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Abstract—In this paper, we present a probabilistic Monte-
Carlo method to simulate the electromagnetic field in multiple
interface problems based on transmission lines. We present
numerical results for the simplest case of the propagation of
gaussian pulses and sinusoidal sources in lossy and lossless
dielectric slabs which demonstrate the applicability of the method
to solve network problem in microwave theory. We also present
a methodology to obtain the amplitude and phase associated
with every point in the domain without resorting to fourier
transformations. This method is an important achievement in
the development of our Monte-Carlo method because otherwise
we would have to integrate the field over time to achieve similar
results, which would be unpractical for a Monte-Carlo method.
Finally, we compare our results with well established theory to
validate the methods.

Index Terms—Monte-Carlo methods, Electromagnetics, Ran-
dom Walks, Microwave theory.

I. INTRODUCTION

Numerical methods have been applied for many years in
computational electromagnetics to overcome the inability to
derive closed form solutions of Maxwell’s equations in real-
world problems related to scattering, radiation and material
characterization. The finite difference time domain method
(FDTD), the finite element method (FEM) and the method
of moments (MoM) are the three preferred numerical tech-
niques for the simulation of Maxwell’s equations. All of these
methods have one thing in common: they use a grid to store
the electromagnetic fields. Methods that resort to a grid to
represent all or part of its domain have important limitations
such as numerical dispersion, instability and convergence
issues. Usually when solving hyperbolic PDEs numerically
it is necessary to impose constraints, such as the Courant–
Friedrichs–Lewy (CFL) condition, to ensure convergence [1].
These constraints usually imply that we cannot simulate large
structures at high frequencies without scaling the problem to
unpractical limits. Grid-less methods can easily overcome this
issue if time is also not discretized because they do not have
to comply with the CFL condition [2]. These methods are
also particularly versatile in dealing with open boundaries and
memory resources since we only need to keep track of the
fields at points where we want to calculate the fields [3].
This is often considered a disadvantage if the electromagnetic
field is to be known at all points in the domain, [4], but
grid-based methods that discretize the entire domain into

memory, like the FDTD and FEM methods, cannot support
open boundaries. Hence, FDTD and FEM have to resort
to absorbing materials, such as the perfectly matched layer
(PML), to deal with undesired boundary reflections [5]. These
PMLs are very efficient impedance matched materials but will
always introduce some artifacts in the simulation domain.

The modeling of materials and boundaries is also con-
strained to the shape of the grid. Grid-less method, like the
floating random walk that is employed to solve static electric
fields, can model material geometries and boundaries and
inhomogeneous materials very accurately [6], [7]. The FDTD
method, on the other hand, has the important limitation that
it uses a leapfrog grid to lay out the fields in space in a
geometric pattern called Yee grid. This is a rectangular grid
and so materials and boundaries in FDTD are constrained
to rectangular shapes. The FEM can handle complicated
geometries/boundaries with relative ease because it allows the
grid points to fit materials and boundaries. FEM is thus the
method of choice in all types of electromagnetic simulations
involving complicated geometries [8].

Finally, Grid-less methods are especially suited for parallel
computing since the in-existence of a grid normally implies
little communication between parallel thread. If a grid exists,
such as in classical methods, then parallel processes have
to exchange information related to the solution of fields in
the domain boundary that separates two neighboring threads.
For example, with the grid-less Monte-Carlo method to be
discussed in this paper we simply write a program that
calculates the fields at a given point in space at a given time
and it gets automatically distributed across hundreds of cores
for thousands of threads.

In this paper we apply the Monte-Carlo method developed
in [2] to the analysis of wave propagation in dielectric slabs
with and without losses. We perform simulations to read
out reflection and transmission data that we can compare to
theory in order to corroborate the veracity of the method.
The article also propose a new technique to extract frequency
information from the simulations without resorting to Fourier
transformation. The article is organized as follows. In section
II we present the theoretical details that lay the foundations for
our monte-carlo method (see [2] for a more detailed discus-
sion). In section III, we explain how network components are
interconnected to form the simulation system. This involves



the development of boundary conditions following closely
the methodology and techniques outlined in network theory,
[9]. In section IV we present our numerical results, followed
by well-founded theoretical calculations, to corroborate the
methodologies presented. Finally, in section V, we draw the
conclusions.

II. PROBABILISTIC FORMULATION OF THE LOSSY LINE
EQUATIONS

An electromagnetic model of a general two-conductor uni-
form transmission line must take into account a number of
factors in order to emulate the physical behavior of the line
in a realistic manner. The three most important features are
the capacitive and inductive energy storage characteristics of
the line, the conductivity of the wires and the losses in the
dielectric medium. For harmonic fields these effects are accu-
rately modeled by the following time-harmonic transmission-
line equations:
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We rewrite these equations as a superposition of forward
f(x, t) and backward b(x, t) terms as follows, [2]:

v(x, t) = f(x, t) + b(x, t)

i(x, t) =
1
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above that
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where c0 = 1/
√
LC. The solution of these equations at time

instant tn in a generic point of the transmission line xn is
given by
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The probabilistic method then results from the introduction of
the exponential distribution

p(s) = (λ+ κ)e−(λ+κ)sH(s) (9)

which lets us write the previous equations in terms of expected
values:

f (xn, tn) = E[f (xn − c0t1, tn − t1)H(s− t1)

+
λ

λ+ κ
b(xn − c0s, tn − s)H(t1 − s)]

b (xn, tn) = E[b (xn + c0t2, tn − t2)H(s− t2) (10)

+
λ

λ+ κ
f(xn + c0s, tn − s)H(t2 − s)]

In these expression H(s) is the Heaviside function. To evaluate
f(xn, tn) and b(xn, tn) we must introduce the summations
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where N represents the number of independent samples that
we wish to compute. To compute a single trial of f̄(xn, tn)
we generate a random time s using the exponential distri-
bution given above. Depending on the value of s one of
the heaviside terms in (10) will yield one while the other
will give zero. If H(s − t1) = 1 we proceed by setting
f̄(xn, tn) = f (xn − c0t1, tn − t1). Otherwise, we shall make
f̄(xn, tn) = λ/(λ + κ)b(xn − c0s, tn − s). The problem is
now to find b or f in a previous time and this is done exactly
in the same manner by generating another random time s. The
process will stop when the generated trajectory colides with
initial conditions. We repeat the process N times and use (11)
to estimate f(xn, tn).

III. PROBABILISTIC FORMULATION OF BOUNDARY
CONDITIONS: ANALYSIS OF A LOSSY DIELECTRIC SLAB

Up until now, we have only described the transmission line
as a general component to which we have not connected any-
thing. If the line interfaces with other components, trajectories
can collide with the boundaries, which in turn will contribute
with new equations that must be fulfilled in order to find
the field solutions. In this section we will show how we can
use the method outlined above to simulate the propagation of
electromagnetic waves in the dielectric slab presented in Fig.
1. The conditions for the generator and the boundaries between
transmission lines are

f1 (0, t) = ζvg (t) + Γgb (0, t) , (13)

b1 (l1, t) = τ21b2 (0, t) + Γ12f1 (l1, t) (14)

f2 (0, t) = τ12f1 (l1, t) + Γ21b2 (0, t) , (15)



Fig. 1. A lossy dielectric slab terminated at one end by a voltage source. The
other end is left open.

b2 (l2, t) = τ31b3 (0, t) + Γ23f2 (l2, t) (16)

f3 (0, t) = τ23f2 (l2, t) + Γ32b3 (0, t) (17)

where ζ is the voltage divider coefficient and Γg is the
reflection coefficient at the source

ζ =
R01

R01 +Rg
, Γg =

Rg −R01

Rg +R01
(18)

Γij and τij are, respectively, the reflections and transmission
coefficients from line i to line j, which are given by

Γij =
R0j −R0i

R0j +R0i
, τij =

2R0j

R0i +R0j
. (19)

In addition to the boundary conditions we must also take into
account the initial conditions. In our case we will simply
set fi (x, 0) = 0 and gi (x, 0) = 0 with i = 1, 2, 3, which
corresponds to having the voltage and current equal to zero
in x ∈ [0,∞[. Note that we deliberately introduced an open
boundary in the right end of the simulation.

For the source we will consider two examples: A Gaussian
source of amplitude A = 2, internal resistance Rg = R1

(matched generator) and spread s0, which takes its maximum
value at time instant t = t0 > 0. The expression for this source
is

vg(t) = A exp

[
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2
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s0

)2
]

(20)

We also consider a sinusoidal source of unit amplitude and
frequency f0, vg(t) = sin(2πf0t). With this source we shall
infer the amplitude and phase associated with each point of the
structure, at frequency f0. To achieve this we simply calculate,
at each point, the value of a field quantity, lets say the voltage
v, at a given instant ti and at tf = ti+T0/4, where T0 = 1/f0
is the period. Then the amplitude and phase associated with
the point are given by

|V (x)| =
√
v2i (x) + v2f (x) (21)

arg V (x) = − arctan

(
vf (x)

vi(x)

)
(22)

where V (x) is the complex coefficient of the fourier transform
of v(x, t), vi = v(x, ti) and vf = v(x, tf ).

IV. NUMERICAL RESULTS

In this section we present numerical simulations that cor-
roborate the operation of the probabilistic method. Let us
consider that lines 1 and 3 are both lossless with lengths
l1 = l2 = 1 m and parameters L1 = L3 = 4π × 10−7

H/m, C1 = C3 = 8.85 × 10−12 F/m, R1 = R3 = 0 and
G1 = G3 = 0. For line 2 we use L2 = L1, C2 = 4L1. In
Figure 2 we present the amplitude and phase associate with
points between x = 0 and x = 2.8 m for a frequency of
500 Mhz. In this simulation, we have assumed that line 2 is
also lossless for simplicity. The Monte-Carlo parameter was
set to N = 103. From this figure we where able to measure
the values of the reflection coefficient at the left interface Γ
and the transmission coefficient τ at the right interface. We
found |τ | = 0.846, 1 + |Γ| = 1.55, 1 − |Γ| = 0.45, yielding
|Γ| = 0.55. The theoretical expressions yield

Γ =
Γ12 + Γ23e

−2jk1l2

1 + Γ12Γ23e−2jk1l2
7→ |Γ| = 0.543 (23)

τ =
τ12τ23e

−jk1l2

1 + Γ12Γ23e−2jk1l1
7→ |τ | = 0.84 (24)

in excellent agreement with the simulation results. In Fig. 3

Fig. 2. Amplitude and phase information obtain with the Monte-Carlo method
for a dielectric slab illuminated at 500 MHz.

we show the results of a Gaussian pulse with t0 = 0.83 ns and
s0 = 0.16 ns as it propagates through space and interacts with
the slab. The figure registers the fields v(x, t) and R0i(x, t)
at point x = 0.5 m until t = 22 ns. Fig. 3a) is for the lossless
case (R2 = 0), Fig. 3b) for R2 = 200 Ω/m and Fig. 3c) for
400 Ω/m. In all three figures we can see first the pulse that
started at the generator and passes at x = 0.5 towards the slab.
Then, the pulse is partially reflected at the left boundary of the
slab and passes again at x = 0.5 towards the generator, where
it is absorbed. The voltage amplitude of this pulse is given



by Γ12 = −0.33 and, as can be seen, is sensibly the same in
the three cases because this pulse did not travel in the lossy
material. Finally, the third pulse that we can see in all three
figures with different amplitudes is the pulse that was reflected
at the right boundary of the slab and was then transmitted to
line 1 at the first interface. It passes at x = 0.5 and is then
absorbed at the generator. We see then that the Monte Carlo
method was able to predict the attenuation due to losses in
line 2.

Fig. 3. Amplitude and phase information obtain with the Monte-Carlo method
for a dielectric slab illuminated at 500 MHz.

V. CONCLUSIONS

In this paper we studied the problem of electromagnetic
wave propagation in the presence of a material slab using a
novel Monte-Carlo method for electromagnetics. Lossy and
lossless structures were considered to test the method. We
have also shown how we can render frequency information,
such as amplitude and phase at a given frequency for all
points in the domain, without resorting to the conventional
methods using the Fourier transform. This has the obvious
advantage that it is not necessary to integrate the fields over
time, which would be an impractical task for the method
proposed here. We conclude that the developed method offers
many potentialities, although not a substitute for the classical
methods such as the FDTD, FEM and MoM. In fact the main

strengths of the method come form the fact that it is grid-less.
Since it is a monte-carlo method, its convergence is slow and
time is required to obtain accurate results. The generalization
to higher dimensions, and the possibility of tackling more
complex geometries and materials will be the subject of future
research of the authors.
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