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ABSTRACT 
The number of smart homes is increasingly expanding, with even 
more connected devices and available control options. Mobile 
devices have unfortunately been up to now generally regarded as 
mere remote controls in these environments. 

This paper addresses this shortcoming, by presenting a novel 
integration architecture and prototype where the potential of mobile 
devices sensors can be better explored in home automation 
platforms, in particular by detecting objects in the information 
collected by their cameras that subsequently allow for users to 
interact with them in an intuitive way. The detection is performed 
at the mobile side, using a lightweight machine learning solution.  

The obtained accuracy and processing time are comparable to that 
obtained at server side. But the advantage here is that the interactive 
experience of users can be dramatically improved, with the absence 
of round-trip time required if server processing would be used. 
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1  Introduction 
The main goal of the system proposed here is to promote the 
integration of mobile devices into current home automation 
solutions, considering the device as a sensor, in particular the use 
of its camera in a user-friendly way in order to perform interactive 
tasks based on image recognition. 

Analyzing the related work in the smart homes sector, it is 
noticeable that an effort is being made in progressively using the 
mobile device to interact with the home automation platforms and 
control our home appliances in a user-friendly way. Still and all, 
there is no bridge between the mentioned subjects and this paper 
aims to fill that gap, providing the device the ability to perform on 
its own image recognition tasks, from an intuitive application, and 
consequently take actions in real-time in a smart home 
environment. 
This integration strives to go beyond the scope of the normal home 
automation mobile applications as far as the interaction with the 
user happens and as well as the concept of object recognition with 
real-time detection is attached. 
Thus, the system presented consists in a sequence of modules 
which provide the foundation to the whole workflow that needs to 
occur since back from the user to the end smart home devices. In a 
high-level system architecture overview, the system presented 
consists in a mobile application where the user interacts with the 
home devices. This application is where the object recognition 
happens in real time, analyzing the surrounding environment and 
enabling the user interactions with the devices. Then, the 
application interacts with a message broker, which connects to the 
home automation platform and consequently triggers events in the 
actuators of home devices themselves, according to the existing 
rules. 
In order to validate the proposal presented here, a prototype has 
been implemented where real case scenarios were considered, 
analyzing the identification and interaction with the smart home 
devices, measuring the obtained processing delay and accuracy. 
Results show that the proposed solution stresses that an inference 
machine learning model can be used in real-time processing, 
integrated inside an android application providing instantaneous 
visual feedback. This also leads to real-time action triggering in 
automation platforms, that provide home device integration, and 
consequently built a seamless and uninterrupted information 
workflow. 
The integration proposed here significantly contributes to 
demonstrate that: (i) a better integration of mobile devices in home 
automation is possible, in particular by exploring the potential of 
their sensors; (ii) lighter machine learning models, implemented at 
the mobile device side, can be used real-time detection, to improve 
user interactive experience. Permission to make digital or hard copies of part or all of this work for
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The remaining part of the current paper is organized as follows. 
Section 2 presents a literature review in this area. Section 3 
discusses the design of the architectures proposed here. Section 4 
details the implementation of the prototype used for the validation 
and how it was used to perform tests and obtain results. Finally, 
Section 5 presents general conclusions about the current 
contribution and Section 6 promising future work. 

2 Related Work 
In the field of the Internet of Things (IoT), a myriad of proposals 
has suggested the integration of smart mobile devices in home or 
building automation solutions such as [11][10]. The authors in [11] 
have targeted a low-cost mobile approach to Smart Homes. The 
proposed system aims to access and control devices in a Smart 
Home using a smartphone app. With the integration of wireless 
communication and cloud networking, the goal is to provide users 
with the possibility to control all the electrical smart appliances, 
devices and sensors using a friendly interface in a smartphone from 
remote locations. The proposed system is composed by a base 
station implemented in an Arduino Mega connected to Wi-Fi and 
multiple satellite stations based in Arduino Uno boards with Radio 
Frequency modules to communicate with the base station. 
The authors in [10] developed a mobile Android app than can 
access information of all the appliances in a smart home and allows 
to interact with them, manually or automatically from scheduled 
events. Implementing both AES and RSA algorithms, the app was 
designed taking into concern common security issues. The system 
is composed of two main blocks, an outdoor environment and an 
indoor environment. The outdoor one consists of the end user and 
the application cloud server whereas the indoor one has the access 
point, the hosts and all the nodes. Even though communication 
between the two environments is done using the Internet with 
encrypted information, communication inside indoor environment 
uses Zigbee. The application can be accessed in real-time in any 
remote location and has notifications, QR Code and Auto-Lock 
features. 
The solutions presented so far are representative of the majority of 
proposals for the mobile devices’ integrations in IoT platforms, 
where they are regrettably considered as plain remote controls. The 
potential of those devices, with their many available sensors, in 
particular the camera, could be better explored. 
The authors in [8] present an application that processes images in 
real-time for object detection, based on OpenCV libraries. The 
object detection system was developed and trained on a Windows 
machine and implemented on a Texas Instruments embedded 
platform. It adopted a cascade classifier based on Haar-like feature 
in order to reduce the computational time and to increase the speed 
of object detection. The system was trained with a dataset of around 
4000 images from different angles and positions. This type of 
approach could be adopted, by using mobile devices’ camera to 
collect images that could be sent to a back end central system to 
process them. However, the round-trip time penalty in a solution 
like this does not provide a good interactive experience when users 
have to interact with controlled devices in real-time. 

Machine learning is another alternative approach for object 
detection. Software solutions, such as TensorFlow, provide a viable 
framework that can be used embedded in mobile devices [7] for 
object recognition [3]. Even though not related directly to IoT, the 
author in [2] detailed how to effectively train an object detector to 
accurately recognize Raccoons around his house. The system was 
developed using TensorFlow Object Detection API and was trained 
with a specific dataset of about 200 racoon images collected and 
labeled by the author. The training process was done with an object 
detection training pipeline based on a Single Shot MultiBox 
Detector [2] network with default settings and adapted to only one 
class. Since the image dataset was small and low training time was 
used, the detector does not recognize every single racoon, but it can 
deliver decent results with relatively good accuracy. The ability of 
performing object detection on the device, and not in distant cloud 
servers, suites better for interactive applications required for home 
automation. 

3 Architecture of the Proposed Solution 
The main goal of the proposed system is to promote the integration 
of the mobile devices into the home automation environment, 
providing the user the ability to interact intuitively with the system. 
This integration strives to go beyond the scope of the normal home 
automation mobile applications as far as the interaction with the 
user happens and as well as the concept of object recognition with 
real time detection is attached.  
Thus, the proposed system consists in a sequence of modules which 
provide the foundation to the whole workflow that needs to occur 
since back from the user to the end devices. In Figure 1, a high-
level system architecture is presented in which can be identified the 
user representation, the mobile cluster, the automation platform 
aggregate and in the opposite end, the smart devices connected 
inside home. 

 

 
Figure 1: High-Level System Proposed Architecture 

3.1 Mobile Module 
This module serves has the entry point to the user in the whole 
workflow. All the interactions will happen within an application 
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installed in the mobile device and the actions taken inside it will 
trigger series of events throughout the system.  
As illustrated in Figure 2, the mobile component is composed by a 
mobile application and a re-trained model integrated into the 
application. This integration occurs in real-time, providing the user 
instant feedback and therefore, according to the scenario, specific 
commands and actions will be sent through the channel of 
communication, existing between this module and the home 
automation one.  

 
Figure 2: Mobile Module Architecture 

3.1.1 Mobile Application. The mobile application will be installed 
in the user device and its main role is to collect user interactions, 
interpret the data collected and establish the communication with 
the automation platform. This application must furthermore allow 
the communication to be established between the mobile device 
and the home automation platform. To do so, it will need to play 
the client role in a communication protocol between both, sending 
information to the platform. 
3.1.2 Inference Model. The main purpose of the proposed 
integration is the ability to use the mobile device sensors to interact 
intuitively with the smart devices. One of the major information 
collectors which can be found in every mobile device is the camera. 
So, to take advantage of all its potentiality, a way of interpreting 
the data collected by the camera sensor needed to be found. 
A possible solution is to implement traditional computer vision 
algorithms, using feature extraction and pattern recognition 
processes to manually identify objects. Notwithstanding the fact of 
these techniques have proven themselves to be reliable and 
effective, a more promising approach was taken in consideration. 
Here is where the Machine Learning component comes into play. 
The use of a machine learning library compatible with the 
architecture proposed, able to load and process data, build, train and 
re-use models with easy deployments is a valid solution.  
In addition to provide the ability to re-train a neural network 
without the need of sophisticated and powerful hardware, the 
biggest overall advantage off this approach is the possibility to run 
machine learning models on mobile devices within a lightweight 
and mobile solution. Using on-device machine learning, the system 
architecture stays simpler, without the need to make consecutive 
server calls to evaluate information. That would require constant 
data streaming resulting in more energy consumption, higher 
latency and extra processing with back and forth communication 
also having to consider the possibility of data loss in it. This also 
prevents that personal data is sent to third-party providers. 

3.2 Communication 
The connecting point between the main module described before 
and the later one described ahead is the communication established 
between both. The communication protocol to use between the 
device and the platform depended heavily on the choice of the 
automation platform and the application ecosystem since each 
platform and operating system supports a different set of protocols 
and integrations. Despite the choice, it has to assure that the 
communication between the two has low bandwidth, low latency 
and good performance. 
Within the system architecture context, one component will act as 
a publisher, one as a broker and the other as a subscriber (Figure 3). 

 
Figure 3: Communication Architecture Workflow 

The most logical way of implementing the protocol architecture in 
this scenario is being the mobile device the subscriber responsible 
for publishing data to a certain topic which is subscribed at the 
automation platform end. By doing so, the mobile device can 
constantly push updates on state changes and user interactions 
knowing that these will be received on the automation platform, 
that is listening for data in the specific subscribed topics. 

3.3 Home Module 
The last, but not the least important element in the proposed system 
architecture, is the home module. This one houses two main 
components, the broker, responsible for the communication, and 
the home automation instance, responsible for the integration of the 
smart devices and sensors. As displayed in the Figure 4, both are 
housed inside the same installation platform. 
 

 
Figure 4: Home Module Architecture 

One major concern was to have the broker and the automation 
platform installed in the same hardware so the need of extra 
hardware could be avoided. Consequently, the choice of all three 
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components was made having in mind the need of each one being 
compatible between them. 
3.3.1 Broker. The broker will be responsible to manage all the 
publish and subscribe calls made and therefore maintain the 
communication between the involved elements.  
Since in a public broker, any device or entity can publish and 
subscribe to any topic on it, and that most home automation 
platforms analyzed did not have a broker by default, the securest 
and easiest way to integrate this node into the architecture was 
relying on a private broker where only the devices with given 
permission can publish and subscribe to the topics managed by that 
broker. 
Figure 5 represents a Broker placement within the system 
architecture, receiving subscribing requests from the Automation 
Platform and therefore delivering the messages there upon a data 
publish receipt from the mobile device, consequently establishing 
the connection for data transfer between both. 
 

 
Figure 5: Broker Communication Role in System Architecture 

3.3.2 Automation Platform. Being a core element of the system, the 
automation platform is a key element in the system potentiality. 
Architecture wise, as referred in the beginning of this chapter, the 
home automation platform is installed alongside the broker, also 
already mentioned. 
Bearing in mind the intended integration, a good implementation 
choice needs to check all the boxes: being open-source, developed 
in a well-known easy to learn language, having a strong base 
community of users and the possibility of being installed on a low 
processing power and costless device. 
As illustrated in Figure 6, the platform will also have the smart 
home devices connected to itself, being able to process rules, send 
commands, perform operations and state changes according to the 
information sent by the user from the mobile device and transmitted 
through the broker. 

4 Implementation and Validation 
In order to demonstrate the proposed integration of mobile devices 
in home automation, the system architecture had to be implemented 
in a prototype that allowed for the validation of the solution here 
presented. 
 

 
Figure 6: Smart Devices Connected to Home Platform 

4.1 Implementation 
At first, the machine learning component was developed and 
converted into the desired format. After that, the mobile application 
responsible for integrating the model in real time was built. 
Thereafter, the automation platform was installed and configured 
and consequently the communication processes were implemented. 
These three major stages of system development and 
implementation are the keys to a successful operation of the 
proposed solution.  
4.1.1 Inference Model. To implement the architecture above 
described and having in mind the necessary requirements, a 
machine learning model had to be trained, converted and later 
deployed on the mobile device. 
Regardless of the final solution, a custom Machine Learning model 
training process requires an image dataset as an input. As stated 
before, for the model to perform in a certain scenario, it will have 
to be trained with enough data to learn the patterns and desired 
features. In order to start the initial approach considering object 
detection, a dataset of images, divided in 3 groups, was gathered 
and the choice of 3 objects that can be found in most of so-called 
smart homes was made: Bulbs (608 images), Air Conditioners (508 
images) and Window Shutters (808 images). 
To begin the training process, the following elements were needed: 
TFRecord Files, Label Map, Model Config File, Pre-Trained 
Model. An already trained model can be used as a checkpoint to 
transfer learning and to retrain the final layers providing the data 
wanted.  
After setting up the environment, the next step was the re-training 
process. This one was done using MobileNets [1] which are a set 
of computer vision models optimized to TensorFlow, designed to 
obtain high accuracy using limited computation power and 
restricted resources, building in this way a lightweight 
convolutional neural networks. For this reason, it isn’t expected a 
significant increase on energy consumption of the mobile device. 
To begin the training, a Python Script obtained from TensorFlow 
repository was used which is responsible for the download of the 
pre-trained model and consequently add the new layer to be trained 
on the given dataset. The default number of iterations (4000) was 
used and the script was executed afterwards. The Script output 
reported a Final test accuracy of 91.9%.  
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As illustrated in Figure 7 and Figure 8, when consulting 
TensorBoard, a monitoring tool included in TensorFlow, during 
and after the training, a set of outputs could be evaluated:  

1. Accuracy – Divided in training accuracy and validation 
accuracy, these values represent, respectively, the percentage 
of images labeled correctly and the validation precision on a 
set of images chosen. In Figure 7, the accuracy, represented in 
the y-axis, is a function of the training progress, represented in 
the x-axis. The orange line represents the training accuracy of 
the model while the blue line exhibits the validation accuracy. 
As the validation accuracy remains constant as the training 
accuracy increases, we can say that the model did not entered 
in overfitting which is a scenario when the model is learning 
more of the training data proprieties than the data patterns 
itself. 

2. Cross Entropy – In short, cross entropy is a positive loss 
function which tends to zero as the neuron improves 
computation of the desired output, y, for all training inputs, x, 
as represented in Figure 8. 

 
Figure 7: Training Accuracy (TensorBoard) 

 
Figure 8: Training Cross Entropy (TensorBoard) 

After obtaining the final re-trained graph from the previous training 
output, the model needed to be converted and optimized to run on 
the mobile device. The process uses TensorFlow Lite and its tools, 
namely, a TFLite Converter and a TFLite interpreter. After 
executing the python scripts, the optimized_graph.lite file was 
generated under the output path defined.  
4.1.2 Mobile Application. After generating the .lite file, the 
customized model was then prepared to be integrated inside the 
Application. As referred above, the application is an Android 
Application and it was developed using Android Android 5.0, 
granting minimum compatibility with approximately 88.2% of 
devices [9]. The application has to handle two main tasks: the 

interpretation of the model in real-time and the communication 
with the forward elements of the architecture.  
The first step was to integrate the model already trained, optimized 
and converted into the TFLite interpreter. After successfully 
integrating the inference model in real-time with data collected 
from the camera main sensor, the device needs to send commands 
to the platform in order to trigger the user desired actions. This 
communication process was implemented using Message Queuing 
Telemetry Transport (MQTT). The solution was to implement the 
Paho Android Service [5], which provides an interface to the 
Original Paho Java MQTT Client. This allows to encapsulate the 
connection inside a service and to run it in background along the 
Android Activities providing reliability in MQTT connections and 
message receiving and sending. 
4.1.3 Home Automation Platform. Having the inference model 
trained and integrated inside the android application, the third and 
last step to complete the system implementation was the installation 
of the automation platform on a small form factor processing board, 
including the MQTT broker to allow the platform to receive the 
messages originated in the mobile device and consequently trigger 
automation rules and perform actions. The components were 
installed in a Raspberry Pi 3B+ inside a python virtual 
environment, providing the flexibility needed to the system 
implementation. 
For the prototype the used automation platform was HomeAssistant 
[6]. Despite the fact that it is the possible to define an in-platform 
broker and that there are public brokers available, a private MQTT 
broker was used to implement the MQTT communication on the 
server side, to have more control on the integration and security 
management. The choice relied on Mosquitto [4] to implement the 
machine-to-machine messaging protocol. After the installation, the 
system can be started and is able to receive publish and subscribe 
requests. The broker runs as a service and has to be started 
whenever the system boots. 
One big advantage of Home Assistant is the ability to define 
automation rules. An automation rule contains 3 main blocks: 
Trigger; Condition and Action. One of the trigger types is the 
MQTT trigger and is fired when a specific message is received in a 
specific topic. This way, automation rules could be created to make 
the desired system actions according to the MQTT messages 
received.  
Figure 9 shows an example of an automation rule where an action 
is triggered when a message with the payload “switch” is received 
on topic “room/switch/bulb” with no conditions implicit. The 
action will take place on the bulb described in the entity tag with 
the service light.toggle, which is responsible for toggling the bulb 
state. Additionally, the system Web interface has a tool to create 
the automations, displaying the list of triggers, entities available, 
actions and the respective services. 

4.2 Validation Results 
Having completed the implementation of the previous steps, a 
prototype of the proposed system was obtained. Then, a 
comparison between the manual inference at server side and the on-



EATIS 2020, May, 2020, Aveiro, Portugal R. Passinhas et al. 
 

 
 

device machine learning final solution was possible, considering 
the obtained processing times. It was also possible to perform 
accuracy tests using real application scenarios. In the end a 
discussion over validation results provided by the implementation 
prototype is followed. 
 

 
Figure 9: Bulb Automation Rule 

4.2.1 Prototype Implemented. The developments made aim at a 
hypothetical scenario where a user can control the devices existent 
in his/her home, through the camera user interface having visual 
representation of the actions, while providing intuitive interactions. 
Looking at the implementation obtained, the major visual results 
come from the mobile application and the device connected to the 
platform. 
The implementation described resulted in a mobile application 
which, after installed in and android device, is where the user will 
interact. Figure 10 represents the application main screen, 
containing the camera viewfinder, a label containing the object 
identified and the accuracy of the evaluation alongside the buttons 
to take actions on that device when evaluated with accuracy over a 
pre-defined threshold. 

 
Figure 10: Application Main Screen Example 

In the screenshot presented in Figure 10, it is visible that the user 
was pointing the device at a light bulb and since the evaluation 
result is constantly returning values close to 100% the button to 
switch on the device is presented, which represents the action 
passible to be taken at that moment for that device. When the button 

is pressed, the whole process described before takes place and the 
state of bulb will then toggled. Additionally, to the evident visual 
feedback on the bulb, looking at HomeAssistant interface it is 
possible to see the event occurrence. 
4.2.2 Server vs On-Device Machine Learning Performance Tests. 
Even though traditionally, machine learning and neural networks 
are concepts associated with increased computation power and 
robust hardware, the scope of this work addresses the on-device 
artificial intelligence arising ubiquitousness and its major potential. 
Therefore, an interesting result to analyze is the accuracy obtained 
with lighter models and the level of latency or performance 
decreasing when running on less powerful devices. 
This way, a metric that can give indicators of both benefits and 
drawbacks of this approach is the time spent during the execution 
of the model trained to produce an output and effectively label the 
input image. A possible way of analyzing this is by running the 
inference model at the machine where it was trained with a python 
script, label_image.py and, after that, running the same model 
already integrated in the mobile application, measuring the times 
before and after the run. 
This analysis was performed using three different images and ran 
three times in each of them to guarantee a minimum coherence in 
the results. In the case of the mobile device, since the input comes 
as a video stream, the three images were represented by three 
different scenarios with the three different bulbs. The results are 
presented bellow in Table 1. 

Table 1: Comparison between Manual Inference versus On-
Device Run 

 Server Run On-Device 
Time (ms) Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

Image 1 12.8 12.7 12.9 16.0 15.0 16.0 

Image 2 13.5 13.7 13.6 20.0 19.0 17.0 

Image 3 12.4 12.4 12.5 30.0 30.0 30.0 

 
4.2.2 Accuracy Tests. The implemented prototype is based on a 
neural network retrained to identify representative smart household 
devices, particularly bulbs, air conditioners and electrical window 
shutters. Therefore, the scenarios used to validate the accuracy of 
the solution matched these items. 
The first test exemplifies a use case scenario where the user points 
the device at a light bulb. In this case, when the evaluation output 
is higher than the 95% accuracy threshold, the switch option 
appears on the screen and the user can interact with the device. To 
obtain maximum results and since the image dataset used for testing 
was simple light bulbs, the 3 tests performed were on simple 
lightbulbs connected to power (Figure 11). 
In a similar way, test cases were made for window shutters and air 
conditioners and the accuracy results obtained are presented in 
Table 2. 
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Figure 11: Bulb Tested Scenarios 

Analyzing the results obtained, concerning the comparison made 
between manually running the inference model on the training 
environment, at the server side, and the inference happening on the 
mobile device, we can see that the results were not that distant and, 
therefore, the system can produce fast results in real-time without 
compromising the performance obtained. In terms of accuracy 
obtained, every test provided result higher than 90%, which is 
positive and allowed to control the devices in almost every situation 
with confidence. 

Table 2: Tested Scenarios Accuracy 

 Test 1 Test 2 Test 3 

Bulb 94% 95% 100% 

Air Conditioner 95% 90% 93% 

Window Shutter 99% 91% 98% 

5 CONCLUSIONS 
As an overall solution, the system developed worked as a proof of 
concept of the integration of mobile devices in home automation 
with use of machine learning for object recognition. Even though 
machine learning and deep learning-based systems often need 
massive hardware to be trained and developed, the work developed 
for this paper proves that lightweight alternatives can be found and 
adapted to meet the desired goals.  
Looking at the obtained results, an important conclusion to bear in 
mind is that on-device machine learning proved to be surprisingly 
accurate and able of handling the tasks defined, confirming in this 
way the already arising paradigm of artificial intelligence 
increasingly moving to edge devices, without compromising 
functionality. The usage of this technology doesn’t impact the 
performance of the home system, because the processing is mainly 
made on the mobile device, and since no new hardware is required, 
there isn’t also a cost increase. 
The developed solution also proves that an inference machine 
learning model can be used in real-time, integrated inside a mobile 

device application, providing instantaneous visual feedback. This 
leads to also real-time action triggering in the automation platform 
making use of the integration and consequently built a seamless and 
uninterrupted information workflow. This is key for achieving an 
appropriate interactive experience for end users. 

6 FUTURE WORK 
For future work, many sensors in the mobile device, which were 
not used in the course of this work, can be further explored which 
enables the possibility to control a range of smart devices, from air 
humidifiers to door locks, in new and innovative ways.  
Concerning the computer vision topic, the evolution from image 
classification to object detection would also provide the ability to 
track multiple objects at the same time and allow better precision 
and control of the devices. Even though implying major 
developments in the application, this improvement would unlock 
more possibilities of user interaction and functionalities to the 
application. 
Additionally, a contribution than can be remarking, in the 
potentiality of the concept introduced here, is the re-training of the 
inference model based on user feedback. Even though a solution 
can be prepared for a general use case scenario, each case is unique, 
and each user will have different needs. If the mobile application 
provides a way of collecting user feedback according to his 
respective scenario and reality, this input could be used to re-train 
the model with improved accuracy and consequently to obtain 
flawless and consistent results. 
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