
SPECIAL SECTION ON INTELLIGENT BIG DATA ANALYTICS
FOR INTERNET OF THINGS, SERVICES AND PEOPLE

Received May 5, 2021, accepted May 14, 2021, date of publication May 19, 2021, date of current version May 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3081794

Autonomous Configuration of Communication
Systems for IoT Smart Nodes Supported
by Machine Learning
ANDRÉ F. X. GLÓRIA , (Member, IEEE), AND PEDRO J. A. SEBASTIÃO , (Member, IEEE)
Instituto Universitário de Lisboa (ISCTE–IUL), 1649-026 Lisbon, Portugal
Instituto de Telecomunições (IT), 1049-001 Lisbon, Portugal

Corresponding author: André F. X. Glória (afxga@iscte-iul.pt)

This work was supported in part by the ISCTE–Instituto Universitário de Lisboa from Portugal under Project ISCTE-IUL-ISTA-BM-2018.

ABSTRACT Machine Learning brings intelligence services to IoT systems, with Edge Computing contribut-
ing for edge nodes to be part of these services, allowing data to be processed directly in the nodes in real
time. This paper introduces a new way of creating a self-configurable IoT node, in terms of communications,
supported by machine learning and edge computing, in order to achieve a better efficiency in terms of power
consumption, as well as a comparison between regression models and between deploying them in edge or
cloud fashions, with a real case implementation. The correct choice of protocol and configuration parameters
can make the difference between a device battery lasting 100 times more. The proposed method predicts the
energy consumption and quality of signal using regressions based on node location, distance and obstacles
and the transmission power used. With an accuracy of 99.88% and a margin of error of 1.504 mA for energy
consumption and 98.68% and a margin of error of 1.9558 dBm for link quality, allowing the node to use
the best transmission power values for reliability and energy efficiency. With this it is possible to achieve a
network that can reduce up to 68% the energy consumption of nodes while only compromising in 7% the
quality of the network. Besides that, edge computing proves to be a better solution when energy efficient
nodes are needed, as less messages are exchanged, and the reduced latency allows nodes to be configured in
less time.

INDEX TERMS Wireless communications, edge computing, Internet of Things, machine learning, random
forest, sustainability.

I. INTRODUCTION
The Internet of Things (IoT) relies on the devices ability to
share information among them and with the cloud, for storage
and data processing. With 50 billion devices expected to be
connected by 2030, for the deployment of IoT system to be
easily scalable, nodes need to be more autonomous.

Communication is a major component in IoT but it is also
a power-hungry operation, mainly over large distances [1].
With the proliferation of Smart Cities, these networks of
nodes need to be powered in a more efficient and green
way [2]. As X. Fafoutis said [3] ‘‘any data that is wrongly
gathered, transmitted, stored or processed is a potential waste
of energy’’. Consequently, for the devices in higher num-
bers and powered by batteries, the end devices, a change
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in transmission and processing data is needed to have more
sustainable networks.

Edge nodes benefit from the use of wireless transmission as
they can be far away from the gateway, so they might need to
transmit data for long distances. As they are often powered by
batteries, low power transmissions are also needed. As they
merely need to gather sensor data and transmit it to the gate-
way or any other node, the nodes are usually composed only
by a microcontroller and a communication module. After this
they enter in a deep-sleep mode to save energy until the next
iteration, which allows them to be powered by batteries for
long periods of time.

For that, advances in technology introduced the Low-Power
Wide-Area Networks (LPWAN), such as LoRa or SigFox,
with the ability to maintain power efficiency while transmit-
ting over large distances [4]. These protocols can exchange
messages between nodes kilometers apart, by adjusting their

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 75021

https://orcid.org/0000-0002-5245-4392
https://orcid.org/0000-0001-7729-4033
https://orcid.org/0000-0003-1390-399X


A. F. X. Glória, P. J. A. Sebastião: Autonomous Configuration of Communication Systems

configuration parameters, mainly the transmission power,
being this also responsible for managing the energy used in
the communication. This means that a bad configuration of
a LoRa transmission can create a node with 100 times less
battery life [5].

To cope with this need to configure the best parameters,
artificial intelligence and machine learning can help to decide
which are the best configurations depending on the specifica-
tion and conditions of the node. This allows for the creation of
self-configurable nodes, that adjust these parameters in real
time, as they need, without human or external intervention.
This type of intelligence can even be more in line with the
edge nodes, as the computational power of these devices
increases, allowing intelligent methods to be done directly
on the edge devices instead of using cloud computation.
In a low-power fashion, this edge computation analysis can
reduce the amount of messages traded for configuration,
reducing the amount of energy to send and receive them, and
also reduce the latency between the need for a new setup and
the decision, as it is done directly on the node, being awake
for shorter periods of time and once again reducing the energy
needed and extending the battery life.

The literature shows some work being done to create a bet-
ter LoRa link using Machine Learning techniques, with [6],
using Dynamic Selection, with 96% efficiency and 47%
energy savings, and [7] using Neural Networks to improve
the energy efficiency of LoRa connection, with a 99.92%
accuracy, but only with 200 samples. Some works were also
found with the use of machine learning to predict the link
quality of BLE mesh networks [8].

Previous research by the authors [2], proved that when
working with the correct transmission power values, the net-
work can save up to 73% of power while reducing the qual-
ity of service by 25%. Although some good results can be
retrieved with that methodology, it used a cloud computing
approach and only for LoRa, with multiple messages being
sent from the node, varying the transmission power value to
check what was the best one by a remote server. Not only
can this compromise the network, as multiple messages can
congest the service, it also takes more time and requires more
energy in the configuration process.

All these researches proved that improvements can be
done, mainly in porting the decision models directly to the
edge nodes.

Therefore, the motivation to create a new methodology
that is capable of creating more sustainable communication
systems and smart nodes, that depend on those systems,
is to improve the overall sustainability of smart cities project
deployments by reducing the need for replacing batteries and
increasing the efficiency of those systems.

To achieve that goal, this paper presents a methodology
for an implementation of an autonomous configuration sys-
tem for peer-to-peer communication in smart nodes sup-
ported by machine learning, that uses regressions to predict
the energy consumption and link quality of a connection
and then chooses the best protocol and transmission power

to use. Besides the methodology and implementation for the
autonomous configuration system, contributions in the area
of the use of machine learning for the prediction of link
quality and energy consumption of wireless communication
systems in IoT nodes and a comparison of the use of these
techniques in an edge or cloud approach are presented. For
that, multiple regression techniques are compared, to choose
the ones that best fits the methodology and obtains the best
accuracy. It also compares an edge and cloud computing
approach to check if the decision done directly on the edge
node and in real time, without the need of sending any mes-
sage or flooding the network. This could save energy and time
in the decision process.

The paper starts with this introduction, followed by a
description of the most used wireless protocols in IoT and
how transmission power configuration affects the energy con-
sumption of the edge nodes. The methodology for the system
is presented, including the data analysis that will be per-
formed to choose the best protocol and transmission power.
Then, the research and study done on regression models are
presented, along with the used techniques and methodology,
as well as the training and validation results for the best
regressionmodel. Finally, the implementation scenario where
the systemwas tested is described and the obtained results and
conclusions are presented.

II. IoT COMMUNICATION PROTOCOLS
As said, communication is a major part of IoT systems and
new advances in technology introduced wireless networks
developed solely for IoT projects or low-power devices, such
as LoRa, BLE or ZigBee, with Wi-Fi still having a major
contribution and being modified to fit these new specifi-
cations. Since each project might need a specific protocol,
due to location, implementation conditions or energy supply,
the developed system will be available to work with the
following technologies.

A. ESP-NOW
ESP-Now is a peer-to-peer wireless protocol developed by
Espressif which enables multiple devices to communicate
with each another without using Wi-Fi. The pairing between
devices is needed prior to their communication, so after pair-
ing a device with each other, the connection is persistent [9].
This means that if suddenly one of the boards loses power
or resets, when it restarts, it will automatically connect to its
peer to continue the communication. This protocol enables
a low power consumption between multiple devices, being
more power-efficient and faster to deploy when compared to
Wi-Fi [10], supporting up to 20 nodes and being limited to
250 bytes packets.

B. BLUETOOTH LOW ENERGY
Bluetooth Low Energy (BLE) is an upgrade on the Bluetooth
technology, designed to consume the least amount of energy
while using the same wireless standard [11]. Working on the
same 2.4GHz as Bluetooth, BLE reduced the high speed and
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high rate transmission, allowing a decrease in power con-
sumption by up to 80% and increasing the range by 10 times,
with connections up to 100 meters [12]. BLE also introduced
mesh and star topologies, in a one-to-many fashion, con-
trary to the simple one-to-one connection provided by classic
Bluetooth. As BLE is designed to broadcast short messages in
close spaces, it has become one of the most used technologies
in IoT projects.

C. LoRa
LoRa is a long range low power wireless technology that uses
unlicensed radio spectrum, usually on the 868 or 915 MHz
range, based on Chirp Spread Spectrum (CSS) modulation
to allow the communication reach [13]. As it aims to elim-
inate repeaters, reduce device cost, increase battery life and
support a large number of devices, it is the perfect solution
for most IoT projects that rely on gathering data on large
areas with low-power devices [2]. These features are possible
since LoRa works on a star topology, reducing complexity
and congestion in the network, allowing a viable low power
long communication, with a single gateway covering up to
hundreds of square kilometers [14].

D. ZigBee
ZigBee enables low-cost, low-power and low-data rate
Machine-to-Machine communications for IoT networks [15],
in the 868 MHz, 915Mhz and 2.4GHz frequency bands.
Based on the IEEE 801.15.4 physical layer and the Medium
Access Control sublayer, it is complemented by an applica-
tion framework layer defined by the ZigBee Alliance [16].
Capable of working in mesh, star or cluster topology, ZigBee
can achieve distances up to 100 meters, when working on the
2.4GHz frequency, or up to 1 kilometer, when using the lower
frequencies [15]. ZigBee is the preferred solution for smart
homes solutions due to its low power capabilities.

E. TRANSMISSION POWER IMPACT
Previous studies [2] showed that Transmission Power (TP),
the value that directly impacts the range of communication,
as it is the one responsible for defining the dBm used for
transmission, is the one that mostly impacts the energy con-
sumption of the device, and as such, is the one that needs
to be configured accordingly to the node specifications and
location.

According to the datasheet of several radio modules
capable of transmitting in the presented wireless protocols,
the power consumptions required for transmitting on different
TP values are shown in Table 1.
Using a higher TP value does not always result in a bet-

ter communication link, since multiple nodes transmitting
in full power can generate interference in the network [2].
This shows that not only is it possible to reduce the energy
consumption of the device, but also improve the network
reliability, by adjusting the TP of each end node.

TABLE 1. Power consumption based on transmission power.

III. METHODOLOGY
The presented methodology aims to create an autonomous
solution, capable of selecting the best communication pro-
tocol and its transmission power configurations for a smart
node, based on its location, the nearby gateways and geog-
raphy (urban or rural areas, obstacles and distance to the
gateway), supported by Machine Learning algorithms that
can run directly on the node or with cloud communication.
Fig. 1 shows the system methodology.

FIGURE 1. Point-to-point configuration methodology.

As it is possible to see, the methodology is divided into
six steps. It starts with the node gathering its location based
on GPS coordinates, and pre-process that data. After that,
the learning algorithm makes a regression to predict the
energy consumption and quality of the link for each of the
available protocols and transmission power. Those predic-
tions are then analyzed, and the best transmission power is
selected, being the node configured, in an autonomous way,
with that value. After that, the node is ready to sendmessages.
From time to time, this process is repeated, to ensure the node
is always working in the best conditions possible.

Regarding the data processing and regression algorithm,
Fig. 2 shows the detailed process, from the data input to the
output of the best protocol and transmission power value.

As said, it receives the node location and starts by com-
paring it to the list of available gateways, calculating for
each one, a position (X,Y) facing the gateway in the center
of a grid (0,0), the distance to the gateway and also any
information about possible obstacles in the line of sight. With
that information, it creates an array of data that will be used
to predict the Received Signal Strength Indicator (RSSI) and
energy consumption of the link while using those inputs
for each of the communication protocols and transmission
power values possible. This is done using a regression model.
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FIGURE 2. Point-to-point decision methodology.

After the regression, using the output values, three decision
models are used to evaluate the best protocol and transmission
power to use.

1) Best Link Model (BLM) - The TP is chosen solely
based on the best link achieved, i.e., the one that gets
the higher RSSI value. With this model, the link will
always get the perfect conditions to ensure reliability,
not considering the energy consumption. This mode
can be used in nodes where information needs to
be always delivered in real time, ensuring maximum
reliability.

2) Energy Efficiency Model (EFM) - The TP is chosen
based on the lowest energy used by a TP value capable
of sustaining a communication link, even if the RSSI
is higher or close to the threshold of the sensitivity
on which each communication protocol can no longer
transmit information, putting aside the reliability of the
signal, to favor energy efficiency. This mode can be
used in nodes where data is not sensitive and crucial,
and if some packages are lost, it does not affect the
system.

3) Reliable Link Model (RLM) - The TP is chosen based
on the lowest energy used by a TP value capable of
achieving a good communication link, i.e., with a RSSI
close to -20dBm of the sensibility threshold, even if
when using higher TP, a better RSSI values can be
achieved. This mode is a middle solution between the
previous two, it compromises some of the energy effi-
ciency to guarantee a better connection.

IV. REGRESSION MODEL
As said before, our methodology uses a regression model for
the computation analysis. For this model to work, it needs
to be trained with previously known data and configured to
achieve the best accuracy and lowest error possible. The next
sections explain, in detail, how this process was done and the
obtained model results.

The goal of this model is to receive as input the location
of the node (X and Y) facing a gateway, the distance and
obstacles towards the gateway and the protocols and TP to
be tested, outputting the predicted RSSI and energy value for
those conditions.

A. EDGE VS CLOUD COMPUTING
With the increase of IT solutions over the last decades,
cloud computing (CC) services provide easy, high perfor-
mance computation with a low investment on servers, since
cloud computing works on remote central cloud base servers.
As long as a device has an internet connection, it is able
to send requests to the cloud and take advantage of all the
available services, such as computing or storage, allowing
also the connection between devices and services in different
networks [20].

With the proliferation of IoT devices, the need to reduce
latency in data analysis, in typical remote central cloud base
computation services, allow the adaptation of end devices to
perform some of this computation, thus creating the Edge
Computation (EC) [21]. EC solves some challenges of man-
aging systems on a central cloud, such as response time,
security and quality of service, by executing tasks closer to
the IoT devices, with management, storage, data analysis and
decision making being done directly on multiple edge nodes
inside the network [22]. These interconnected devices and EC
techniques prevent overload of computer processes, as well
as, obstructions in the flow of data and the services that are
sent or requested to the cloud [23].

B. REGRESSION TECHNIQUES
Regression analysis is used as a technique for prediction,
by searching the relationship between a dependent (target)
and independent variable (s). As the training data is indepen-
dently selected from the original dataset, the mean-squared
error for a predictor variable X for the class y can be estimated
by (1) [24].

EX ,y(y− X )2 (1)

There are multiple techniques for regressions in Machine
Learning, being the most common Linear Regressions,
Neural Networks, Support Vector Machine (SVM), Decision
Trees or Random Forest.

1) LINEAR REGRESSION
Linear regression is the simplest method to predict data,
being adopted by Machine Learning as they came from the
statistical world. It performs the task to predict a dependable
variable value (y) based on a given independent variable (x).

75024 VOLUME 9, 2021



A. F. X. Glória, P. J. A. Sebastião: Autonomous Configuration of Communication Systems

With this, it creates a simple linear relationship between the
input and output, that can be presented in an equation as
y = A + B ∗ x, also called a plane or hyper-plane, being
A and B the coefficients that the regression will define to
characterize the output based on the input [25]. Besides being
marked as inefficient and inaccurate by researchers [25] when
compared to other ML techniques, is still commonly used for
scoring modelling, since it gives a logistics distribution of the
data.

2) DECISION TREE
Decision Trees (DT) are tree-based methods in which each
path begins in a root node and multiple divisions are made,
through a hierarchical partition of training data, taking into
account the dataset, creating sub-trees based on a certain
features used to split the data, representing a sequence of data
divisions, with this split being done iteratively until it reach a
leaf node with an outcome, containing the number of records
that can be used to classify the data [25]. These methods can
be applied for classification and regression. The final goal of
this method is to reach a model that can predict the search
value for that specific scenario by learning simple decision
rules [26].

3) RANDOM FOREST
Random Forest (RF) is a decision tree method, developed for
classification and regression [24] and is composed by a large
number of trees, each voting for the final outcome, being the
final result determined by a majority vote from all decision
trees [27]. With a great performance in predictive tasks, it is
ideal for analyzing large numbers of parameters [28], even
with small datasets, being highly applicable for classifica-
tion problems. RF incorporates the process of aggregation,
bagging and Decision Trees, with a selection of a subset of
features from each node of the tree, avoiding the correlation
in the bootstrapped set [25]. The generated forest can also get
great performance when new data is added [29].

4) NEURAL NETWORKS
Neural Networks (NN) algorithms are defined as computa-
tional models of neural systems composed of several neurons
connected one to the other by synapses, in the sameway as the
human nervous system. Each of the neurons analyzes parts
of the input and sends the information to the next layer and
neurons continuously, until it is able to reach a valid out-
put [25]. This process continues until a final output is found.
It is ideally used in nonlinear and complex problems which
requires large computational power and has some disadvan-
tages whenworkingwith IoT systems due to low complex and
low power devices [26]. In this case, Multilayer Perceptron
(MLP), a variation of the NN algorithm which consists of
multiple neurons organized into layers [30], was used. These
MLP networks are characterized by being general-purpose,
flexible and non-linear. Their complexity can be changed
according to their application by varying the number of layers
and units of each layer.

5) SUPPORT VECTOR MACHINES
Support Vector Machines (SVM) use a hyperplane to create
a decision boundary in order to separate different classes
of objects. Used for classification and regression, it uses
complexmathematical functions to create this hyperplane and
be able to assign the members of each class [31]. To discover
the position of the hyperplane it uses a small subset of vectors
from the training data, the support vectors, that define the
edge of the class [32]. Most used for classification, since it
can divide a dataset into classes, it lacks some probability
estimate, mainly when large or more complex datasets are
used [31].

C. DATASET
For a machine learning model to work, it needs to be trained
with a set of supervised data, that include the output desired
for a set of parameters. It is with these data that the model
will learn and predict upon future data.

The used dataset is composed of data collected by the
authors in an unpublished Point-to-Point protocol compari-
son study done in various environments, to check the per-
formance of several wireless protocols in indoor and out-
door environments. The data contains the RSSI and power
consumption values of the various protocol’s transmissions
performed by an IoT smart node in different scenarios around
a single gateway, while varying the TP value, as well as the
distance to the gateway and the number of obstacles in the
line of sight. The dataset is publicly available at [33].

The dataset is composed of 18448 entries, with the follow-
ing parameters:

• X – X grid position of the node facing the gateway at
position (0,0);

• Y – Y grid position of the node facing the gateway at
position (0,0);

• scenario – Characteristics of the transmission scenario
(indoor, outdoor, . . .);

• distance – Distance, in meters and in line of sight, from
the node to the gateway;

• obstacles – Number of obstacles, in line of sight,
between the node and the gateway;

• protocol – Communication protocol used for the
transmission;

• power – Transmission Power value used for the
transmission;

• energy – Energy used to perform the transmission;
• rssi – RSSI value registered from the transmission;

D. TRAINING METHODOLOGY
In order to train the regression model the following steps
were done, using Python, the scikit-learn libraries [34] and
the Anaconda environment.

1) Each regression model was trained using the default
configuration presented in their documentation and
described in Appendix and Table 8. For that, the pre-
sented dataset was used for the training process.
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With this, it is possible to compare the performance,
in terms of margin of error, of each model, allowing us
to assess which are more likely to guarantee best results
and which need to be improved to achieve them.

2) The default model for each algorithm is then sub-
mitted into a hyper parametrization tuning, that trains
the model with different configuration of the default
parameters, as presented in Appendix and Table 9,
in order to compare the model performance and assess
which is the configuration that obtains the best per-
formance, facing the dataset and the goal. For this,
a method provided by scikit-learn called Randomized-
SearchCV was used, which performs the fit and train-
ing of the algorithm under study, calculating which
parameters are best suited to it [35];

3) In the final step, and to guarantee the validity of the
model, the best configuration, obtained in the previous
step, is submitted into a Stratified K-Fold cross vali-
dation. This allows us to understand if the model is
under or over fitted. Using a set of five folds, each using
a different part of the training dataset, allowing the
model to check on every single datapoint, it is possible
to validate the real model performance, as each of the
folds will create a different outcome, that are averaged,
allowing for a better perception of the error margin and
variation, as more data is used to fit the model;

4) Finally, the best model is exported and ported to a C file
using the micromlgen library [36], in order to be used
on Edge Computing, or ported to a new Python file to
be used on Cloud Computing.

E. RESULTS
The presented training methodology was followed in order to
obtain the best model possible to predict the energy consump-
tion and RSSI value of data transmissions, based on node
position and the transmission power used.

To train, validate and test the model, the presented dataset
will be used, being divided into three groups: 70% for train-
ing, 20% for validation and 10% for testing. To evaluate the
model performance, and since a regression is used, the Mean
Absolute Error (MAE) metric will be used, as it is the most
common metric for regression. It measures the average abso-
lute error between the real data and the estimated value,
using (2) [37], where Prx is the real value, P̂rx is the estimated
value, and N the number of samples.

MAE[dBm] =
1
N

.

N∑
i=1

|Prxi − P̂rxi | (2)

The estimated data nearly matched the real data when
MAE is near 0.

1) ENERGY CONSUMPTION
The results of the regression models to predict the energy
consumption, for each step of the presented methodology, are

TABLE 2. Energy regression models MAE results.

displayed in Table 2 and allows us to conclude which is the
best model to use in this scenario.

The first thing to notice, in all models, is that the hyper
parametrization values always have the lowerMAE, followed
by the cross-validation values and finally the default values.
This is justified by the methodology followed, as the default
model, in the first step, is tuned to improve the default result,
obtaining always a better result. Then, in the cross-validation
step, as multiple combinations of the dataset are tested, and
the MAE for each fold is averaged, it is expected to increase.
Although this happens, the cross-validation results allow a
better knowledge of the model accuracy, as it was exposed to
a higher variety of unknown data.

Considering only the cross-validation results, as they are
the ones best fitted to evaluate the model accuracy, the best
regression model for predicting the energy consumption
value is Random Forest. It achieves the lowest MAE among
the tested models, with the same results as Decision Tree,
being only 0.001 mA better on the hyper parametrization
results. When compared to Neural Networks, SVM or Linear
Regression, it achieved much better results, by over 3.5 mA,
3.8 mA and 26 mA, respectively.

Since RandomForest presents the best solution for this sce-
nario and dataset, it will be the one used in the methodology.
For that, the hyper parametrization tuning showed that the
best configuration for the Random Forest regression model
was with the following parameters:

• n_estimators – 127
• max_features – ’sqrt’
• max_depth – 70
• min_samples_split – 5
• min_samples_leaf – 1
• bootstrap – False

This model achieved a MAE of 1.503 mA and an accuracy
of 99.88%. Fig. 3 shows the projected values facing the real
values, obtained by the model.

This shows that the model can predict the energy consump-
tion of a transmission with a 1.503 mAmargin of error, which
is an acceptable value. Also, as Fig. 3 shows, the projected
values follow a proportional line, meaning that the model is
well fitted for the dataset.

To further validate the model accuracy, and following
the methodology presented, the model was validated with a
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FIGURE 3. Energy Predicted vs Real values.

Stratified K-Fold Cross Validation, using 5 folds and 20% of
the data as validation points. Fig. 4 shows the learning curve
for the validation test.

FIGURE 4. Energy regression learning curve.

It is possible to see, at the end of the learning curve,
that both training and validation converge to a similar and
lower MAE value, showing that the model is well fitted. The
validation MAE was 1.519 mA, 0.015 mA higher than the
training MAE, with an accuracy of 99.60%, 0.28% lower,
being these values too small to be considered.

As such, is it possible to conclude that the trained model is
well fitted and capable of predicting the energy consumption
values of communication transmissions, based on location,
distance and obstacles to the gateway, and the transmission
power value, and can be ported to the node implementation.

2) RSSI
The results of the regression models to predict RSSI values,
for each step of the presented methodology, are displayed
in Table 3 and allows us to conclude which is the best model
to use in this scenario.

As in the energy consumption scenario, only the
cross-validation results will be considered. For predicting the
RSSI value the best regression model is also Random Forest.
It achieves the lowest MAE among the tested models, with
results close to Decision Tree, being only 0.05 dBmbetter, but
achieving results much better than Neural Networks, SVM or
Linear Regression, by over 3 dBm, for both NN and SVM,
and 11 dBm, for LR.

TABLE 3. Regression models MAE results.

Since RandomForest presents the best solution for this sce-
nario and dataset, it will be the one used in the methodology.
For that, the hyper parametrization tuning, showed that the
best configuration for the Random Forest regression model
was with the following parameters:
• n_estimators – 157
• max_features – ’auto’
• max_depth – 90
• min_samples_split – 5
• min_samples_leaf – 1
• bootstrap – True
This model achieved a MAE of 1.9558 dBm and an accu-

racy of 98.68%. Fig. 5 shows the projected values facing the
real values, obtained by the model.

FIGURE 5. RSSI Predicted vs Real values.

This shows that the model can predict the RSSI of a
transmission with a 1.9558 dBm margin of error, which is an
acceptable value. Also, as Fig. 5 shows, the projected values
follow a proportional line, meaning that the model is well
fitted for the dataset.

Following the methodology model accuracy was validated
with a Stratified K-Fold Cross Validation, using 5 folds and
20% of the data as validation points. Fig. 6 shows the learning
curve for the validation test.

It is possible to see, at the end of the learning curve,
that both training and validation converge to a similar and
lower MAE value, showing that the model is well fitted. The
validation MAE was 2.031 dBm, 0.07 dBm higher than the
training MAE, with an accuracy of 98.42%, 0.25% lower,
being these values too small to be considered.
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FIGURE 6. RSSI regression learning curve.

As such, it is possible to conclude that the trained model
is well fitted and capable of predicting the RSSI values of
communication transmissions, based on location, distance
and obstacles to the gateway, as well as the transmission
power value, being then capable of being ported to the node
implementation.

V. IMPLEMENTATION
To compare if the autonomous configuration system works
better using an edge or cloud computing approach, the pre-
sentedmethodology was implemented in a smart node, Fig. 7,
capable of transmitting with all the communication protocols
studied.

FIGURE 7. Smart node.

Several nodes were deployed around one gateway, in an
urban environment, covering an implementation area of 36ha,
with a radius of 600 meters from the gateway position,
as shown in Fig. 8, where the red dot represents the gateway
and the green dots represent the smart node locations.

Fig. 9 represents the specifications of each node location,
with grid position (X,Y), distance and number of obstacles.

The nodes were deployed for a period of one and a half
months, fifteen days using the BLM scenario, fifteen days
using the EML scenario and the other fifteen using the RLM
scenario, being the ones working on the edge computing
model self-configured every 48 hours, or if any message was
not able to be delivered, since these do not need external
messages and require less energy, and the ones working with
the cloud computing model self-configured once a week,
since they need to transmit a message via the gateway to
the cloud asking for the configuration parameters, therefore
needing more power to perform this task.

FIGURE 8. Smart node locations.

FIGURE 9. Locations specifications.

VI. RESULTS
After one and half months of deployment, running all the
scenarios described, the results were analyzed and are out-
lined using a scatter plot with a linear distribution, showing
the average Transmission Power and RSSI used by each
node during the implementation period, as well as the chosen
protocol, for both edge and cloud models. Table 4 summarize
the obtained results.

A. BEST LINK MODEL SCENARIO
As described in themethodology, the Best LinkModel (BLM)
chooses the protocol and transmission power based solely on
the best link achieved, i.e., the one that gets the highest RSSI
value.
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TABLE 4. Implementation results.

FIGURE 10. BLM scenario results. (a) Edge computing RSSI; (b) Edge computing transmission power; (c) Cloud computing
RSSI; (d) Cloud computing transmission power.

In this scenario, both edge and cloud computing models
choose LoRa as the main protocol to use, in 92% and 93%
of the cases, respectively. For edge and cloud computing,
the remaining cases used Zigbee. These variations in the
selection of the communication protocols come in line with
LoRa being the best overall protocol, as studied by the authors
in [38], for urban environment and long distances, with the
other protocols being selected only for close range nodes
without obstacles.

The LoRa scenarios, being the vast majority of cases,
will be the only ones analyzed in this scenario. The results
obtained for RSSI and transmission power, for both edge and
cloud computing, can be found in Fig. 10, that shows each of
the location tested and the obtained RSSI and transmission

power used and a linear interpolation and a colorbar of the
values to assess the distribution. Table 5 shows the average
values for this scenario.

TABLE 5. BLM scenario results.

It is possible to check, Fig. 10 (a), that when using Edge
Computing alongside the BLMmode, the closest nodes trans-
mit with an average value of −85 dBm, while mid-range
and further nodes transmit with an average −110 dBm and
−125 dBm, respectfully. For the same distance, the average
TP value, Fig. 10 (b), is 18, 20 and 22, respectfully.
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FIGURE 11. EFM scenario results. (a) Edge computing RSSI; (b) Edge computing transmission power; (c) Cloud computing
RSSI; (d) Cloud computing transmission power.

One thing that is interesting to see, is that some mid-range
nodes can transmit with an average of 14 dBmof transmission
power. Also, the further nodes with more obstacles were not
able to create a connection.

As for the Cloud Computing model, when associated with
BLM mode, in terms of RSSI, it has similar results as the
Edge Computing model, as can be seen when comparing
Fig. 10 (c) and Fig. 10 (a), with the connection link being
only 2% worst, about -2 dBm. In terms of transmission
power, although both models achieve an average of 20 dBm,
when looking to Fig. 10 (d) and Fig. 10 (b), it is possible to
check that, in the Cloud Computing model, the further nodes
have higher transmission power, while the Edge Computing
presents a more even distribution between all nodes.

In terms of energy consumption, the nodes using the Edge
Computing model used less 24% power facing the Cloud
Computing nodes. As such, comparing the two models it is
possible to check that the edge computing achieves better
results on all fields, using 20 mA less, while increasing
the quality of the link connection by 2 dBm. So, a better
connection can be achieved with a lower power consumption.

B. ENERGY EFFICIENCY MODEL SCENARIO
The Energy Efficiency Model (EFM) chooses the protocol
and transmission power based on the lowest energy value of
a transmission power that can achieve a connection.

As in the BLM mode, in this scenario, both edge and
cloud computing models choose LoRa as the main protocol
to use, although in a smaller value, with 87% and 84% of the
cases, respectively. For edge computing, the remaining cases
used Zigbee, 6%, BLE, 5%, and ESP-Now, 2%, as for cloud
computing, Zigbee, 9%, BLE, 5%, and ESP-Now, 2%, were
the selected ones. Once again, the variations in the protocol
chosen are accounted for only in the nodes in close range,
without obstacles.

The results obtained for RSSI and transmission power, for
both edge and cloud computing, can be found in Fig. 11, being
once again presented only the LoRa results for each of the
tested locations including the RSSI and transmission power
used and a linear interpolation and a colorbar of the values to
assess the distribution. Table 6 shows the average values for
this scenario.

TABLE 6. EFM scenario results.

The results show that when using Edge Computing along-
side EFM mode, the quality of the signal decreases while
lower transmission power values are used, facing the BLM
mode. Fig. 11 (a) shows that the closest nodes transmit with
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FIGURE 12. RLM scenario results. (a) Edge computing RSSI; (b) Edge computing transmission power; (c) Cloud computing
RSSI; (d) Cloud computing transmission power.

an average value of −115 dBm, while mid-range and further
nodes transmit with an average −123 dBm and −131 dBm,
respectfully. For the same distance, Fig. 11 (b), the average
transmission power value is 6, 10 and 17, respectfully. As in
the previous scenario, the further nodes with more obstacles
were not able to create a connection.

In the Cloud Computing model, as in the BLM scenario,
a similar behavior can be found when comparing with the
Edge Computing, Fig. 11 (c). Contrary to the BLM scenario,
in the EFM mode, this model achieved a better link connec-
tion, being 7 dBm higher, or −5%. This is partially caused
by the higher transmission power being used by the Cloud
Computing model, Fig. 11 (d), that is, on average, 1 dBm
higher than the Edge Computing, allowing a better signal
quality.

As for energy consumption, the Cloud Computing, with
a higher transmission power, consumed on average 43mA,
which is 48% more than the Edge Computing model. With
that in mind, the Edge Computing model, besides the 5%
lower link quality, presents once again the best alterna-
tive, mainly when considering this is an energy efficient
mode focused only on decreasing the power consumption.
So, a worst connection can be achieved but it is done with
a lower power consumption.

C. RELIABLE LINK MODEL SCENARIO
Finally, the Reliable Link Model (RLM) compromised some
of the energy efficiency of the ELM model and the link qual-
ity of the BLMmodel, choosing the protocol and transmission
power based on the lowest energy value of a transmission
power that can achieve a good connection, i.e., close to
−20 dBm of the sensibility threshold for that network.

Following the path of the previous modes, in this scenario,
both edge and cloud computing models choose LoRa as the
main protocol to use, with a higher value, 98% and 96%
of the cases, respectively. For edge and cloud computing,
the remaining cases used Zigbee.

As for the previous scenarios, only the LoRa results will
be analyzed, with the obtained for RSSI and transmission
power results, for both edge and cloud computing, presented
in Fig. 12, that shows each of the location tested and the
obtained results with a linear interpolation and a colorbar of
the values to assess the distribution. Table 7 shows the average
values for this scenario.

TABLE 7. RLM scenario results.
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TABLE 8. Default configuration parameters.

When using the Edge Computing model with the RLM
mode, as in the EFMmode, the quality of the signal decreases
while lower transmission power values are used, facing the
BLM mode, but achieves a better quality of signal with
slightly higher transmission power values, facing the EFM
mode. The closest nodes, Fig. 12 (a), transmit with an average
value of−105 dBm, while mid-range and further nodes trans-
mit with an average−115 dBm and−128 dBm, respectfully.
For the same distance, Fig. 12 (b), the average transmission
power value is 7, 12 and 18, respectfully.

As in BLMmode, one thing that is interesting to see is that
some mid-range nodes can transmit with a higher transmis-
sion power value, with an average of 22 dBm of transmission
power. As in the previous scenarios, the further nodes with
more obstacles were not able to create a connection.

Regarding the Cloud Computing model, as in the previous
modes, it follows the Edge Computing in terms of behavior,
Fig. 12 (c), having a better communication link, 3% higher,
than the Edge Computing model. This, as in the EFM mode,
can be justified by the use of a higher transmission power,
Fig. 12 (d), in this case by 2 dBm. Also, when comparing the
transmission power results, it is possible to check that, as in
the BLM mode, the further nodes have a higher transmission
power than the Edge Computing nodes, that have a more even
distribution.

This higher transmission power, as in the EFM mode,
draws more power from the nodes, consuming 36% more
than the Edge Computing nodes. Considering this and the
slight difference between link quality, of only 3%, the Edge
Computing gets, once again, the advantage facing the Cloud
Computing. So, a slightly worse connection can be achieved,
but is it done with a lower power consumption.

VII. CONCLUSION
This paper presents a methodology for an autonomous imple-
mentation of a self-configuring smart node supported by
machine learning, that uses regressions to predict the link
quality of a connection and then chooses the best Transmis-
sion Power and communication protocol to use. The method-
ology for the systemwas presented, as well as the training and
validation of the computing model, including a comparison
between various regression techniques. A practical imple-
mentation of the methodology is also presented, not only to
validate the methodology, but also to compare how an edge
or cloud model affects the system accuracy and the energy
consumption of the edge nodes. For all these scenarios the
results were presented.

The first thing to conclude is that with proper configura-
tion, the smart node can act in a lower power fashion, creating
more sustainable networks.

Regarding the computation model, several regression
techniques, including Linear Regressions, Decision Trees,
Random Forest, SVM and Neural Networks were tested,
to assess which performs better in terms of predicting the
energy consumption and RSSI of a wireless communication,
based on the location of the node, distance and obstacles to
the gateway and the transmission power value. It was possible
to conclude that Random Forest was the best solution for both
scenarios, achieving an accuracy of 99.88% and 98.68%, with
a margin of error of 1.504 mA and 1.9558 dBm, respectively
for energy and RSSI prediction. Random Forest results sur-
pass Linear Regression, SVM and Neural Network by almost
26mA, 3.8mA and 3.2mA, for energy prediction, and 11 dBm
and 3 dBm, for RSSI prediction, respectively, being Decision
Trees the only technique that provides results more similar
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TABLE 9. RandomizedCV configuration parameters.

to Random Forest, being only 0.05 dBm worst on RSSI and
having the exact same results in energy prediction.

One of the other goals of this research was to understand
how the edge computing methodology faces a cloud comput-
ing methodology for deciding which is the best protocol and
transmission power value for a smart node to transmit mes-
sages. The edge computing methodology can achieve better
results, while sometimes having a lower quality of service,
although only by a slight margin, proving to be a better
solution, since it takes less time to decide and configure the
node, being done locally and without external inputs.

Finally, three modes of selecting the best transmission
power value were presented, each with a specific role depend-
ing on the needs of the network. The BLMmode proves to be
reliable, with the best quality link being achieved, with higher
RSSI values, but with more energy being used. The EFL
mode proves to be a solution for low power nodes, using 68%
less energy but compromising the reliability of the network by
13%. The RLM mode is a balanced solution, it can save 45%
more energy than the BLM mode with a 7% better quality
than the EFL mode.

By applying this methodology to a network, not only can
it extend the life cycle of the nodes but also reduce the need
for maintenance and interference between nodes, creating a
more sustainable network.

APPENDIX
REGRESSION MODEL CONFIGURATIONS
To train each regression model using the presented method-
ology, the default configuration of each model was used,
according to their documentation. Table 8 contains the param-
eters of each model.

For the second stage of the training methodology, the Ran-
domizedCV method was used to test multiple combinations
of the model parameters configuration, in order to find
the best one possible. For that, the combinations presented
in Table 9 were used.
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