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ABSTRACT
Communities of nodes are one of the most important meso structures in a network. In static net-
works they are essentially characterized by the nodes they hold, how modular they are and how they
connect to other communities. Once identified, they do not change. In networks that evolve over
time, communities can shed and acquire new nodes. This generates new constructs and raises the
question of community identity, and of the characterization of the events that define their lifecycle.
Although researchers have devoted efforts to address some of these questions, we believe that a for-
malized classification and a principled method to identify community events is still lacking. In this
paper we propose such a classification in the form of a robust taxonomy, supported by a similarity
metric based on the Jaccard index but adjusted to chance, and a set of rules that unequivocally can
track a community journey from "cradle to grave".

1. Introduction
Identity preservation is a general problem of any com-

plex, time evolving system. The Ship of Theseus paradox
is one of its most famous illustrations, arching back to the
Greek mythology. Theseus, an Athenian hero, returns to
Athens in glory after defeating the Minotaur on the island
of Crete. In his honor, the ship in which he sailed is kept
in a museum, where, due to the ravages of time, its original
parts are substituted as they rot. Eventually all end up be-
ing replaced. Can we still consider that this is the same ship
Theseus sailed on? If not, when did it stop being so? This
thought experiment has been discussed by many philoso-
phers, spanning millennia, from Heraclitus to John Locke
[13].

If we consider what constitutes a network community
and how it evolves in a temporal network, we are faced with
a similar problem. Can a community that shares no nodes
with one previously observed, be the same community? If
not, and assuming granular step changes, it must have lost its
identity at some stage. A fundamental issue thus becomes
what criteria to use to make that determination.

To clarify, here we are not talking about absolute iden-
tity, or what Leibniz called "The Identity of Indiscernibles"
[20]. That is, x and y are identical, if and only if for every
attributeA, its existence in x implies its existence in y, or for-
mally ∀A(A ∈ x ↔ A ∈ y) → x = y. Under this definition,
those ships are absolutely discernible. We are really talking
about relative identity, the same that allows us to identify an
adult as a child of yore, or a soccer club as the same club
with a totally different roster of players and technical staff
years later. This may appear as a simple semantic question,
but it is in fact an important distinction, especially when it
comes to two aspects of communities in temporal networks:
their detection and their identification. In this article we are
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especially concerned with the latter, and how it relates to a
lifecycle of events that group together a set of detected com-
munities under the same (relative) identity.

In static networks the identity of a community can be de-
scribed as a surjection from the node set to the community
set, an ontomapping establishing the node communitymem-
bership. Aswe extend our study of networks exhibiting com-
munity structure into the temporal domain, communities are
no longer static. A community that is observed at a given
moment may be different later on. Representing the ground
truth of such a network as a timed-sequence of surjections
may faithfully represent the community structure overtime,
but does not lead unequivocally to the understanding of its
lifecycle. For that we need an accepted taxonomy of life-
cycle events, and methods to correlate the changes in the
community structure to those events. In general, classifying
events is not a solved problem and formalization is lacking.
Furthermore, recovering lifecycle events may not be totally
possible without information not inherently present in the
network topology, which precludes a non-parametric solu-
tion to a problem where network topology is the only avail-
able data. In this article, we present a formalized taxonomy
and propose a method to track community evolution assisted
by meta information.

Communities are a challenging network construct. Al-
though they are commonly defined as a set of nodes that are
more densely connected among themselves than to the rest
of the network, the fact is that, given a network, determining
if and how many communities exist in that network may not
have a single, clear answer [11]. Temporal networks usher in
an additional layer of complexity, which, nevertheless, has
not deterred many authors from trying.

Let us note that, here, we are not directly concerned about
what constitutes a community, but how it evolves in time. In
this context, a clustered network is just a set of sets.

Expanding the ground truth of community structure to
include events of a temporal nature is not a new topic. Barabási
in his book Network Science [5] summarizes current con-
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sensus on what these events should be. It documents six el-
ementary events: Growth, Contraction, Merging, Splitting,
Birth and Death.

We believe however that this consensus is problematic.
For instance when defining a community split, where do you
draw the line between a split and a contraction? Is losing one
node, a split? If not, how many? And how would one clas-
sify an event of a community that fully fragments, shedding
nodes to multiple communities, which in turn receive nodes
from several other communities? In our work we came to
believe that topology alone cannot answer these questions.
Depending on subject domain, a community may cease to
exist as a separate entity when none of its nodes are seen af-
ter a given time T or when a given fraction of its members
disappear. Here, the network topology does not shed any
light. Examples from the real world abound, consider the
minimum quorum for a shareholder assembly or the level
of infestation by an indicator species in biology. In both of
these cases, external information is required to validate the
existence of a functioning community.

We also find that it is easier to reason about community
events anchored on the community and not on the event. So,
for example, an event where many nodes change community
membership, may result in a community fragmenting while
other communities in the same network may grow by acquir-
ing some of its fragments.

In support of this approach we define three simple top
level community events: Birth, Continuation andDeath. That
is, once born, a community either continues or dies. Contin-
uation will have different meanings depending on context. In
an abstract way, however, we define it as similarity beyond a
cutoff point allowing recognition of a former community in
a present one. We propose a similarity metric based on the
Jaccard index [17] to compare communities, with a paramet-
ric cutoff point dependent on subject domain. If the metric,
as a distance function, between any two communities taken
from community sets at t and t+ � clears the threshold, then
the oldest continues in the most recent. Note that a com-
munity may continue in multiple communities depending on
their similarity. That multiplicity together with time orienta-
tion further classifies the continuation event. For example:
given two communities at time t, cti and ctj , and two com-
munities at time t + �, ct+�k and ct+�l , cti can continue in ct+�kand ct+�l (a split), while ct+�l is a continuation of cti and ctj (amerge). This simplifies the model, catering for the complex-
ity of the multiple types of events that can occur in the clus-
tering of a temporal network, defining events from a com-
munity point of view, allowing for domain specific external
input that further characterizes the community lifecycle.

In the reminder of this article we refer and review related
work that predates our current proposal in section 2. In sec-
tion 3 we describe how we compare communities to deter-
mine lifecycle events and their taxonomy tree. In section 4
we introduce the adjusted Jaccard index, the metric we used
to compute the distance between pairs of communities, and
the null model that supports it. In section 5 we present the
full classification methodology and procedure, followed in

section 6 by examples using a toy model and an empiric net-
work. We conclude in section 7 with future directions and
follow-on work.

Throughout the text we use a consistent notation, using
C to identify a community as a set of nodes, and S to identify
a multiset of community cardinalities. Both can optionally
be superscripted to specify a given network observation. If
denoted in lowercase, they refer to a single community that
can additionally be subscripted for identification. The usage
of upper and lower case is consistently used to differentiate
a collection from its elements. Other notation will be intro-
duced as required.

2. Related Work
In spite of their obvious applicability in representing time

evolving complex systems, temporal networks studies are
still under represented in the overall complex network scien-
tific production. The subtopic of communities in networks is
no exception, even though in the last decade or so, a number
of proposals have been put forward to define and detect what
a community is, in the context of an evolving network.

A simple example of community detection in a temporal
network can be found in [18], where authors add inter-time
edges to the network, connecting the same and related nodes
at successive moments, followed by traditional static com-
munity detection on the resulting aggregated network. This
results in a partition of the network that may identify en-
during communities, but is of limited use when examining a
particular observation of the network or to understand how
a community evolves.

Static community detection is usually performed by opti-
mizing a quality or fitness score, such asmodularity, conduc-
tance, size of compressed information flows, among many
others. Unless the community is frozen in time, changes will
affect that score. Many authors extend the fitness score to
smooth community evolution[3], usually by establishing ad-
ditional objectives, such asminimizing the clustering changes
across time thru measures such as the normalized mutual in-
formation [9], or by including past, and sometimes future,
network observations in the fitness scoring function. This
smoothing has the additional advantage of mitigating algo-
rithmic artifacts, asmost fitness functions are frequently com-
putationally complex to optimize, usually through heuristics
that are sensitive to initial conditions and computing effort.

In a temporal network, approaches to community detec-
tion usually follow one of two options: they either consider
each network observation independently or directly combine
multiple observations. The way this is performed varies and
authors in [2] distinguish between:

• two-stage approaches, where detection is performed
per observation complemented by partition matching
with previously identified communities;

• evolutionary clustering, where detection over the cur-
rent observation is a function of the observed topology
and of prior community structure, usually optimizing
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amodified quality function that dampens the influence
of previous observations as they fade in time;

• and methods that couple all observations into a single
network, usually by linking nodes across observations,
and perform community detection on the consolidated
network.

In their survey [28] authors expand on this classification, cre-
ating a hierarchy of approaches, that at the first level is simi-
lar to the one in [2], defining, respectively "Instant Optimal",
"Temporal trade-off" and "Cross time" approaches but pro-
viding additional granularity by detailing subcategories for
each class. A full survey is beyond the scope or intent of this
article. The reader is referred to [4, 29, 33, 15, 10, 28, 8] for
more information.

Although most of these efforts concentrate on identify-
ing temporal communities in an absolute sense, in this arti-
cle and this section we are especially concerned with relative
identity and on how communities evolve from birth to death.
From this standpoint, and in the strict context of our taxon-
omy proposal, the way a community is identified is imma-
terial. Our proposed approach works regardless. This does
not imply that network evolution cannot contribute to com-
munity detection, as many authors have proposed, resulting
in methods and algorithms that simultaneously try to detect
communities and classify the events they endure. We have
not found, however, any article that exclusively focus on life-
cycle analysis.

To our knowledge, community events were first proposed
in [23] and, since then, there seems to be an emergent con-
sensus around events like birth, merge, split, growth, ex-
pansion, contraction and death. Some authors propose ad-
ditional events like continuation (i.e. no growth or expan-
sion) and resurgence for communities that appear periodi-
cally [28]. A summary of these events with informal defini-
tions can be found in [7] as well as a formalism for lifecycle
representation based on a directed graph where nodes are
timed community observations and edges are continuation
events bridging time gaps.

Whenmatching communities for event determinationmany
authors use, as we do, a set based distance measure. The Jac-
card index [17]:

J (c ti , c
t+�
j ) =

|c ti ∩ c
t+�
j |

|c ti ∪ c
t+�
j |

(1)

is used by authors in [14, 21, 22, 23], even though it may
be named differently in some cases. In [31] authors use dif-
ferent measures depending on event, such as the ratio of the
size of the intersection to the size of the largest community,
basically a measure of dilution, to determine whether a com-
munity is born or vanished, or the relative size of the proper
subset of a community in a subsequent timestep to determine
continuation. In [32] the same authors distinguish between
communities and metacommunities, the latter being a con-
struct to track community evolution. In [1], continuation
is predicated on set equality of community membership at

succeeding time steps, while merge and split depend on di-
lution of nodes gated by individual community contribution
for the event. The appearance of new communities (which
the authors name "Form") and disappearance ("Dissolve")
are conditioned on, respectively, no prior or post observa-
tion of any of the nodes on the formed or dissolved commu-
nity. In [16] authors use a measure that favors communities
similarly sized with a high ratio of common nodes:

similarity(c ti , c
t+�
j ) = min

(

|c ti ∩ c
t+�
j |

|c ti |
,
|c ti ∩ c

t+�
j |

|c t+�j |

)

(2)

A different approach is taken in [6] where a method (GED) is
proposed where the measure used is the forward dilution of a
community ( |ct∩ct+� |

|ct| ) modulated by the relative "social posi-
tion" of surviving member nodes, basically non topological
information assigned to specific nodes, changing their rel-
ative weight in community formation. An approach based
on forward and reverse dilutions, but without any additional
adjustments, can be found in [30], where the results of ap-
plying the dilution formulas to all community pairs at suc-
ceeding network observations are used to build correlation
matrices, that are then subject to a parametric process to de-
termine lifecycle events. In [19], authors classify lifecycle
events using a directed weighted network where nodes are
observed communities and edges connect related communi-
ties, weighted by the fraction of surviving nodes as commu-
nities evolve. With the exception of [21] (which we analyse
further in section 6.2), all of the prior approaches, including
our own, identify lifecycle events depending on user speci-
fied parameters. In fact, we believe that the definition of a
community event, with exception of clear cut cases, such as,
for example, when a totally new and cohesive set of nodes
appear on the network as a birth event, requires meta infor-
mation not inherent in the network topology.

Our approach is not dissimilar to the one adopted in [14],
but with a distance measure adjusted for chance. We also
simplify the concept of community evolution, by anchoring
it on the community itself at a given point in time and not on
the network. Like most other approaches, ours is parametric,
requiring meta information about community relative iden-
tity.

3. Recovering Community Events
Clearly defining community events is useful for many

reasons, such as the development and testing of dependable
temporal community detection and evolution algorithms.

Our lifecycle identification framework addresses the prob-
lems associated with the classification of complex events
when nodes exit and enter various communities as well as
comprehensively covering other events relevant in the vari-
ous problem domains where temporal networks play a role.

On this basis, we created a hierarchical, multi-level clas-
sification scheme, based on the following rules:

• Once born into existence, a community either contin-
ues or dies.

Luis R. Pereira et al.: Preprint submitted to Elsevier Page 3 of 11
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• A community continues in another community if their
measured similarity clears an externally supplied cut-
off. A consequence of this rule is that remains of a
community that do not reach the threshold for contin-
uation, contribute to newly born communities or the
expansion of others or both.

• Single continuation events, that is, continuation events
that involve only a pair of communities, can be further
subdivided into:

– Growth and contraction events with net acquisi-
tion or loss of nodes.

– Replace events when the communities keep the
same cardinality, but with some of their nodes
replaced.

– Preserve events if no changes in node member-
ship occur.

• Multiple continuation events, that is, continuation events
that involve more than a pair of communities, can be
further subdivided into:

– A split, if a multiple continuation event is ob-
served from the past.

– A merge, if a multiple continuation event is ob-
served from the future.

• A community can die either if its nodes are no longer
seen on the network (vanishes), or it does not continue
in any other community (absorved). A community
can experience loss of nodes and absorption simul-
taneously and the proper classification would, in our
proposal, follow the largest of the remaining and dead
node set sizes.

• A community can be born from new nodes (begin-
ning) or from fragments of other communities (regen-
erated). Both can happen simultaneously and classifi-
cation follows the largest node set.

• A community can also resurge on the network, for ex-
ample on cyclic events. This is detected as a single
continuation bridging a lapse of time longer than the
network temporal resolution and can potentially occur
on "Begin", "Regenerate", "Grow", "Contract", "Re-
place", "Split" and "Merge" events.

A full taxonomic tree is depicted in figure 1. The method
for community continuation analysis as presented in the next
section abides by the above categorization.

To compare community similarity many authors use the
Jaccard index (J ) [17], as previously mentioned. Authors
in [23], call it the auto-correlation function and extend it to
any time delta. J varies from 0, when no nodes are com-
mon between communities, to 1 when all nodes are shared.
Intuitively, it expresses similarity between sets. However,
in a potentially constrained domain, such as in a temporal
network where nodes persist across time, its interpretation

should be subject to probabilistic scrutiny. For this reason,
we propose the usage of an adjusted Jaccard index (Ĵ ) to
compare communities, as described in the following section.

4. Adjusted Jaccard index and null model
A random network should not exhibit community struc-

ture1. Similarly, a random redistribution of communitymem-
bership across the node set over t → t + �, should result
in a null similarity index between any pair of communities
∈ C t × C t+� . However, this redistribution will result in an
average positive J of all community pairs in anything but
the asymptotic limit of network size. To correct for this, we
introduce an adjusted Jaccard index (Ĵ ). To compute Ĵ , we
make use of auxiliary "null version" variables which we de-
note with a ̆ accent.

Given two multisets S t, S t+� , with ∑

S t =
∑

S t+� , a
random assignment of nodes V ↦ C̆ t+� , subject to2:

ℙ(v ∈ c̆t+�i ) =
st+�i

∑

St+�
(3)

results in an expected number of shared nodes between pairs
∈ C t × C̆ t+�:

E(|cti ∩ c̆
t+�
j |) = s ti ×

s t+�j
∑

S t+� (4)

for any community ct, and the corresponding community
c̆t+� built from the probabilistic distribution of nodes onto
C̆ t+� resulting from equation 3. Let’s notate this f∅(ct, c̆t+�),as we will use it to develop the adjusted Jaccard index.

Consider two communities c ti , c t+�j . We propose a null
model to adjust their J in such a way that,

1. |cti ∩ ct+�j | ≤ f∅(cti , c̆
t+�
j ) ⇔ Ĵ = 0

2. c ti ⊆ c t+�j ∨ c t+�i ⊆ c tj ⇔ Ĵ = J

The first adjustment captures the intuition that a random dis-
tribution of nodes should not lead to affinity between com-
munities. The second adjustment captures the intuition that
the index should not be adjusted if the community is pre-
served, or if its nodes are kept together or isolated from the
rest of the network. A consequence of these adjustments is
that Ĵ ∈ [0, J ].

To implement the first adjustment we compute the Jac-
card index between communities c ti , c̆ t+�j , under the condi-
tions of equation 4, basically the ratios of the intersection
with the union of communities cti and c̆t+�j . We denote this
index as J̆ :

J̆ (c ti , c̆
t+�
j ) =

s t+�j × s ti
∑

S t+� × (s t+�j + s ti ) − s
t+�
j × s ti

(5)

1This fact is the basis of one of themost popular methods of community
detection [12]

2Nodes trivially appear and vanish in many temporal networks, result-
ing in a variable number of nodes as time evolves. When that happens in
two consecutive observations at t, t+�, we add an additional fictitious com-
munity of new born nodes at time t and another community of dead nodes
at time t+� thus avoiding handling network samples of different cardinality.
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Figure 1: Events in the lifecycle of a community in a temporal network. Classi�cation dependent on multiplicity of continuation

events and relative set sizes

Formula 6 allows us to correct the index to zero on random
chance, while preserving a perfect score of "1" when c ti =
c t+�j :

max

(

J (c ti , c
t+�
j ) − J̆ (c ti , c̆

t+�
j )

1 − J̆ (c ti , c̆
t+�
j )

, 0

)

(6)

However, this will adjust down the index when c ti is a
proper subset of c t+�j or vice-versa, contrary to our null model
design. To enforce our model, we compute the Hadamard
product (J̆ ⊙ R) where R is the "proper subset coefficient"
matrix, with elements defined as:

rij = 1 −
|c ti ∩ c

t+�
j | − f∅(cti , c̆

t+�
j )

min(s ti , s
t+�
j ) − f∅(cti , c̆

t+�
j )

(7)

rij = 0 if a proper subset condition exists, increasing ∝
(min(s ti , s

t+�
j ) − |c ti ∩ c

t+�
j |).

The proposed adjusted index now becomes:

Ĵ (c ti , c
t+�
j ) =

J (c ti , c
t+�
j ) − J̆ (c ti , c̆

t+�
j ) × R(c ti , c

t+�
j )

1 − J̆ (c ti , c̆
t+�
j ) × R(c ti , c

t+�
j )

(8)

We studied empirically the behaviour of our adjusted Jac-
card index. From our previous discussion, a random distri-
bution of nodes by communities, should, in principle, result
in a null similarity score between any pairs of communities
from two succeeding network observations. If we were to
plot the cumulative distribution function (cdf ) of the aver-
age similarity index for samples of such a network, ideally,
it should result in cdf(index) = 1|index ∈ [0,∞], with all
observations at 0.

We tested the Jaccard index and our adjusted index on
sets of random temporal network configurations, varying the
number of communities and the number of nodes. The com-
munity cardialities were sampled from a powerlaw function
with exponent  = 2.5 for each observation, as this cardinal-
ity distribution is frequently observed in empiric networks,
even though similar results were obtained when sampling

Luis R. Pereira et al.: Preprint submitted to Elsevier Page 5 of 11
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Figure 2: Performance of the Adjusted Jaccard index (Ĵ) for the null model. Cumulative

distribution function of Ĵ and J . Average Ĵ compared to averaged J for pairs of com-

munities with a positive index for varying numbers of communities and nodes. Each line

represents the average of 100 runs. As the number of communities increase, Ĵ → J .

from uniform distributions. 100 observations were made on
each network. For each pair of observations the average of
all positive indexes was computed. The resulting cdf of J
and Ĵ can be seen in figure 2. Ĵ performs much closer to
the ideal result than J when the number of communities is
low. As the number of communities and nodes grow, the
differences vanish and at ≈ 100 communities and ≈ 10000
nodes, there is practically no difference between the indexes
and the null model ceases to be relevant, as both are close to
the expected cdf for random transitions.

The larger divergence from the ideal behaviour on small
networks is the result of two factors. With less nodes and
less communities, the probability of spurious similarities in-
creases as nodes have less degrees of freedom. That is taken
care by the null model. However, discretization also plays
a role as a perfect uniform distribution is not possible when
moving from a continuous to a discrete domain. After all,
nodes cannot be sub-divided. This explains the deviation in
the cdf of Ĵ from the expected cfd on low community and
node counts.

We also tested the indexes against highly stable networks,
that is, networks where communities exhibit low member-
ship turnover (see figure 3a). These networks were gener-
ated using a tool [24] that, given a network observation and
amultiset of community cardinalities, flows the nodes across
communities minimizing changes. Just as in the previous ex-
ample, community cardinalities were sampled from a power

law function with  = 2.5. To show how close the obser-
vations were, we computed the average Normalized Mutual
Information (NMI) across network observations. In figure
3 we plot the average positive J , Ĵ , NMI and the average
percentage of community pairs exhibiting a positive index,
for 6 sets of temporal networks with 50 observations and ≈
1000 nodes, varying from 5 to 30 communities in steps of
5. In figure 3a we also include the ratio of positive indexes
for a frozen network where NMI = 1. For comparison, re-
sults from a randomly evolving network can be seen under
the same conditions in figure 3b.

For this network size, the adjusted index reduces the num-
ber of positive scores, as a consequence of the null model
application. This contributes to an increased average of pos-
itive indexes for networks with communities with low mem-
bership volatility. For random networks the model is suffi-
ciently robust to keep a lower averaged Ĵ .

5. Event categorization method
The adjusted Jaccard index (Ĵ ) is used in the method be-

low to determine community continuation. We note, how-
ever, that the method is not dependent on this specific simi-
larity measure. Others, more appropriate to a given subject
domain, can be used, as long as, from the contingency ma-
trix (see step 1 below), they produce a binary decision over
community continuation.

The full method has the following steps:
Luis R. Pereira et al.: Preprint submitted to Elsevier Page 6 of 11
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(a) Networks with low community volatility

(b) Networks with random communities

Figure 3: Performance of the Adjusted Jaccard index (Ĵ) for
highly stable (a) and for random networks (b). Averages of

50 observations for 6 sets of networks with varying number of

communities and an average of 1000 nodes. We plot positive

Ĵ , J , percentage of positive Ĵ , J and NMI for each network.

As can be seen in this plot, the adjusted index detects less

false positives as a result of the null model adjustment. As

expected, it also improves the average index, but only in the

case of highly stable networks
.

1. A confusion (or contingency) matrixX, with sizeSt×
St+� , is created with entries xij = cti ∩ c

t+�
j

2. A Jaccard indexmatrix (J ) is created fromX andSt, St+�
using equation 1.

3. A null Jaccard indexmatrix (J̆ ) is created fromSt, St+�
using equation 5 .

4. An adjusted Jaccard index matrix Ĵ is created from J
and J̆ using equation 8.

5. An external threshold � is applied as a cutoff binary
filter over Ĵ resulting in a Boolean matrix H repre-
senting a k-adic relation between communities. We
call this the continuation matrix.

6. The rows and columns of H are summed resulting in
split and merge vectors P andM , respectively.

7. For every ℎij = 1 there is a single continuation top
level event between communities cti and ct+�j if mi =
pj = 1. This top level single continuation event gen-
erates second level:
(a) grow event if sti < st+�j ;
(b) contract event if sti > st+�j ;
(c) preserve event if sti = st+�j ∧ ĵij = 1;
(d) or replace otherwise.

8. For every ℎij = 1 there is a multiple continuation
top level event between communities cti and ct+�j if
(mi∨pj) > 1. Top level multiple continuation events
generate second level:
(a) merge events if mi > 1;
(b) split events if pj > 1.

Both are generated if (mi ∧ pj) > 1.
9. For every mi = 0, we have a birth top level event

for community ct+�i . Top level birth events generate
second level:
(a) begin events if there are more new nodes than

absorbed nodes, or formally if st+�i ≥ 2×
∑
st+�j
j=1 xij ;(b) or regenerate events otherwise.

10. For every pi = 0, we have a death top level event
for community cti . Top level death events generate
second level:
(a) vanish events if there are more dead nodes than

absorved nodes, or formally if sti ≥ 2×
∑sti
j=1 xij ;(b) or absorve events otherwise.

11. The events {"begin", "regenerate", "grow", "contract",
"replace", "split" , "merge"} can be further classified
with a resurge attribute as soon as a single continu-
ation results when applying this method to older net-
work observations in a most recent order, i.e. between
pairs (ct−n�i , ct+�j ), where n varies from 2 to l

� where
l, � stand respectively for the network longevity and
temporal resolution.

6. Examples
In this section we present two examples of the applica-

tion of the proposed taxonomy and method. In subsection
6.1, we use a toymodel to illustrate the individual steps taken
to determine community lifecycle events, and, in subsection
6.2, we show some of the useful information that can be
extracted by the model application to an empirical tempo-
ral network representing a soccer game, where players are
nodes, and communities are sets of players in close interac-
tion.
6.1. Toy model

To illustrate the event categorization method consider
two community sets C t, C t+� with 5 communities each with
20 nodes (S = {205}), where the flow of nodes across t →
t + � is given by the following confusion matrix (step 1 of
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(a) Community events at � = 0.6

(b) Community events at � = 0.42

Figure 4: Empiric network community events as determined by J and Ĵ at (a) cuto� point � = 0.6 and (b) � = 0.42. These are
two observations with one second delay of all sets of players and goals on the pitch. The cuto� point can be seen as the trade

o� between continuations and death and birth events, and its value is subject domain dependent. The adjusted Jaccard index

is more stringent on selecting continuation events as it adjusts for random chance. Dashed lines and greyed out text represent

events that do not clear � under Ĵ but do under J . Death and birth events not represented for clarity.

section 5):

X =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 10 0 5
2 0 0 2 2
5 0 0 5 5
10 0 10 0 0
0 20 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

This results in a simple Jaccard matrix (step 2):

J =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0.33 0 0.14
0.053 0 0 0.053 0.053
0.14 0 0 0.14 0, 14
0.33 0 0.33 0 0

0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

As all communities have the same size, f∅(cti∩ c̆t+�j ) = 4,
J̆ (cti ∩ c̆

t+�
j ) = 1

9 over a uniform supported random distribu-
tion of nodes across communities at time t+ �. The adjusted
Jaccard matrix then becomes (step 4):

Ĵ =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0.30 0 0.070
0 0 0 0 0

0.070 0 0 0.070 0.070
0.30 0 0.30 0 0

0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

if we take, as an example, a cutoff of � = 0.2, we get the
continuation matrix (H), the split (P ) and merge (M) vec-

tors (steps 5, 6):

H =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

P =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
0
2
1

⎤

⎥

⎥

⎥

⎥

⎦

M =
[

1 1 2 0 0
]

Applying steps 7, 8, 9 and 10, we have continuation
events between (ct1, ct+�3 ), (ct4, ct+�1 ), (ct4, ct+�3 ), (ct5, ct+�2 ). Com-
munity ct4 suffers a split and ct+�3 , a merge. Communities
ct2, c

t
3 die, and communities ct+�4 , ct+�5 are born. As s t2 = 20

and 2 ×
∑5
j=1 x2j = 12, ct2 death is a vanish event. As

|c t3| = 20 and 2 ×
∑5
j=1 x3j = 30, community ct3 death is

a absortion event. Similarly, applying step 9 of the above
method, we can further classify ct+�4 birth as a begin event
and ct+�5 birth as regenerate event.
6.2. Application to an empiric network

The taxonomy and the event categorization method can
recover information from a clustered temporal network that
may not be easily apparent thru other methods. In this sec-
tion, we apply it to a network resulting from sampling soccer
players position on the pitch and clustering them into sets or
"communities" by physical proximity. The clustering pro-
cess is explained in [25]. Thematch is sampled at 10Hz, gen-
erating close to 60,000 observations during the whole game.
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Figure 5: Event frequency distribution for set 63 composed by attacking player 4, and defensive players 16,and 19 of opposing
team. In this �gure we can see that the most common formation and separation events occur when player 19 joins or leaves the

set.

Several thousand unique sets of players are usually detected
per match, but their distribution is far from uniform. Some
occur quite frequently while many occur very rarely [26].
Physical proximity between players in collective ball games
is a determining factor of game play and understanding how
their patterns evolve can support game strategy and training
[27]. This is where a community lifecycle analysis can be of
value.

For this first example we use one single game transi-
tion to illustrate how the selection of the cutoff and the ad-
justed Jaccard index influence the categorization of events,
followed by showing how a frequently detected set of players
(2 fullbacks and a winger) emerges and changes.

In this dataset there is a maximum of 30 nodes (22 play-
ers in-game, 6 substitutes and 2 goals), numbered from 1 to
30, and a variable number of sets of nodes (communities)
which are serially numbered as they appear in the match.

The transition from second 447 to 448 of game play is

shown in figure 4. Seen thru the "lens" of our method we
can see the events the sets of players underwent. At a cutoff
� = 0.6 (figure 4a), set 788 is absorved using the adjusted
Jaccard index, but continues when using the non-adjusted
index. Although set 342 keeps 3

4 of set 788 players, it still
does not meet the cutoff for continuation. Conversely, set
791 does continue from 789, even though it keeps a lower
ratio of players 4

6 . This is the result of favoring the concen-
tration of nodes in our adjusted index.

In figure 4b we relax the cutoff point lowering it to a level
(� = 0.42) where clear differences to figure 4a can be ob-
served between lifecycle events. As expected there are more
continuations. As we frequently stressed, there is nothing
inherent in the network that can guide the selection of �. It
is totally dependent on subject matter expertise, in this case,
how much of a compositional change a set can endure while
still expressing functional affinity. Authors in [21] used a
dynamic threshold that depends on the actual community
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structure at every timestep transition: more specifically that
threshold is the minimum of the set of maximum J per com-
munity of all cross-timestep community node flows, or using
our continuation matrix, it is the minimum of the maximum
of the vectors P andM (step 6 of section 5). This guarantees
an increase of continuation events, but, in our view may dis-
tort network dynamics, for instance at change points where
plenty of communities collapse in the network.

In a second example we concentrate on a single player
set. A frequently occurring set in soccer matches is the 3
node set composed of two back defensive players and an at-
tacking player of the opposite team [25]. Set 63 (players
4, 16, 19) is such a set in the match data we are using for
this example. In figure 5 we show the frequency distribution
with which set 63 appears and disappears, and where from
and where to it continues. Each event is categorized by its
type, and set formation. It can be seen that the most com-
mon events are contractions and growth from a set where
player 19 is absent. Less frequently, similar events occur
where player 16 is the agent of change. This distribution can
inform game analysis, tactics, training and strategy. Many
other type of analysis can be performed using our method,
but here we are just concerned in exemplifying the method
and taxonomy usage, as motivation for its application in this
and other domains.

7. Conclusion
In this article we presented an approach and taxonomy to

categorize community events in temporal networks. Tempo-
ral networks are pervasive in many domains and community
structure analysis always generates a lot of interest, given
its potential applicability. Having a standardization of con-
cepts, terminology and analytic tools cannot but help ad-
vancing this field of study. As discussed here, the evolution
of communities cannot be solely determined by changes in
their topology, but must be contextualized by domain exper-
tise. The demise of a community can be two very different
events depending on the system they are representing. In
this article, our taxonomy proposal is based on an adjusted
Jaccard index that better reflects community lifecycle over
time, especially on small networks, such as the one used in
our empiric example. However, it is just one way of scoring
community similarity, and can be replaced without compro-
mising the overall method and taxonomy.

Our method works for discrete observations of the net-
work as it evolves without the need to set a fixed frequency.
Theoretically, the observation resolution could be increased
up to a point where any new node activity would generate a
new observation. In practice, to avoid computational over-
head and information overload, it would be advisable to adapt
our method to emerge only major structural events, avoiding
reporting on trivial continuation events. This is left for fu-
ture work.
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8. Supplementary Material
Code, in the Python programming language, that imple-

ments the method proposed here-in is available at https:

//github.com/ramadap/Community-Lifecycle
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