND FINGERPRINTS

25 33

7 18

0.0 0.1 0.2 0.00 0.05 0.10 0.15 0.20

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3

debugging navigating

accepted_answer navigating editing

editing accepted_answer editing

editing editing executing

editing wrong_answer executing

executing wrong_answer editing

editing executing editing

executing wrong_answer

executing

editing editing

editing

editing editing editing

editing refactoring

navigating navigating

refactoring

editing editing navigating

editing navigating editing

navigating editing editing

editing navigating

navigating editing

navigating

editing editing editing

editing editing

editing

editing editing wrong_answer

editing executing

editing wrong_answer

executing

wrong_answer navigating editing

executing editing editing

executing spurious executing

wrong_answer wrong_answer

wrong_answer

editing debugging editing

navigating

editing editing

editing editing editing

editing

debugging executing debugging

debugging executing editing

debugging debugging

debugging debugging executing

executing debugging

executing debugging debugging

debugging executing

executing

debugging

editing editing editing

editing editing

editing

Beta

A
ct
iv
it
ie
s

Figure 5.8: Development fingerprints for the bottom(8) performers

an explanation for the top performers, the knowledge acquired in the course they belong to,

due to the MOOC training attendance or the dimension of their coding interactions during the

contest and not based on their coding behaviors. That is a possibility we cannot reject imme-

diately. However, we may assess this hypothesis if we mine, from a different perspective, the

overall process for each participant, course as a group of participants with same backgrounds,

according to their MOOC training participation and finally according to their performance.

If the reason for the higher performance is related with the magnitude of their interactions

or the quality of their code, we expect to see no significant variance in the process simplic-

ity amongst different participants. On the contrary, if variation in the process exists between

groups, that may be an indication that the quality of the outcome is indeed related to the de-

velopment workflow. Following the above rationale, we mined the correspondent processes

using a mining algorithm appropriate for processes with thousands of events and where a fuzzy

or spaghetti-like process behavior is expected to exist. We used a DFG algorithm from the

Process Mining library for Python mentioned earlier, and assessed the models produced using

the quality metrics described in section 5.3.2.3. Table 5.3 summarizes the fingerprint results

for the referred participants, along with the metrics used to evaluate the quality for the process

models discovered for each of them. The hypothesis we later tested was as follows: Are there

significant differences in the processes complexity or development interactions between the

different graduation courses or between the top, bottom and the rest of the participants ?.
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Figure 5.9: Development fingerprints characterizing all participants
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Table 5.3: Process Models Evaluation

Course Fingerprint Interactions Fitness Precision Generalization Simplicity Average Duration

By Course
LEI – – 33011 0.017 1 0.142 0.432 0.398 00:07:09
ETI – – 26557 0.818 1 0.153 0.439 0.602 00:05:01
IGE – – 16635 0.199 1 0.143 0.438 0.445 00:02:19
LCD – – 30057 0.198 1 0.126 0.426 0.438 00:06:47
MOOC Training
MOOC – – 76203 0.039 1 0.124 0.411 0.394 00:27:27
NO_MOOC – – 30057 0.198 1 0.126 0.426 0.438 00:06:18
Performance Type
High (Top 8) – – 23351 0.009 1 0.140 0.437 0.396 00:04:07
Low (Bottom 8) – – 25869 0.957 1 0.153 0.447 0.639 00:04:10
Middle – – 57040 0.037 1 0.121 0.410 0.392 00:19:58
High Performers
A ETI 35 4447 0.089 1 0.158 0.489 0.434 00:00:32
B IGE 35 3554 0.123 1 0.181 0.538 0.460 00:00:21
C LEI 24 1515 0.908 1 0.192 0.507 0.652 00:00:05
D LEI 19 2194 0.118 1 0.202 0.524 0.461 00:00:09
E IGE 30 4809 0.353 1 0.162 0.472 0.497 00:00:35
F IGE 26 2495 0.228 1 0.173 0.543 0.486 00:00:12
G LEI 20 2481 0.978 1 0.181 0.529 0.672 00:00:10
H LEI 20 1856 0.170 1 0.174 0.506 0.462 00:00:07
Low Performers

S* LCD 25 3520 0.042 1 0.179 0.514 0.434 00:00:22
T* LCD 25 4615 0.204 1 0.186 0.524 0.478 00:00:35
U LEI 18 2200 0.021 1 0.173 0.521 0.429 00:00:10
V IGE 7 1064 0.987 1 0.189 0.617 0.698 00:00:03
W* LCD 25 2599 0.128 1 0.188 0.544 0.465 00:00:12
X* LCD 25 4393 0.336 1 0.239 0.527 0.526 00:00:32
Y* LCD 25 1964 0.145 1 0.203 0.585 0.483 00:00:07
Z ETI 33 2781 0.831 1 0.251 0.565 0.662 00:00:13

Interactions - Represent actions within the IDE and Mooshak, Duration - Means the time to build/compute the process model
* - Participant did not attend the MOOC
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RQ10. Are there any significant variation in sessions simplicity and interactions

magnitude between distinct participants ?

Simplicity is one of the dimensions to analyze a process model, and to calculate it, PM4Py

takes into account only a Petri net model. The criteria adopted for calculating simplicity is

the inverse arc degree as described in [148]. Since we mined individual processes, they would

represent the behavior simplicity of each participant in the programming exercise.

Interactions magnitude refers to the sum of the number of command actions executed in

the IDE plus the submission of answers in the Mooshak platform. In other words, interactions

are represented by the events generated during the programming exercise by each individual.

The objective of this test is to assess if there is a relation between the performance along

with the sessions simplicity or magnitude of interactions on different sets of participants. For

this purpose we tried the Analysis of Variance (ANOVA).

ANOVA Test. Tests if there are significant different statistics between groups of participants,

or the same is to say, helps to figure out if one needs to accept or reject the null hypothesis. A

one way ANOVA is used to compare two means from two independent (unrelated) groups using

the F-distribution. The null hypothesis for the test is that the two means are equal. Therefore, a

significant result means that the two means are unequal. It has the ability to tell if at least two

groups were different from each other, however, it won’t tell which groups were different and

by which magnitude. If a test returns a significant f-statistic, then one may need to run an ad

hoc test (eg: Tukey HSD) to learn exactly which groups had a difference in means.

Tukey HSD ("honestly significant difference"or "honest significant difference"). Is a sta-

tistical tool used to determine if the relationship between two sets of data is statistically signifi-

cant – that is, whether there’s a strong chance that an observed numerical change in one value

is causally related to an observed change in another value. In other words, the Tukey test is a

way to test an experimental hypothesis.

Variables Assumptions. The use of ANOVA has several assumptions, such as: i) the depen-

dent variable should be measured at the continuous level or absolute scale; ii) the independent

variables should define at least two categorical treatments, that corresponds to the groups to

which the participants belong; iii) there should be no significant outliers in the groups since

they can have a negative effect on ANOVA; iv) the distribution of the dependent variables

should be as normally distributed as possible. Having all other conditions satisfied, we assessed

the normality.

Normality Tests. To test normality, we may use two well-known tests of normality, namely

the Kolmogorov-Smirnov and the Shapiro-Wilk tests. We only considered the Shapiro-Wilk test

to assess normality since the latter is more appropriate for small sample sizes (< 50 samples).

The results are presented in Table 5.4, and from them, we cannot reject the null hypothesis,

therefore, we accept that both Simplicity and Interactions are normally distributed justifying

the use of ANOVA.
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Table 5.4: Normality Tests

Shapiro-Wilk
Factor Statistics(W) Sig.*

Symplicity 0.94802 0.08334

Interactions 0.95760 0.16940

*Statistically significant if Sig. < 0.05

Findings. From Table 5.5, we can confirm the significant variance between the ones with

less quality in their code(Bottom5) and the rest of the participants (Top5 and Others), and this

difference is larger between the top five and bottom five performers. Figures 5.10 and 5.11

show the process models discovered for both, respectively. These results provide evidences to

state that, the differences in the proficiency between certain participants are not only related

with the coding skills each of them may have.

The process complexity followed by each developer may also influence the outcome, or

at least, may be used as a valid indicator for assessing quality between developers. However,

when these groups are configured to contain the top and bottom eight participants in terms

of score, that significance is no longer visible within the same levels of confidence (α < 0.05).

This reinforces the fact that if significant differences exist, they are most likely and only in

the individual behaviors. As for analyzing the variance between different courses, we found

no significant differences, either for the development sessions simplicity as well as for the

magnitude of interactions.

As mentioned earlier, we have assembled a method to capture local regularities and overall

structure of development processes, the so called fingerprints. Based on the data we obtained,

namely the probabilities of activities in the development sessions, and the metrics from the

discovered processes, we may classify those fingerprints as good or bad process smells and start

to create a catalog of software development process smells. Later on, models can be built to

evaluate automatically if a coding session is following a good or a bad practice and suggest

guidance actions to developers.
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Table 5.5: One-Way ANOVA Results

Factor Df. Sum Sq. Mean Sq. F-value p-value

Analysis of Variance Test - Top5/Bottom 5/Others
Simplicity Performance 2 0.01150 0.005750 5.984 0.00594*

Residuals 34 0.03267 0.000961

Post Hoc Test
Treatments Diff Lower Upper p-adj
Others-Top5 0.01418519 -0.02279834 0.05116871 0.6192293
Bottom5-Top5 0.06160000 0.01355700 0.10964300 0.0094695*
Bottom5-Others 0.04741481 0.01043129 0.08439834 0.0094774*

Interactions Performance 2 1431864 715932 0.555 0.579
Residuals 34 43821404 1288865

Analysis of Variance Test - > Q3(Top 8)/Q1(Bottom 15)/Others
Simplicity Performance 2 0.00335 0.001676 1.396 0.262

Residuals 34 0.04082 0.001201

Interactions Course 2 165352 82676 0.062 0.94
Residuals 34 45087916 1326115

Analysis of Variance Test - Top8/Bottom 8/Others
Simplicity Performance 2 0.00656 0.003279 2.963 0.0651

Residuals 34 0.03762 0.001106

Interactions Performance 2 34612 17306 0.013 0.987
Residuals 34 45218656 1329960

Analysis of Variance Test - LEI/ETI/LCD/IGE
Simplicity Course 3 0.00371 0.001237 1.009 0.401

Residuals 33 0.04046 0.001226

Interactions Course 3 3919333 1306444 1.043 0.386
Residuals 33 41333934 1252543

*Statistically significant if p-value < 0.05
Df. - Degrees of freedom, Sum Sq. - Sum of Square, Mean Sq. - Mean of Square
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5.5 Threats to Validity

The following types of validity issues were considered when interpreting the results of this

article.

Construct Validity. Construct validity refers to the degree to which inferences can legiti-

mately be made from the operationalizations in a study to the theoretical constructs on which

those operationalizations were based.

For operationalizing language models assessment, we used metrics such as perplexity and

cross-entropy, and CaoJuan2009, Arun2010, Deveaud2014, and Griffiths2004 to evaluate, from

an empirical perspective, the optimal number of topics, and validated their values from multiple

perspectives. Other metrics could have been used for the same purpose, such as topic coherence,

which may lead to recommending a different optimal number of topics.

Since our sample was not very large, we had to use it for training and test purposes. To

strengthen significance, models were trained using 5-fold cross-validation. We are aware that

process model metrics such as Precision and Generalization are far from being usable in a

more generic process mining context. However, in this study, we were only focused on process

simplicity, and regarding that purpose, the mining and tests are valid since we used the same

algorithm for all participants.

Each participant used their student number to activate the PyCharm events collector plugin.

This approach served as an identification method. Events collected and stored in JSON files

on developers’ devices could have been manually changed. We tried to mitigate this threat of

having data tampering by using a hash function on each event at the moment of its creation. As

such, each event contains not only information about the IDE activities, but also a hash code

introduced as a new property in the event for later comparison with original event data.

Internal Validity. Internal validity refers to the degree of confidence that the causal rela-

tionship being tested is trustworthy and not influenced by other factors or variables.

One typical threat to internal validity related to how subjects are selected. In our case, the

population from where our sample was taken, corresponds to all undergraduate students in

computer science areas in our university that had attended at least two programming courses.

That population was invited to participate by email. The sampling process was the result of

a random process of free will where those students that spontaneously decided to participate

performed their inscription online. As such, we do not consider this to be a significant validity

threat.

Another recurrent internal validity threat is the existence of spurious factors affecting the

outcome of the experiment. In mitigation, the programming contest in our study allowed us

to block possible confounding factors since they were constant for all subjects: the program-

ming language (Python), IDE (PyCharm), problem complexity (same requirements spec), sprint

schedule (4 hours), environment conditions (large shared open space with private tables), and

external interference (no contacts were allowed). Once again, we believe that this threat is also

not significant.

External Validity. External validity refers to the extent to which results from a study can

be applied (generalized) to other situations, groups or events.

To fully claim that undergraduate students are surrogates of professional programmers, a
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representative sample of both groups should be assigned the same requirements specification

for a Python program, to measure the difference on their outcome. We are not aware of such a

study having been published. Nevertheless, there is a likelihood that our students are at least

good surrogates for novice professional software developers in Python, because:

(i) Python has a low learning curve, based on our experience, corroborated by [152], so

that the level of proficiency of a professional Python programmer seems to be achievable

quickly;

(ii) our students had attended successfully, on average, two Python courses;

(iii) a questionnaire filled during inscription showed that participating students, albeit having

gone through similar academic paths, had different maturity and skills, as we would ex-

pect in professional programmers; that difference most probably will not fade out within

the one or two years that will take for the vast majority of these students to become

professionals.

Conclusion Validity. The conclusion validity describes our ability to draw statistically

correct conclusions based on the measurements. A common threat here is the sample size,

but in our case we were able to get a sufficiently large number of subjects to grant statistical

significance.

We carefully evaluated the models perplexity computed to answer RQ9, and the assumption

tests to justify the applications of the statistical tests in answering RQ10, however, we have also

to accept that our sample is not of large proportions. We performed an experiment using data

from 37 software developers executing well defined and identical programming tasks. Since

this is a moderate population size for this type of analysis, we agree this may be a threat to

generalize conclusions or make bold assertions. Nevertheless, to our best knowledge, this is the

first study involving development sessions and the usage of language models, text and process

mining to detect developer’s fingerprints during programming tasks. As such, researchers

can start from our initial findings and try to falsify our current results and correspondent

conclusions.

5.6 Summary

Main conclusions. Profiling developers is challenging since many factors, such as their skills,

experience, development environment and behaviors, may influence a detailed analysis and the

delivery of coherent interpretations.

We mined the PyCharm and Mooshak events from a group of developers during a Python

programming contest aiming to solve six different exercises. We used n-gram language models

and text mining to characterize developers’ profiles, and process mining algorithms to discover

their overall workflows and extract the correspondent metrics for further evaluation.

Our research regarding development interactions shows that they can be mined as a nat-

ural language and using text mining methods with tri- or four-grams being the optimal value

for such task. Findings show that we can clearly characterize with a coherent rationale most

developers, and distinguish the top performers from the ones with more challenging behaviors.
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We also confirm a significant difference in the process simplicity between the top performers

and the ones with unsatisfactory outcomes on the programming exercises.

In summary, results provide evidences to sustain that, to achieve software with good quality,

it is not only needed to have developers with the right skills and consistent knowledge about the

languages and tools used on their daily tasks. It is also desirable to have developers to follow

consistent practices during the development sessions, otherwise, their behaviors may impact

the final outcome, thus, properly profiling developers, provides a software project manager

a clue for the selection of appropriate tasks he/she/they should be assigned. Moreover, this

approach may lead ultimately to the creation of a catalog of software development process

smells.

Our approach can be particularly relevant in cases where educators want to assess devel-

opment profiles within a group of students, before and after classes are given. It can be also a

valid approach to measure and monitor productivity within and between software teams. As

we showed, by analyzing the development sessions fingerprints and complexity, non efficient

developers can easily be detected.

Last generation IDEs provide a plethora of functionalities, such as code completion,

automated packaging and optimized continuous integration features to assist programmers on

their daily activities. However, these IDEs do not guide developers on their coding practices.

The fingerprints we detected, either classified as good or bad practices14, may be used as a

trigger for IDE vendors to evaluate the possibility to include additional intelligence in their

tools, such as task/workflow monitoring and suggesting program runs, identify testing slots

and appropriately recommend debugging and refactoring actions along a development session.

Future work. We are still scratching the surface in mining developers’ activities. Existing

mining tools are not ready yet to automate the complete flow of: collect and pre-process data,

discover processes behaviors, compute metrics, and export results. Further work is required

to set up a pipeline capable of providing just-in-time feedback, both to software developers,

to provide self-awareness on performance/behavior, as to software project managers, since the

profile of team members allows a more informed resource allocation.

Novel software development paradigms, such as low and no code, shift the focus from the

textual programming and put it into the visual artifacts and components from which modern

applications are built upon. Our work fits well in cases where textual programming is banned,

giving rise to the so-called citizen developers, and therefore, most likely to distinct development

processes and coding behaviors when compared with conventional programming practices. We

plan to perform additional experiments using low or no code platforms and assess developers’

process fingerprints and overall behaviors.

14We already called them - software development process smells
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

“If two people agree on everything, one of them is unnecessary.”

—Winston Churchill(1874-1965)1

6.1 Introduction

Modern software projects require the proper allocation of human, technical and financial re-

sources. Very often, software project managers make decisions supported only by their personal

experience, intuition, or simply by mirroring activities performed by others in similar contexts.

To mitigate the risks associated with such practices, software repositories are used as data

sources for many different forms of analytics related to the software development processes.

However, in such a context, these repositories have many flaws, thus impacting the quality of

the data used and the interpretation of findings in a broad set of analyses. As a consequence,

wrong conclusions and decisions may emerge frequently causing financial losses and other

undesired outcomes, such as low quality or overdue deliveries.

Mining software development sessions, process fragments, or complete end-to-end

processes may contribute to reducing the uncertainty related to the real duration of develop-

ment tasks and the workflow adopted by developers. We mined the use of the IDE by software

developers in three different scenarios by collecting events during their development sessions.

Furthermore, we used process mining to discover their real workflows, unveil insights from

their coding practices in multiple refactoring tasks and characterize their behaviors in a pro-

gramming contest.

We expect that our research may open new research threads and on deriving mitigation

solutions to problems faced by both developers and their organizations regarding the software

development process. In this chapter we provide a synthesis on how far we have progressed in

that direction, recapping both the contributions and their limitations and provide a roadmap

for future work along several lines.

6.2 Synthesis

In chapter 1, we presented the scope, fundamental topics, the research problems, and the corre-

spondent questions to sustain the purpose of this dissertation: i) to address the incompleteness

of the repositories used to assess software processes, ii) the inability to accurately express de-

velopers’ workflows and their impact on software products and iii) the challenges in profiling

developers’ due to the great variability of their behaviors during development sessions.

In chapter 2, a systematic literature review characterizes the current state of the art con-

cerned with software development analytics and its application in the field paving the way to

include our proposed methods within the overall software development domain. We concluded

that few works were performed in mining software development processes beyond what tra-

ditional software repositories allow. Moreover, we found that process mining methods were

rarely used, and when they were, it was to mine code executions or end-users behaviors.

1Politician, Writer and Nobel Prize in Literature(1953)
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To assess the possibility of using process mining algorithms in mining development prac-

tices, in chapter 3, we evaluated the efficiency of development teams and confirmed that a great

deal of variability exists among individuals and among teams.

In chapter 4, we mined during distinct refactoring activities, performed by more than

one hundred developers, both product and process metrics, aiming to evaluate the existence

of relationships between them. We found non-neglectable correlations between product and

process complexities and several other process-driven metrics. Based only on these metrics, we

built prediction models to detect the type of refactoring practices applied by those developers.

Additionally, we were able to produce an accurate prediction of the potential reduction in

software complexity, achievable by a refactoring task.

Chapter 5 presents a study where we test some of our assumptions and validate our ap-

proach and proposals in mining software development sessions. We were able to detect, not

only coherent fingerprints left by developers, but also confirm that differences in proficiency

between high and low performers were, at least partially, related to the followed process (i.e.

their coding practices).

In chapter 6, we summarize the main contributions and identify potential use cases for

our proposed methods, targeting both industry and academia. Additionally, we describe a few

issues still present when applying process mining methods and tools in software development

analytics. Finally, to conclude this dissertation, we detail some of the main opportunities in

research related to software development process mining and where it can fit in contemporary

software development projects.

For a quick reference, we provide the research problems and main findings in Table 6.1.

6.2.1 Limitations

We are just scratching the surface in mining developers’ activities using process mining tools.

Although our method collects events during real development sessions, we cannot underesti-

mate the fact that we used only IDE events, and in one case, check-in events in the context

of a programming contest. In a more complete scenario, events from other tools should also

be considered, such as those from documentation, website browsing, bug tracking tools, and

project management platforms. In other words, adding events from tools containing informa-

tion about documentation, project management decisions, communication between developers

and managers, Q&A services, test suites, and bug tracking systems, would allow building more

robust models to comprehend development practices and the relations among software product

features and their underlying development processes.

Notwithstanding, our approach provides new insights on the software development process,

such as identification of correlations between product and process dimensions, prediction ca-

pabilities around coding practices, and characterization of developers’ behaviors.
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Table 6.1: Summary of findings

Research Questions Results / Findings

Chapter III
RP1

RQ1 From an event log containing developers IDE commands/actions, we were able to model teams’ behavior with
moderate-to-strong Fitness and Precision values and yet achieve readable models. The need to answer this question
is vital to discover processes followed by different people, that may be using different tools, in different locations but
contributing to the same final outcome or product. The importance of understanding and measure teams’ dynamics
has grown with the current business trends that lead to GSE and GSD, as in these kinds of projects, the usual
monitoring techniques are obsolete [105].
We confirmed that, even for a well-defined software development task, there may be a great deal of process variability
due to the human factor. We were able to identify when developers were more or less focused in the essential tasks
they were required to perform. Less focused teams had the more complex process models, due to the spurious /
non-essential actions that were carried out. In other words, they were less efficient. Experts’ opinion confirmed that
those teams also were less effective in their expected delivery. We therefore concluded that a self-awareness of the
performed process rendered by our approach, may be used to identify corrective actions that will improve process
efficiency (less wasted effort) and may yield to better deliverables, i.e. improved process effectiveness.

RQ2 We were able to discover and reconstruct process models representing the efficiency of software development teams,
where, in some cases, members were working individually, each with their own IDE setup configurations. We
confirmed that process mining may play a fundamental role in assessing the efficiency of software development
teams and in potentially contributing to keep them focused on their tasks by checking and enforcing compliance
to the prescribed processes. Every project manager wants to have in the projects he/she manages the most efficient
and/or adequate resources. As this is expected to increase productivity in the development, measuring which teams
or individuals are more efficient is a step further for better planning future software development projects.

Continued on next page

146



6
.
2
.
S
Y
N
T
H
E
S
I
S

Table 6.1 – continued from previous page

Research Questions Results / Findings

RQ3 By assessing the way a task is executed and the proficiency achieved, we were looking if there was any relation
between those on the software development realm. In general, teams with less complexity in their models were
among the most proficient in the task. This means that, they not only understood what was requested, but also had
the maturity to deliver what was expected by following a simple process. They were not only effective, they were also
efficient by being focused in the task. On the contrary, teams with insufficient proficiency produced long and complex
models or, in very short time, they created very fuzzy models with too many generic events. These teams were the
ones where more risk aroused from a development project perspective due to their erratic behavior and uncertainty
around the expected deliveries. Some of those teams did not perform very well and quality was impacted, and some
others did not even deliver what was expected. In a real-world scenario, these teams would have been identified as
the most expensive teams because their productivity was indeed very low. This gives us some evidence that teams’
proficiency can be inferred by analyzing mined process models representing their behavior.

Chapter IV
RP2

RQ4 We confirm, as expected that teams using a plugin for refactoring (JDeodorant) reduced software complexity more
effectively and with simpler processes than the ones that performed refactoring using only Eclipse native features.

RQ5 We found moderate correlations (≈43%) between software cyclomatic complexity and process cyclomatic complexity
in manual refactoring tasks.

RQ6,RQ7 Using only process driven metrics, we computed ≈30,000 models aiming to predict the type of refactoring method
(automatic or manual) teams had used and the expected level of software cyclomatic complexity reduction after their
work sessions. The best models found for the refactoring method and cyclomatic complexity level predictions, had
an accuracy of 92.95% and 94.36%, respectively.

Continued on next page
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Table 6.1 – continued from previous page

Research Questions Results / Findings

Chapter V
RP3

RQ8 From a syntactic structure perspective on the development sessions, we observed that, although English has a higher
level of cross-entropy across all n-gram models, it declines rapidly, saturating around tri- or 4-grams. The same
happens with development sessions models, which have generally lower cross-complexity for unigram models, and
also saturate around tri-grams models. This indicates, as expected, that development sessions repetitive context can
also be captured by language models. Regarding the semantics, cross-entropy grows with the order of the n-grams.
The higher the n-gram window the less the model is able to predict future cases because the perplexity is higher.
Regarding the number of topics on each n-gram model, we can confirm the expected behavior, when the number of
topics increase, independently of the n-gram model,the entropy tends to decline.

RQ9 Findings show that we can clearly characterize with a coherent rationale most developers, and distinguish the top
performers from the ones with more challenging behaviors. This approach may lead ultimately to the creation of
a catalog of software development process smells. It was striking to observe that the fingerprints characterizing
the high performers are significantly different, either in the top activities and also in probabilities, from the ones
describing the low performers.

RQ10 We confirmed the significant variance between the developers with less quality in their code(Bottom5) and the rest
of the participants (Top5 and Others), and this difference is larger between the top five and bottom five performers.
Process models discovery and quality metrics provide evidences to state that, the differences in the proficiency be-
tween certain participants was not only related with the coding skills each of them may have. The process complexity
followed by each developer may also influence the outcome, or at least, may be used as a valid indicator for assessing
quality between developers.
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6.3 Overall Benefits

We demonstrated the feasibility of building cross-cutting analytical models in software

projects, such as the one used for detecting manual or automatic refactoring practices. Events

from the development tools and support activities can be collected, transformed, aggregated,

and analyzed with fewer privacy concerns or technical constraints than source code-driven

metrics. This makes our approach agnostic to programming languages, geographic location,

or development practices, making it suitable for challenging contexts such as in current

global software development projects. Initial findings are encouraging and lead us to suggest

practitioners may use our approach in other development tasks, such as defect analysis and

unit or integration tests. Among others, we foresee that our contributions may provide benefits

for the following stakeholders: IDE providers, consultants, practitioners, and researchers.

For IDE Providers. The last generation of traditional IDEs2, and those hosting their services in

the cloud3, provide a plethora of functionalities, such as code completion, automated packaging,

and optimized continuous integration features to assist programmers in their daily activities.

These platforms ground their functionality on integration with source code repositories4 and

provide consistent connections with issue/bug tracking systems5 to manage ongoing projects.

Many of these IDEs offer the possibility to collect event data and usage statistics from the

development sessions. While the goal of this feature is to provide data for other vendors to

improve their own products, we believe there might be another purpose for this data - the

opportunity to build native repositories, similar to the ones that exist for the source code but,

instead, for storing and dealing with development events. A niche market, therefore, seems to

exist for analytics services associated with the software development process, as an add-on for

software project management platforms. Cloud-based IDEs are particularly suitable for this

purpose since their underlying platforms6 allow the combination of development data, event

collection, event management, and storage in one single place.

Our approach allows software development managers to understand on-the-fly the develop-

ment status without using project management tools, which are often not updated, or without

code repositories statistic tools. In near real-time, they can check the processes being followed

by individual developers or the teams they manage. Continuous conformance checking is an-

other feature allowed by this approach as it allows us to compare modeled processes against

their real executions.

This approach might be the birth of a set of methods for forensic analysis on software

development projects since we can combine source code evolution with process evolution in

one single source-of-truth.

For Consultants and Practitioners. Process mining may be applied in finding bottlenecks, de-

viations, or performance issues within software development processes, the kind of things that

2e.g. Eclipse, Visual Studio Code, IntelliJ IDEA, PyCharm, NetBeans, Sublime Text or Brackets
3e.g. Cloud9, Codio, Glitch, Gitpod or Azure Visual Studio Code Online
4e.g. Github, BitBucket, SourceForge, ProjectLocker or GitLab
5e.g. Bugzilla, Jira, Airbrake, Backlog, Mantis or Redmine
6e.g. Azure, AWS or Google Cloud
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usually trigger software process improvement programs within many software development or-

ganizations or departments. The knowledge related to developers’ behavior while using an IDE

can be the basis to design innovative consultancy services. For instance, the availability of APIs,

cloud components, and serverless technologies, also known as Function as a Service (FaaS),

may be used to analyze software development processes on-demand. Clients therefore would

not need to maintain the infrastructure to support their decision-making processes within the

software development domain.

Our proposed approach can be particularly relevant in cases where product metrics are

not available or are difficult to obtain. It can be also a valid approach to measure and monitor

productivity within and between software teams. As we showed by analyzing sessions’ com-

plexity and software cyclomatic complexity variance, non-efficient teams can be easily detected.

Our approach easily supports real-time data collection from individuals located in different

geographic zones and with a multitude of development environments. Because data collection

is not dependent on code repositories and is decoupled from check-ins and/or commits, process

and code analysis can be performed before repositories are updated. Development organiza-

tions can leverage this approach to apply conformance checking methods to verify adherence

of developers’ practices with internally prescribed processes. This facilitates mainly the detec-

tion of low-performance practices and may trigger quick correction actions by project managers.

For Researchers. Some limitations are related to data collected, as IDE events alone are not

enough to provide a holistic perspective on developers’ daily activities. The combination with

other events flowing from the operating system can provide an improved understanding of the

software development process, using the same or alternative process mining methods and tools.

Our approach can be useful in cases where educators want to assess development profiles

within a group of students, before and after classes are taught. It can be used to measure and

monitor productivity within and between software teams. As we showed, by analyzing product

and process complexities, non-efficient developers can easily be tracked.

Current work can be expanded in breadth and in-depth. We mostly explored the control-

flow perspective, but others are worth exploring, such as the organizational and performance

perspectives. Devising team dynamics based upon the identification of artifacts impacted/-

touched by developers can also be another interesting research path.

6.4 Research Opportunities

It is important to understand what went wrong or unplanned, based upon past process in-

stances, to enable just-in-time corrective actions while the process is being executed. The

IDE-based process mining architecture presented in this dissertation is the base of our Soft-

ware Process On-the-run Tracking System (SPOTS) platform, that will provide near real-time

software development process insights, at the individual or team level, such as in the PSP [93],

or TSP approaches [94], but in an automated fashion. According to [206], this kind of opera-

tional support is the most advanced form of process mining action. Initial research artifacts are

presented in Appendix A in sections A.2, A.3 and A.4.
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There is also margin to research how the development process smells [211] may be used to

assess software process drift management. Machine learning techniques are plausible candi-

dates to automatically classify mined models as good or bad process smells.

6.4.1 Software Development Process Mining Microservices

The constant change in organizations’ business requirements often induces the modification of

software application design. Such demand requires software development teams to also find

innovative software architecture styles to accommodate application scalability, development

flexibility, and adaptability to evolving requirements. However, many organizations have single-

tiered software applications in which all functionality is bundled into a single program for

a single platform. Those so-called "monolithic"applications, where components are usually

highly interwoven, rather than being architecturally separate, jeopardize the accommodation

of the aforementioned change. To mitigate problems arisen by traditional monolithic software

systems, organizations are migrating to MicroServices Architectures (MSA), where applications’

functionality is broken into a small set of services, each running independently, often deployed

in a virtualized environment [116]. The MSA, a variant of the Service-Oriented Architecture

(SOA) structural style, arranges an application as a collection of loosely coupled services and

brings forth numerous benefits, whilst from the user’s perspective, the interaction with the

system remains the same. MSA has been also introduced in the context of software development

processes connected to the DevOps realm, where development and continuous deployment are

closely linked [194].

Many of the aggregation, transformation, and analysis methods we used in this work can

be ported to a public, private, or hybrid cloud platform with a MSA approach. Services can be

organized around software development process mining capabilities and be implemented using

different programming languages, databases, hardware, and software environment, depending

on what fits best. They should remain small in size, messaging-enabled, bounded by the soft-

ware development process context, autonomously developed, and independently deployable.

The blockchain protocol can help in decentralizing, building, and releasing such microservices

with automated and yet secure processes [197]. It can also foster innovation if included from

the ground in platforms aiming to reward people according to the experiment data they have

shared with the community.

6.4.2 Software Development Process Mining Pipeline

As mentioned earlier, traditional software repositories have limitations and imprecisions. To

expand the analytics coverage on mining software development processes, we should explore

non trivially used repositories, such as the IDE. This is particularly interesting to drive stud-

ies aiming to combine development perspectives: i) product quality and ii) the underlying

development process.

However, to streamline such research, many manual tasks need to be properly automated,

considering that most process mining tools are not ready for non-human intervention. Due to

this reality, multiple metrics in this work had to be extracted semi-automatically, using a tool

but not dispensing user interaction. This is a strong limitation in advancing the research based
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on event data and current process mining methods. A MSA approach seems to be a good fit for

building a coherent, automated, and orchestrated pipeline for software development process

mining using the earlier identified microservices.

Additionally, research combining software product and process data is scarce and exper-

iments in this area are difficult to design and execute. To mitigate this problem, we expect

an increment in shared datasets containing this hybrid data, providing that privacy and/or

anonymity on sensitive information is guaranteed. This may be facilitated if the suggested

pipeline building blocks are available.

6.4.3 Low and No Code Paradigms

Modern software development projects incorporate low and no code practices to enable faster

development cycles requiring little to no coding in order to build and deliver applications

and processes. Low-code development platforms are seen as advanced IDEs which employ

drag-and-drop software components and visual interfaces to replace extensive coding. They

provide higher levels of abstraction that allow a major reduction in hand-coding to develop

an application by means of high-level visual modeling languages [86]. This paradigm shift in

software development may also require a change in the way we assess critical properties of a

software project, such as quality, maintainability, and evolvability.

The approach proposed in this dissertation is applicable in low and no-code platforms,

where textual programming is brought to a minimum or even banned, giving rise to the so-

called citizen developers. It seems more adequate to assess product complexity and project effort

estimation based on the interaction events with the platform’s IDE, instead of evaluating the

automatically generated code, since those events allow identifying the composed components

for building an app, as well as citizen developers’ behavior.

6.4.4 Forensic Readiness in Software Development Processes

Digital forensics is the process of investigating a computer system to determine the cause of

an incident [189]. Although forensic readiness is a well-known concept, addressing it in the

context of the software development process is a recent endeavor [56]. Software development

process forensics is therefore the process of investigating the sequence of activities, events, and

decisions to determine the cause of error-prone components or failed projects.

The approach proposed in this dissertation opens the opportunity for new research related

to forensic analysis on software development processes, exploring a combined perspective of

produced artifacts along with the underlying processes. As mentioned in section 1.1.1, it is

somehow the equivalent of combining the information collected by the FDR and the CVR. This

analysis is typically in the interest of figuring out what happened, when it happened, how it

happened, and who was involved in software project failures from a process perspective.

Closure. On revising and summarizing the evidence provided by this dissertation, we have to

encourage others to pursue this investigation. As Alvin Toffler suggested us in his legacy book

"Future Shock" fifty years ago, even if it seems easier to focus on software artifacts - the "things",

we should pay attention to software development interactions - the "processes".

152



6.4. RESEARCH OPPORTUNITIES

We have strong evidence to think that Process Mining is vital in software process compre-

hension, especially when novel data sources are added to the equation. Prediction based on

event data captured from the IDE is possible and overall event-based software project predic-

tions (including financial aspects and human resources involved) is a long term and challenging

journey, but yet, an achievable goal.
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APPENDIX A. DISSERTATION WORKBENCH

A.1 Companion Tools

Table A.1: Software Tools used during this Dissertation

Software Usage/Purpose URL

Software Development
Eclipse SDPM Plugin for Eclipse https://www.eclipse.org

IntelliJ IDEA SDPM Plugin for PyCharm https://www.jetbrains.com/idea

Sublime Text Engine for Event Formatting & Aggregation https://www.sublimetext.com

Event Temporary Persistence Layer
CSV Files Store Events Locally at Runtime

Apache Kafka Store Events Locally or Remotely at Runtime https://kafka.apache.org

Azure Event Hub Store Events Remotely at Runtime https://azure.microsoft.com

Trello Rest API Load Software Project Tasks at Runtime https://www.trello.com

Event Repository, Transformation and Exporting
MySQL Store, Transform and Query Events https://www.mysql.com

Process Data Mining
ProM Process Discovery & Conformance Checking http://www.promtools.org
StateChart
Workbench Process Complexity Metrics Extraction

PM4Py Process Mining for Python https://pm4py.fit.fraunhofer.de

Disco Process Discovery and Analysis https://www.fluxicon.com

Product Data Mining
Metrics Software Metrics Extraction http://metrics.sourceforge.net

Data Science Workbench
R Data Analysis and Charts Generation/Export https://www.rproject.org

R Studio Graphical User Interface for R https://www.rstudio.com

Weka Model Training and Selection https://www.cs.waikato.ac.nz

Auto-Weka Model Hyperparameter Optimization

Software Development Process Mining Personal Dashboard
Docker Containers Engine https://www.docker.com

Docker Desktop Graphical User Interface for Docker

Dissertation Writing
Draw.io Diagram Creation and Management https://www.draw.io

Mendeley Reference Management https://www.mendeley.com

Overleaf Online Document Writing https://www.overleaf.com
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A.2 Software Development Process Mining Plugin for Eclipse

A.2.1 Installation Manual

• Use Eclipse 4.6.x or later (only tested in these platforms)

• Use Java 1.8.x

Figure A.1: Validating Eclipse Requirements

• Install the plugin from a Remote Repository

- Select Help in the Main Menu -> Install New Software

- Add a name and URL for the new Repository –> Press button Add

Figure A.2: Install New Software

• Add a Name and URL to the Repository:

- Type a Name for the Repository (its up to you this name).

- https://github.com/jcaldeir/iscte-analytics-plugins-repository/raw/master

- Press Ok
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Figure A.3: Add New Repository

• You should see something similar to this screenshot A.4

- Select Software Development Process Mining Plugin for Eclipse entry

- If you don’t see the plugin listed, unselect the option : Group items by category

- Press Next

• Select the latest version for the Software Development Process Mining Plugin for Eclipse

- Accept the License Agreement and press Finish

- The plugin should start to install. On the security Warning, press OK

- Restart Eclipse
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Figure A.4: Add Plugin remote repository

Figure A.6: Confirm version to Install
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Figure A.5: Select plugin version to Install

Figure A.7: Accept the License Agreement
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Figure A.8: Execute the Installation

Figure A.9: Restart Eclipse
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A.2.2 User Guide

• Enter Credentials

- (Do it only once per workspace. Multiple workspaces require to enter the credentials

again). If another user uses your Eclipse, it must change credentials every time he/she is

working with it

- From the Process Mining Menu –> My Credentials

- Enter your account Username provided after the registration in the SDPM web site1

- Enter the Key provided by the SDPM team after registration

Figure A.10: Process Mining Menu

Figure A.11: Enter Username

1http://www.software-development-process-mining.com/
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Figure A.12: Enter Key

A.2.2.1 Menu Actions

• Start Collection

- It starts the data/event collection. Collection is started by default once you start

Eclipse, but if you ever hit Stop Collection during a work session, you have to hit Start

Collection again to resume data/event collection

- If you close Eclipse and open it again, data collection is started automatically

- You may want to check if its collecting by trying to start the collection or to check

the plugin About menu

- NOTE: Never forget to check if the collection is started. If it’s not started, please

start it

• Stop Collection

- It stops the data/event collection. Collection is started by default once you start

Eclipse, but if you ever hit Stop Collection during a work session, you have to hit Start

Collection again to resume data/event collection. Until then the plugin is not collecting

any data

- You may want to check if its collecting by trying to stop the collection or to check

the plugin About menu.

- You may want to check if its collecting by trying to start the collection or to check

the plugin About menu.

- NOTE: Never forget to check if the collection is started. If it’s not started, please

start it.

• Executing Tasks

- This option will fetch your Trello Activities and lists them so that you can choose to

declare/annotate what task you are doing
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- Every time you start to do any task in your project, you should choose it from the

list before doing the work you are going to do (coding) and Press OK.

- In addition to your Trello activities, you can find pre-defined tasks/events

- You also find a task called “Other”, which lets you input manually as in free text

what task you are doing

- Select one task at a time from the tasks list. If the list is not listing your own group

Trello tasks, please contact the teachers.

- You may repeat tasks.

• Process Mining Homepage

- It points you to the www.software-development-process-mining.com page

• My Dashboard

- It links to your personal dashboard to view your own data collected by the plugin.

It will be active soon

• About

- Some info about the plugin, if its collecting or not, and under which user context the

plugin is collecting the data/events You should check this option to confirm if the plugin

is collecting or not and to check the user credentials.

- Example : In this example the plugin is collecting data (true) and activated to collect

data for user pedropascoal5

Figure A.13: About the Plugin

The below screenshot is an example from an activity list from a randomly chosen group
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A.2.3 Integrations

• The plugin stores the preferences and the collection files (csv and json files) in the users’

workspaces folder

- Ex: C:\Iscte\.metadata\.plugins\iscte.analytics.plugin.eclipse

• Listing A.1 shows the credentials file

• Listing A.2 shows the integrations configuration file

- Three integrations are possible: Trello, Azure Event Hub and Kafka

Listing A.1: Plugin Credentials Configuration File
1 <?xml vers ion=" 1.0 " encoding="UTF−8" ?>
2 <s e c t i o n name=" Credent ia l s ">
3

4 <item key=" key " value=" 538e9f328c15f11e81072f6f53344aba0217d650efad4 "/>
5 <item key=" username " value=" j o a o c a l d e i r a "/>
6

7 </ sect ion >

Listing A.2: Plugin Integrations Configuration File
1 <?xml vers ion=" 1.0 " encoding="UTF−8" ?>
2 <s e c t i o n name=" I n t e g r a t i o n s ">
3

4 <item key=" t r e l l o A c t i v e " value=" true "/>
5 <item key=" t r e l l o K e y " value=" 11549b1bb90dc2287b80e6c527adc133 "/>
6 <item key=" tre l loToken " value=" d43e4022b8ef156d767cc931d493d3873d "/>
7 <item key=" t r e l l o P r e f i x C o d e " value=" SID "/>
8

9 <item key=" azureActive " value=" true "/>
10 <item key=" namespaceName " value=" i s c t e − iu l −e c l i p s e −plugin "/>
11 <item key="eventHubName " value=" process −mining "/>
12 <item key=" sasKeyName " value=" e c l i p s e −plugin−access −key "/>
13 <item key=" sasKey " value="NJ99K/0pQctu2b5ZDAdVKRcc=RzHpzn2CzkTioNt6hTm"/>
14

15 <item key=" kafkaActive " value=" true "/>
16 <item key=" kafkaServers " value=" l o c a l h o s t :9092 "/>
17 <item key=" kafkaTopic " value="sdpm"/>
18

19 </ sect ion >
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A.2.3.1 Trello Integration

• Using the Trello integration, a user can list and choose the activities he/she is executing

in the project under development

• This integration requires the configuration in file A.2 of some Trello properties

- If the integration should be active or not: trelloActive

- The Trello API Key: trelloKey

- The Trello API Token: trelloToken

- Bring only project activities filtered by Projects prefix code: trelloPrefixCode

Figure A.14: Enter Key
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A.2.3.2 Azure Integration

• Using the Azure integration, a user can store the events generated by the SDPM plugin

running within Eclipse, in a Azure repository.

• This integration requires the configuration in file A.2 of a few Azure properties

- If the integration should be active or not: azureActive

- The Azure namespace name: namespaceName

- The Event Hub Name: eventHubName

- The Azure API Access Key Name: sasKeyName

- The Azure API Access Key: sasKey

A.2.3.3 Azure Event Hub Setup

Figure A.15: Azure Services Setup
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Figure A.16: Configuring a Storage Account - Create Account

Figure A.17: Configuring a Storage Account
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Figure A.18: Configure an Event Hub Instance - Instance State and Event Retention Period

Figure A.19: Configure an Event Hub Instance - Capture Data Policy
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Figure A.20: Azure API Namespace Integration Key

A.2.3.4 Kafka Integration

• Using the Kafka integration, a user can store, locally or remotely, the events generated by

the SDPM plugin running within Eclipse, in a Kafka repository.

• This integration requires the configuration in file A.2 of a few Kafka properties

- If the integration should be active or not: kafkaActive

- The Kafka cluster servers list: kafkaServers

- The Kafka topic on where to store the events: kafkaTopic
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A.3 Software Development Process Mining Plugin for PyCharm

A.3.1 Installation Manual for PyCharm

• Use PyCharm 2020.2 or later (only tested in these platforms)

• Use Java 1.8.x

Figure A.21: Installing Software Development Process Mining Plugin for PyCharm from Disk
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Figure A.22: Installing Software Development Process Mining Plugin for PyCharm from Disk

Figure A.23: Plugin Loaded - A special bundle for the Pythacon Contest
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A.4 Software Development Process Mining Dashboard

Figure A.24: SDPM Web Site

Figure A.25: SDPM Docker Hub Repository
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Figure A.26: SDPM Docker Hub Download Details
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Listing A.3: Docker Compose File (docker-compose.yml)
1 /**
2 * This f i l e downloads the f u l l s tack (web & db images ) fo r SDPM Dashboard
3 * − I n s t a l l Docker
4 * − Create a f o l d e r named sdpm−s tack
5 * − Go on sdpm−s tack f o l d e r and c r e a t e a f i l e named docker−compose . yml into i t
6 * − Copy from l i n e 10 to the end and paste i t in to f i l e docker−compose . yml
7 * − Run : docker−compose up −d
8 * − SDPM Dashboard w i l l be running on http : // l o c a l h o s t :9000
9 */

10

11 vers ion : " 3 . 8 "
12

13 s e r v i c e s :
14

15 archive :
16 container_name : sdpm−db
17 image : mysql : l a t e s t
18 command : −−default −authent ica t ion −plugin=mysql_native_password
19 r e s t a r t : on− f a i l u r e
20 environment :
21 MYSQL_ROOT_PASSWORD: sdpm2020 #You can change t h i s . I t must match with

↪→ MYSQL_PASSWORD below on the " app " s e r v i c e .
22 MYSQL_DATABASE: a n a l y t i c s
23

24 app :
25 container_name : sdpm−web
26 image : jcppc /sdpm−dashboard : l a t e s t
27 command : sh −c " yarn i n s t a l l && yarn run prod "
28 ports :
29 − 9000 : 9000
30 working_dir : /sdpm−dashboard
31 environment :
32 MYSQL_HOST: sdpm−db
33 MYSQL_USER: root
34 MYSQL_PASSWORD: sdpm2020 #You can change t h i s . I t must match with

↪→ MYSQL_ROOT_PASSWORD above on the " archive " s e r v i c e .
35 MYSQL_DB: a n a l y t i c s
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Figure A.27: SDPM Running in Docker Desktop

Figure A.28: SDPM Team Dashboard - Geographic View
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Figure A.29: SDPM Personal Dashboard - Process View

Figure A.30: SDPM Personal Dashboard - Generic KPIs (Prototype)
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B.1 Data Extraction

Table B.1: Data Collection Form

# Item Description

General Information

1 Publication Id A sequential identifier for each publication.
2 Extraction Date Date/Time when the data was extracted.
3 Bibliography Reference The references of each publication.
4 Publication Date The Date/Time of publishing.
5 Publication Type The type publication (eg: Journal, Conference, etc).
6 Publisher Name The name of the publisher.
7 Publication Author(s) The author(s) of the publication.

Addressing RQs

8 Study Type(s) Extracting the type of empirical study as defined in [144, 223].
9 Data Source(s) The different types of data sources used in the publications. Admissible values are open.

10 Process Perspective The timing of when the study was conducted (eg: Pre-Mortem, if study was executed before project/product was
finished, Post-Mortem, if it was conducted after).

11 SDLC Activity(ies) We followed the SWEBOK to build our list of admissible values [95]. Implementation - refers to the activity of
constructing artifacts for a new product based on new defined requirements and design. Maintenance - refers to the
task of maintaining, by changing or evolving an existing software under operation according to early defined
specifications. Testing - refers to the automated or manual task of finding bugs and/or errors. Debugging - is the
effort of fixing those known bugs. Operations - is related with the phase where the software is under exploration by
the end-users. Our approach extends the taxonomy used by [55].

12 Study Stakeholder(s) The publication outcomes should be targeted to specific individuals in the software development process. We
identify them here.

13 Mining Method(s) The identification of the methods used for data mining/analysis.
14 Analytics Scope(s) Identifies what type of analytics was performed. We used the valid options identified in [57].

Continued on next page
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Table B.1: continued from previous page

# Item Description

15 Contribution(s) to SDLC We framed the admissible options to the following assessment dimensions of software: Technical Debt/Quality,
Time, Costs, Risk and Security. Our approach adapt and extends some of the dimensions and concerns identified
earlier in section 2.2.1.

Findings

16 Findings and Conclusions What were the interpretation of the results obtained.
17 Validity Identifying the threats to the validity of the publication.
18 Relevance What other relevant outcomes could be inferred from the publication other then the ones in item 15.
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B.2 Studies List

Table B.2: Systematic Literature Review Studies.

# Score Year Author Title Publication

S01 12 2019 Sultana et al. A study examining relationships between micro patterns and
security vulnerabilities

Software Quality Journal

S02 10.5 2019 Jha et al. An empirical study of configuration changes and adoption in
Android apps

Journal of Systems and Software

S03 10 2017 Hassan et al. An empirical study of emergency updates for top android
mobile apps

Empirical Software Engineering

S04 10 2016 W. Wu et al. An exploratory study of api changes and usages based on apache
and eclipse ecosystems

Empirical Software Engineering

S05 10.5 2017 Taba et al. An exploratory study on the usage of common interface
elements in android applications

Journal of Systems and Software

S06 10 2019 Prana et al. Categorizing the Content of GitHub README Files Empirical Software Engineering

S07 10 2018 R. Wu et al. ChangeLocator: locate crash-inducing changes based on crash
reports

Empirical Software Engineering

S08 10.5 2019 Yan et al. Characterizing and identifying reverted commits Empirical Software Engineering

S09 10 2018 Salza et al. Do developers update third-party libraries in mobile apps? International Conference on Program
Comprehension

S10 10 2019 Liu et al. DroidLeaks: a comprehensive database of resource leaks in
Android apps

Empirical Software Engineering

S11 11 2018 Fan et al. Early prediction of merged code changes to prioritize reviewing
tasks

Empirical Software Engineering

S12 10 2016 McIlroy et al. Fresh apps: an empirical study of frequently-updated mobile
apps in the Google play store

Empirical Software Engineering

S13 11 2018 Saborido et al. Getting the most from map data structures in Android Empirical Software Engineering

Continued on next page
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Table B.2: continued from previous page

# Score Year Author Title Publication

S14 10 2017 Guerrouj et al. Investigating the relation between lexical smells and change-
and fault-proneness: an empirical study

Software Quality Journal

S15 10 2014 Fucci et al. On the role of tests in test-driven development: a differentiated
and partial replication

Empirical Software Engineering

S16 10 2014 Mittal et al. Process mining software repositories from student projects in an
undergraduate software engineering course

International Conference on Software
Engineering

S17 10.5 2018 Rakha et al. Revisiting the performance of automated approaches for the
retrieval of duplicate reports in issue tracking systems that
perform just-in-time duplicate retrieval

Empirical Software Engineering

S18 10 2018 Morales-Ramirez et al. Speech-acts based analysis for requirements discovery from
online discussions

Information Systems Journal

S19 10.5 2018 Li et al. Studying software logging using topic models Empirical Software Engineering

S20 11 2018 Hassan et al. Studying the dialogue between users and developers of free apps
in the Google Play Store

Empirical Software Engineering

S21 10 2016 Rakha et al. Studying the needed effort for identifying duplicate issues Empirical Software Engineering

S22 10.5 2017 Ye et al. The structure and dynamics of knowledge network in
domain-specific Q&A sites: a case study of stack overflow

Empirical Software Engineering

S23 10.5 2019 Sawant et al. To react, or not to react: Patterns of reaction to API deprecation Empirical Software Engineering

S24 10 2019 Cruz et al. To the attention of mobile software developers: guess what, test
your app!

Empirical Software Engineering

S25 10 2017 Li et al. Towards just-in-time suggestions for log changes Empirical Software Engineering

S26 10 2017 Izquierdo-Cortazar et al. Using Metrics to track code review performance International Conference on
Evaluation and Assessment in
Software Engineering

S27 10 2016 Munaiah et al. Vulnerability severity scoring and bounties: Why the disconnect? International Workshop on Software
Analytics

Continued on next page201
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Table B.2: continued from previous page

# Score Year Author Title Publication

S28 10 2015 Tian et al. What are the characteristics of high-rated apps? A case study on
free Android Applications

International Conference on Software
Maintenance and Evolution

S29 11 2016 Yang et al. What security questions do developers ask? a large-scale study
of stack overflow posts

Journal of Computer Science and
Technology

S30 10.5 2019 Chen et al. What’s Spain’s Paris ? Mining analogical libraries from Q&A
discussions

Empirical Software Engineering

S31 10 2017 Jiang et al. Why and how developers fork what from whom in GitHub Empirical Software Engineering

S32 10.5 2019 Thongtanunam et al. Will this clone be short-lived? Towards a better understanding of
the characteristics of short-lived clones

Empirical Software Engineering
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B.3 Comments on Studies

[S01] explores the correlation between software vulnerabilities and code-level constructs

called micro patterns. The authors analyzed the correlation between vulnerabilities and micro

patterns from different viewpoints and explored whether they are related. The conclusion

shows that certain micro patterns are frequently present in vulnerable classes and that there is

a high correlation between certain patterns that coexist in a vulnerable class [190].

[S02] presents an empirical study to analyze commit histories of Android manifest files of

hundreds of apps to understand their evolution through configuration changes. The results

is a contribution to help developers in identifying change-proneness attributes, including the

reasons behind the changes and associated patterns and understanding the usage of different

attributes introduced in different versions of the Android platform. In summary, the results

show that most of the apps extend core functionalities and improve user interface over time.

It detected that significant effort is wasted in changing configuration and then reverting back

the change, and that very few apps adopt new attributes introduced by the platform and when

they do, they are slow in adopting new attributes. Configuration changes are mostly influenced

by functionalities extension, platform evolution and bug reports [103].

[S03] studied updates in the Google Play Store by examining more than 44,000 updates of

over 10,000 mobile apps, from where 1,000 were identified as emergency updates. After

studying the characterirstics of the updates, the authors found that the emergency updates

often have a long lifetime (i.e., they are rarely followed by another emergency update) and that

updates preceding emergency updates often receive a higher ratio of negative reviews than the

emergency updates [84].

[S04] analyzed and classified API changes and usages together in 22 framework releases from

the Apache and Eclipse ecosystems and their client programs. The authors conclude that

missing classes and methods happen more often in frameworks and affect client programs

more often than the other API change types do, and that missing interfaces occur rarely in

frameworks but affect client programs often. In summary, framework APIs are used on average

in 35% of client classes and interfaces and most of such usages could be encapsulated locally

and reduced in number. Around 11% of APIs usages could cause ripple effects in client pro-

grams when these APIs change. Some suggestions for developers and researchers were made to

mitigate the impact of API evolution through language mechanisms and design strategies [214].

[S05] extracted commonly used UI elements, denoted as Common Element Sets (CESs), from

user interfaces of applications. The highlight the characteristics of CESs that can result in a

high user-perceived quality by proposing various metrics. From an empirical study on 1292

mobile applications, the authors observed that CESs of mobile applications widely occur

among and across different categories, whilst certain characteristics of CESs can provide a

high user-perceived quality. A recommendation is made, aiming to improve the quality of

mobile applications, consisting on the adoption of reusable UI templates that are extracted and
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summarized from CESs for developers [192].

[S06] performed a qualitative study involving the manual annotation of 4,226 README file

sections from 393 randomly sampled GitHub repositories and design and evaluate a classifier

and a set of features that can categorize these sections automatically. The findings show

that information discussing the ’What’ and ’How’ of a repository hapens very often, while

at the same time, many README files lack information regarding the purpose and status of

a repository. A classifier was built to predict multiple categories and the F1 score obtained

encourages its usage by software repositories owners. The approach presented is said to

improve the quality of software repositories documentation and it has the potential to make it

easier for the software development community to discover relevant information in GitHub

README files [169].

[S07] conducted an empirical study on characterizing the bug inducing changes for crashing

bugs (denoted as crash-inducing changes). ChangeLocator was also proposed as a method to

automatically locate crash-inducing changes for a given bucket of crash reports. The study

approach is based on a learning model that uses features originated from the empirical study

itself and a model was trained using the data from the historical fixed crashes. ChangeLocator

was evaluated with six release versions of the Netbeans project. The analysis and results show

that it can locate the crash-inducing changes for 44.7%, 68.5%, and 74.5% of the bugs by

examining only top 1, 5 and 10 changes in the recommended list, respectively, which is said to

outperform other approaches [213].

[S08] explored if one can characterize and identify which commits will be reverted. The

authors characterized commits using 27 commit features and build an identification model

to identify commits that will be reverted. Reverted commits were identified by analyzing

commit messages and comparing the changed content, and extracted 27 commit features

that were divided into three dimensions: change, developer and message. An identification

model (e.g., random forest) was built and evaluated on an empirical study on ten open source

projects including a total of 125,241 commits. The findings show that the ’developer’ is the

most discriminative dimension among the three dimensions of features for the identification of

reverted commits. However, using all the three dimensions of commit features leads to better

performance of the created models [217].

[S09] conducted an empirical study on the evolution history of almost three hundred mobile

apps, by investigating whether mobile developers actually update third-party libraries,

checking which are the categories of libraries with respect to the developers’ proneness to

update their apps, looking for what are the common patterns followed by developers when

updating a software library, and whether high- and low-rated apps present any particular

update patterns. Results showed that mobile developers rarely update their apps with respect

to the used libraries, and when they do, they mainly tend to update the libraries related to

the Graphical User Interface, with the aim of keeping the mobile apps updated with the latest

design trends. In some cases developers ignore updates because of a poor awareness of the
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benefits, or a too high cost/benefit ratio [184].

[S10] extracted real resource leak bugs from a bug database named DROIDLEAKS. It consisted

in mining 34 popular open-source Android apps, which resulted in a dataset having a total of

124,215 code revisions. After filtering and validating the data, the authors found, on 32 ana-

lyzed apps, 292 fixed resource leak bugs, which cover a diverse set of resource classes. To fully

comprehend these bugs, they performed an empirical study, which revealed the characteristics

of resource leaks in Android apps and common patterns of resource management mistakes

made by developers [124].

[S11] built a merged code change prediction tool leveraging machine learning techniques,

and extracted 34 features from code changes, which were grouped into 5 dimensions: code,

file history, owner experience, collaboration network, and text. Experiments were executed

on three open source projects (i.e., Eclipse, LibreOffice, and OpenStack), containing a total

of 166,215 code changes. Across three datasets, the results show statistically significantly

improvements in detecting merged code changes and in distinguishing important features on

merged code changes from abandoned ones [65].

[S12] studied the frequency of updates of 10,713 mobile apps (the top free 400 apps at the

start of 2014 in each of the 30 categories in the Google Play store). It was found that only ∼1%

of the studied apps are updated at a very frequent rate - more than one update per week and

14% of the studied apps are updated on a bi-weekly basis (or more frequently). Results also

show that 45% of the frequently-updated apps do not provide the users with any information

about the rationale for the new updates and updates exhibit a median growth in size of 6%.

The authors conclude that developers should not shy away from updating their apps very

frequently, however the frequency should vary across store categories. It was observed that

developers do not need to be too concerned about detailing the content of new updates as it

appears that users are not too concerned about such information and, that users highly rank

frequently-updated apps instead of being annoyed about the high update frequency [131].

[S13] studied the use of map data structure implementations by Android developers and

how that relates with saving CPU, memory, and energy as these are major concerns of users

wanting to increase battery life. The authors initially performed an observational study of

5713 Android apps in GitHub and then conducted a survey to assess developers’ perspective

on Java and Android map implementations. Finally, they performed an experimental study

comparing HashMap, ArrayMap, and SparseArray variants map implementations in terms of

CPU time, memory usage, and energy consumption. The conclusions provide guidelines for

choosing among the map implementations: HashMap is preferable over ArrayMap to improve

energy efficiency of apps, and SparseArray variants should be used instead of HashMap and

ArrayMap when keys are primitive types [183].

[S14] detected 29 smells consisting of 13 design smells and 16 lexical smells in 30 releases of

three projects: ANT, ArgoUML, and Hibernate. Further, the authors analyzed to what extent
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classes containing lexical smells have higher (or lower) odds to change or to be subject to

fault fixing than other classes containing design smells. The results obtained bring empirical

evidence on the fact that lexical smells can make, in some cases, classes with design smells

more fault-prone. In addition, it was empirically demonstrated that classes containing design

smells only are more change- and fault-prone than classes with lexical smells only [79].

[S15] examined the nature of the relationship between tests and external code quality as well

as programmers’ productivity in order to verify/refute the results of a previous study. With

the focus on the role of tests, a differentiated and partial replication of the original study and

related analysis was conducted. The replication involved 30 students, working in pairs or as

individuals, in the context of a graduate course, and resulted in 16 software artifacts developed.

Significant correlation was found between the number of tests and productivity. No significant

correlation found between the number of tests and external code quality. For both cases we

observed no statistically significant interaction caused by the subject units being individuals

or pairs. Results obtained are consistent with the original study although, as the authors

admit, there were changes in the timing constraints for finishing the task and the enforced

development processes [70].

[S16] presented an application of mining three software repositories: team wiki (used during

requirement engineering), version control system (development and maintenance) and issue

tracking system (corrective and adaptive maintenance) in the context of an undergraduate

Software Engineering course. Visualizations, metrics and algorithms to provide an insight into

practices and procedures followed during various phases of a software development life-cycle

were proposed and these provided a multi-faceted view to the instructor serving as a feedback

tool on development process and quality by students. Event logs produced by software

repositories were mined and derived insights such as degree of individual contributions

in a team, quality of commit messages, intensity and consistency of commit activities, bug

fixing process trend and quality, component and developer entropy, process compliance

and verification. Experimentation revealed that not only product but process quality varies

signicantly between student teams and mining process aspects can help the instructor in giving

directed and specific feedback. Authors, observed that commit patterns characterizing equal

and un-equal distribution of workload between team members, patterns indicating consistent

activity in contrast to spike in activity just before the deadline, varying quality of commit

messages, developer and component entropy, variation in degree of process compliance and

bug fixing quality [141].

[S17] investigated the impact of the just-in-time duplicate retrieval on the duplicate reports

that end up in the ITS of several open source projects, namelly Mozilla-Firefox, Mozilla-Core

and Eclipse-Platform. The differences between duplicate reports for open source projects

before and after the activation of this new feature were studied. Findings showed that duplicate

issue reports after the activation of the just-in-time duplicate retrieval feature are less textually

similar, have a greater identification delay and require more discussion to be retrieved as

duplicate reports than duplicates before the activation of the feature [172].
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[S18] exploited a linguistic technique based on speech-acts for the analysis of online discussions

with the ultimate goal of discovering requirements-relevant information. The datasets used

in the experimental evaluation, which are publicly available, were taken from a widely used

open source software project (161120 textual comments), as well as from an industrial project

in the home energy management domain. The approach used was able to successfully classify

messages into Feature/Enhancement and Other, with significant accuracy. Evidence was found

to support the rationale, that there is an association between types of speech-acts and categories

of issues, and that there is correlation between some of the speechacts and issue priority, which

could open other streams of research [146].

[S19] studied the relationship between the topics of a code snippet and the likelihood of a code

snippet being logged (i.e., to contain a logging statement). The intuition driving this research,

was that certain topics in the source code are more likely to be logged than others. To validate

the assumptions a case study was conducted on six open source systems. The analysis gathered

evidences that i) there exists a small number of "log-intensive"topics that are more likely to be

logged than other topics; ii) each pair of the studied systems share 12% to 62% common topics,

and the likelihood of logging such common topics has a statistically significant correlation

of 0.35 to 0.62 among all the studied systems. In summary, the findings highlight the topics

containing valuable information that can help guide and drive developers’ logging decisions

[122].

[S20] revisits a previous work in more depth by studying 4.5 million reviews with 126,686

responses for 2,328 top free-to-download apps in the Google Play Store. One of the major

findings is that the assumption that reviews are static is incorrect. In particular, it is found

that developers and users in some cases use this response mechanism as a rudimentary user

support tool, where dialogues emerge between users and developers through updated reviews

and responses. In addition, four patterns of developers were identified: 1) developers who

primarily respond to only negative reviews, 2) developers who primarily respond to negative

reviews or to reviews based on their contents, 3) developers who primarily respond to reviews

which are posted shortly after the latest release of their app, and 4) developers who primarily

respond to reviews which are posted long after the latest release of their app. To perform a

qualitative analysis of developer responses to understand what drives developers to respond to

a review, the authors analyzed a statistically representative random sample of 347 reviews with

responses for the top ten apps with the highest number of developer responses. Seven drivers

that make a developer respond to a review were identified, of which the most important ones

are to thank the users for using the app and to ask the user for more details about the reported

issue. In summary, there were significant evidences found, that it can be worthwhile for app

owners to respond to reviews, as responding may lead to an increase in the given rating and

that studying the dialogue between user and developer can provide valuable insights which

may lead to improvements in the app store and the user support process [85].

[S21] empirically examined the effort that is needed for manually identifying duplicate reports
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in four open source projects, i.e., Firefox, SeaMonkey, Bugzilla and Eclipse-Platform. Results

showed that: (i) More than 50% of the duplicate reports are identified within half a day. Most

of the duplicate reports are identified without any discussion and with the involvement of

very few people; (ii) A classification model built using a set of factors that are extracted from

duplicate issue reports classifies duplicates according to the effort that is needed to identify

them with significant values for precision, recall and ROC area; and (iii) Factors that capture

the developer awareness of the duplicate issues’ peers (i.e., other duplicates of that issue) and

textual similarity of a new report to prior reports are the most influential factors found. The

results highlight the need for effort-aware evaluation of approaches that identify duplicate

issue reports, since the identification of a considerable amount of duplicate reports (over 50%)

appear to be a relatively trivial task for developers. As a conclusion, the authors highlight the

fact that, to better assist developers, research on identifying duplicate issue reports should

put greater emphasis on assisting developers in identifying effort-consuming duplicate issues

[173].

[S22] analyzed URL sharing activities in Stack Overflow. The approach was to use open coding

method to analyze why users share URLs in Stack Overflow, and develop a set of quantitative

analysis methods to study the structural and dynamic properties of the emergent knowledge

network in Stack Overflow. The findings show: i) Users share URLs for diverse categories of

purposes. ii) These URL sharing behaviors create a complex knowledge network with high

modularity, assortative mixing of semantic topics, and a structure skeleton consisting of highly

recognized knowledge units. iii) The structure of the knowledge network with respect to

indegree distribution is scale-free (i.e., stable), in spite of the ad-hoc and opportunistic nature

of URL sharing activities, while the outdegree distribution of the knowledge network is not

scale-free. iv) The indegree distributions of the knowledge network converge quickly, with

small changes over time after the convergence to the stable distribution. The conclusions

highlight the fact that the knowledge network is a natural product of URL sharing behavior

that Stack Overflow supports and encourages, and proposed an explanatory model based on

information value and preferential attachment theories to explain the underlying factors that

drive the formation and evolution of the knowledge network in Stack Overflow [219].

[S23] questioned if there was really a strong argument for the Java 9 language designers to

change the implementation of the deprecation warnings feature after they notice no one

was taking seriously those and continued using outdated features. The goal was to start by

identifying the various ways in which an API consumer can react to deprecation and then to

create a dataset of reaction patterns frequency consisting of data mined from 50 API consumers

totalling 297,254 GitHub based projects and 1,322,612,567 type-checked method invocations.

Findings show that predominantly consumers do not react to deprecation and a survey on API

consumers was done to try to explain this behavior and by analyzing if the APIs deprecation

policy had an impact on the consumers’ decision to react. The manual inspection of usages

of deprecated API artifacts lead to the discovery of six reaction patterns. Only 13% of API

consumers update their API versions and 88% of reactions to deprecation is doing nothing.

However the survey got a different result, where 69% of respondents say they replace it with
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the recommended repalcement. Over 75% of the API barelly affect consumers with deprecation

and 15% of the consumers are affected only by 2 APIs(hibernate-core and mongo-java-driver)

[186].

[S24] investigated working habits and challenges of mobile software developers with respect to

testing. A key finding of this exhaustive study, using 1000 Android apps, demonstrates that

mobile apps are still tested in a very ad hoc way, if tested at all. However, it is shown that, as in

other types of software, testing increases the quality of apps (demonstrated in user ratings and

number of code issues). Furthermore, there is evidence that tests are essential when it comes to

engaging the community to contribute to mobile open source software. The authors discuss

reasons and potential directions to address the findings. Yet another relevant finding of this

study is that Continuous Integration and Continuous Deployment (CI/CD) pipelines are rare

in the mobile apps world (only 26% of the apps are developed in projects employing CI/CD)

- authors argue that one of the main reasons is due to the lack of exhaustive and automatic

testing [49].

[S25] tries to understand the reasons for log changes and, proposes an approach that can

provide developers with log change suggestions as soon as they commit a code change, which

is referred to as "just-in-time"suggestions for log changes. A set of measures is derived based on

manually examining the reasons for log changes and individual experiences. Those measures

were used as explanatory variables in random forest classifiers to model whether a code

commit requires log changes. These classifiers can provide just-in-time suggestions for log

changes and was evaluated with a case study on four open source projects: Hadoop, Directory

Server, Commons HttpClient, and Qpid. Findings show that: i) the reasons for log changes

can be grouped along four categories: block change, log improvement, dependence-driven

change, and logging issue; ii) the random forest classifiers can effectively suggest whether a log

change is needed; iii) the characteristics of code changes in a particular commit and the current

snapshot of the source code are the most influential factors for determining the likelihood of a

log change in a commit [123].

[S26] designed and conducted, with the continuous feedback of the Xen Project Advisory

Board, a detailed analysis focused on finding problems associated with the large increase over

time in the number of messages related to code review. The increase was being perceived as

a potential signal of problems with their code review process and the usage of metrics was

suggested to track the performance of it. As a result, it was learned how in fact the Xen Project

had some problems, but at the moment of the analysis those were already under control. It

was found as well how diferent the Xen and Netdev projects were behaving with respect to

code review performance, despite being so similar from many points of view. A comprehensive

methodology, fully automated, to study Linux-style code review was proposed [99].

[S27] analyzed the Common Vulnerability Scoring System (CVSS) scores and bounty awarded

for 703 vulnerabilities across 24 products. CVSS is the de facto standard for vulnerability

severity measurement today and is crucial in the analytics driving software fortification. It
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was found a weak correlation between CVSS scores and bounties, with CVSS being more likely

to underestimate bounty. Such a negative result is suggested to be a cause for concern. The

authors, investigated why the measurements were so discordant by i) analyzing the individual

questions of CVSS with respect to bounties and ii) conducting a qualitative study to find the

similarities and diferences between CVSS and the publicly-available criteria for awarding

bounties. It was found that the bounty criteria were more explicit about code execution and

privilege escalation whereas CVSS makes no explicit mention of those. Another lesson learnt

was that bounty valuations are evaluated solely by project maintainers, whereas CVSS has little

provenance in practice [147].

[S28] through a case study on 1,492 high-rated and low-rated free apps mined from the Google

Play store, investigated 28 factors along eight dimensions to understand how high-rated

apps are different from low-rated apps. The search for the most influential factors was also

addressed by applying a random-forest classifier to identify high-rated apps. The results show

that high-rated apps are statistically significantly different in 17 out of the 28 factors that we

considered. The experiment also presents eveidences for the fact that the size of an app, the

number of promotional images that the app displays on its web store page, and the target SDK

version of an app are the most influential factors [201].

[S29] conducted a large-scale study on security-related questions on Stack Overflow. Two

heuristics were used to extract from the dataset the questions that are related to security

based on the tags of the posts. Later, to cluster different security-related questions based on

their texts, an advanced topic model, Latent Dirichlet Allocation (LDA) tuned using Genetic

Algorithm (GA) was used. Results show that security-related questions on Stack Overflow cover

a wide range of topics, which belong to five main categories: web security, mobile security,

cryptography, software security, and system security. Among them, most questions are about

web security. In addition, it was found that the top four most popular topics in the security

area are "Password", "Hash", "Signature"and "SQL Injection", and the top eight most difficulty

security-related topics are "JAVA Security", "Asymetric Encryption", "Bug", "Browser Security",

"Windows Authority", "Signature", "ASP.NET"and "Password", suggesting these are the ones in

need for more attention [218].

[S30] present an approach to recommend analogical libraries based on a knowledge base of

analogical libraries mined from tags of millions of Stack Overflow questions. The approach

was implemented in a proof-of-concept web application and more than 34.8 thousands of users

visited the website from November 2015 to August 2017. Results show evidences that accurate

recommendation of analogical libraries is not only possible but also a desirable solution.

Authors validated the usefulness of their analogical-library recommendations by using them to

answer analogical-library questions in Stack Overflow [41].

[S31] explored why and how developers fork what from whom in GitHub. This approach was

supported by collecting a dataset containing 236,344 developers and 1,841,324 forks. It was

also validated by a survey in order to analyze the programming languages and owners of forked
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repositories. Among the main findings we have: i) Developers fork repositories to submit pull

requests, fix bugs, add new features and keep copies etc. Developers find repositories to fork

from various sources: search engines, external sites (e.g., Twitter, Reddit), social relationships,

etc. More than 42% of developers that were surveyed agree that an automated recommendation

tool is useful to help them pick repositories to fork, while more than 44.4% of developers do

not value a recommendation tool. Developers care about repository owners when they fork

repositories. ii) A repository written in a developers’ preferred programming language is more

likely to be forked. iii) Developers mostly fork repositories from creators. In comparison

with unattractive repository owners, attractive repository owners have higher percentage

of organizations, more followers and earlier registration in GitHub. The results show that

forking is mainly used for making contributions of original repositories, and it is beneficial for

OSS community. In summary, there is evidence of the value of recommendation and provide

important insights for GitHub to recommend repositories [104].

[S32] designed and executed an empirical study on six open source Java systems to better

understand the life expectancy of clones. A random forest classifier was built with the

aim of determining the life expectancy of a newly-introduced clone (i.e., whether a clone

will be short-lived or longlived) and it was confimed to have good accuracy on that task.

Results show that a large number of clones (i.e., 30% to 87%) lived in the systems for a short

duration. Moreover, it finds that although short-lived clones were changed more frequently

than long-lived clones throughout their lifetime, short-lived clones were consistently changed

with their siblings less often than long-lived clones. Findings show that the churn made to

the methods containing a newly-introduced clone, the complexity and size of the methods

containing the newly- introduced clone are highly influential in determining whether the

newly-introduced clone will be short-lived. Furthermore, the size of a newly-introduced clone

shares a positive relationship with the likelihood that the newly introduced clone will be

short-lived. Results suggest that, to improve the efficiency of clone management efforts, such

as the planning of the most effective use of their clone management resources in advance,

practitioners can leverage the presented classifiers and insights in order to determine the life

expectancy of clones [199].
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B.4 General Statistics
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Figure B.1: Number of studies published by each main author over the years

Table B.3: List of all Contributors

Name Freq. Perc. Ref.

Ahmed E. Hassan 10 31.25% [S03], [S08], [S12], [S17],
[S19], [S20], [S21], [S25],
[S28], [S32]

David Lo 7 21.88% [S06], [S08], [S11], [S24],
[S28], [S29], [S31]

Weiyi Shang 5 15.62% [S03], [S19], [S21], [S25],
[S32]

Xin Xia 4 12.5% [S08], [S11], [S29], [S31]
Foutse Khomh 3 9.38% [S04], [S13], [S14]

Continued on next page
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Table B.3: continued from previous page

Name Freq. Perc. Ref.

Giuliano Antoniol 3 9.38% [S04], [S13], [S14]
Yann-Gael Guéhéneuc 3 9.38% [S04], [S13], [S14]
Cor-Paul Bezemer 2 6.25% [S17], [S20]
Heng Li 2 6.25% [S19], [S25]
Mohamed Sami Rakha 2 6.25% [S17], [S21]
Safwat Hassan 2 6.25% [S03], [S20]
Shanping Li 2 6.25% [S08], [S11]
Shing-Chi Cheung 2 6.25% [S07], [S10]
Ying Zou 2 6.25% [S05], [S25]
Zhenchang Xing 2 6.25% [S22], [S30]
Ajay Kumar Jha 1 3.12% [S02]
Alberto Bacchelli 1 3.12% [S23]
Anand Ashok Sawant 1 3.12% [S23]
Andrea De Lucia 1 3.12% [S09]
Andrew Meneely 1 3.12% [S27]
Anna Perini 1 3.12% [S18]
Ashish Sureka 1 3.12% [S16]
Benjamin C. M. Fung 1 3.12% [S14]
Bram Adams 1 3.12% [S04]
Burak Turhan 1 3.12% [S15]
Byron J. Williams 1 3.12% [S01]
Chakkrit Tantithamthavorn 1 3.12% [S20]
Chang Xu 1 3.12% [S10]
Christoph Treude 1 3.12% [S06]
Chunyang Chen 1 3.12% [S30]
Cosmo D’Uva 1 3.12% [S09]
Daniel Izquierdo-Cortazar 1 3.12% [S26]
Dario Di Nucci 1 3.12% [S09]
Davide Fucci 1 3.12% [S15]
Deheng Ye 1 3.12% [S22]
Fabio Palomba 1 3.12% [S09]
Ferdian Thung 1 3.12% [S06]
Filomena Ferrucci 1 3.12% [S09]
Fitsum Meshesha Kifetew 1 3.12% [S18]
Gede Artha Azriadi Prana 1 3.12% [S06]
Hongyu Zhang 1 3.12% [S07]
Iman Keivanloo 1 3.12% [S05]
Itzel Morales-Ramirez 1 3.12% [S18]
Jesus M. Gonzalez-Barahona 1 3.12% [S26]
Jiahuan He 1 3.12% [S31]
Jian-Ling Sun 1 3.12% [S29]
Jian Zhang 1 3.12% [S10]
Jing Jiang 1 3.12% [S31]
Jue Wang 1 3.12% [S10]

Continued on next page

213



APPENDIX B. SLR COMPLEMENTARY MATERIALS

Table B.3: continued from previous page

Name Freq. Perc. Ref.

Jun Yan 1 3.12% [S10]
Kazi Zakia Sultana 1 3.12% [S01]
Lars Kurth 1 3.12% [S26]
Latifa Guerrouj 1 3.12% [S14]
Li Zhang 1 3.12% [S31]
Lili Wei 1 3.12% [S10]
Luis Cruz 1 3.12% [S24]
Megha Mittal 1 3.12% [S16]
Meiyappan Nagappan 1 3.12% [S28]
Meng Yan 1 3.12% [S08]
MingWen 1 3.12% [S07]
Nachiket Kapre 1 3.12% [S22]
Nasir Ali 1 3.12% [S12]
Nelson Sekitoleko 1 3.12% [S26]
Nuthan Munaiah 1 3.12% [S27]
Pasquale Salza 1 3.12% [S09]
Patanamon Thongtanunam 1 3.12% [S32]
Pavneet Singh Kochhar 1 3.12% [S31]
Rodrigo Morales 1 3.12% [S13]
Romain Robbes 1 3.12% [S23]
RongxinWu 1 3.12% [S07]
Rubén Saborido 1 3.12% [S13]
Rui Abreu 1 3.12% [S24]
Seyyed Ehsan Salamati Taba 1 3.12% [S05]
Shaohua Wang 1 3.12% [S05]
Stuart McIlroy 1 3.12% [S12]
Sunghee Lee 1 3.12% [S02]
Tanmay Bhowmik 1 3.12% [S01]
Thushari Atapattu 1 3.12% [S06]
Tianyong Wu 1 3.12% [S10]
Tse-Hsun (Peter) Chen 1 3.12% [S19]
Venera Arnaoudova 1 3.12% [S14]
Wei Wu 1 3.12% [S04]
Woo Jin Lee 1 3.12% [S02]
Xin-Li Yang 1 3.12% [S29]
Yang Liu 1 3.12% [S30]
Yepang Liu 1 3.12% [S10]
Yuan Tian 1 3.12% [S28]
Yuanrui Fan 1 3.12% [S11]
Zeinab Kermansaravi 1 3.12% [S14]
Zhi-Yuan Wan 1 3.12% [S29]
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Table B.4: Statistics per Institution

Institution Freq. Perc. Ref.

Queen’s University 11 34.38% [S03], [S05], [S08], [S12], [S17], [S19], [S20], [S21], [S25], [S28], [S32]
Singapore Management University 7 21.88% [S06], [S08], [S11], [S24], [S28], [S29], [S31]
Concordia University 4 12.5% [S03], [S19], [S25], [S32]
Zhejiang University 4 12.5% [S08], [S11], [S29], [S31]
École Polytechnique de Montréal 3 9.38% [S04], [S13], [S14]
Monash University 3 9.38% [S08], [S11], [S30]
Hong Kong University of Science and Technology 2 6.25% [S07], [S10]
Nanyang Technological University 2 6.25% [S22], [S30]
Rochester Institute of Technology 2 6.25% [S27], [S28]
University of Adelaide 2 6.25% [S06], [S20]
University of Zurich 2 6.25% [S09], [S23]
Australian National University 1 3.12% [S30]
Beihang University 1 3.12% [S31]
Bitergia 1 3.12% [S26]
Citrix 1 3.12% [S26]
Delft University of Technology 1 3.12% [S23]
École de Technologie Supérieure 1 3.12% [S14]
Fondazione Bruno Kessler 1 3.12% [S18]
Free University of Bozen-Bolzano 1 3.12% [S23]
Indraprastha Institute of Information Technology 1 3.12% [S16]
INESC ID 1 3.12% [S24]
INFOTEC 1 3.12% [S18]
Kyungpook National University 1 3.12% [S02]
McGill University 1 3.12% [S14]
Mississippi State University 1 3.12% [S01]
Nanjing University 1 3.12% [S10]

Continued on next page215
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Table B.4: continued from previous page

Institution Freq. Perc. Ref.

Southern University of Science and Technology 1 3.12% [S10]
Universidad Rey Juan Carlos 1 3.12% [S26]
Universitá della Svizzera Italiana 1 3.12% [S09]
University of Chinese Academy of Sciences 1 3.12% [S10]
University of Lisbon 1 3.12% [S24]
University of Melbourne 1 3.12% [S32]
University of Newcastle 1 3.12% [S07]
University of Oulu 1 3.12% [S15]
University of Salerno 1 3.12% [S09]
University of Waterloo 1 3.12% [S12]
Vrije Universiteit Brussel 1 3.12% [S09]
Washington State University 1 3.12% [S14]
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B.4. GENERAL STATISTICS

Table B.5: Statistics per Continent and Country

Freq. Perc. Ref.

Continent

North America 18 56.25% [S01], [S03], [S04], [S05], [S08], [S12], [S13], [S14],
[S17], [S18], [S19], [S20], [S21], [S25], [S26], [S27],
[S28], [S32]

Asia 13 40.62% [S02], [S06], [S07], [S08], [S10], [S11], [S16], [S22],
[S24], [S28], [S29], [S30], [S31]

Oceania 7 21.88% [S06], [S07], [S08], [S11], [S20], [S30], [S32]
Europe 6 18.75% [S09], [S15], [S18], [S23], [S24], [S26]

Country

Canada 14 43.75% [S03], [S04], [S05], [S08], [S12], [S13], [S14], [S17],
[S19], [S20], [S21], [S25], [S28], [S32]

Singapore 9 28.12% [S06], [S08], [S11], [S22], [S24], [S28], [S29], [S30],
[S31]

Australia 7 21.88% [S06], [S07], [S08], [S11], [S20], [S30], [S32]
China 6 18.75% [S07], [S08], [S10], [S11], [S29], [S31]
USA 5 15.62% [S01], [S14], [S26], [S27], [S28]
Italy 3 9.38% [S09], [S18], [S23]
Switzerland 2 6.25% [S09], [S23]
Belgium 1 3.12% [S09]
Finland 1 3.12% [S15]
India 1 3.12% [S16]
Mexico 1 3.12% [S18]
Portugal 1 3.12% [S24]
Republic of Korea 1 3.12% [S02]
Spain 1 3.12% [S26]
The Netherlands 1 3.12% [S23]
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APPENDIX B. SLR COMPLEMENTARY MATERIALS

B.5 Studies Appraisal

The following acronyms were used for SLR results interpretation:

• Study Type

CS-Case Study, ECS-Exploratory Case Study, QE-Quasi-Experiment, S-Survey

• SDLCActivities

D-Debugging, I-Implementation, M-Maintenance, O-Operations, T-Testing

• Project Stakeholders

D-Developers, E-Educators, EU-End-Users, T-Testers, PM-Product Managers

PjM-Project Managers, R-Researchers, RE-Requirements Engineers

• Analytics Scope

Des-Descriptive Analytics, Dia-Diagnostics Analytics

Pred-Predictive Analytics, Pres-Prescriptive Analytics

The following taxonomy was used to assess the SDLC contributions:

• The benefit is:

Absent (0) Not addressed

Weak (0.25) Implicitly addressed

Moderate (0.5) Explicitly addressed (not detailed)

Strong (0.75) Explained with details and implications

Complete (1) Fully explained, validated and replicable
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Table B.6: Systematic Literature Review Results.

Study
Type

Data
Sources
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S01 CS Vulnerability Reports,Apache
Tomcat Archive,SecuriBench
Archive

Post-Mortem I,T D,T Descriptive Statistics,Pattern Ex-
traction,Correlation Analysis

Des,Dia

S02 CS F-Droid Repository,GitHub
Repositories

Post-Mortem I D Descriptive Statistics,Pattern Ex-
traction,Correlation Analysis

Des,Dia

S03 CS F-Droid Repository,Google Play
Store

Post-Mortem O D,PM Descriptive Statistics,Pattern Ex-
traction

Des,Dia

S04 ECS Maven Repositories Post-Mortem I D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S05 ECS Google Play Store Post-Mortem O D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S06 QE,S GitHub Repositories Post-Mortem I D,PM Descriptive Statistics,Pattern Ex-
traction,Classifier Learning

Des,Dia,Pred

S07 QE NetBeans Source Code Reposi-
tory,BugZilla,Exception Reports

Post-Mortem I,D,M D Descriptive Statistics,Pattern
Extraction,Heuristic Fea-
tures,Classifier Learning

Des,Dia

S08 CS Git Repositories Post-Mortem I,D,M D Descriptive Statistics,Feature
Extraction,Correlation Analy-
sis,Redundancy Analy-
sis,Classifier Learning

Des,Dia,Pred

S09 ECS F-Droid Repository,SVN
Repositories,GitHub Reposi-
tories,BinTray,JCenter,Maven
Repositories,Google

Post-Mortem I,D,M D Descriptive Statistics,Pattern Ex-
traction

Des,Dia

S10 ECS F-Droid Repository,GitHub
Repositories,Google Play Store

Post-Mortem I,D,M D Descriptive Statistics,Pattern Ex-
traction

Des,Dia

Continued on next page219
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Table B.6: continued from previous page
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S11 QE Gerrit Post-Mortem I,D,M D Descriptive Statis-
tics,Hyphotesis Test-
ing,Redundancy Analy-
sis,Feature Extrac-
tion,Correlation Analy-
sis,Classifier Learning

Des,Dia,Pred

S12 QE Google Play Store Post-Mortem I,D,M D,PM Descriptive Statistics Des,Dia

S13 ECS,QE,S GitHub Repositories,Google
Forms

Post-Mortem I,M D Descriptive Statistics,Pattern Ex-
traction

Des,Dia

S14 QE Git Repositories,SVN Reposito-
ries,BugZilla,JIRA

Post-Mortem I,M D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S15 QE Online Survey,Lab Computers Post-Mortem I D Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S16 ECS Team Wiki (Bit-
Bucket),Mercurial Reposito-
ries,Git Repositories,BugZilla

Post-Mortem I D Descriptive Statistics,Process
Mining

Des,Dia

S17 QE BugZilla Post-Mortem I,M D,R Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analysis

Des,Dia

S18 QE Apache OpenOffice Issue
Tracking System,SEnerCON
Feedback Gathering System

Post-Mortem I,M,O D,PM,RE Descriptive Statis-
tics,Hyphotesis Test-
ing,Correlation Analy-
sis,Classifier Learning

Des,Dia,Pred

S19 QE Git Repositories Post-Mortem I D Descriptive Statis-
tics,Correlation Analysis,Topic
Modeling,Regression Models

Des,Dia,Pred

Continued on next page
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Table B.6: continued from previous page
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S20 ECS Google Play Store Post-Mortem I,M,O D,EU,PM,R Descriptive Statis-
tics,Correlation Analysis,Mixed-
Effect Models,Cluster Analy-
sis,Regression Models

Des,Dia,Pred

S21 QE BugZilla Post-Mortem I,M D Descriptive Statis-
tics,Correlation Analy-
sis,Classifier Learning

Des,Dia,Pred

S22 ECS StackOverflow Post-Mortem I,M D Descriptive Statis-
tics,Correlation Analysis,Topic
Modeling,Cluster Analysis

Des,Dia

S23 ECS,S GitHub Repositories,Online Sur-
vey

Post-Mortem I,M D Descriptive Statistics,Pattern Ex-
traction

Des,Dia

S24 QE,S F-Droid Repository,GitHub
Repositories,Google Play
Store,Online Survey

Post-Mortem I,M,T D,T Descriptive Statis-
tics,Correlation Analysis

Des,Dia

S25 ECS Version Control Repositories Post-Mortem I,M D Descriptive Statis-
tics,Correlation Analy-
sis,Classifier Learning,Cluster
Analysis

Des,Dia,Pred

S26 ECS Mailing List,Git Repositories Post-Mortem I,M D,PjM Descriptive Statistics Des,Dia

S27 ECS Android Issue Tracker,Chrome
Releases Blog,Chromium Issue
Tracker,HackerOne Bug Bounty
Platform

Post-Mortem I,M D,PM Descriptive Statis-
tics,Correlation Analysis

Des,Dia

S28 ECS Google Play Store Post-Mortem I,M,O D,PM Descriptive Statis-
tics,Correlation Analysis

Des,Dia

S29 ECS StackOverflow Post-Mortem I,M D,R,PjM,E Descriptive Statistics,Topic
Modeling,Genetic Algorithms

Des,Dia

Continued on next page
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Table B.6: continued from previous page
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S30 ECS StackOverflow Post-Mortem I,M,T D Descriptive Statis-
tics,Association Rules,Natural
Language Processing

Des,Dia,Pres

S31 ECS,S GitHub Repositories Post-Mortem I D Descriptive Statistics Des,Dia

S32 ECS Git Repositories Post-Mortem I D Descriptive Statis-
tics,Generalized Suffix
Trees,Correlation Analy-
sis,Cluster Analysis,Classifier
Learning

Des,Dia,Pred
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APPENDIX C. UNVEILLING PROCESS INSIGHTS MATERIALS

C.1 Algorithms shown in Model Evaluations

RandomCommittee. Method for building an ensemble of randomizable base classifiers. Each

base classifier is built using a different random seed number (but based one the same data).

The final prediction is a straight average of the predictions generated by the individual base

classifiers.

RandomSubSpace. This method constructs a decision tree based classifier that maintains

highest accuracy on training data and improves on generalization accuracy as it grows in com-

plexity. The classifier consists of multiple trees constructed systematically by pseudo-randomly

selecting subsets of components of the feature vector, that is, trees constructed in randomly

chosen sub-spaces.

RandomForest. Method for constructing a forest of random trees. It consists of a learning

method for classification, regression and other tasks that operates by constructing a multitude

of decision trees at training time and outputting the class that is the mode of the classes

(classification) or mean prediction (regression) of the individual trees.

RepTree. Fast decision tree learner. Builds a decision/regression tree using information

gain/variance and prunes it using reduced-error pruning (with back-fitting). Only sorts values

for numeric attributes once. Missing values are dealt with by splitting the corresponding

instances into pieces.

LMT. ’Logistic Model Trees’ are classification trees with logistic regression functions at the

leaves. The algorithm can deal with binary and multi-class target variables, numeric and

nominal attributes and missing values.

Logistic Regression. Method for building and using a multinomial logistic regression model

with a ridge estimator. Logistic regression is a statistical model that in its basic form uses a

logistic function to model a binary dependent variable, although more complex extensions exist.

LWL. The Locally Weighted Learning method uses an instance-based algorithm to assign

instance weights which are then used by a specified WeightedInstancesHandler. Can do

classification (e.g. using naive Bayes) or regression (e.g. using linear regression).

LinearNNSearch. This method implements the brute force search algorithm for nearest

neighbour search.

DecisionTable. Builds and uses a simple decision table majority classifier.

Bagging. Method for bagging a classifier to reduce variance. Can do classification and

regression depending on the base learner.
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C.2. MODELS PERFORMANCE METRICS

KStar. Is an instance-based classifier, that is, the class of a test instance is based upon the class

of those training instances similar to it, as determined by some similarity function. It differs

from other instance-based learners in that it uses an entropy-based distance function.

C.2 Models Performance Metrics

Several metrics are employed in machine learning classification problems for the assessment of

models’ performance. The list bellow serves as a brief introduction to those metrics and how

they are calculated.

True Positive (TP). The outcome prediction was positive, and so was the actual value (e.g., the

refactoring was predicted as likely to be manual has been effectively manual).

False Positive (FP). The outcome prediction was positive, but the actual value was negative

(e.g., refactoring was predicted as likely to be automatic, but it was indeed not auto-

matic(manual)). Type I error.

True Negative (TN). The outcome prediction was negative, and so was the actual value (e.g.,

the booking was predicted as likely not to be manual and has been effectively not manual).

False Negative (FN). The outcome prediction was negative, but the actual value was positive

(e.g., refactoring was predicted as likely not to be automatic(manual), but it was indeed

automatic). Type II error.

Area Under the Curve (AUC). Measure of success calculated from the area under the plot of

true positive rate (TPR) against false positive rate (FPR).

Accuracy. Measure of outcome correctness. Measures the proportion of true results among the

total number of predictions and is defined as follows:

Accuracy =
∑
T P +

∑
TN∑

T P +
∑
TN +

∑
FP +

∑
FN

(C.1)

False Positive Rate (FPR or Fall-out). Measures the probability of a positive prediction result

and the actual value being negative (e.g., probability of a refactoring being predicted as likely

to be automatic and effectively it was not). It is defined as follows:

FPR =
∑
FP∑

FP +
∑
TN

(C.2)
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APPENDIX C. UNVEILLING PROCESS INSIGHTS MATERIALS

Precision (Pre.). Measures the proportion of correct positive predictions. It is defined as fol-

lows:

Precision =
∑
T P∑

T P +
∑
FP

(C.3)

True Negative Rate (TNR or Specificity). Measures the probability of a negative prediction

result and the actual value being negative (e.g., probability of a refactoring being identified as

not automatic and effectively it was not). It is defined as follows:

TNR =
∑
TN∑

TN +
∑
FP

(C.4)

True Positive Rate (TPR, Recall or Sensitivity). Measures the probability of a positive predic-

tion result and the actual value being positive (e.g., probability of a refactoring being identified

as likely to be automatic and effectively was automatic). It is defined as follows:

TPR =
∑
T P∑

T P +
∑
FN

(C.5)

F1 Score. Is the harmonic mean of precision and sensitivity. It is defined as follows:

F1 = 2 ∗ P recision ∗Recall
P recision+Recall

(C.6)

F1 = 2 ∗

∑
T P∑

T P+
∑
FP ∗

∑
T P∑

T P+
∑
FN∑

T P∑
T P+

∑
FP +

∑
T P∑

T P+
∑
FN

(C.7)
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APPENDIX D. PRACTICES AND FINGERPRINTS MATERIALS

D.1 Development Sessions Fingerprints
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Figure D.1: All Development Sessions Fingerprints
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Figure D.2: All Development Sessions Fingerprints - continued
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APPENDIX D. PRACTICES AND FINGERPRINTS MATERIALS

D.2 Frequency of Participants per Fingerprint
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Figure D.3: Frequency of participants per development fingerprint
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D.2. FREQUENCY OF PARTICIPANTS PER FINGERPRINT

35

33 34

27 30

25 26

23 24

21 22

19 20

17 18

14 16

4 7

0.0 0.1 0.2 0.3

0.0 0.2 0.4 0.6 0.00 0.05 0.10 0.15 0.20

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15

0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3

0.00 0.04 0.08 0.12 0.0 0.1 0.2 0.3

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.20

0.00 0.05 0.10 0.15 0.00 0.02 0.04 0.06

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15
0

2

4

6

0

2

4

6

0

2

4

6

8

0

2

4

6

0

10

20

30

0

2

4

6

8

0

1

2

3

4

5

0

10

20

0

2

4

6

0

1

2

3

4

0

1

2

3

4

5

0

5

10

15

0

5

10

0

10

20

30

0

5

10

15

0

5

10

15

0

10

20

0

10

20

30

0

3

6

9

Gamma

F
re
q
u
en
cy

Figure D.4: Frequency of participants per development fingerprint - continued
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