
Integration of Mobile Devices in Home Automation with use of
Machine Learning for Object Recognition

Rui Passinhas
ISCTE – Instituto Universitário de

Lisboa
Instituto de Telecomunicações

Lisbon, Portugal
rjsps@iscte-iul.pt

Rui Neto Marinheiro
ISCTE – Instituto Universitário de

Lisboa
Instituto de Telecomunicações

Lisbon, Portugal
rui.marinheiro@iscte-iul.pt

Paulo Nunes
ISCTE – Instituto Universitário de

Lisboa
Instituto de Telecomunicações

Lisbon, Portugal
paulo.nunes@iscte-iul.pt

ABSTRACT
The number of smart homes is increasingly expanding, with even
more connected devices and available control options. Mobile
devices have unfortunately been up to now generally regarded as
mere remote controls in these environments.

This paper addresses this shortcoming, by presenting a novel
integration architecture and prototype where the potential of mobile
devices sensors can be better explored in home automation
platforms, in particular by detecting objects in the information
collected by their cameras that subsequently allow for users to
interact with them in an intuitive way. The detection is performed
at the mobile side, using a lightweight machine learning solution.

The obtained accuracy and processing time are comparable to that
obtained at server side. But the advantage here is that the interactive
experience of users can be dramatically improved, with the absence
of round-trip time required if server processing would be used.

CCS CONCEPTS
• Computer systems organization~Sensors and actuators
• Human-centered computing~Ubiquitous and mobile devices
• Computing methodologies~Object recognition

KEYWORDS
Internet of Things, Smart Homes

ACM Reference format:

Rui Passinhas, Rui Neto Marinheiro and Paulo Nunes. 2020. Integration of
Mobile Devices in Home Automation with use of Machine Learning for
Object Recognition. In Proceedings of 10th Euro American Conference on
Telematics and Information Systems 2020 (EATIS 2020). ACM, Aveiro,
Portugal, 8 pages. https://doi.org/10.1145/3401895.3401925

1 Introduction
The main goal of the system proposed here is to promote the
integration of mobile devices into current home automation
solutions, considering the device as a sensor, in particular the use
of its camera in a user-friendly way in order to perform interactive
tasks based on image recognition.

Analyzing the related work in the smart homes sector, it is
noticeable that an effort is being made in progressively using the
mobile device to interact with the home automation platforms and
control our home appliances in a user-friendly way. Still and all,
there is no bridge between the mentioned subjects and this paper
aims to fill that gap, providing the device the ability to perform on
its own image recognition tasks, from an intuitive application, and
consequently take actions in real-time in a smart home
environment.
This integration strives to go beyond the scope of the normal home
automation mobile applications as far as the interaction with the
user happens and as well as the concept of object recognition with
real-time detection is attached.
Thus, the system presented consists in a sequence of modules
which provide the foundation to the whole workflow that needs to
occur since back from the user to the end smart home devices. In a
high-level system architecture overview, the system presented
consists in a mobile application where the user interacts with the
home devices. This application is where the object recognition
happens in real time, analyzing the surrounding environment and
enabling the user interactions with the devices. Then, the
application interacts with a message broker, which connects to the
home automation platform and consequently triggers events in the
actuators of home devices themselves, according to the existing
rules.
In order to validate the proposal presented here, a prototype has
been implemented where real case scenarios were considered,
analyzing the identification and interaction with the smart home
devices, measuring the obtained processing delay and accuracy.
Results show that the proposed solution stresses that an inference
machine learning model can be used in real-time processing,
integrated inside an android application providing instantaneous
visual feedback. This also leads to real-time action triggering in
automation platforms, that provide home device integration, and
consequently built a seamless and uninterrupted information
workflow.
The integration proposed here significantly contributes to
demonstrate that: (i) a better integration of mobile devices in home
automation is possible, in particular by exploring the potential of
their sensors; (ii) lighter machine learning models, implemented at
the mobile device side, can be used real-time detection, to improve
user interactive experience. Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
EATIS 2020, November 25–27, 2020, 3810-193 Aveiro, Portugal
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-7711-9/20/05.
https://doi.org/10.1145/3401895.3401925

EATIS 2020, May, 2020, Aveiro, Portugal R. Passinhas et al.

The remaining part of the current paper is organized as follows.
Section 2 presents a literature review in this area. Section 3
discusses the design of the architectures proposed here. Section 4
details the implementation of the prototype used for the validation
and how it was used to perform tests and obtain results. Finally,
Section 5 presents general conclusions about the current
contribution and Section 6 promising future work.

2 Related Work
In the field of the Internet of Things (IoT), a myriad of proposals
has suggested the integration of smart mobile devices in home or
building automation solutions such as [11][10]. The authors in [11]
have targeted a low-cost mobile approach to Smart Homes. The
proposed system aims to access and control devices in a Smart
Home using a smartphone app. With the integration of wireless
communication and cloud networking, the goal is to provide users
with the possibility to control all the electrical smart appliances,
devices and sensors using a friendly interface in a smartphone from
remote locations. The proposed system is composed by a base
station implemented in an Arduino Mega connected to Wi-Fi and
multiple satellite stations based in Arduino Uno boards with Radio
Frequency modules to communicate with the base station.
The authors in [10] developed a mobile Android app than can
access information of all the appliances in a smart home and allows
to interact with them, manually or automatically from scheduled
events. Implementing both AES and RSA algorithms, the app was
designed taking into concern common security issues. The system
is composed of two main blocks, an outdoor environment and an
indoor environment. The outdoor one consists of the end user and
the application cloud server whereas the indoor one has the access
point, the hosts and all the nodes. Even though communication
between the two environments is done using the Internet with
encrypted information, communication inside indoor environment
uses Zigbee. The application can be accessed in real-time in any
remote location and has notifications, QR Code and Auto-Lock
features.
The solutions presented so far are representative of the majority of
proposals for the mobile devices’ integrations in IoT platforms,
where they are regrettably considered as plain remote controls. The
potential of those devices, with their many available sensors, in
particular the camera, could be better explored.
The authors in [8] present an application that processes images in
real-time for object detection, based on OpenCV libraries. The
object detection system was developed and trained on a Windows
machine and implemented on a Texas Instruments embedded
platform. It adopted a cascade classifier based on Haar-like feature
in order to reduce the computational time and to increase the speed
of object detection. The system was trained with a dataset of around
4000 images from different angles and positions. This type of
approach could be adopted, by using mobile devices’ camera to
collect images that could be sent to a back end central system to
process them. However, the round-trip time penalty in a solution
like this does not provide a good interactive experience when users
have to interact with controlled devices in real-time.

Machine learning is another alternative approach for object
detection. Software solutions, such as TensorFlow, provide a viable
framework that can be used embedded in mobile devices [7] for
object recognition [3]. Even though not related directly to IoT, the
author in [2] detailed how to effectively train an object detector to
accurately recognize Raccoons around his house. The system was
developed using TensorFlow Object Detection API and was trained
with a specific dataset of about 200 racoon images collected and
labeled by the author. The training process was done with an object
detection training pipeline based on a Single Shot MultiBox
Detector [2] network with default settings and adapted to only one
class. Since the image dataset was small and low training time was
used, the detector does not recognize every single racoon, but it can
deliver decent results with relatively good accuracy. The ability of
performing object detection on the device, and not in distant cloud
servers, suites better for interactive applications required for home
automation.

3 Architecture of the Proposed Solution
The main goal of the proposed system is to promote the integration
of the mobile devices into the home automation environment,
providing the user the ability to interact intuitively with the system.
This integration strives to go beyond the scope of the normal home
automation mobile applications as far as the interaction with the
user happens and as well as the concept of object recognition with
real time detection is attached.
Thus, the proposed system consists in a sequence of modules which
provide the foundation to the whole workflow that needs to occur
since back from the user to the end devices. In Figure 1, a high-
level system architecture is presented in which can be identified the
user representation, the mobile cluster, the automation platform
aggregate and in the opposite end, the smart devices connected
inside home.

Figure 1: High-Level System Proposed Architecture

3.1 Mobile Module
This module serves has the entry point to the user in the whole
workflow. All the interactions will happen within an application

Integration of Mobile Devices in Home Automation with use of
Machine Learning for Object Recognition EATIS 2020, May, 2020, Aveiro, Portugal

installed in the mobile device and the actions taken inside it will
trigger series of events throughout the system.
As illustrated in Figure 2, the mobile component is composed by a
mobile application and a re-trained model integrated into the
application. This integration occurs in real-time, providing the user
instant feedback and therefore, according to the scenario, specific
commands and actions will be sent through the channel of
communication, existing between this module and the home
automation one.

Figure 2: Mobile Module Architecture

3.1.1 Mobile Application. The mobile application will be installed
in the user device and its main role is to collect user interactions,
interpret the data collected and establish the communication with
the automation platform. This application must furthermore allow
the communication to be established between the mobile device
and the home automation platform. To do so, it will need to play
the client role in a communication protocol between both, sending
information to the platform.
3.1.2 Inference Model. The main purpose of the proposed
integration is the ability to use the mobile device sensors to interact
intuitively with the smart devices. One of the major information
collectors which can be found in every mobile device is the camera.
So, to take advantage of all its potentiality, a way of interpreting
the data collected by the camera sensor needed to be found.
A possible solution is to implement traditional computer vision
algorithms, using feature extraction and pattern recognition
processes to manually identify objects. Notwithstanding the fact of
these techniques have proven themselves to be reliable and
effective, a more promising approach was taken in consideration.
Here is where the Machine Learning component comes into play.
The use of a machine learning library compatible with the
architecture proposed, able to load and process data, build, train and
re-use models with easy deployments is a valid solution.
In addition to provide the ability to re-train a neural network
without the need of sophisticated and powerful hardware, the
biggest overall advantage off this approach is the possibility to run
machine learning models on mobile devices within a lightweight
and mobile solution. Using on-device machine learning, the system
architecture stays simpler, without the need to make consecutive
server calls to evaluate information. That would require constant
data streaming resulting in more energy consumption, higher
latency and extra processing with back and forth communication
also having to consider the possibility of data loss in it. This also
prevents that personal data is sent to third-party providers.

3.2 Communication
The connecting point between the main module described before
and the later one described ahead is the communication established
between both. The communication protocol to use between the
device and the platform depended heavily on the choice of the
automation platform and the application ecosystem since each
platform and operating system supports a different set of protocols
and integrations. Despite the choice, it has to assure that the
communication between the two has low bandwidth, low latency
and good performance.
Within the system architecture context, one component will act as
a publisher, one as a broker and the other as a subscriber (Figure 3).

Figure 3: Communication Architecture Workflow

The most logical way of implementing the protocol architecture in
this scenario is being the mobile device the subscriber responsible
for publishing data to a certain topic which is subscribed at the
automation platform end. By doing so, the mobile device can
constantly push updates on state changes and user interactions
knowing that these will be received on the automation platform,
that is listening for data in the specific subscribed topics.

3.3 Home Module
The last, but not the least important element in the proposed system
architecture, is the home module. This one houses two main
components, the broker, responsible for the communication, and
the home automation instance, responsible for the integration of the
smart devices and sensors. As displayed in the Figure 4, both are
housed inside the same installation platform.

Figure 4: Home Module Architecture

One major concern was to have the broker and the automation
platform installed in the same hardware so the need of extra
hardware could be avoided. Consequently, the choice of all three

EATIS 2020, May, 2020, Aveiro, Portugal R. Passinhas et al.

components was made having in mind the need of each one being
compatible between them.
3.3.1 Broker. The broker will be responsible to manage all the
publish and subscribe calls made and therefore maintain the
communication between the involved elements.
Since in a public broker, any device or entity can publish and
subscribe to any topic on it, and that most home automation
platforms analyzed did not have a broker by default, the securest
and easiest way to integrate this node into the architecture was
relying on a private broker where only the devices with given
permission can publish and subscribe to the topics managed by that
broker.
Figure 5 represents a Broker placement within the system
architecture, receiving subscribing requests from the Automation
Platform and therefore delivering the messages there upon a data
publish receipt from the mobile device, consequently establishing
the connection for data transfer between both.

Figure 5: Broker Communication Role in System Architecture

3.3.2 Automation Platform. Being a core element of the system, the
automation platform is a key element in the system potentiality.
Architecture wise, as referred in the beginning of this chapter, the
home automation platform is installed alongside the broker, also
already mentioned.
Bearing in mind the intended integration, a good implementation
choice needs to check all the boxes: being open-source, developed
in a well-known easy to learn language, having a strong base
community of users and the possibility of being installed on a low
processing power and costless device.
As illustrated in Figure 6, the platform will also have the smart
home devices connected to itself, being able to process rules, send
commands, perform operations and state changes according to the
information sent by the user from the mobile device and transmitted
through the broker.

4 Implementation and Validation
In order to demonstrate the proposed integration of mobile devices
in home automation, the system architecture had to be implemented
in a prototype that allowed for the validation of the solution here
presented.

Figure 6: Smart Devices Connected to Home Platform

4.1 Implementation
At first, the machine learning component was developed and
converted into the desired format. After that, the mobile application
responsible for integrating the model in real time was built.
Thereafter, the automation platform was installed and configured
and consequently the communication processes were implemented.
These three major stages of system development and
implementation are the keys to a successful operation of the
proposed solution.
4.1.1 Inference Model. To implement the architecture above
described and having in mind the necessary requirements, a
machine learning model had to be trained, converted and later
deployed on the mobile device.
Regardless of the final solution, a custom Machine Learning model
training process requires an image dataset as an input. As stated
before, for the model to perform in a certain scenario, it will have
to be trained with enough data to learn the patterns and desired
features. In order to start the initial approach considering object
detection, a dataset of images, divided in 3 groups, was gathered
and the choice of 3 objects that can be found in most of so-called
smart homes was made: Bulbs (608 images), Air Conditioners (508
images) and Window Shutters (808 images).
To begin the training process, the following elements were needed:
TFRecord Files, Label Map, Model Config File, Pre-Trained
Model. An already trained model can be used as a checkpoint to
transfer learning and to retrain the final layers providing the data
wanted.
After setting up the environment, the next step was the re-training
process. This one was done using MobileNets [1] which are a set
of computer vision models optimized to TensorFlow, designed to
obtain high accuracy using limited computation power and
restricted resources, building in this way a lightweight
convolutional neural networks. For this reason, it isn’t expected a
significant increase on energy consumption of the mobile device.
To begin the training, a Python Script obtained from TensorFlow
repository was used which is responsible for the download of the
pre-trained model and consequently add the new layer to be trained
on the given dataset. The default number of iterations (4000) was
used and the script was executed afterwards. The Script output
reported a Final test accuracy of 91.9%.

Integration of Mobile Devices in Home Automation with use of
Machine Learning for Object Recognition EATIS 2020, May, 2020, Aveiro, Portugal

As illustrated in Figure 7 and Figure 8, when consulting
TensorBoard, a monitoring tool included in TensorFlow, during
and after the training, a set of outputs could be evaluated:

1. Accuracy – Divided in training accuracy and validation
accuracy, these values represent, respectively, the percentage
of images labeled correctly and the validation precision on a
set of images chosen. In Figure 7, the accuracy, represented in
the y-axis, is a function of the training progress, represented in
the x-axis. The orange line represents the training accuracy of
the model while the blue line exhibits the validation accuracy.
As the validation accuracy remains constant as the training
accuracy increases, we can say that the model did not entered
in overfitting which is a scenario when the model is learning
more of the training data proprieties than the data patterns
itself.

2. Cross Entropy – In short, cross entropy is a positive loss
function which tends to zero as the neuron improves
computation of the desired output, y, for all training inputs, x,
as represented in Figure 8.

Figure 7: Training Accuracy (TensorBoard)

Figure 8: Training Cross Entropy (TensorBoard)

After obtaining the final re-trained graph from the previous training
output, the model needed to be converted and optimized to run on
the mobile device. The process uses TensorFlow Lite and its tools,
namely, a TFLite Converter and a TFLite interpreter. After
executing the python scripts, the optimized_graph.lite file was
generated under the output path defined.
4.1.2 Mobile Application. After generating the .lite file, the
customized model was then prepared to be integrated inside the
Application. As referred above, the application is an Android
Application and it was developed using Android Android 5.0,
granting minimum compatibility with approximately 88.2% of
devices [9]. The application has to handle two main tasks: the

interpretation of the model in real-time and the communication
with the forward elements of the architecture.
The first step was to integrate the model already trained, optimized
and converted into the TFLite interpreter. After successfully
integrating the inference model in real-time with data collected
from the camera main sensor, the device needs to send commands
to the platform in order to trigger the user desired actions. This
communication process was implemented using Message Queuing
Telemetry Transport (MQTT). The solution was to implement the
Paho Android Service [5], which provides an interface to the
Original Paho Java MQTT Client. This allows to encapsulate the
connection inside a service and to run it in background along the
Android Activities providing reliability in MQTT connections and
message receiving and sending.
4.1.3 Home Automation Platform. Having the inference model
trained and integrated inside the android application, the third and
last step to complete the system implementation was the installation
of the automation platform on a small form factor processing board,
including the MQTT broker to allow the platform to receive the
messages originated in the mobile device and consequently trigger
automation rules and perform actions. The components were
installed in a Raspberry Pi 3B+ inside a python virtual
environment, providing the flexibility needed to the system
implementation.
For the prototype the used automation platform was HomeAssistant
[6]. Despite the fact that it is the possible to define an in-platform
broker and that there are public brokers available, a private MQTT
broker was used to implement the MQTT communication on the
server side, to have more control on the integration and security
management. The choice relied on Mosquitto [4] to implement the
machine-to-machine messaging protocol. After the installation, the
system can be started and is able to receive publish and subscribe
requests. The broker runs as a service and has to be started
whenever the system boots.
One big advantage of Home Assistant is the ability to define
automation rules. An automation rule contains 3 main blocks:
Trigger; Condition and Action. One of the trigger types is the
MQTT trigger and is fired when a specific message is received in a
specific topic. This way, automation rules could be created to make
the desired system actions according to the MQTT messages
received.
Figure 9 shows an example of an automation rule where an action
is triggered when a message with the payload “switch” is received
on topic “room/switch/bulb” with no conditions implicit. The
action will take place on the bulb described in the entity tag with
the service light.toggle, which is responsible for toggling the bulb
state. Additionally, the system Web interface has a tool to create
the automations, displaying the list of triggers, entities available,
actions and the respective services.

4.2 Validation Results
Having completed the implementation of the previous steps, a
prototype of the proposed system was obtained. Then, a
comparison between the manual inference at server side and the on-

EATIS 2020, May, 2020, Aveiro, Portugal R. Passinhas et al.

device machine learning final solution was possible, considering
the obtained processing times. It was also possible to perform
accuracy tests using real application scenarios. In the end a
discussion over validation results provided by the implementation
prototype is followed.

Figure 9: Bulb Automation Rule

4.2.1 Prototype Implemented. The developments made aim at a
hypothetical scenario where a user can control the devices existent
in his/her home, through the camera user interface having visual
representation of the actions, while providing intuitive interactions.
Looking at the implementation obtained, the major visual results
come from the mobile application and the device connected to the
platform.
The implementation described resulted in a mobile application
which, after installed in and android device, is where the user will
interact. Figure 10 represents the application main screen,
containing the camera viewfinder, a label containing the object
identified and the accuracy of the evaluation alongside the buttons
to take actions on that device when evaluated with accuracy over a
pre-defined threshold.

Figure 10: Application Main Screen Example

In the screenshot presented in Figure 10, it is visible that the user
was pointing the device at a light bulb and since the evaluation
result is constantly returning values close to 100% the button to
switch on the device is presented, which represents the action
passible to be taken at that moment for that device. When the button

is pressed, the whole process described before takes place and the
state of bulb will then toggled. Additionally, to the evident visual
feedback on the bulb, looking at HomeAssistant interface it is
possible to see the event occurrence.
4.2.2 Server vs On-Device Machine Learning Performance Tests.
Even though traditionally, machine learning and neural networks
are concepts associated with increased computation power and
robust hardware, the scope of this work addresses the on-device
artificial intelligence arising ubiquitousness and its major potential.
Therefore, an interesting result to analyze is the accuracy obtained
with lighter models and the level of latency or performance
decreasing when running on less powerful devices.
This way, a metric that can give indicators of both benefits and
drawbacks of this approach is the time spent during the execution
of the model trained to produce an output and effectively label the
input image. A possible way of analyzing this is by running the
inference model at the machine where it was trained with a python
script, label_image.py and, after that, running the same model
already integrated in the mobile application, measuring the times
before and after the run.
This analysis was performed using three different images and ran
three times in each of them to guarantee a minimum coherence in
the results. In the case of the mobile device, since the input comes
as a video stream, the three images were represented by three
different scenarios with the three different bulbs. The results are
presented bellow in Table 1.

Table 1: Comparison between Manual Inference versus On-
Device Run

 Server Run On-Device
Time (ms) Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Image 1 12.8 12.7 12.9 16.0 15.0 16.0

Image 2 13.5 13.7 13.6 20.0 19.0 17.0

Image 3 12.4 12.4 12.5 30.0 30.0 30.0

4.2.2 Accuracy Tests. The implemented prototype is based on a
neural network retrained to identify representative smart household
devices, particularly bulbs, air conditioners and electrical window
shutters. Therefore, the scenarios used to validate the accuracy of
the solution matched these items.
The first test exemplifies a use case scenario where the user points
the device at a light bulb. In this case, when the evaluation output
is higher than the 95% accuracy threshold, the switch option
appears on the screen and the user can interact with the device. To
obtain maximum results and since the image dataset used for testing
was simple light bulbs, the 3 tests performed were on simple
lightbulbs connected to power (Figure 11).
In a similar way, test cases were made for window shutters and air
conditioners and the accuracy results obtained are presented in
Table 2.

Integration of Mobile Devices in Home Automation with use of
Machine Learning for Object Recognition EATIS 2020, May, 2020, Aveiro, Portugal

Figure 11: Bulb Tested Scenarios

Analyzing the results obtained, concerning the comparison made
between manually running the inference model on the training
environment, at the server side, and the inference happening on the
mobile device, we can see that the results were not that distant and,
therefore, the system can produce fast results in real-time without
compromising the performance obtained. In terms of accuracy
obtained, every test provided result higher than 90%, which is
positive and allowed to control the devices in almost every situation
with confidence.

Table 2: Tested Scenarios Accuracy

 Test 1 Test 2 Test 3

Bulb 94% 95% 100%

Air Conditioner 95% 90% 93%

Window Shutter 99% 91% 98%

5 CONCLUSIONS
As an overall solution, the system developed worked as a proof of
concept of the integration of mobile devices in home automation
with use of machine learning for object recognition. Even though
machine learning and deep learning-based systems often need
massive hardware to be trained and developed, the work developed
for this paper proves that lightweight alternatives can be found and
adapted to meet the desired goals.
Looking at the obtained results, an important conclusion to bear in
mind is that on-device machine learning proved to be surprisingly
accurate and able of handling the tasks defined, confirming in this
way the already arising paradigm of artificial intelligence
increasingly moving to edge devices, without compromising
functionality. The usage of this technology doesn’t impact the
performance of the home system, because the processing is mainly
made on the mobile device, and since no new hardware is required,
there isn’t also a cost increase.
The developed solution also proves that an inference machine
learning model can be used in real-time, integrated inside a mobile

device application, providing instantaneous visual feedback. This
leads to also real-time action triggering in the automation platform
making use of the integration and consequently built a seamless and
uninterrupted information workflow. This is key for achieving an
appropriate interactive experience for end users.

6 FUTURE WORK
For future work, many sensors in the mobile device, which were
not used in the course of this work, can be further explored which
enables the possibility to control a range of smart devices, from air
humidifiers to door locks, in new and innovative ways.
Concerning the computer vision topic, the evolution from image
classification to object detection would also provide the ability to
track multiple objects at the same time and allow better precision
and control of the devices. Even though implying major
developments in the application, this improvement would unlock
more possibilities of user interaction and functionalities to the
application.
Additionally, a contribution than can be remarking, in the
potentiality of the concept introduced here, is the re-training of the
inference model based on user feedback. Even though a solution
can be prepared for a general use case scenario, each case is unique,
and each user will have different needs. If the mobile application
provides a way of collecting user feedback according to his
respective scenario and reality, this input could be used to re-train
the model with improved accuracy and consequently to obtain
flawless and consistent results.

ACKNOWLEDGMENTS
This work is funded by FCT/MCTES through national funds and
when applicable co-funded EU funds under the project
UIDB/EEA/50008/2020

REFERENCES
[1] Andrew Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto and Hartwig Adam. 2017.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. [Online] Available: https://arxiv.org/abs/1704.04861v1

[2] Dat Tran. 2017. How to train your own Object Detector with TensorFlow’s
Object Detector API. [Online] Available: https://towardsdatascience.com/how-
to-train-your-own-object-detector-with-tensorflows-object-detector-api-
bec72ecfe1d9, (visited 22/12/2018).

[3] Davide Mulfari, Antonino Minnolo and Antonio Puliafito. 2017. Building
TensorFlow Applications in Smart City Scenarios. In Proceedings of IEEE
International Conference on Smart Computing (SMARTCOMP), Hong Kong,
pp. 1-5. https://doi.org/10.1109/SMARTCOMP.2017.7946991

[4] Eclipse Foundation. 2019. Eclipse Mosquitto, an open source MQTT broker.
[Online] Available: https://mosquitto.org, (visited 24/10/2019)

[5] Eclipse Foundation. 2019. Eclipse Paho Android Service. [Online] Available:
https://github.com/eclipse/paho.mqtt.android, (visited 10/04/2019)

[6] Home Assistant. 2019. Home Assistant. [Online] Available: https://www.home-
assistant.io, (visited 24/10/2019)

[7] Jeff Tang. 2018. Intelligent Mobile Projects with TensorFlow: Build 10+
Artificial Intelligence Apps Using TensorFlow Mobile and Lite for iOS,
Android, and Raspberry Pi. Packt Publishing. ISBN: 1788834542,
9781788834544

[8] Souhail Guennouni, Ali Ahaitouf and Anass Mansouri. 2014. Multiple object
detection using OpenCV on an embedded platform. In Proceedings of IEEE

EATIS 2020, May, 2020, Aveiro, Portugal R. Passinhas et al.

International Colloquium in Information Science and Technology (CIST).
Tetouan, pp. 374-377. https://doi.org/10.1109/CIST.2014.7016649

[9] StatCounter. 2019. Mobile & Tablet Android Version Market Share Worldwide.
[Online] Available: https://gs.statcounter.com

[10] Trio Adiono, Suksmandhira Harimurti, Billy Austen Manangkalangi and
Waskita Adijarto. 2018. Design of smart home mobile application with high
security and automatic features. In Proceedings of International Conference on
Intelligent Green Building and Smart Grid (IGBSG). Yi-Lan, pp. 1-4.
https://doi.org/10.1109/IGBSG.2018.8393574

[11] Vignesh Govindraj, Mithileysh Sathiyanarayanan and Babangida Abubakar.
2017. Customary homes to smart homes using Internet of Things (IoT) and
mobile application. In Proceedings of International Conference On Smart
Technologies For Smart Nation (SmartTechCon). Bangalore, pp. 1059-1063.
https://doi.org/10.1109/SmartTechCon.2017.8358532

