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Abstract for Dissertation for PhD in Economics 

Technological Change, Efficiency and Energy 

Hou Zheng 

Supervisors: Prof. Catarina Roseta Palma, Prof. Joaquim J.S. Ramalho 

 

Economic performance is closely related with energy consumption, the major part of 

which still comes from non-renewable sources. While endeavoring to promote 

renewable energy, policy makers are interested in technological change that also 

increases energy efficiency. However, both growth models of directed technological 

change and microeconomic theories regarding innovation suggest that technological 

change is not necessarily biased towards energy, which calls for the support of empirical 

evidence. Previous studies on the topic mostly focus on a certain country/region using 

data at province/sector level. My dissertation applies Stochastic Frontier Analysis (SFA) 

as its main econometrical method and investigates the situation of technological 

progress involving energy as input and output. The findings may serve as reference for 

policy considerations related to innovation, energy pricing, firm operation, etc. Macro-

level findings show that technological change is biased towards energy; micro-level 

findings show that technological change is biased the most towards labor; technological 

change has favored fuel over electricity in general. We infer that the market size effect 

is likely to overwhelm others in deciding the direction of technological change. Thus, 

policy should include tools in addition to energy prices in inducing technological 

change. We conclude that productive technical efficiency is positively affected by 

higher capital input relative to labor input, as well as higher average hourly wage and 

lower average working hours. Evidence also suggests that the liberalization in the 

Portuguese electricity market starting from the 2000s was successful in the sense that 

there is a trend of improvement in technical efficiency through time. 

 

Keywords: energy; non-renewable resource; economic growth; Stochastic Frontier 

Analysis; directed technological change; technical efficiency. 



Resumo de Dissertação de Doutorado em Economia 

Mudança Tecnológica, Eficiência e Energia 

Hou Zheng 

Orientadores: Prof. Catarina Roseta Palma, Prof. Joaquim J.S. Ramalho 

 

O desempenho econômico está intimamente relacionado ao consumo de energia, a 

maior parte da qual ainda vem de fontes não renováveis. Ao mesmo tempo que se 

esforçam para promover a energia renovável, os formuladores de políticas estão 

interessados em mudanças tecnológicas que também aumentem a eficiência energética. 

No entanto, tanto os modelos de crescimento da mudança tecnológica direcionada 

quanto as teorias microeconômicas sobre a inovação sugerem que a mudança 

tecnológica não é necessariamente enviesada para a energia, o que exige o apoio de 

evidências empíricas. Estudos anteriores sobre o tópico focam principalmente em um 

determinado país / região usando dados em nível de província / setor. Minha dissertação 

aplica a Stochastic Frontier Analysis (SFA) como seu principal método econométrico e 

investiga a situação do progresso tecnológico envolvendo energia como entrada e saída. 

As descobertas podem servir como referência para considerações de política 

relacionadas à inovação, preços de energia, operação de empresas, etc. As descobertas 

de nível macro mostram que a mudança tecnológica é tendenciosa para a energia; 

descobertas em nível micro mostram que a mudança tecnológica é mais tendenciosa 

para o trabalho; a mudança tecnológica tem favorecido o combustível em relação à 

eletricidade em geral. Inferimos que o efeito do tamanho do mercado provavelmente 

sobrecarregará os outros na decisão da direção da mudança tecnológica. Assim, a 

política deve incluir ferramentas além dos preços da energia na indução de mudanças 

tecnológicas. Concluímos que a eficiência técnica produtiva é positivamente afetada 

por maior entrada de capital em relação à entrada de trabalho, bem como maior salário-

hora médio e menor média de horas de trabalho. Evidências também sugerem que a 

liberalização do mercado elétrico português a partir dos anos 2000 foi bem-sucedida no 

sentido de que há uma tendência de melhoria da eficiência técnica ao longo do tempo. 

 

Palavras-chave: energia; recurso não renovável; crescimento econômico; Stochastic 

Frontier Analysis; mudança tecnológica dirigida; eficiência técnica. 
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Technological Change, E¢ ciency and Energy

Hou Zheng
Supervisors: Prof. Catarina R. Palma, Prof. Joaquim J.S.

Ramalho

1 General Introduction

Technological advances regarding energy have always attracted the attention of

governments and �rms, considering the growing dependence of contemporary

economies on energy use. Evidence shows the causality from energy consump-

tion to economic growth (Mozumder and Marathe, 2007); and there have been

summaries on the literature regarding the nexus between energy consumption

and growth, e.g. Payne (2010). Speci�cally, research supposes bi-directional

causality between the two in the long run. For Portugal, the country that we

focus on in the present research, empirical evidence on the relationship between

energy consumption and growth was provided by Shahbaz et al. (2011) and

Fuinhas and Marques (2012). Empirical evidences support the connection be-

tween economic growth, energy consumption and CO2 emission for Indonesia

(Shahbaz et al., 2013), China (Wang et al., 2016) and a number of other coun-

tries (Alam et al., 2016). A more thorough review of studies on the relationship

between economic growth and energy is done by Wang et al. (2018).

Due to concerns on the sustainability of energy use and its environmental im-

pacts, government policy often attempts to augment the cost of using energy by

agents, in order to control energy consumption. Although individual �rms may

enjoy favorable returns from investment in energy-saving equipments (Train and

Ignelzi, 1987), such reduction of energy inputs in general undermines economic

output. Pereira and Pereira (2010) suggest that, in Portugal, for every ton of

oil equivalent (toe) that is permanently reduced in aggregate energy consump-

tion, aggregate output drops e6340. On the other hand, the environmental

degradation, caused by the use of energy and subsequent CO2 emissions, is un-

likely to be solved automatically by economic growth (Özokcu and Özdemir,

2017). The reconciliation between economic growth, energy consumption and

environmental impact relies on appropriate technological development.
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Growth theory considers technological progress as the key to sustain eco-

nomic growth with limited resources (e.g. Grimaud and Rougé, 2003). By

applying new technologies that utilize inputs more e¢ ciently in production,

the restrictions on the use of energy input can be overcome. According to the

classical microeconomic theory of induced innovation (Hicks, 1932), along with

empirical evidence on price-motivated innovation (Popp, 2002), in response to

increased energy prices, as well as energy policies, one might expect the adoption

of new technologies by �rms so that energy e¢ ciency is improved.

Nevertheless, because of knowledge spill-over which is not fully internalized,

�rms may under-invest in R&D (Grubb and Ulph, 2002); moreover, policies may

not be optimal in promoting energy-e¢ cient technology development (Yang,

2006). It is also believed that the economic opportunity to improve energy

e¢ ciency is not fully seized by �rms (Harris et al., 2000); and that not only

R&D, but also deployment matters in the adoption of new technologies (Sagar

and van der Zwaan, 2006). Many �rms are constrained by �nancial barriers or

lack of skills and information, so that the potential to improve energy e¢ ciency is

largely untapped (Kalantzis and Revoltella, 2019). In addition, the existence of

alternative investment opportunities and the incomplete depreciation of capital

stock can be causes for underinvestment in energy-saving technologies (De Groot

et al., 2001). It is then di¢ cult to predict whether and to what extent �rm

level technological change with respect to energy has taken place without exact

empirical evidence.

Technological change over time in an economy consists of the change in

total factor productivity and the bias of the technological change towards input

factors (Diamond, 1965). In growth models of directed technological change,

the direction of change depends on market size e¤ect, price e¤ect and various

economic parameters (Acemoglu, 2002, 2010). Considering the aforementioned

factors, how does technological change involving energy take place? What role

does energy play in production, compared with other main input factors, namely

capital and labor?

The utilization of energy should transition from non-renewable to renew-

able sources in the next few decades, due to concerns about the climate change

e¤ects of the former. Worldwide, consumption of both non-renewables and

renewables has been growing rapidly, with the share of renewables in electric-

ity production rising from 19.75% in 1990 to 26.62% in 2019; meanwhile, the

share in Portugal witnessed greater change between 19.83% in 1992 and 61.37%

in 2014 (Enerdata, 2020). Inducing technological change regarding renewable
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energy is an indispensable part in promoting this source, thereby mitigating

climate change and pursuing more sustainable economic growth. Investigation

on directed technological change between non-renewable and renewable energy

is helpful in evaluating whether policies have been e¤ective in reaching such

target. Portugal, with its great e¤ort and achievement in promoting renewable

energy, can provide valuable lessons.

Empirical methods for assessing the direction of technological change evolved

from measures such as cost shares and energy to GNP ratio (Hogan and Jorgen-

son, 1991) to estimation of CES production functions ((Kemfert and Welsch,

2000; Klump et al., 2007, among others), but Stochastic Frontier Analysis has

gained the preference of researchers in recent years (e.g. Shao et al., 2016;

Wesseh and Lin, 2016). Literature on Stochastic Frontier Analysis applied to

the topic of technological change mostly focuses on sector level (Shao et al.,

2016; Yang et al., 2018, among others). Our study applies SFA to country-level

and �rm-level data for a complete assessment on the direction of technological

change at di¤erent levels.

The study of my dissertation is meaningful in several aspects. First, it pro-

vides empirical support to growth theory with directed technological change. It

helps identify which e¤ect prevails in determining the direction of technological

change: the market size e¤ect, the price e¤ect, or any other e¤ect? Second,

it serves as a reference on the e¤ectiveness of current energy policies related

to technological development, and therefore advises those policies. Third, as

abovementioned, the study also reveals some features for economic development,

which can also be helpful in policy making.

The rest of this dissertation consists of three sections. In the second section,

we select annual macro panel data from 1991 to 2014 for 16 developing and de-

veloped countries considering their GDP and geological diversity. We estimate

a trans-log production function with half-normally distributed ine¢ ciency term

and calculate output elasticities and factor bias indices, among other indicators.

Findings show that despite various patterns between di¤erent groups of coun-

tries, technological change is generally biased towards energy. In particular,

there is strong evidence obtained by bootstrap that technological change favors

energy more than labor. This is in line with the theoretical expectation that

technological change ought to be biased towards the non-renewable input rather

than the renewable ones. The content of this section results in a research paper

that has been published on Environment and Development Economics.

In order to investigate directed technological change at the micro level, the
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third section applies stochastic frontier analysis to �rm data for 32 economic

subsectors, with respect to output produced with four inputs: capital, labor,

electricity and fuel. Subsectors demonstrate di¤erent levels of technical ine¢ -

ciency, which could be induced by capital deepening and higher share of �nancial

income in total revenue. Output elasticity of labor is generally high among the

subsectors, emphasizing labor as the main driver for economic growth. Out-

put elasticity of capital is low overall, although a few subsectors enjoy better

marginal returns. In most subsectors, technological change is biased the most

towards labor; between electricity and fuel, technological change has favored

fuel in more cases. We infer that the market size e¤ect is likely to overwhelm

others in deciding the direction of technological change. Thus, policy should

include tools in addition to the energy price in inducing technological change.

Carbon pricing could be an option for this purpose. The research paper cor-

responding to this section is submitted to Energy Economics and is currently

under revision for resubmission.

In the estimation of empirical models in the third section, some economic

subsectors didn�t �t the model very well, the electricity sector being a case in

point. This gave rise to the study of the fourth section, which analyzes the im-

pact of operational factors on the technical e¢ ciency of �rms in the Portuguese

electricity sector. Recently, technical e¢ ciency and its determinants in the elec-

tricity sector have aroused the interest of researchers. A number of studies apply

Stochastic Frontier Analysis to the subsector of transmission and distribution

(T&D) of electricity, while less attention is paid to electricity generation. In

the fourth section, we estimate Stochastic Frontier models for production, dis-

tance and cost functions using �rm data in the Portuguese electricity sector.

It includes the subsectors of electricity generation from thermal, hydraulic and

other renewable sources, as well as T&D, in order to evaluate the impact of

operational factors on technical e¢ ciency. Among the factors considered in the

study, we �nd that productive technical e¢ ciency is positively a¤ected by higher

capital input relative to labor input, as well as higher average hourly wage and

lower average working hours. Evidence also suggests that the liberalization in

the Portuguese electricity market starting from the 2000s was successful in the

sense that there is a trend of improvement in productive technical e¢ ciency

through time. The study in this section is a complement to that in the third

section, and could be a reference for improving technical e¢ ciency of �rms in the

electricity sector. The research paper corresponding to this section is submitted

to the Energy Journal.
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The three sections together form a complete picture of the role of energy

in modern economy in relation to technological change. Empirical analyses are

done with respect to macro and micro level in order to evaluate the direction

of technological change involving energy in production; evolution of technical

e¢ ciency and its administrative determinants are evaluated for the Portuguese

electricity sector. We then conclude with the �fth section.
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2 Country-Level Study on the Direction of Tech-

nological Change

2.1 Introduction

Energy is, to the modern economy, what blood is to the body. In the past few

decades, in spite of major investments in renewable energy sources, fossil fuels

still constitute approximately 80% of the world�s energy production1 . One may

naturally be concerned about how economic development can be guaranteed

while energy, as a key input, seems unlikely to be free from the peril of depletion,

given the current technology on its extraction and generation. Theoretically,

consensus has long been reached by economists that technological progress is

the key to a sustainable economic growth that relies on the use of a limited stock

of resources. Although policy makers are aware of this, the implementation

of policies is never a simple procedure, and it is important to assess whether

technological change is biased towards energy rather than other input factors.

Empirical work on the direction of technological change involving energy input

has been arousing the interest of energy and environmental economists for years,

including Karan�l and Yeddir-Tamsamani (2010), Shao et al. (2016), Zha et al.

(2017), among others. However, macro-level evidence is still rare; in this section,

we illustrate the situation of directed technological change in the world�s main

economies.

Agents make R&D decisions in a market with imperfect competition, incom-

plete information, government regulations, externalities in knowledge spillovers

and other frictions; it is di¢ cult to determine from a theoretical perspective

how, if at all, technological change is biased. Theoretically, technological change

might be expected to show a bias towards the non-renewable input(s) rather

than the renewable one(s), as the former gets depleted over time. Nevertheless,

despite accumulated empirical e¤ort at industry level, country-level evidence

is still insu¢ cient. An empirical study on country-level directed technological

change might improve our understanding of general production patterns in the

comtemporary world. Moreover, since many decisions are made by agents in

technical R&D; this analysis might also provide valuable information for policy

making regarding innovations related with the e¢ ciency of energy utilization.

Whether technological change is biased towards energy has been empirically

examined at industry level. Zha et al. (2017) and Zha et al. (2018) estimate

1Source: IEA World Energy Balances 2019, https://www.iea.org/data-and-statistics
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CES production function for Chinese industrial sectors; Karan�l and Yeddir-

Tamsamani (2010) estimate a translog cost-share system for French economic

sectors. The approaches in these studies enable the analysis of the biasedness

of technological change; nonetheless, we �nd that the production function ap-

proach of Stochastic Frontier Analysis (SFA) to be more appropriate for our

research purpose, as it allows the estimation of indicators that provide a more

comprehensive idea on the situation of technological change, including techni-

cal ine¢ ciency, output elasticities and total factor productivity growth rate. In

this section we apply SFA to country-level data and estimate a translog produc-

tion function with three main inputs: capital, labor and energy. We calculate

the marginal products (output elasticities) for each input, as well as the factor

bias index �rst proposed by Diamond (1965), so as to �nd how technological

change has been biased in recent decades. We also calculate the growth rates of

total factor productivity, which indicate the general situation of technological

development of each country.

The analysis provides us with an idea of the role played by technological

change in macro level production; it also reveals some patterns in economic

growth of developed and developing countries. Based on our sample, we are

going to show that, on average, output elasticities of energy and labor are in-

creasing, while the output elasticity of capital is decreasing, and has negative

values for some countries. Among the three inputs, the output elasticity of labor

is the highest for developed countries, and the output elasticity of energy is the

highest or very close to the highest for developing countries. For the average

of the sample, and also for most countries in the sample, technological change

is biased the most towards energy. Moreover, there are signi�cant di¤erences

in the patterns of output elasticities, total factor productivity growth rate and

factor bias order for di¤erent (groups of) countries, which may provide insights

for policy making.

In addition to the methodologies commonly applied in SFA studies, we obtain

con�dence intervals and levels of statistical signi�cance for the abovementioned

indicators, in order to acquire a more rigorous result. Boostrap results show

strong evidence of consistency among countries, in the sense that technological

change favors energy more than labor. Such �nding supports the hypothesis

that technological change is more likely to be biased to the non-renewable input

rather than the renewable.

The rest of this section is organized as follows. We review the literature

on our topic in Subsection 2.2. In Subsection 2.3 we address the methodology
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and data. Subsection 2.4 presents the empirical results, along with related

interpretation and discussion.

2.2 Literature Review

The reliance of economic activities on natural resources, a signi�cant part of

which is non-renewable, caught the attention of economists as early as Hotelling

(1931), who proposes a basic model of the extraction of non-renewable resources,

suggesting that perfect competition yields an extraction path, chosen by �rms,

identical to the social optimum. In the 1970s, a number of economists focused

their attention on economic growth with non-renewable resources, including An-

derson (1972), Dasgupta and Heal (1974), Solow (1974), Stiglitz (1974), Ingham

and Simmons (1975), Hartwick (1977), Garg and Sweeney (1978), among others.

It has been the world�s concern, as well as many economists�, how to sustain

economic growth with exhaustible resources. These early studies share one fea-

ture: they all believe technological change should play a relevant role in such

progress.

Some economists seek solutions other than technological change. Groth and

Schou (2002, 2007) deem increasing returns to capital as the drive for growth;

however, as we are going to show in our results, general production activities are

more likely to exhibit decreasing returns to scale. Benchekroun and Withagen

(2011) highlight the role of consumption (which hence a¤ects investment); yet it

seems less realistic for policies to target consumption rather than technological

progress. Most economists consider technological change as the key to long-run

economic growth with limited resources: Grimaud and Rougé (2003) propose a

Schumpeterian model of endogenous growth and show that economic growth can

be sustained even with non-renewable resources, as long as an adequate level

of technological change is guaranteed; a number of researchers share similar

conclusions, including Smulders and De Nooij (2003), Di Maria and Valente

(2008), André and Smulders (2014).

Governments concerned with the scarcity of fossil-fuel energy and its envi-

ronmental consequences have proposed policies like environmental taxes, aimed

at limiting the use of fossil fuels. According to the belief of induced innovation

by Hicks (1932), with the price incentives created by such policies, technologi-

cal change ought to take place so that the e¢ ciency of energy use is improved

over time. There is also the prediction that technological change is biased to

non-energy intensive products (Otto et al., 2007). Although there is evidence
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that innovation is motivated by price factors (Newell et al. 1999, Popp 2002,

Linn 2008, Kumar and Managi, 2009), �rms�investment in R&D may not be

socially optimal as knowledge spillovers are not fully internalized (Grubb and

Ulph, 2002). Therefore, both taxation and research subsidies play a role in op-

timal policy making, as suggested by Ja¤e et al. (2005), Grimaud et al. (2011),

Acemoglu et al. (2012).

The growth model of directed technological change proposed by Acemoglu

(2002, 2007) indicates that technological progress is a¤ected by two counteract-

ing e¤ects, the price e¤ect and the market size e¤ect. Speci�cally, when the

menu of technological possibilities only allows for factor-augmenting technolo-

gies, induced technological change increases the relative marginal product of

the factor becoming more abundant. On the other hand, as suggested by Hicks

(1932), Diamond (1965), Kumbhakar et al. (2000), among others, the techno-

logical change of an economy over time consists of two aspects: the change in

total factor productivity and the bias of technological change towards input fac-

tors. Acemoglu (2002, 2007) leaves unanswered whether the result would still

be the same if technological change consists of these two aspects.

Empirical support is needed regarding the direction of technological change

in the real world, as there are several factors undermining the reliability of the

theoretical predictions. First, in most of the models regarding technological

change and non-renewable resources, only two inputs are considered, with la-

bor often being excluded. Second, the world is utilizing both renewable and

non-renewable energy, so predictions considering non-renewable resources may

not be accurate. Third, theoretical models di¤er from each other in their as-

sumptions, and propose di¤erent conditions for the direction of technological

changes. Comparative to our topic, Acemoglu (2010) discusses whether labor

scarcity encourages technological advances, with the answer depending on the

economic environment (functional form). Similar reasoning also stands if we

talk about energy in place of labor.

In the theoretical framework of Acemoglu (2002, 2007), the direction of

technological change depends on the elasticity of substitution between inputs.

However, it is di¢ cult to draw an empirical answer by estimating the elasticity

of substitution, especially when three input factors are involved. The actual

threshold that decides the direction of technological change is unclear; and in-

cluding three inputs in the estimation requires a nesting structure in the form

(K;L)E, (K;E)L or (E;L)K (if we consider capital, labor and energy as in-

puts), as in the cases of Kemfert and Welsch (2000), Su et al. (2012) and Dissou
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et al. (2014). This complicates the analysis greatly, not to mention further re-

search that may include four or more inputs. This form also makes it di¢ cult

to compare the technological change augmented to each input factor.

Di¤erent empirical methods and measures have been applied to analyze the

direction of technological change. Simple measures for technological progress

regarding energy include the ratio of energy input to GDP/GNP and cost shares

of inputs (Hogan and Jorgenson, 1991; Sanstad et al., 2006); the former does

not allow us to compare the technological change augmented to di¤erent inputs,

and the latter does not perfectly re�ect the productivity change since a change

in cost shares can result from multiple reasons.

Considering only two input factors, Klump et al. (2007) estimate a supply-

side system of the U.S. economy from 1953 to 1998, and �nd that labor-augmenting

technical progress is exponential, while the growth of capital-augmenting progress

is hyperbolic or logarithmic. Dong et al. (2013) use inter-provincial panel data

of China to �nd that technological change is biased towards capital rather than

labor. By studying the substitutability between energy and capital in manu-

facturing sectors in 10 OECD countries, Kim and Heo (2013) conclude that the

the adoption of energy-saving technologies has not been induced by increased

energy prices. Yet the results of these studies are not fully convincing as they

leave a major input factor unconsidered. A comprehensive empirical analysis

on technological change regarding energy should at least take capital and labor

into account as well.

Stochastic Frontier Analysis was �rst introduced by Aigner et al. (1977) and

Meeusen and Van den Broeck (1977). Along the years this method was devel-

oped by a great number of subsequent studies, including Kumbhakar (1990),

Kumbhakar et al. (2000), Wang (2002), Wang and Schmidt (2002), Greene

(2005), Kumbhakar and Wang (2005), Chen et al. (2014), Parmeter and Kumb-

hakar (2014), among others. It assumes that the error term is composed by

a noise term and an ine¢ ciency term, and it was, at �rst, used to discuss the

ine¢ ciency in production and its determinants. Although more often applied

in micro-level studies, SFA is also used for investigating macro-level production

process, e.g. Heshmati et al. (2011) who use province level data of China;

Kumbhakar and Wang (2005) assuming capital and labor as inputs.

In recent years, SFA has been applied in energy economics to address the

issue of directed technological change. Two approaches are more frequently

applied: the distance function approach and the production function approach.

The distance function approach allows us to analyze the technical e¢ ciency in
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a production procedure that involves multiple outputs; recent applications in

energy economics include Boyd and Lee (2019), Liu et al. (2019), among others.

The production function approach, on the other hand, facilitates the calculation

of a set of indicators for technological change. Wesseh and Lin (2016) analyze the

e¤ectiveness in using renewable and non-renewable energy in African countries.

Shao et al. (2016) study whether technological change has taken place in a way

that alleviates the dependence of industrial production on CO2 emissions in

Shanghai. Yang et al. (2018) investigate whether technological change is biased

towards fossil energy or non-fossil energy in China�s industrial sector. Still, the

literature lacks an idea on the whole picture of the world�s directed technological

change regarding energy; analysis from a broader perspective is needed to assess

how macro-level technological change has been unfurling in the global context.

One of our study�s contributions is its empirical analysis of country-level

production in a worldwide perspective, with capital, labor and energy as inputs.

Besides this general contribution on the way changes have been taking place in

macro level production of the world (or at least of the sample countries), the

methodology also allows the comparison of di¤erent patterns of development

between countries. Findings can be considered as evidence that provides support

to theoretical studies, as well as a reference for policy making.

2.3 Methodology and Data

2.3.1 Stochastic frontier production function and estimation method

A method is proposed in studies of the stochastic frontier analysis, e.g. Kumb-

hakar et al. (2000), for decomposing productivity change into e¢ ciency change,

technical change and scale e¤ects. The authors also provide examples of TFP

(total factor productivity) change decomposition at the industry level. Shao et

al. (2016) use panel data of 32 industrial sub-sectors in Shanghai over 1994�

2011 to investigate and compare the degrees of technological change biased to

four production factors, i.e., capital, labor, energy, and carbon emissions. The

results show that in most sub-sectors, technological change was biased towards

energy during the sample period. Nevertheless, the study adopts the production

function approach with carbon emission as an input, which is a compromise to

facilitate the analysis to the biasedness of technological change. Carbon emis-

sions are, as a matter of fact, an output resulting from production and the

distance function is the most proper functional form to describe such a process,

as in Duman and Kasman (2018). In the macro context, since there isn�t a global
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carbon emissions market where carbon emissions would incur comparable costs,

we opt not to take it as an input.

Thus we estimate a stochastic frontier model with three inputs: capital, labor

and energy, and try to assess the direction of technological progress.

Referring to Kumbhakar et al. (2000), Heshmati and Kumbhakar (2011),

Shao et al. (2016), suppose the production function is

yit = f(xit; t) exp(�uit); (1)

where i represents a country, t represents the number of the time period,

u � 0 denotes output-oriented technical ine¢ ciency. Technical change is de�ned
as

TCit =
@ ln f(xit; t)

@t
: (2)

The overall productivity change is a¤ected by both technical change and

change in technical e¢ ciency (TEC). Assuming input quantities �xed, we have

@ ln yit
@t

= TCit + TECit; (3)

where TECit = �@uit
@t . When input quantities change, productivity change

is measured by TFP (total factor productivity) change which is de�ned as

�
TFP = _y �

X
j

Saj _xj ; (4)

where Saj = wjxj=
P

k wkxk, wj being the price of input xj . The dot denotes

time growth rate. Di¤erentiating (1) and using (4), we get

�
TFP = TC � @u

@t
+
X
j

(
fjxj
f

� Saj ) _xj

= (RTS � 1)
X
j

�j _xj + TC + TEC +
X
j

(�j � Saj ) _xj ; (5)

where RTS =
P

j
@ ln y
@ ln xj

=
P

j
@ ln f(�)
@ ln xj

=
P

j fj(�)xj=f(�) �
P

j �j is the

measure of returns to scale; �j are input elasticities de�ned at the production

frontier, f(x; t); �j = (fjxj=
P

k fkxk) = �j=RTS; fj is the marginal product

of input xj . Therefore, TFP change is decomposed into scale components,

technical change, technical e¢ ciency change and price e¤ects.
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In previous empirical studies (Shao et al., 2016; Wesseh and Lin, 2016; Yang

et al., 2018), a translog production function of a second-order Taylor approx-

imation is generally adopted. It allows variable substitution elasticities and is

very suitable for calculating the biased technological change. As proposed by

Greene (2005), and also done by Yang et al. (2018), we let the model account

for �xed e¤ects, which is represented by country dummies. Considering capital,

labor and energy as inputs, we build the following translog production function:

lnYit = �0 + �iDi + �tt+ �K lnKit + �L lnLit + �E lnEit

+ �tKt lnKit + �tLt lnLit + �tEt lnEit

+ �KL(lnKit lnLit) + �KE(lnKit lnEit) + �LE(lnLit lnEit)

+ �KK(lnKit)
2 + �LL(lnLit)

2 + �EE(lnEit)
2

+ Vit � Uit; (6)

Uit � N+(0; �2U ):

where Y represents the total output, K, L, E denote capital input, labor

input and energy input, respectively; parameters �x are to be estimated; V is

the noise term while U is the technical ine¢ ciency term, hence the compounded

residual variance �2 = �2U + �
2
V
2 ; Di represents country dummies and �i are

the corresponding coe¢ cients. A parameter  = �2U=(�
2
U + �

2
V )(0 �  � 1)

represents the share in the compounded residual variance derived from techni-

cal ine¢ ciency. As the assumption is made such that the error terms are not

normally distributed and the conditional mean of the errors is di¤erent from

zero, the basic assumption of the ordinary least square method is violated. Fol-

lowing Battese and Coelli (1995), Kumbhakar et al. (2015), we estimate the

function above with maximum likelihood method, where the likelihood function

is expressed in terms of the variance parameters �2U and �
2
V .

Referring to Kumbhakar et al. (2000)3 , the growth rate of the TFP can be

2�2U and �2V are estimated as the following:

�2U = exp(wU );

�2V = exp(wV );

where wU and wV are unrestricted constant parameters.
3 Interested readers may refer to Kumbhakar et al. (2000) for a more complete derivation
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decomposed as

�
TFP it = TPit + TECit + SECit: (7)

The �rst term, TPit, denotes technological progress, which is de�ned as

TPit =
@ lnYit
@t

= �t + �tK lnKit + �tL lnLit + �tE lnEit; (8)

where �t is the neutral technological change rate of the world, or our sample

countries; �tK lnK+�tL lnL+�tE lnEit is the non-neutral technological change,

which is heterogeneous across di¤erent countries.

The second term, TECit, denotes technical e¢ ciency change over time:

TECit =
TEit
TEi;t�1

� 1; (9)

where TEit = exp(�Uit).
The third term, SECit, denotes the scale e¢ ciency change, which re�ects

the improvement of productivity bene�ting from scale economy:

SECit = (RTSit � 1)
X
j

�jit
RTSit

_Xjit; (10)

where j = K;L;E denotes the input factor; _Xjit is the growth rate of each

input; �jit is the output elasticity with respect to each input. The scale e¤ect

index is RTSit = �Kit + �Lit + �Eit, where the output elasticities of capital,

labor and energy are calculated as the following:

�Kit =
@ lnYit
@ lnKit

= �K + �tKt+ �KL lnLit + �KE lnEit + 2�KK lnKit; (11)

�Lit =
@ lnYit
@ lnLit

= �L + �tLt+ �KL lnKit + �LE lnEit + 2�LL lnLit; (12)

�Eit =
@ lnYit
@ lnEit

= �E + �tEt+ �KE lnKit + �LE lnLit + 2�EE lnEit: (13)

An indicator for the biasedness of technological change, according to Shao et

al. (2016) and Yang et al. (2018), originating from Diamond (1965), the biased

technological change index Biassj can be used to estimate the relative biased

degree of technological change to each input:

of the following equations.
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Biassj =
@(fs=fj)

@t
=
fs
fj
=
�ts
�s
�
�tj
�j
; (14)

where s and j represent di¤erent inputs; fs or fj is the derivative of the

function f with respect to s or j.

Biassj > 0 means that the marginal output growth rate of s caused by

technological change is greater than that of j, indicating that technological

change is biased to factor s; and vice versa. If Biassj = 0, it means that

technological change in the production is Hicks neutral.

2.3.2 Data

We collect annual data from 1991 to 2014 for 16 developing and developed coun-

tries located in di¤erent geographic areas of the world, namely the US, Japan,

Germany, the UK, Canada, France, Italy, Australia, China, India, Brasil, South

Africa, Mexico, Argentina, Indonesia and Russia. In selecting the countries to

be included in our sample, we consider equal numbers of developed and devel-

oping countries, all chosen for their weight in terms of real GDP in the world;

we also selected countries in di¤erent geographic areas (continents) of the world,

in order to retain a certain degree of diversity.

There are 8 developing countries and 8 developed countries4 in the sam-

ple. The US, Japan, Germany, the UK, Canada, France, Italy and Australia

are among the 9 developed countries with the highest real GDP in the world

(ranking according to the World Bank); Spain is in the 8th place and is substi-

tuted with Australia, in order to avoid excessive weight of European countries

in the sample. Likewise, China, India, Brasil, South Africa, Mexico, Argentina,

Indonesia and Russia are among the 11 developing countries with the highest

real GDP in the world. The real GDP of these countries account for over 90%

of the world�s real GDP5 . Throughout the sample period or for most of it, the

US, Japan, Germany, the UK, France, Italy, China, India and Brazil are energy

importers; Canada, Australia, South Africa, Mexico, Argentina, Indonesia and

Russia are energy exporters6 .

4According to World Economic Situation and Prospects 2018 (Economic Analysis & Policy
Division, the United Nations, 2017), Russia is among the economies in transition, and is not
considered as a developed country.

5Calculated with data from the Federal Reserve and the World Bank (for the world�s real
GDP). For example, the real GDP of the 16 countries in 2014 adds up to 7:13 � 1013 2009
dollars, the real GDP of the world in 2014 being 7:36 � 1013 2010 dollars.

6Source: Global Energy Statistical Yearbook 2018.

19



For estimating the stochastic frontier translog production function, we collect

the following data:

Y - real GDP collected from the database of the Federal Reserve7 , in constant

2011 USD.

K - capital stock collected from the database of the Federal Reserve, in

constant 2011 USD.

L - working population collected from the database of the Federal Reserve.

For some countries, direct data for the working population is not available, and

we obtain such data from the employment to population ratio (15 - 64 years)

and the population between 15 and 64 (collected from the database of the World

Bank8) in these countries.

In accounting labor input, we choose to adopt working population as a proxy,

instead of other proxies that account for human capital. Nevertheless, there are

a number of di¤erent ways for estimating human capital (Stroombergen et al.,

2002), and human capital measurement is context-speci�c (Baron, 2011), so it is

di¢ cult to determine a proper measure of human capital; in estimating human

capital there may arise inaccuracies that will generate trouble for our empirical

analysis. Besides, the output elasticity of labor that we calculate is by itself, to

some degree, a measure of human capital.

E - total primary energy consumption in Mtoe (millions of tons of oil equiv-

alent), from Global Energy Statistical Yearbook 2018.

Country data for the share of renewables in energy production is available;

yet, we are lacking the information on the share of renewables in energy con-

sumption, which stops us from treating renewable and non-renewable energy

separately.

Following the true �xed e¤ects model of Greene (2005), country dummies

are included in the estimation to account for country level �xed e¤ects. We

drop the �rst country dummy in order to avoid multicollinearity, thus we have

15 dummies left.

Hypotheses of unit roots are rejected for most countries9 . The descriptive

statistics of the data are shown in Table 1.
7https://fred.stlouisfed.org/
8https://data.worldbank.org/
9The Levin-Lin-Chu test rejects null hypotheses for lnY , lnK; the test rejects null hypoth-

esis for lnL when the data for Russia is excluded since the test requires a strongly balanced
panel; the test rejects null hypothesis for lnE when the data for China and India is excluded.
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Table 1: Descriptive statistics of input and output data
Variables (unit) Obs Mean Std. Dev. Min Max
Real GDP (millions of constant 2011 USD) 384 3088068 3474901 344670:5 1:72e+ 07
Capital stock (millions of constant 2011 USD) 384 1:05e+ 07 1:10e+ 07 948456:3 6:76e+ 07
Labor force (thousands of persons) 383 102013:6 165095:7 7585:462 673787:1
Total energy consumption (Mtoe) 384 474:906 613:2286 47:49662 3052:325

2.4 Results and Discussion

2.4.1 The production function

The �rst step of our empirical analysis is to estimate the translog production

function (6). Along with the estimation process, several speci�cation tests are

implemented in order to make sure that the production function is well de�ned.

Then, based on the estimated parameters, we derive the output elasticities, total

factor productivity growth rate, factor bias index, among other indexes.

To examine whether the speci�cation of the production function is valid and

e¤ective, the following speci�cation tests are necessary:

(1) Whether the stochastic frontier production model is e¤ective: H0 : �2U =

0. If the null hypothesis is not rejected, it means that no technical ine¢ ciency

exists and that the stochastic frontier analysis is not needed.

(2) Speci�cation test of the production function form of the stochastic fron-

tier model: H0 : �t = �tK = �tL = �tE = �KL = �KE = �LE = �KK = �LL =

�EE = 0. If the null hypothesis is not rejected, it means that the production

function should be Cobb�Douglas instead of the translog one.

(3) Whether there is technological progress in the frontier production func-

tion: H0 : �t = �tK = �tL = �tE = 0. If the null hypothesis is not rejected,

it would imply that the production function does not vary through time, hence

the technological progress in the frontier production function does not exist. If

technological progress does exist, it is also necessary to test whether the tech-

nological progress is neutral or not: H0 : �tK = �tL = �tE = 0.

(4) Whether there exist �xed e¤ects across the 16 countries in the sample:

H0 : �2 = �3 = � � � = �16 = 0. Not rejecting the null hypothesis implies that

there are no �xed e¤ects.

We use the generalized likelihood statistic LR = �2 ln[L(H0)=L(H1)] to test
the hypotheses, with L(H0) and L(H1) being the log likelihood function values

of the null hypothesis and the alternative hypothesis. The threshold values are

according to Kodde and Palm (1986).
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Table 2: Results of speci�cation tests of the production function
Null hypothesis LR statistic �20:05
�2U = 0 36:27(rejection) 2:705
�t = �tK = �tL = �tE = �KL = �KE = �LE = �KK = �LL = �EE = 0 452:80(rejection) 17:67
�t = �tK = �tL = �tE = 0 222:86(rejection) 8:761
�tK = �tL = �tE = 0 94:09(rejection) 7:045
�2 = �3 = � � � = �16 = 0 1447:92(rejection) 24:384

The results of the tests are shown in Table 2.

As we can see from the table, the null hypothesis of test (1) is rejected,

meaning that there does exist technical ine¢ ciency, and the assumption on

residuals is valid. The null hypothesis of test (2) is rejected, so that the Cobb-

Douglas production function is outperformed by the translog functional form

which better describes the production process. The result of test (3) implies

that technological progress exists in the sample countries�production and is not

neutral.

The estimated results of the translog production function are shown in Table

3. Most parameters of the translog production function are statistically signif-

icant. Seeing from the maximum likelihood function value and the result of

the LR test, the explanatory power of the model is quite convincing. We can

calculate  = �2U=(�
2
U + �

2
V ) = 0:9418, which implies that the variation of the

compounded residual is mainly caused by technical ine¢ ciency. The stochastic

frontier model better describes the production process of the sample countries

than a model with classic assumptions on residuals.

Several equations alternative to (6) were considered in the estimation. For

example, when we include one time dummy (the value being 1 for the years

starting from 2008) or two time dummies (the value being 1 for the years start-

ing from 1998 and 2008, respectively) to account for economic crises, there is

very little di¤erence in the estimated coe¢ cients, as well as the results for other

subsequently calculated indicators. When we include a dummy which takes the

value as 1 for energy exporters instead of country dummies, although the av-

erage levels of the output elasticities are slightly di¤erent, their trends remain

similar, while the values of the bias indices are more volatile and cannot pro-

vide information accurate enough for our analysis. Thus we decide to keep the

empirical model in the form of equation (6).
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Table 3: Estimated results of the translog production function
Variable Coe¢ cient Variable Coe¢ cient
Constant 4:500(7:580) t :029(:029)
lnK :439(:847) lnK lnL :185���(:037)
lnL �:621(:783) lnK lnE �:328���(:0564)
lnE 2:181���(:807) lnE lnL :149��(:065)
t lnK �:003��(:0016) (lnK)2 �:015(:033)
t lnL �:002(:0018) (lnL)2 �:125���(:036)
t lnE :011���(:001) (lnE)2 :147���(:056)
(Country dummies ommited.)
�2U = :005

���(:0005837) �2V = :0003
���(:0001)

Related tests
Log likelihood 667:91086 LR test 194640:16
Note: Standard errors for coe¢ cients are in parentheses.
*** Statistical signi�cance at the 1% level.
** Statistical signi�cance at the 5% level.
* Statistical signi�cance at the 10% level.

2.4.2 Output elasticities and total factor productivity growth rate

We use the formulas (7)� (13) to calculate the output elasticities with respect
to each input factor, as well as technological progress (TP ), technical e¢ ciency

change (TEC), scale e¢ ciency change (SEC) and the growth rate of total fac-

tor productivity (TFPGR). Table 4 shows the results for the average of the

16 countries in the sample. We obtain con�dence intervals from 1000 boot-

strap replications, which is shown in Appendices A and B. Levels of statistical

signi�cance are marked in Table 4.

The growth rate of total factor productivity of the sample countries had

been rather steady around the average growth rate until early 2000s. Then

the growth rate increases to a higher level for a few years, and su¤ers from a

sudden fall in 2008 and 2009, possibly as a consequence of the �nancial crisis. A

similar �uctuation also happend in 1998, possibly due to the �nancial crisis that

took place in East Asia and Russia. The values of technical e¢ ciency change

(TEC) and scale e¢ ciency change (SEC) �uctuate around zero, with their

absolute values much smaller than those of technological progress (TP ), which

remains at a quite stable level. This indicates that the growth in total factor

productivity of the sample countries mostly depends on technological progress

instead of improvements in technical e¢ ciency and scale e¢ ciency.

Among the three input factors in our model, the output elasticity for labor is
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Table 4: Output elasticities of input factors and total factor productivity growth
rate: average of the countries
Year K L E TP TEC SEC TFPGR
1991 :172� :389��� :315��� :013���

1992 :146� :397��� :346��� :014��� :0054 �:0001 :018��

1993 :134� :405��� :353��� :014��� �:0002 :0002 :014�

1994 :127� :410��� :358��� :014��� :0026 �:0013 :015�

1995 :116 :415��� :367��� :014��� �:0079 �:0007 :006
1996 :103 :422��� :376��� :014��� �:0006 �:0014 :012��

1997 :097 :427��� :379��� :014��� :0072 �:0018 :020��

1998 :091 :431��� :383��� :014��� �:0117 �:0015 :001
1999 :083 :433��� :393��� :014��� �:0046 �:0007 :009
2000 :075 :436��� :402��� :014��� :0062 �:0012 :019��

2001 :070 :438��� :407��� :014��� �:0007 �:0004 :013
2002 :065 :441��� :413��� :014��� �:0045 :0002 :010
2003 :051 :447��� :425��� :015��� �:0001 :0005 :015
2004 :037 :453��� :438��� :015��� :0002 �:0001 :015��

2005 :029 :457��� :446��� :015��� :0051 :0001 :020��

2006 :021 :461��� :453��� :015��� :0083��� �:00004 :023���

2007 :014 :465��� :457��� :015��� :0094� :0002 :025���

2008 :006 :470��� :462��� :015��� �:0078� �:0003 :007
2009 :005 :475��� :456��� :015��� �:0174��� :0019 �:001
2010 �:011 :485��� :466��� :015��� :0102� �:0001 :025���

2011 �:014 :488��� :465��� :015��� :0096�� :0011 :025���

2012 �:020 :491��� :469��� :015��� �:0025 �:00007 :012
2013 �:026 :495��� :473��� :014��� �:0002 �:0004 :014���

2014 �:029 :497��� :475��� :014��� �:0044 �:0001 :010
Annual Average :056 :447��� :416��� :014��� :00006 �:00026 :014���

*/**/***: Statistical signi�cance at 10%=5%=1% level, obtained from 1000 bootstrap replications.
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the highest, followed by energy, while the output elasticity of capital is the lowest

among the three. This implies that in the contemporary world, the economy has

already passed the phase when its growth is mainly driven by the accumulation

of capital. Instead, labor is playing a central role in boosting production; the

economy is also depending more and more on the use of energy.

The values for the output elasticity of labor and energy are all statistically

signi�cant; the output elasticity of capital, for most time, is not statistically

di¤erent from zero. Nonetheless, the standard errors of the output elasticity of

the three inputs are similar, and for most time periods there is no intersection

between the con�dence intervals of the output elasticity of capital and that of

other inputs. So there is little doubt that the output elasticity of capital is the

lowest among the three inputs factors.

Figure 1 shows the average output elasticity for the sample countries along

the years. Generally, the output elasticity of capital is decreasing, while that

of labor and energy is increasing. In addition, the output elasticity of energy is

increasing at such a high rate that its gap from the output elasticity of labor

is diminishing. Although there is intersection in the con�dence intervals of the

output elasticity of labor and that of energy, if we look at Table 5, we can �nd

that the bias index E-L is statistically signi�cant and positive in most time

periods, implying that technological change is indeed biased towards energy

rather than labor.

Figure 2 shows the returns to scale (RTS) of the 16 countries from 1991

to 2014. The RTS of the countries range between 0:70 to 1:22; from 1991 to

2014, the average returns to scale of the 8 developed coutries is 0:843, while the

average returns to scale of the 8 developing countries is 0:994, with the average

of the 16 countries equal to 0:919. Developing countries have been generally

enjoying higher returns to scale; China, India and Russia have average returns

to scale greater than 1. The average of the sample countries, however, shows

decreasing returns to scale, which is a phase that each country will �nally come

to when they become better developed. Among the 16 countries, China has the

highest average returns to scale along the years. The average returns to scale

of Italy is the lowest, signi�cantly lower than the other countries. While China,

Russia and India are all countries with immense populations and geographic

areas, which may partly be the reason for their high returns to scale, it is still

hard to explain the gap between the returns to scale of Italy and those of other

countries.

Figure 3 illustrates the averages along the years of the total factor produc-
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Figure 1: Average output elasticity for the 16 countries

Figure 2: Returns to scale of the 16 countries, 1991-2014
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Figure 3: Average Total Factor Productivity Growth Rate and Output Elastic-
ities of Various Inputs for the 16 Countries in the Sample

tivity growth rate and the output elasticities of the three input factors for each

country in our sample. Among capital, labor and energy, the output elasticity

of labor is the highest for developed countries, while in developing countries the

output elasticity for energy is the highest, or very close to the highest (in the

case of Brazil, Argentina and Indonesia). This reveals di¤erent patterns of eco-

nomic growth in developed and developing coutries. For developed countries,

labor plays more role as the drive for economic growth. The higher elasticities of

labor in developed countries re�ect higher levels of education; as a consequence,

industries that require highly skilled workers (e.g. the IT sector, service sector

and �nancial sector) are better developed. Developing countries, on the other

hand, rely more on the use of energy to sustain their growth; there is great

potential for them to boost their long-term economic growth by improving ed-

ucation levels.

It is worth noticing that for some observations, e.g. the U.S. and China,

there are negative values for the output elasticity with respect to capital. The

direct factor that leads to such phenomenon is the negative coe¢ cient on the

term lnK, along with the large standard deviation in the data for capital.
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From a theoretical point of view, this is not quite feasible since rational agents

will not invest if the output elasticity is negative. Nevertheless, in our micro

level study (Hou et al., 2020), negative output elasticity is not rare in �rm-level

observations. Meanwhile, we try to explain such phenomenon with the following

possible reasons10 .

1. Limited information: usually, agents do not mathematically calculate

output elasticity; they usually increase all inputs simultaneously and observe an

increase in production, so they keep investing in the same way.

2. Investment externalities: from the perspective of individual agents, they

may be making optimal investment decisions, which are not necessarily also

optimal for the whole economy at the macro level, as they don�t take into

account the externalities of their investment. A micro-level study might provide

more information regarding this topic.

3. Real estate price: increases in capital stock are partly due to rising real

estate prices, which have no e¤ect on production.

4. Preference for domestic investment: some agents prefer to invest their

money in domestic markets, because of risk concerns or di¢ culties in investing

their money abroad (where the output elasticity of capital is higher).

We can also observe signi�cant di¤erences between the growth rates of total

factor productivity of di¤erent countries in the sample. The growth rates of

the US, China and Russia are the highest, while the growth rates of Italy,

Brazil and Mexico are the lowest. This re�ects the progress each country has

made in technological development. For countries like Italy, Brazil and Mexico,

encouraging technological R&D and the adoption of new technologies might be

a solution for ameliorating their economic performance.

2.4.3 Directed technological change

According to Equation (14), we calculate the factor bias index of technological

change for the 16 countries in the sample. Table 5 shows the average factor

bias index of the countries in the sample from 1991 to 2014, marked with levels

of statistical signi�cance obtained from 1000 bootstrap replications. We can

observe that while some changes take place in the �rst half of the sample period,

the values of the bias indices and the bias order is quite stable in the second

half of the sample period. The main change is the bias order for capital: in the

10 In our case, negative values are detected only in the output elasticities of capital. In the
cases where there are negative values in the ouput elasticities of other inputs, the above �rst
and second factor might still serve as possible explanations.
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beginning it takes the �rst place in the bias order of technological change; but

soon it loses the lead and moves to the second place; in the end, capital is the

least favored by technological change among the three input factors. For most

time periods, technological change is biased the most towards energy, which is

what we are trying to �nd out by our research. Technological change is not

biased to labor at �rst; from 2005 onwards, the bias order of labor exceeds that

of capital. Throughout the sample period, the main trend for the bias order is

K < L < E, and such order is likely to maintain in the near future.

In the modern world where technology is highly developed, technological

progress usually takes place in a subtle manner. The absolute values of the bias

indices are usually small, hence sometimes they may not be statistically signif-

icant. Nevertheless, in most time periods, the bias indices E-L are statistically

signi�cant, indicating that technological change is biased more towards energy

than labor. The situation is similar in the bias indices for each country. Even

though we cannot be fully con�dent in the other bias indices judging from the

levels of statistical signi�cance, if we relate the results in the bias indices with

the trends in the change of output elasticities of the inputs, we can infer that the

overall technological change of the sample countries is biased the most towards

energy, followed by labor, and the least towards capital.

Table 6 shows the average factor bias index in the period 1991-2014 for each

country in the sample. The technological change bias order is L < K < E for

the US and China; L < E < K for Japan, Germany, Canada, France and Russia;

K < L < E for the other countries in the sample. From an intuitive perspective,

there are some patterns for countries that share the same bias order. Two major

economies of the comtemporary world, the US and China, share the bias order

L < K < E; countries with the bias order L < E < K are well developed

countries or former major economy of the world; and most developing countries

have the bias order K < L < E.

In the bias orders of the 16 countries, one thing in common can be discovered:

technological change is always biased more towards energy than labor. What

makes the di¤erence is the position of capital, or in other words, how much

capital is favored by technological change. Though it may not be practical to

present bias indices for each single observation in our study, our results indicate

that in most countries, the bias index K-L and bias index K-E are decreasing,

which can also be re�ected in the change of values in Table 5. But the time

when the sign of bias index changes (if it does) di¤ers in each country, which

leads to the di¤erence in overall bias orders. It seems to be a sequential issue.
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Table 5: Annual average factor bias index of the countries
Year Bias K-L Bias K-E Bias E-L Bias order
1991 :055�� :028 :027 L < E < K
1992 :022 :002 :020 L < E < K
1993 :022 �:016 :038 L < K < E
1994 :008 �:020 :028 L < K < E
1995 �:014 �:026 :012 K < L < E
1996 :031 :030 :001 L < E < K
1997 :090��� :123�� �:033 E < L < K
1998 :009 �:168��� :177��� L < K < E
1999 :044� �:066� :110��� L < K < E
2000 :021 �:051 :073��� L < K < E
2001 :013 �:052 :064��� L < K < E
2002 :005 �:052� :057��� L < K < E
2003 :021 �:028 :049�� L < K < E
2004 :004 �:041 :045�� L < K < E
2005 �:001 �:043 :042�� K < L < E
2006 �:003 �:043 :041�� K < L < E
2007 �:003 �:043 :040� K < L < E
2008 �:006 �:044 :039� K < L < E
2009 �:002 �:043 :040� K < L < E
2010 �:010 �:048� :038�� K < L < E
2011 �:007 �:046 :038�� K < L < E
2012 �:009 �:047 :038�� K < L < E
2013 �:011 �:049 :038�� K < L < E
2014 �:011 �:050� :038� K < L < E
*/**/***: Statistical signi�cance at 10%=5%=1% level, obtained from 1000 bootstrap replications.
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Table 6: Country average factor bias index
Country Bias K-L Bias K-E Bias E-L Bias order
The US :011� �:010 :021��� L < K < E
Japan :047�� :013 :034��� L < E < K
Germany :123��� :077� :046��� L < E < K
The UK �:071 �:134 :063��� K < L < E
Canada :070��� :038� :032��� L < E < K
France :125��� :063 :062��� L < E < K
Italy �:056� �:173 :118 K < L < E
Australia �:047� �:104� :057�� K < L < E
China :010 �:011 :021� L < K < E
India �:0003 �:036 :036�� K < L < E
Brazil �:014 �:061 :047 K < L < E
South Africa �:032� �:061�� :030�� K < L < E
Mexico �:013 �:048� :035��� K < L < E
Argentina �:005 �:049 :044 K < L < E
Indonesia �:002 �:046 :044 K < L < E
Russia :031� :013 :018�� L < E < K
Average :011 �:033 :044 L < K < E
*/**/***: Statistical signi�cance at 10%=5%=1% level, obtained from 1000 bootstrap replications.

While, on one hand, there may be further country-speci�c factors giving rise to

such "sequential issue"; on the other hand, we cannot exclude the e¤ect of other

potential determinants on the bias orders. So there remains room for discussion

on the determinant(s) for the direction of technological change.

One may naturally wonder if there is a connection between the direction of

technological change and the energy balance of trade. For all or most time peri-

ods, the US, Japan, Germany, the UK, France, Italy, China, India and Brazil are

energy importers; Canada, Australia, South Africa, Mexico, Argentina, Indone-

sia and Russia are energy exporters. According to our �nding, technological

change is biased the most towards energy in the energy exporting countries ex-

cept for Canada and Russia; meanwhile, there are energy importing countries

where technological change is also biased the most towards energy. It is then

quite di¢ cult to conclude that the energy balance of trade determines the di-

rection of technological change. One possible explanation could be that, on one

hand, due to underdevelopment in industries, most of the developing countries

are not able to consume the total amount of energy produced nationally; on the

other hand, facing comparatively lower levels of education, a more direct way

to improve output could be better utilization of energy input.

Now we see that technological change is biased the most to energy, both for
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the average of the 16 countries and for most countries in the sample individually.

In particular, evidence is strong that technological change is biased more towards

energy rather than labor. Labor, of course, can be considered as a renewable

input; energy input is, at least partly, non-renewable. In such sense, our �ndings

support the hypothesis that technological change is more likely to favor the non-

renewable input rather than the renewable. However, the main determinant

for the biasedness of technological change remains dubious. Is it market size,

or price incentives, or other factors that decide the direction of technological

change? Do agents take into account the fact that some input is non-renewable

when they make R&D decisions? To answer such questions, we need not only

more empirical evidence, but theoretical support as well.
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3 Firm-Level Study on the Direction of Techno-

logical Change

3.1 Introduction and Literature Review

When talking about energy e¢ ciency, people can refer to two di¤erent concepts.

Energy e¢ ciency can be the ratio of actual output to total potential output

allowed by the production technology involving energy inputs (Boyd and Lee,

2019). In the context of directed technological change, energy e¢ ciency often

means the marginal product of energy input, which can be raised if technological

change is biased towards energy. The Stochastic Frontier Analysis allows us to

investigate both terms, while we care more about the latter as the main objective

of our study.

The topic of how to sustain economic growth with limited resource stocks ini-

tiated from Hotelling (1931), and caught the attention of economic researchers

in the 1970s (Anderson, 1972; Dasgupta and Heal, 1974; Solow, 1974; Stiglitz,

1974; Hartwick, 1977, among others). Technological progress is agreed by many

theoretical studies to be the key for long-term growth with non-renewable re-

sources (Grimaud and Rougé, 2003; Smulders and De Nooij, 2003; Di Maria

and Valente, 2008; André and Smulders, 2014, among others).

The modern economy relies greatly on energy inputs, a large part of which

are and will remain non-renewable for long. According to the International En-

ergy Agency (IEA) (2020), with currently stated policy, global energy demand

for renewables will increase by 864 Mtoe while that for non-renewables will also

increase by 453 Mtoe11 by 2030, which is not a remarkable part relative to the

current total energy demand12 . With the purpose of augmenting technological

change on this input, policies often focus on energy price following the belief,

originating from Hicks (1932), that innovation can be induced by prices. Nev-

ertheless, as discussed in the �rst section, there are various factors a¤ecting the

adoption and deployment of technological change. The growth model of Ace-

moglu (2002) suggests that the direction of technological change depends on

price e¤ect and market size e¤ect, which counteract each other. The conditions

for predicting the direction of technological change vary with the economic en-

vironment (Acemoglu, 2010); speci�cally, technological change can be biased

11The global demand for gas will increase by 475 Mtoe, 349 Mtoe for oil and �271 Mtoe
for coal.
12Total energy consumption of the world reached 14378Mtoe in 2019, according to Enerdata

(2020).
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towards the clean (renewable) or the dirty (non-renewable) input. Therefore,

empirical proof is necessary to answer such a question.

Attempts to assess the direction of technological change involving energy

have been made by a number of researchers using di¤erent empirical methods.

Preliminary measures such as ratio of energy input to GDP/GNP and cost

shares of inputs are quite insu¢ cient in considering the complexity of directed

technological change (Hogan and Jorgenson, 1991; Sanstad et al., 2006). Some

studies focus on the substitutability between factors, e.g. Kim and Heo (2013)

conclude, through the estimation of a cost function and deriving elasticity of

substitution, that technological change is biased towards energy rather than cap-

ital. CES production functions, often in nested structures, are more frequently

applied for estimating elasticity of substitution between input factors (Kemfert

and Welsch, 2000; Klump et al., 2007; Su et al., 2012; Dissou et al., 2014), but

dealing with more than three inputs can be arduous. A recent practice is Zha

et al. (2018) who conclude that capital better substitutes energy in China�s

industrial sector and technological change is biased more towards energy. VES

and CEED production functions are also complements for such purpose (Dong

et al., 2013). Elasticities of substitution provides information on whether in-

puts are substitutes or complements, but are not enough to measure directed

technological change.

Stochastic Frontier Analysis has long been applied in energy economics.

Among the main approaches, the distance function approach and the production

function approach are those more commonly adopted. The distance function ap-

proach is preferable when researchers are more interested in technical e¢ ciency,

and it allows more than one type of output, desirable or undesirable, resulting

from the production process. Duman and Kasman (2018) investigate production

e¢ ciency with GDP and CO2 emission as two outputs produced with capital,

labor and energy; Boyd and Lee (2019) analyze the e¢ ciency in the utilization

of electricity and fuel in �ve metal-based manufacturing industries in the US;

Liu et al. (2019) study whether the technical e¢ ciency of grid utilities in China

is a¤ected by environmental heterogeneity. The production function approach

is more commonly applied in research on directed technological change. It not

only enables the estimation of output elasticities of input factors and the biased-

ness of directed technological change, but also allows the derivation of growth

indicators, e.g. the growth rate of total factor productivity, returns to scale,

among others. Wesseh and Lin (2016) analyze the e¤ectiveness in the use of

renewable and non-renewable energy in African countries. Using data for 32
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industrial subsectors in Shanghai, Shao et al. (2016) study whether technologi-

cal change has taken place in a way that alleviates the dependence of industrial

production on CO2 emissions. Their result shows that energy is favored the

most by technological change in general. With data for 36 industrial subsectors

of China, Yang et al. (2018) suggest that technological change is biased towards

fossil energy rather than non-fossil energy. Cheng et al. (2019), using province

data of China, show that technological change is biased the most towards cap-

ital, and more to fossil energy than non-fossil energy. These �ndings do not

necessarily contradict each other, but they highlight the relevance of investigat-

ing the direction of technological change at �rm level, since the result can vary

at di¤erent levels.

This type of research relies on the availability of data. For example, the

data in Boyd and Lee (2019) is quinquennial from the Census of Manufacturing

and Economic Census of the US. When we look at recent studies based on the

production function approach, they provide valuable insight on directed tech-

nological change regarding energy at industry level. Notwithstanding, it is a bit

disturbing to assume a common production function for every industrial sub-

sector in the sample. In Shao et al. (2016) and Yang et al. (2018), an identical

translog production function is estimated for all the industrial subsectors in their

samples. It is justi�able to assume one production function for various countries

at macro level, considering that the leading technology of the world is given and

there is a catch-up e¤ect; but it might not be true that di¤erent industries share

a common production process. Of course, if only industry-level data is at hand,

this is a necessary approach; but �ndings made with industry-level data are not

quite su¢ cient in supporting theories on �rm-level technological improvement.

Besides, it is debatable whether industrial-level data truly represent the "micro

level". A SFA with �rm-level data can overcome this imperfection.

Thanks to the BPLim database13 , produced by the Microdata Research

Laboratory of the Bank of Portugal, which includes data on capital, labor and

energy inputs of �rms in Portugal, we are able to analyze directed technological

change from the perspective of �rms, critical agents of production for mod-

ern economies. We estimate speci�c production functions for di¤erent indus-

trial subsectors, thus providing rare empirical evidence for theories on �rm-level

technological progress.

In our study on macro-level directed technological change (Hou et al., 2020),

13Website: https://bplim.bportugal.pt/
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the SFA is applied to the data of 16 developing and developed countries. We �nd

that for most countries and for the average of the sample, technological change

is biased most towards energy; the results demonstrate di¤erent patterns in

economic growth for di¤erent groups of countries. The present analysis shall

be helpful to support and explain some of our previous �ndings, for example,

regarding the low output elasticity of capital.

Our study with �rm data has two main advantages. First, the mechanism

of technological change is di¤erent between sector and �rm levels. Rigorously

speaking, sector-level data is closer to macro data than micro; �rm data does

a better job in providing micro-level insight. Second, with sector-level panel

data, an identical production function is estimated for all sectors, while we are

able to estimate one corresponding production function for each subsector with

�rm data. This leads to more convincing results since di¤erences in production

process can be large between sectors. We select data for electricity and fuel

inputs from the database: these are two energy forms playing di¤erent roles in

production, and can be associated with renewable and non-renewable energy,

respectively. We estimate a translog production function with capital, labor,

electricity and fuel as input factors. We derive indicators for the two components

of technological change: the growth rates of total factor productivity, and the

factor-biased technological change.

The results of our study demonstrate the necessity of mitigating technical

ine¢ ciency, as it is signi�cant in some economic subsectors. For this purpose,

policies could encourage employment and regulate �nancial activities, since cap-

ital deepening and �nancial income exert positive marginal e¤ect on technical

ine¢ ciency. Output elasticity of labor is generally high among the subsectors,

emphasizing labor as the main driver for economic growth. Output elasticity of

capital is low overall, although a few subsectors enjoy better marginal returns.

In most subsectors, technological change is biased the most towards labor; be-

tween electricity and fuel, technological change has favored fuel in more cases.

Such �nding, along with our previous study (Hou et al., 2020), could be evi-

dence implying that technological change is biased towards the non-renewable

input rather than the renewable. Moreover, by referring to energy consumption

and energy price, we infer that market size e¤ect is more likely to overwhelm

price e¤ect, so energy price alone may not be an optimal policy tool for induc-

ing technological change. Nonetheless, reducing the relative price of renewable

energy may be a solution, which justi�es carbon pricing.

Generally, the �ndings provide empirical evidence for growth theory with
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directed technological change, and also advise policy making related to energy

e¢ ciency and economic growth. From a practical perspective, our research

provides information on the development of the selected Portuguese economic

subsectors, and may instruct industry-level policy decisions in Portugal.

In the rest of this section, Subsection 3.2 describes the methodology and

data to be applied in our research and Subsection 3.3 presents the empirical

results and the corresponding discussion.

3.2 Methodology and Data

3.2.1 Estimation of the stochastic frontier production function and
decomposition of productivity change

Generally, SFA studies consider several functional forms depending on their

purposes. The distance function deals with multiple outputs and is usually

applied to assess the determinants of technical ine¢ ciency (Boyd and Lee, 2019;

Liu et al., 2019). The cost function focuses on �rms�ability to optimize their

costs. Nevertheless, cost e¢ ciency is not equivalent to production e¢ ciency and

the cost function doesn�t provide direct information on directed technological

change. The production function facilitates the analysis of directed technological

change by allowing the calculation of output elasticities, factor bias indices,

among other indicators.

The decomposition of productivity change into e¢ ciency change, technical

change and scale e¤ects is commonly considered in the application of stochastic

frontier analysis, e.g. Kumbhakar et al. (2000); Heshmati and Kumbhakar

(2011).

As in Heshmati and Kumbhakar (2011), Shao et al. (2016), Wesseh and Lin

(2016) and Yang et al. (2018), a translog production function is built in the

form of second-order Taylor approximation. It is a locally �exible functional

form and allows variable substitution elasticities, thereby serving the purpose

of calculating the biased technological change.

The theoretical derivation for the equations used in the calculation of the

indicators for technological change follows Kumbhakar et al. (2000). Suppose

the production function is

yit = f(xit; t) exp(�uit); (15)

where i represents a country, t represents the number of the time period and
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u � 0 denotes output-oriented technical ine¢ ciency. Technical change is de�ned
as

TCit =
@ ln f(xit; t)

@t
: (16)

The overall productivity change is a¤ected by both technical change and

change in technical e¢ ciency (TEC). Assuming �xed input quantities, we have

@ ln yit
@t

= TCit + TECit; (17)

where TECit = �@uit
@t . When input quantities change, productivity change

is measured by TFP (total factor productivity) change, de�ned as

�
TFP = _y �

X
j

Saj _xj ; (18)

where Saj = wjxj=
P

k wkxk, wj being the price of input xj . The dot denotes

time growth rate. Di¤erentiating (1) and using (4), we get

�
TFP = TC � @u

@t
+
X
j

(
fjxj
f

� Saj ) _xj

= (RTS � 1)
X
j

�j _xj + TC + TEC +
X
j

(�j � Saj ) _xj ; (19)

where RTS =
P

j
@ ln y
@ ln xj

=
P

j
@ ln f(�)
@ ln xj

=
P

j fj(�)xj=f(�) �
P

j �j is the

measure of returns to scale; �j are input elasticities de�ned at the production

frontier, f(x; t); �j = (fjxj=
P

k fkxk) = �j=RTS; and fj is the marginal prod-

uct of input xj . Therefore, TFP change is decomposed into scale components,

technical change, technical e¢ ciency change and price e¤ects.

Considering capital, labor, electricity and fuel as inputs, we estimate the

following production function for each chosen economic subsector:
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lnYit = �0 + d
0�+ �1t+

1

2
�2t

2

+�3 lnKit + �4 lnLit + �5 lnEit + �6 lnFit

+�7t lnKit + �8t lnLit + �9t lnEit + �10t lnFit

+
1

2
�11(lnKit lnLit) +

1

2
�12(lnKit lnEit) +

1

2
�13(lnKit lnFit)

+
1

2
�14(lnLit lnEit) +

1

2
�15(lnLit lnFit) +

1

2
�16(lnEit lnFit)

+
1

2
�17(lnKit)

2 +
1

2
�18(lnLit)

2 +
1

2
�19(lnEit)

2 +
1

2
�20(lnFit)

2

+Vit � Uit;

which is in the form of second-order Taylor approximation. Or, in order to

facilitate our empirical estimation, the production function is equivalent to:

lnYit = �0 + d
0�+ �tt+ �ttt

2

+�K lnKit + �L lnLit + �E lnEit + �F lnFit

+�tKt lnKit + �tLt lnLit + �tEt lnEit + �tF t lnFit

+�KL(lnKit lnLit) + �KE(lnKit lnEit) + �KF (lnKit lnFit)

+�LE(lnLit lnEit) + �LF (lnLit lnFit) + �EF (lnEit lnFit)

+�KK(lnKit)
2 + �LL(lnLit)

2 + �EE(lnEit)
2 + �FF (lnFit)

2

+Vit � Uit; (20)

Uit � N+(0; �2Uit); (21)

Vit � N(0; �2V ); (22)

�2Uit = exp(Z
0
it�); (23)

�2V = exp(wV ); (24)

where Y represents total output, K, L, E, F denote capital, labor, electricity

and fuel as inputs, respectively; parameters �x are to be estimated; V is the
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noise term while U is the technical ine¢ ciency term, hence the compounded

residual variance �2 = �2U + �
2
V . d is a vector of dummy variables that account

for the �rm size (micro, small, medium and large) and � is the corresponding

parameter vector; only 3 dummies are needed to avoid multi-collinearity. A

parameter  = �2U=(�
2
U+�

2
V )(0 �  � 1) stands for the share in the compounded

residual variance derived from technical ine¢ ciency.

We assume that the variance of the ine¢ ciency term, �2U , depends on exoge-

nous parameters. Z is a vector of variables including a constant of 1, and � is

the corresponding parameter vector. Since the ine¢ ciency term is assumed to

be half-normally distributed, its variance also a¤ects the expected mean: given

that the distribution is truncated at 0, the expected mean increases as there is

greater variance. Shao et al. (2016) and Yang et al. (2018) assume that the

mean of the ine¢ ciency term depends on exogenous factors; we believe that our

assumption could produce more informative results for a large sample. If the

coe¢ cient on a certain factor is positive, it implies that such factor exerts a

positive marginal e¤ect on technical ine¢ ciency (or a negative marginal e¤ect

on technical e¢ ciency), and vice versa.

The translog production function above is estimated with the maximum like-

lihood method (ML); the one-step estimation method for exogenous e¤ects on

ine¢ ciency was �rst introduced by Kumbhakar et al. (1991) and Reifschneider

and Stevenson (1991).

Once we have estimated the production function (6), we can calculate the

indicators for technological change following Kumbhakar et al. (2000), as well

as the practice of Shao et al. (2016) and Yang et al. (2018). The growth rate

of the TFP can be decomposed as

�
TFP it = TPit + TECit + SECit: (25)

The �rst term, TPit, denotes technological progress, which is de�ned as

TPit =
@ lnYit
@t

= �t+2�ttt+�tK lnKit+�tL lnLit+�tE lnEit+�tF lnFit; (26)

where �t + 2�ttt re�ects the pure technological change of the subsector al-

lowed by the frontier technology; �tK lnKit+ �tL lnLit+ �tE lnEit+ �tF lnFit

is a measure for the non-neutral technological change of heterogeneous �rms,

which can result from a "learning-by-doing" e¤ect that di¤ers from �rm to �rm.
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The second term, TECit, stands for technical e¢ ciency change over time:

TECit =
TEit
TEi;t�1

� 1; (27)

where TEit = exp(�Uit). The third term, SECit, denotes the scale e¢ ciency
change, which re�ects the improvement of productivity bene�ting from scale

economy:

SECit = (RTSit � 1)
X
j

�jit
RTSit

_Xjit; (28)

where j = K;L;E; F denotes the input factor; _Xjit is the growth rate of each

input and �jit is the output elasticity with respect to each input. The scale e¤ect

index is RTSit = �Kit+�Lit+�Eit+�Fit, where the output elasticities of capital,

labor, electricity and fuel are calculated as the following:

�Kit =
@ lnYit
@ lnKit

= �K+�tKt+�KL lnLit+�KE lnEit+�KF lnFit+2�KK lnKit;

(29)

�Lit =
@ lnYit
@ lnLit

= �L+�tLt+�KL lnKit+�LE lnEit+�LF lnFit+2�LL lnLit;

(30)

�Eit =
@ lnYit
@ lnEit

= �E+�tEt+�KE lnKit+�LE lnLit+�EF lnFit+2�EE lnEit;

(31)

�Fit =
@ lnYit
@ lnFit

= �F +�tF t+�KF lnKit+�LF lnLit+�EF lnEit+2�FF lnFit:

(32)

An indicator for the biasedness of technological change, �rst proposed by

Diamond (1965), and used by Shao et al. (2016) and Yang et al. (2018), the

biased technological change index Biassj can be used to estimate the relative

biased degree of technological change to each input:

Biassj =
@(fs=fj)

@t
=
fs
fj
=
�ts
�s
�
�tj
�j
; (33)
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where s and j represent di¤erent inputs and fs or fj is the derivative of the

function f with respect to s or j. This formula is applied to each observation

i; t. Biassj > 0 means that the marginal output growth rate of s caused by

technological change is greater than that of j, indicating that technological

change is biased to factor s; and vice versa. If Biassj = 0, technological change

in production is Hicks neutral.

The methodology described above is independently applied to each selected

economic subsector. As there may exist large di¤erences in the nature of pro-

duction activities of each subsector, we consider it appropriate to estimate a

production function for each subsector, as it provides more robust and credible

information regarding the technological change in each subsector. As will be

shown, the estimation results for subsectors do present considerable di¤erences.

Some studies, e.g. Wang et al. (2018), also compute the elasticity of sub-

stitution between input factors. Elasticity of substitution allows us to evaluate

the possibility of substituting one input factor with another and serves as a

reference for policy making. Nevertheless, the results in Wang et al. (2018),

as well as the results that we obtain, indicate that the elasticity of substitution

derived with such method manifests great volatility and is not a good indicator.

Therefore, we opt not to present the results for elasticity of substitution.

3.2.2 Data

For macro-level empirical studies, the perpetual inventory method is widely ap-

plied in order to proxy national (or sectoral) capital stocks (Berlemann and

Wesselhoft, 2014). A formal application of the perpetual inventory method re-

quires information on investment �ows, asset service life, retirement distribution

depreciation function, etc. (Dey-Chowdhury, 2008). The application of the per-

petual inventory method is simpli�ed in most SFA studies, for instance, Shao et

al. (2016) take an initial capital stock and a depreciation rate to calculate the

capital stock in the following years. This method is particularly useful when

direct measurement of capital stock is di¢ cult (Dey-Chowdhury, 2008). The

data in the BPLim database, including the data on tangible �xed capital, are

mostly based on information reported through Portuguese national accounting

systems, e.g. Informação Empresarial Simpli�cada (IES, Simpli�ed Corporate

Information). We think it could work as more exact annual data on capital

stock.

The BPLIM database provides annual �rm-level data for Portuguese �rms in
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all economic subsectors. We estimate the stochastic frontier translog production

function using annual data from 2010 to 2016, namely the following variables:

Y �Output: measured by non-�nancial revenue;

K �Capital stock: measured by tangible �xed capital;

L - Labor input: measured by total hours worked, which, as we evaluate,

better measures the amount of labor input than the number of employees;

E �Electricity input: measured by expenditure on electricity;

F �Fuel input: measured by expenditure on fuel.

Energy input is commonly measured in energy unit; however, given the

nature of the data, we measure electricity and fuel input by the expenditure

on them. Such measures are acceptable considering the steady and moderate

changes in energy tari¤s in Portugal in recent years14 ; on the other hand, since

�rms are sensitive to cost-bene�t relations in investment decisions, indicators

estimated from such measure, e.g. output elasticities, provide a good represen-

tation on the �rms�incentives.

We consider the following three factors that a¤ect technical ine¢ ciency: cap-

ital deepening (CD), energy consumption structure (ES), and share of �nancial

income (FI). Next we introduce the proxies for these factors and the justi�ca-

tion for selecting them.

1. Capital deepening (CD), measured by the ratio of capital stock and

labor input. According to Shao et al. (2016) and Wang et al. (2018), capital

deepening has a signi�cant e¤ect on technical e¢ ciency. However, the signs

of the coe¢ cients on this term are not the same in the two abovementioned

studies. We shall examine whether, at �rm level, its e¤ect on technical e¢ ciency

is positive or negative.

2. Energy consumption structure (ES). As suggested by Fan et al. (2015),

energy consumption structure has an important in�uence on the environmental

productivity. It is measured by the share of coal consumption in total energy

consumption in Shao et al. (2016); and by the share of fossil energy consumption

in the total industrial energy consumption in Wang et al. (2018). We measure

it by the share of electricity input in total energy input (electricity and fuel).

3. Share of �nancial income in total revenue (FI): as suggested by Barradas

(2017), among others, �nancialization may be detrimental to the real economy.

We expect to �nd evidence that a higher share of �nancial income might posi-

tively a¤ect technical ine¢ ciency in production.

14For detailed information one may refer to: https://www.erse.pt/atividade/regulacao/regulacao/
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We only consider �rms with data on Y for all 7 years of the sample. The

subsectors are divided according to NACE Rev. 2 of EuroStat. Table 7 sum-

marizes the classi�cation of the subsectors and the number of observations used

by the program in the estimation. Some subsectors are not considered in our

study, mainly for one or more of the following reasons:

1. The output of the subsector cannot be measured well by revenue, e.g. P

- education; M02 - scienti�c research and development.

2. There are too few e¤ective observations of the subsector, so that it is

impossible to estimate the model, e.g. C04 - manufacture of coke, and re�ned

petroleum products.

3. The subsectors in which economic activities are di¢ cult to describe as

"production", e.g. K - �nancial and insurance activities; L - real estate activities.

4. Speci�cation tests show that the model does not describe the data of the

subsector very well, e.g. D - electricity, gas, steam and air-conditioning supply;

J02 - telecommunications, etc.

3.3 Results and Discussion

3.3.1 The production function

The �rst step of our empirical analysis is to estimate the translog production

function (6). Along with the estimation process, several speci�cation tests are

implemented in order to make sure that the production function is well de�ned.

Then, based on the estimated parameters, we derive the output elasticities, total

factor productivity growth rate and factor bias index, among other indexes.

To examine whether the speci�cation of the production function is valid and

e¤ective, we apply the following speci�cation tests to each estimation process

for the subsectors:

(1) Whether the stochastic frontier production model is e¤ective: H0 : �2U =

0. If we fail to reject the null hypothesis, it means that technical ine¢ ciency is

not statistically signi�cant for the subsector; hence, it is unnecessary to estimate

the e¤ect of exogenous factors on the distribution of the ine¢ ciency term. In

this case, in order to acquire more accurate results, we then re-estimate the

model for the subsector taking the simpler assumption:

Uit � N+(0; �2U ); (34)

which keeps the basic assumption on residuals in the Stochastic Frontier
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Table 7: Summary of the subsectors in the study
Subsector Activities Obs.
A01 Crop and animal production, hunting and related service activities 22; 610
A02 Forestry and logging 1; 806
A03 Fishing and aquaculture 1; 050
B Mining and quarrying 2; 279
C01 Manufacture of food products, beverages and tobacco products 21; 658
C02 Manufacture of textiles, apparel, leather and related products 25; 354
C03 Manufacture of wood and paper products, and printing 15; 990
C05 Manufacture of chemicals and chemical products 2; 033
C06 Manufacture of pharmaceuticals, medicinal chemical and botanical products 304
C07 Manufacture of rubber and plastics products, 12; 749

and other non-metallic mineral products
C08 Manufacture of basic metals and fabricated metal products, 23; 556

except machinery and equipment
C09 Manufacture of computer, electronic and optical products 489
C10 Manufacture of electrical equipment 1; 638
C11 Manufacture of machinery and equipment not elsewhere classi�ed 4; 009
C12 Manufacture of transport equipment 2; 027
C13 Manufacture of furniture 6; 934
C14 Other manufacturing 3; 815
C15 Repair and installation of machinery and equipment 4; 210
E01 Water collection, treatment and supply 387
E02 Sewerage 88
E03 Waste management and remediation 1; 666
F Construction 51; 852
G01 Wholesale and retail trade and repair of motor vehicles and motorcycles 37; 765
G02 Wholesale trade, except of motor vehicles and motorcycles 77; 290
G03 Retail trade, except of motor vehicles and motorcycles 106; 420
H01 Land transport and transport via pipelines 12; 684
H02 Water transport 300
H04 Warehousing and support activities for transportation 4; 477
I01 Accommodation 11; 075
I02 Food and beverage service activities 55; 177
J01 Publishing, audiovisual and broadcasting activities 4; 199
J03 IT and other information services 6; 475
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Model unviolated.

(2) Speci�cation test of the production function form of the stochastic fron-

tier model: H0 : �t = �tt = �tK = �tL = �tE = �tF = �KL = �KE = �KF =

�LE = �LF = �EF = �KK = �LL = �EE = �FF = 0. If the null hypothesis

is not rejected, it means that the production function should be Cobb�Douglas

instead of the translog one.

(3) Whether there is technological progress in the frontier production func-

tion: H0 : �t = �tt = �tK = �tL = �tE = �tF = 0. If the null hypothesis

is not rejected, the production function does not vary through time, hence the

technological progress in the frontier production function does not exist.

(4) If technological progress does exist, it is also necessary to test whether

the technological progress is neutral or not: H0 : �tK = �tL = �tE = �tF = 0.

If the null hypothesis is not rejected, it implies that the technological progress

of the subsector is neutral.

The generalized likelihood statistic LR = �2 ln[L(H0)=L(H1)] is used for
testing the hypotheses, where L(H0) and L(H1) are the log likelihood function

values of the null hypothesis and the alternative hypothesis, and LR s �2(n), n
being the number of restrictions. The threshold values are according to Kodde

and Palm (1986). Results of the tests are shown in Appendix C.

Among the 32 subsectors analyzed, in 6 of them (C08 - C12, J01), the null

hypotheses �2U = 0 are not rejected. In 8 of the subsectors (A02, C05, C06, C09,

E01, E03, H02, H04), we fail to reject the null hypotheses for test (3) and test

(4). Nonetheless, the data of most subsectors �ts our model quite well. As all

null hypotheses are rejected for test (2), we can still use the results to compute

the indicators with the methodology in the last section. But for the subsectors

which fail to reject the null hypotheses for test (3) and (4), discretion is needed

in interpreting the results regarding technological change.

The estimated results of the translog production functions for each subsector

are presented in Table 8. For each selected subsector, most coe¢ cients are

statistically signi�cant; almost all �rm size dummies are statistically signi�cant;

and all the models are jointly statistically signi�cant. In general, the translog

production function is a proper form to be applied to the stochastic frontier

analysis.

The e¤ects of the determinants for technical ine¢ ciency in each subsector are

also shown in Table 8 (whenever the technical ine¢ ciency term is statistically

signi�cant). A positive coe¢ cient implies that the explanatory variable has

a positive e¤ect on the variance of the ine¢ ciency term, hence it leads to a
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Table 8: Estimated results for Portuguese economic subsectors
(Table 8 at the end of the �le due to its size)

higher mean and uncertainty of technical ine¢ ciency. Among the 26 subsectors

where there exists statistically signi�cant technical ine¢ ciency, taking 0.05 as

a threshold, the marginal e¤ect of capital deepening is statistically signi�cant

for 13 subsectors, and is positive for 12 of them. Energy consumption structure

(or cost share of electricity in total cost on energy) is statistically signi�cant

for 23 subsectors, in 12 of which the marginal e¤ect being positive while in 11

subsectors being negative. In 12 subsectors, the share of �nancial income has a

statistically signi�cant and positive marginal e¤ect on technical ine¢ ciency.

From our estimated result, roughly speaking, �rms in the agricultural sector

and low-tech manufacturing subsectors are more prone to technical e¢ ciency

losses imposed by the three factors considered in this study. Firms in higher-

technology manufacturing subsectors, however, are less likely to be a¤ected by

these factors, especially capital deepening (CD). This re�ects that high-tech

manufacturers are more e¤ective in adopting new technologies; in particular,

they are able to make better use of capital so that its amount doesn�t a¤ect

technical e¢ ciency. Meanwhile, higher share of electricity in energy input helps

eliminate technical ine¢ ciency in high-tech manufacturing subsectors; this is

also the case for sector I (accommodation and food service activities). Sector

E (water supply, sewerage, waste management and remediation) appears to be

exempted from the impact of the three factors; considering the low TFP growth

rate in subsectors E01 and E03 (see subsection 4.2), this might be explained

by the sluggishness of technological development in this sector. The mean of

FI is very low (almost 0%) in sector H (transportation and storage), and not

surprisingly, its impact on technical ine¢ ciency is statistically insigni�cant.

In a considerable number of subsectors, the signs of coe¢ cients for capital

deepening and the share of �nancial income are positive, implying that they

could induce technical ine¢ ciency. When labor input is insu¢ cient compared

with �xed capital, it might create technical ine¢ ciency in production, which

emphasizes the importance of labor input. Evidence also supports the hypoth-

esis that over-�nancialization causes technical ine¢ ciency. It is very likely that

energy consumption structure a¤ects technical ine¢ ciency, but it is di¢ cult to

determine the direction of its e¤ect based on current evidence. Our �nding

may suggest that policies encouraging employment can be desirable, especially
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Figure 4: Mean Estimated Technical E¢ ciency of the Analyzed Subsectors

for agricultural and low-tech manufacturing subsectors, so that technical ine¢ -

ciency can be mitigated; also, the policy maker might want to regulate �nancial

activities so as to guarantee a healthy development of the real economy.

It is also possible to estimate the values of the ine¢ ciency measure from

E(Uitj�it) evaluated at �̂it, and the e¢ ciency index from E(exp(�Uit)j�it) eval-
uated at �̂it, where �it � Vit �Uit. The approximation 1� eu � u is close when
u is small (Kumbhakar et al., 2015); however, there may be obvious discrepancy

between the sum of the two indices and 1 when the mean of ine¢ ciency measure

is larger. Figure 4 demonstrates the mean of estimated e¢ ciency level in each

analyzed subsector.

Taking A01 for an example, the estimated e¢ ciency of 0:6613 indicates that

�rms in this subsector on average produce approximately 66:13% of the po-

tential output given the current technological level, while the rest of potential

output is lost due to technical ine¢ ciency. In C08 - C12 and J01, technical

ine¢ ciency is statistically insigni�cant, hence the e¢ ciency index is close to 1.

In other subsectors, there exist large di¤erences among the levels of e¢ ciency,

which range from 0:5917 to 0:9668. In A01, B, C06, F, H02, I01, e¢ ciency level

is lower than 0:67; in other words, over one third of potential output is lost due
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to technical ine¢ ciency. Although some explanations can be posited for the low

e¢ ciency15 , there is much potential for better economic performance by improv-

ing technical e¢ ciency in these subsectors. In C14 and G01, e¢ ciency is over

0:9, in addition to the subsectors where no ine¢ ciency is detected. Although

our analysis helps to identify some parameters shared by all �rms that a¤ect

technical ine¢ ciency, there may still remain some industry-speci�c factors that

make a di¤erence, and it will be valuable information for policy making should

they be found.

3.3.2 Output elasticities and the total factor productivity growth
rate

Equations (25) � (32) are used in the calculation of output elasticities of each
input factor, along with technological progress (TP ), technical e¢ ciency change

(TEC), scale e¢ ciency change (SEC) and the growth rate of total factor pro-

ductivity (TFPGR). Table 9 summarizes the results for output elasticities of

each analyzed subsector.

Some irregular and volatile values, e.g. in E01 and E02 may be due to too

few observations (387 observations for output elasticities in E01 and 88 for E02)

so that abnormal values for particular �rms may largely a¤ect the average. The

average output elasticities of each input change in di¤erent directions in di¤erent

subsectors; moreover, the change in output elasticities is not always monotonic.

Looking at the initial and terminal values (values in 2010 and 2016), the output

elasticity of capital is increasing in A01-03, C01-02, C06, C12, E01, H02 and

H04; remaining at an approximate level in C15; and decreasing in the other

subsectors. The output elasticity of labor is decreasing in A01, C06, C09, C12,

C14-15 and H02, and increasing in the other subsectors. The output elasticity

of electricity is increasing in A03, B, C03, C05, C12, C14, E01-03, H02 and J01;

remaining at an approximate level in C08, G03 and I01; and decreasing in the

other subsectors. The output elasticity of fuel is increasing in A01-02, B, C05,

C09-10, C13, C15, E02, F, I02 and J01-02; remaining at an approximate level

in G01, G03 and H01; and decreasing in the other subsectors.

The changes in the output elasticities provide an intuitive idea of the direc-

tion of technological change; in the next step we shall calculate the bias index as

a more solid evidence. From what we can observe from the output elasticities,

15For instance, for I01 - Accommodation, part of ine¢ ciency might result from di¤erent
price patterns of various classes of hotels, hostels, local accommodations, etc.
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Table 9: Average output elasticities of input factors of Portuguese economic
subsectors
Subsector �K �L �E �F
A01 :096=:108=:123 :354=:346=:350 :332=:325=:322 :194=:213=:208
A02 :099=:105=:103 :233=:240=:276 :156=:120=:100 :333=:360=:346
A03 :042=:053=:053 :290=:287=:303 :187=:190=:215 :389=:354=:302
B :210=:173=:140 :371=:390=:424 :123=:173=:212 :188=:219=:242
C01 :204=:212=:224 :233=:236=:252 :340=:329=:314 :193=:195=:184
C02 :165=:170=:174 :406=:412=:425 :159=:150=:149 :360=:354=:349
C03 :127=:108=:088 :489=:529=:587 :073=:078=:087 :321=:320=:307
C05 :197=:180=:165 :421=:417=:441 :301=:325=:345 :053=:067=:069
C06 �:066=:003=:163 :345=:242=:265 �:045=� :022=� :154 :649=:647=:591
C07 :120=:113=:107 :513=:542=:585 :224=:223=:216 :197=:187=:175
C08 :145=:129=:115 :501=:542=:596 :084=:082=:083 :262=:260=:246
C09 :023=:004=� :009 :798=:790=:790 :025=:021=:012 :221=:275=:327
C10 :092=:092=:085 :737=:745=:771 :101=:067=:034 :177=:220=:257
C11 :101=:098=:097 :644=:674=:727 :140=:116=:087 :244=:243=:231
C12 :048=:060=:074 :755=:714=:686 :098=:114=:128 :147=:140=:128
C13 :121=:103=:086 :561=:602=:659 :099=:089=:079 :271=:285=:289
C14 :094=:081=:068 :669=:648=:643 :077=:111=:145 :259=:261=:250
C15 :071=:072=:072 :567=:553=:558 �:028=� :049=� :065 :530=:556=:562
E01 �:04=� :04=� :04 1:04=1:07=1:18 :060=:105=:099 �:002=� :122=� :250
E02 :187=:125=:043 �1:22=� :85=� :60 :003=� :027=:052 :604=:635=:608
E03 :244=:184=:124 :150=:176=:231 :138=:152=:165 :334=:339=:322
F :066=:060=:055 :401=:432=:476 :331=:302=:275 :096=:113=:120
G01 :083=:080=:079 :422=:464=:513 :028=:005=� :012 :415=:421=:414
G02 :082=:076=:071 :435=:444=:464 :163=:160=:157 :196=:212=:215
G03 :068=:059=:049 :672=:690=:720 :248=:249=:248 :162=:165=:161
H01 :124=:102=:087 :404=:421=:469 :165=:147=:145 :312=:340=:313
H02 :013=:031=:043 :346=:228=:094 :359=:390=:452 �:016=� :088=� :180
H04 :041=:053=:066 :389=:393=:404 :286=:277=:261 :006=� :019=� :034
I01 :071=:063=:054 :446=:458=:476 :366=:365=:366 :115=:110=:099
I02 :053=:052=:051 :529=:568=:618 :291=:276=:263 :098=:106=:106
J01 :073=:062=:054 :521=:547=:588 :025=:035=:043 :365=:376=:371
J03 :084=:059=:037 :577=:637=:693 :203=:179=:160 :174=:178=:176
Note: �= � =� represents value in 2010/mean value/value in 2016.
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we can say that the output elasticity of labor is increasing in most subsectors,

while the output elasticities of the other inputs are decreasing in more subsec-

tors. This suggests that technological change may have favored labor rather than

the other input factors, so that labor is playing a role more and more important

in contemporary production activities. It furthermore implies that industrial

transformation is still ongoing from capital-intensive towards labor-intensive.

From the perspective of mean levels of output elasticities, it is also true that

labor is generally more productive compared with other input factors. In 24 of

the 32 subsectors, the mean output elasticity of labor is the highest among the

four inputs, indicating labor as the main driver of economic growth. We may

infer that the government�s e¤ort in promoting education, both academic and

professional, could be helpful in improving long-term economic performance.

Comparatively, the mean output elasticity of capital is the lowest among the

four inputs in 15 of the 32 subsectors (of electricity, in 11, and of fuel, in 5).

The overall level of output elasticity of capital is quite low, even for the sub-

sectors where (from an intuitive point of view) the operation relies heavily on

capital, e.g. I01 - Accommodation. Only in a few subsectors is the mean output

elasticity of capital higher than 0:1. Such �nding is pretty much di¤erent from

the province-level result of China (Cheng et al., 2019), where capital enjoys the

highest output elasticity among the main inputs. This implies di¤erent patterns

or di¤erent phases of economic growth of developed and developing countries.

On one hand, low output elasticity of capital may help explain the phenom-

enon of liquidity trap in European countries: when the returns to investment

are su¢ ciently low, monetary policies are no longer e¤ective in stimulating the

economy. On the other hand, this should be the result of capital �ows among

subsectors: in a capital market without transaction costs or entry barriers, in-

vestors shall adjust their investment until the returns for investment are equal in

all subsectors. Should investors properly perceive the returns to capital in di¤er-

ent subsectors, investing in subsectors like B, C01, C02 and C05 might be more

pro�table; however, such information is not easily accessed by investors, which

prevents them from making perfect decisions. It may be of the government�s

interest to conduct investment to those subsectors so as to promote economic

performance.

In addition, negative values frequently appear in �rm-level observations. For

output elasticities of other inputs, negative values are also commonly present.

In theory, rational agents should stop investing in a type of input if the out-

put elasticity of such input is negative. Nonetheless, there may exist several
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Figure 5: Composition of Average Returns to Scale in the 32 Subsectors

reasons. Agents may face limitations in deciding the amount of each input, for

instance, some certain input, like capital, is necessary for maintaining the whole

production process and allowing the use of other inputs. Or agents may have

imperfect information or limited rationality, which prevents them from making

ideal decisions. Such �nding may as well help explain the negative values in the

estimated output elasticity of capital in our previous study (Hou et al., 2020).

In terms of policy considerations, di¤erent mean output elasticities of elec-

tricity help justify price discrimination in electricity or fuel tari¤s with respect

to �rms in di¤erent economic subsectors, targeted at policy goals such as mit-

igating carbon emission. For subsectors with lower mean output elasticity of

electricity, for instance, an elevated electricity price may appear to be a bad

idea as it would dampen production activities in such subsectors.

Figure 5 shows the average returns to scale and their composition in each

subsector.

In sectors A, B, E, F, G and H, average returns to scale are often below
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1. Investment in these sectors are justi�ed even if there are diseconomies of

scale, since they provide goods or services that are essential for the functioning

of the economy and society: agriculture, mining and quarrying, infrastructure

services, construction, transportation, etc. In most manufacturing subsectors,

average returns to scale is above 1. It means that there is still potential for

economic growth in these subsectors. One interesting feature can be observed

from the �gure: average returns to scale are often greater than 1 where average

output elasticity of labor is high. Although the intention of our study is to

investigate the role of energy in economic growth with directed technological

change, once more the importance of labor is emphasized.

Table 10 shows the technological progress (TP ), technical e¢ ciency change

(TEC), scale e¢ ciency change (SEC) and the growth rate of total factor pro-

ductivity (TFPGR) of the analyzed subsectors. Note that among these indica-

tors, TP is calculated for all 7 years, while the other indicators are calculated

for 6 years, so the mean values of the �rst three indicators do not add up to the

mean of TFPGR.

A few strange values in TFPGR are due to irregular changes in technical

e¢ ciency in the corresponding subsectors (if we look at equation (13), it is easy

to see that if the technical e¢ ciency of a �rm is extremely small in one period

and increases to a normal level in the next, the value of TEC can become very

large). We can observe that both technological progress (TP ) and technical

e¢ ciency change (TEC) contribute to the growth in total factor productivity,

while there is very little scale e¢ ciency change (SEC) during the time period

of our sample. In addition to what can be inferred from Table 10, in most

subsectors, TFP growth rate is improving along the years, which indicates that

the Portuguese economy is gaining momentum. Suggestion for policy is that,

in order to maintain the tendency in the growth of TFP, eliminating technical

ine¢ ciency is almost as important as promoting technological progress, and is

worth more attention of the policy maker.

Figure 6 illustrates the mean of the total factor productivity growth rate

and output elasticities of the four input factors for the analyzed subsectors. The

TFP growth rates of several subsectors are omitted because of irregular values,

which result from TEC, as mentioned above. Except for a few subsectors which

su¤er from negative TFP growth, TFP is growing at moderate speeds in most

economic subsectors in the sample. In some subsectors, annual TFP growth

rate is over 5%, which indicates these subsectors as the source of momentum

of economic growth. On the other hand, there are a number of subsectors
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Table 10: Mean total factor productivity growth rate and its composition in
Portuguese economic subsectors
Subsector TP TEC SEC TFPGR
A01 :023 :021 �:0005 :054
A02 ::014 :019 �:007 :026
A03 :040 :067 �:019 :106
B �:025 :057 �:00003 :039
C01 :004 :074 �:0002 :083
C02 :014 :007 :003 :025
C03 :011 :006 �:002 :023
C05 �:003 �:007 �:002 �:009
C06 �:010 :053 :001 :055
C07 :005 :972 �:00005 :987
C08 :008 �1:22e� 07 :0008 :018
C09 �:014 1:10e� 07 :002 :005
C10 �:008 �1:10e� 06 :002 :004
C11 :009 �1:07e� 08 :002 :017
C12 :011 �1:67e� 08 �:013 :008
C13 :029 :0003 :001 :042
C14 :0004 :002 :001 :016
C15 :022 :056 :002 :090
E01 �:007 :008 :001 �:0001
E02 �:028 :084 :174 :249
E03 �:016 :004 �:008 �:018
F �:017 :969 �:002 :972
G01 :013 :010 �:003 :039
G02 :005 :009 �:006 :016
G03 :003 �:001 :0005 :011
H01 :014 :398 :002 :419
H02 :018 1:083 1:130 2:231
H04 �:006 �:0005 �:021 �:028
I01 :024 :032 �:001 :069
I02 �:005 :001 �:002 :015
J01 �:004 �1:05e� 06 :0005 :011
J03 �:002 �:001 :002 :007
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Figure 6: Mean Output Elasticities and TFP Growth Rate of Portuguese Eco-
nomic Subsectors

55



where TFP growth rate is only slightly above zero, which may help explain the

sluggishness in the economic growth of Portugal in recent years.

3.3.3 Directed technological change

We calculate the factor bias indices using equation (33) as reference for the

direction of technological change. Table 11 depicts the average factor bias indices

of each analyzed subsector, as well as the corresponding bias order determined

by the factor bias indices.

There exists a great variety among bias orders of technological change across

di¤erent Portuguese economic subsectors. Despite seeming randomness of bias

orders at �rst sight, some general patterns can be observed.

First, technological change is biased the most towards labor in 15 of the

32 subsectors. This once more proves the importance of labor in �rm-level

production (in Portugal). It is interesting to compare this result with those

for other countries. Yang et al. (2018) �nds that in China�s industrial sector,

technological change is biased the most towards fossil energy in general; Cheng

et al. (2019) �nds that technological change is biased the most towards capital in

China�s provinces. This may imply a di¤erence in the direction of technological

change in developing and developed countries. Furthermore, it is a sign that

labor is the main sustainer for economic development in developed countries,

while developing countries rely more on capital and energy. This �nding is in

line with the macro-level result of Hou et al. (2020).

Second, the bias order is the lowest for electricity in 14 subsectors (in 8 for

capital, in 5 for labor and fuel), and the second lowest in 8 subsectors, showing

that technological change is deviating away from electricity. This is similar to

the result for China (Yang et al., 2018).

Third, between electricity and fuel, technological change is biased more to-

wards fuel rather than electricity in 20 of the 32 subsectors. In 10 of the 14

manufacturing subsectors in our analysis, technological change is also biased

more towards fuel than electricity. Fuel is in the �rst two factors of the bias or-

der in 19 subsectors, therefore we can infer that technological change has favored

fuel energy in general.

As has been mentioned, electricity production in Portugal is going through

a transition into renewables. Meanwhile, fuel energy, mostly non-renewable, is

not very likely to become replaced by other energy forms in the near future.

Therefore, in the case of Portugal, it is natural that technological change is
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Table 11: Factor bias indices of technological change in Portuguese economic
subsectors
Subsector Bias K-L Bias K-E Bias K-F Bias L-E Bias L-F Bias E-F Bias order
A01 :045 :037 :026 �:008 �:019 �:011 L < E < F < K
A02 �:035 :079 �:010 :113 :025 �:089 E < K < F < L
A03 :031 :005 �:022 �:027 �:053 �:026 L < E < K < F
B �:102 �:127 �:137 �:025 �:035 �:010 K < L < E < F
C01 �:020 :060 :026 :080 :046 �:034 E < F < K < L
C02 :022 :167 :006 :145 �:017 �:162 E < L < F < K
C03 �:112 :086 �:083 :198 :029 �:169 E < K < F < L
C05 �:054 �:060 :043 �:007 :096 :103 F < K < L < E
C06 �:303 �:767 �:215 �:463 :089 :552 K < F < L < E
C07 :025 :116 :057 :091 :032 �:060 E < F < L < K
C08 �:089 :002 �:062 :090 :026 �:064 E < K < F < L
C09 :076 :052 �:230 �:025 �:307 �:282 L < E < K < F
C10 �:038 :065 :037 :103 :075 �:028 E < F < K < L
C11 �:039 :093 �:014 :131 :025 �:106 E < K < F < L
C12 :169 :009 :150 �:161 �:019 :142 L < F < E < K
C13 �:112 :049 �:096 :161 :015 �:145 E < K < F < L
C14 �:075 �:914 �:098 �:839 �:023 :816 K < L < F < E
C15 :009 �:119 �:022 �:128 �:031 :097 L < K < F < E
E01 �:012 �:145 :035 �:133 :047 :180 F < K < L < E
E02 :118 :171 :302 :053 :184 :131 F < E < L < K
E03 �:247 �:233 �:220 :014 :028 :014 K < F < E < L
F �:070 �:004 �:072 :066 �:002 �:068 K < E < L < F
G01 �:060 1:431 �:042 1:491 :018 �1:472 E < K < F < L
G02 �:025 :001 �:043 :026 �:018 �:044 E < K < L < F
G03 �:052 �:037 �:046 :015 :006 �:009 K < E < F < L
H01 �:061 :005 :150 :067 :211 :144 F < E < K < L
H02 �:563 �:509 �:363 :054 :201 :147 K < F < E < L
H04 �:006 :106 :265 :113 :272 :159 F < E < K < L
I01 �:019 :031 :007 :050 :026 �:024 E < F < K < L
I02 �:038 :029 �:019 :066 :019 �:047 E < K < F < L
J01 �:033 �:062 �:036 �:029 �:003 :026 K < L < F < E
J03 :006 :046 :001 :040 �:006 �:045 E < L < F < K
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biased towards fuel rather than electricity, which is getting closer and closer

to a renewable energy form. Yang et al. (2018), Cheng et al. (2019) also

show that technological change is biased more towards fossil energy than non-

fossil energy in China�s industrial subsectors and provinces. Such �nding can

be explained by the motivation to increase the e¢ ciency of the input with a

limited stock. Previous studies (e.g. Shao et al., 2016; Hou et al., 2020) suggest

that technological change is biased more towards energy, a great part of which is

non-renewable, than two forms of renewable inputs, capital or labor. With the

support of previous studies, we may consider our empirical �nding as evidence

that technological change is more likely to be biased towards the non-renewable

input than the renewable input(s).

Fourth, what may arouse some surprise is that in the three transportation

subsectors, H01, H02 and H04, where activities strongly rely on the use of

fuel and expenses on fuel are generally much higher than those on electricity,

technological change is biased more towards electricity instead of fuel. If we

compare such phenomenon with the �nding that capital is not so often favored

by technological change, we may speculate that, if in an economic subsector, a

certain input factor is essential for the maintenance of the production process16 ,

agents appear to be less likely to develop and adopt technologies that allow to

utilize such input more e¢ ciently. However, for the all 32 subsectors, we don�t

discover su¢ cient support for this hypothesis. Further research will be helpful

in verifying this pattern.

Fifth, during the sample period, international crude oil price decreased sig-

ni�cantly (e.g. Brent crude oil prices17). As a result, fuel prices (except natural

gas) also fell in Portugal18 . Meanwhile, natural gas and electricity prices in

Portugal increased19 . As we �nd in this study, directed technological change

is biased towards fuel rather than electricity in most economic subsectors of

Portugal. This may imply that price e¤ect is not the driving force for directed

technological change. On the other hand, during this time, total fuel consump-

tion in Portugal slightly increased (to be speci�c, the increase is mainly in

crude oil consumption) while consumption of electricity decreased in some of

16 In this case, a low substitution elasticity of such input may be expected. Unfortunately,
as has been addressed, it isn�t quite practical to calculate the substitution elasticities in our
present study.
17Source: BP Statistical Review of World Energy,

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-
energy.html
18Source: https://www.mylpg.eu/stations/portugal/prices/
19Source: https://www.erse.pt/atividade/regulacao/regulacao/
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the years20 . This may imply that market size e¤ect prevailed in deciding the

direction of technological change; but the change in the amount of inputs seems

too small to explain all this. Alternatively, forward-looking agents may take

into account the scarcity of fuel resource so that it is favored by technological

change even if its price is temporarily falling.

Sixth, although with a large number of �rms in an economic subsector, the

general bias indices are stable facing the in�uence of a small number of �rms,

the values of bias indices of individual �rms demonstrate a certain degree of

randomness, which could be determined by �rm-level heterogeneity. In other

words, in contrast to assumptions in sector-level studies, the direction of tech-

nological change may not be uniform in the same subsector, and there might

be factors other than market size e¤ect and price e¤ect a¤ecting such direction.

Further study may reveal more details on this topic.

The direction of technological change has important impacts in various per-

spectives, including sustainable economic growth, cleaner production and mit-

igation of climate change, among others. From the perspective of a balanced

energy structure and cleaner production, it might be desirable for technological

change to be biased towards electricity. Chen et al. (2019) suggest that in the

optimal path, technological change should be biased the most towards labor,

and more to non-fossil energy than fossil energy. It may be di¢ cult for the

policy maker to resist the temptation to intervene the process of directed tech-

nological change by adjusting energy price or introducing subsidies, hoping to

alter the relative price and the relative quantity of demand (Yang et al., 2018).

However, such policy may not do a good job encouraging �rms to develop or

adopt technologies favoring a certain input factor. First, according to the results

of our study, the market size e¤ect is likely to overwhelm the price e¤ect. In

addition, as we �nd, there may be other factors a¤ecting �rms�decision on the

direction of technological change. In Portugal, technological change was biased

away from electricity while the electricity price increased. Second, simply raising

electricity price may hinder production activities, especially in the subsectors

where output elasticity of electricity is already low. Instead of inducing techno-

logical change through higher electricity price, a lower electricity price relative

to fuel may be helpful in the sense that the relative consumption of electricity

increases and hence ampli�es market size e¤ect. Carbon pricing would increase

the relative prices of fuels while stimulating the use of renewable sources in

20Source: https://yearbook.enerdata.net/
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electricity generation. Nevertheless, besides technological change, many issues

are to be considered in electricity pricing. Policies could also directly target the

development and adoption of energy-e¢ cient technologies, e.g. providing more

accessible energy audit services to �rms (Kalantzis and Revoltella, 2019).
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4 Firm Technical E¢ ciency in the Portuguese

Electricity Sector

4.1 Introduction

For decades economists have been concerned with e¢ ciency issues in electricity

generation. Early studies mainly look at the consequence of regulatory policies.

Christensen and Greene (1976, 1978) estimate translog cost functions in order

to investigate the cost e¢ ciency and scale economies in electricity generation

of the U.S., where the electric power industry was going through a process of

reorganization. The authors provide an economic evaluation of the impact of

coordination of electricity generation on e¢ ciency. Later on, new economet-

ric methods were applied to evaluate the e¢ ciency in electricity generation.

Upon the data used by Christensen and Greene (1976), Greene (1990) applies

a gamma-distributed stochastic frontier model. Some more recent research also

considers CO2 emission e¢ ciency in electricity generation (Zhang et al., 2013).

Various methods are proposed for measuring e¢ ciency in production and

speci�cally, in electricity. For instance, Diewart and Nakamura (1999) propose

the best practice e¢ ciency measure based on Farrell (1957). Jamasb and Pollitt

(2001) review the most commonly used benchmarking methods for electricity:

Data Envelopment Analysis (DEA), Corrected Ordinary Least Squares (COLS)

and Stochastic Frontier Analysis (SFA), as well as their main applications up

to that time. Examples of DEA include Yang and Pollitt (2009), who analyze

the performance of 221 Chinese coal-�red power plants during 2002, and Welch

and Barnum (2009), who analyze both environmental and cost e¢ ciency in

electricity generation.

The stochastic frontier method makes distributional assumptions on the

noise and ine¢ ciency components (Kumbhakar and Tsionas, 2008), and allows

the estimation of the impact of independent variables on the mean and vari-

ance of technical ine¢ ciency. Regarding electricity generation, Lai and Kumb-

hakar (2018) demonstrate a homoscedastic four-component stochastic frontier

(H4CSF) model and relate technical ine¢ ciency of production to the age and

capacity of a coal-�red power plant. However, besides its contribution to econo-

metric methods, the article does not provide much policy insight.

Recently, some studies have been applying Stochastic Frontier Analysis to

address e¢ ciency issues in electricity. Growitsch et al. (2012), Kumbhakar et al.

(2015) and Kumbhakar and Lien (2017) examine technical e¢ ciency in Norwe-
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gian electricity distribution, and Liu et al. (2019) study whether environmental

heterogeneity a¤ects the technical e¢ ciency of Chinese grid utilities. While a

number of studies focus on technical e¢ ciency and its determinants (especially

those related to the environment) in electricity distribution, comparatively less

attention is paid to power generation. In the latter, institutional structure (op-

eration and management features associated with the power plants�ownership)

can be the main source of ine¢ ciency in electricity generation (Khanna and Zil-

berman, 1999). When it comes to the issue of electricity generation, therefore,

it seems more appropriate to investigate the e¤ect imposed by institutional and

operational features upon e¢ ciency.

In the present research we apply Stochastic Frontier Analysis to �rm-level

data for electricity subsectors (including electricity generation from di¤erent

sources, transmission and distribution) in Portugal in order to study the evo-

lution of technical e¢ ciency along the years. We try to estimate the e¤ects

of operational factors of �rms, such as factors related with the �rms��nancial

activities and utilization of labor, on their technical ine¢ ciency. Research in-

volving environmental factors, e.g. Liu et al. (2019), serves more as reference

for performance-based subsidizing policies; our �ndings provide valuable insight

on how to improve �rm performance from the perspective of industrial orga-

nization. Compared with environmental factors, it is more practical to a¤ect

operational features through policies and managing techniques, and thus raise

the e¢ ciency in electricity subsectors.

The liberalization of the Portuguese electricity market began in the 2000s.

This process consisted of the privatization of state-owned entities, legal un-

bundling of the electric transmission network, promoting competition and switch-

ing opportunities in electricity markets, integration into the Iberian market,

phasing-out of regulated tari¤s, among others (Ghazvini et al., 2019). Such

a reform could be expected to improve e¢ ciency in the electricity sector (Ja-

masb, 2006). Empirical e¤orts are made to prove that this is the true for the

Portuguese case, e.g. Barros (2008) �nds that DEA suggests improvement in

the technical e¢ ciency of hydroelectric plants in Portugal between 2000 and

2004. Technical e¢ ciency is also considered as an indicator of the e¤ectiveness

of regulatory regimes in the Norwegian electricity sector (Senyonga and Berg-

land, 2018). Nevertheless, it was in 2006 that the new legislation de�ned the

regime for electricity generation in Portugal. Despite the liberalization process,

most electricity generation still enjoys state guaranteed prices and is still a long

way from a competitive market (Amorim et al., 2013). Therefore, we need an
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updated and thorough examination on the evolution of technical e¢ ciency in

electricity generation. The data in the present study covers the years from 2006

to 2016, a period in which the new electricity framework had just come into

force. This is ideal for the investigation of the impact of liberalization in the

Portuguese electricity sector.

Depending on the functional form, among all, several approaches are fre-

quently applied in SFA: the production function approach, the distance function

approach, the cost function approach and the pro�t function approach. Each

of them focuses on a particular aspect of the production process and requires

di¤erent types of data. Considering the data that we have access to, we estimate

di¤erent models using the �rst three approaches so as to obtain a comprehen-

sive understanding on the evolvement of technical e¢ ciency in the Portuguese

electricity sector.

The empirical results suggest that from 2006 to 2016, productive technical

e¢ ciency improves through time, although such improvement seems slow and

the mean level of technical e¢ ciency is only about 50% to 60%. On the other

hand, there is little evidence that cost e¢ ciency also improves through time. All

the factors representing operational heterogeneity are found to be statistically

signi�cant in some speci�cations. In particular, higher capital input relative

to labor input, higher average hourly wage and lower average working hours

improve productive technical e¢ ciency. This might serve as a reference for

policy consideration or �rm management.

In the rest of this section, Section 4.2 describes the methodology and data

utilized in our empirical analysis; in Section 4.4 we present the empirical results

and corresponding discussion.

4.2 Methodology and Data

In Stochastic Frontier Analysis, di¤erent approaches can serve research purposes

while requiring data on di¤erent types of variables. The production function

approach is very commonly applied in assessing technical e¢ ciency, as well as

issues regarding directed technological change (Yang et al., 2018; Hou et al.,

2020). The distance function approach can be used to evaluate the e¢ ciency

in utilizing inputs to reach more than one type of output, which is often exoge-

nous (Liu et al., 2019). The cost function approach assumes cost minimization

as the goal. Other frontiers are also useful in addressing issues in energy eco-

nomics. For instance, the energy demand frontier, where the dependent variable
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is assumed as the minimum energy use to produce an energy service (Zhang and

Adom, 2018); Bayesian frontier model can also be used to assess e¢ ciency issues

(Makie÷a and Osiewalski, 2018). Applying various approaches provides a more

comprehensive evaluation on the technical e¢ ciency of the electricity generating

subsectors. Considering the availability of data and suitability of the models to

our purpose, we apply the production function approach, the distance function

approach and the cost function approach and compare the results regarding the

results on the determinants of technical ine¢ ciency and its time trend.

4.2.1 The production function approach

For �rms in the subsectors of electricity generation, we estimate the translog

production function in the form of second-order Taylor approximation:

ln yit = �0 +
JX
j=1

�jdj + �1t+
1

2
�2t

2 + �3 lnKit + �4 lnLit + �5t lnKit + �6t lnLit

+
1

2
�7(lnKit)

2 +
1

2
�8(lnLit)

2 +
1

2
�9 lnKit lnLit + vit � uit; (35)

vit � N(0; �2v);

where K represents capital input and L stands for labor input; subscripts

i, t denote the �rm and time period; vit is the normally distributed error term

and uit is the ine¢ ciency term. dj represents four dummies for the electric-

ity subsectors: production of electricity from hydropower; from thermal power

plants; from wind, geothermal, solar and other sources (although not fully ac-

curate, for simplicity we designate it as the subsector of other renewables); and

transmission and distribution of electricity21 . The technical e¢ ciency level can

be calculated by TEit = exp(�uit).
The production function allows us to calculate the output elasticities of each

input for each observation as:

�Kit =
@ ln yit
@ lnKit

= �3 + �5t+ �7 lnKit +
1

2
�9 lnLit; (36)

21To avoid multicollinearity, the number of dummies should be one less than the total
number of subsectors.

P
j=1 dj = 0 corresponds to the subsector of "electricity trade", where

there are very few observations.
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�Lit =
@ ln yit
@ lnLit

= �4 + �6t+ �8 lnLit +
1

2
�9 lnKit; (37)

which can be used as a reference for deciding which input is more e¤ective

in promoting production.

Di¤erent assumptions can be made on the distribution of the ine¢ ciency

term uit. In order to study the e¤ects of operational factors on e¢ ciency, we

estimate the model using the following assumption:

uit � N+(�; �2uit); (38)

� =W0
it
 (39)

�2uit = exp(Z
0
it�); (40)

where W and Z are vectors of variables including a constant of 1, while 


and � are the corresponding parameter vectors.

Moreover, we also estimate another model in order to verify if there ex-

ists a time trend for technical ine¢ ciency change. Time-varying ine¢ ciency

models are applied by Kumbhakar (1990), Battese and Coelli (1992), Lee and

Schmidt (1993) and Kumbhakar and Wang (2005), among others. Following the

Time-Varying Ine¢ ciency Model (TVIM) of Kumbhakar (1990), we adopt the

assumption:

uit = G(t)ui; (41)

ui � N+(�; �2u); (42)

G(t) = [1 + exp(1t+ 2t
2)]�1: (43)

A positive coe¢ cient on t or t2 implies that technical e¢ ciency is improved

through time.

4.2.2 The distance function approach

The production function approach is output-oriented, in the sense that it seeks

to maximize the output level with certain input combinations. Commonly, an
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input-oriented distance function is considered in similar studies, as the output

shall be seen as exogenous (Kumbhakar et al., 2015); in our case, it is also

reasonable to apply an input-oriented distance function if we consider electricity

demand as exogenous. The distance function can be de�ned as

D(x;y) = max
�
f�j(x=�) 2 V (y); � � 1g; (44)

where the input set V (y) represents all input vectors x that can produce the

output vector y, and �measures the maximum amount by which an input vector

can be radially contracted while the output vector remains constant. Then the

technical e¢ ciency of a �rm is

TE(x;y) = 1=D(x;y): (45)

Speci�cally, for M outputs and K inputs, a translog distance function can

be de�ned as

lnDit = �0 +

JX
j=1

�jdj +

MX
m=1

�m ln ymit +
1

2

MX
m=1

MX
n=1

�mn ln ymit ln ynit

+

KX
k=1

�k lnxkit +
1

2

KX
k=1

KX
l=1

�kl lnxkit lnxlit +

KX
k=1

MX
m=1

km lnxkit ln ymit

+!1t+
1

2
!2t

2 +
MX
m=1

�mt ln ymit +
KX
k=1

�kt lnxkit + vit; (46)

where subscripts i, t denote the �rm and time period; dj represents dum-

mies for the electricity subsectors; vit is the normally distributed error term.

Symmetric restrictions require that �mn = �nm and �kl = �lk. The distance

function is homogeneous of degree one, which requires the following constraints

to be imposed on the coe¢ cients:

KX
k=1

�k = 1;
KX
l=1

�kl = 0; k = 1; 2; � � � ;K;

KX
k=1

km =
KX
k=1

�k = 0;m = 1; 2; � � � ;M: (47)

By normalizing all the inputs in the distance funcion by an input xKit, we
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get

� lnxKit = f(lnx�kit; ln ymit; t) + vit � uit; (48)

vit � N(0; �2v);

�2v = exp(wv);

where f(�) is the translog input function form, and x�kit = xkit=xKit, uit �
lnDt is a half normally distributed non-negative ine¢ ciency term. Therefore

we get an equation that can be estimated.

Considering y1 and y2 as outputs and K (capital) and L (labor) as inputs,

with some manipulation, we can normalize the translog distance function by

Kit so that it becomes

� lnKit = �0 +

JX
j=1

�jRj + �1 ln y1it + �2 ln y2it + �L lnL
�
it

+
1

2
�12 ln y1it ln y2it +

1

2
�11(ln y1it)

2 +
1

2
�22(ln y2it)

2 +
1

2
�LL(lnL

�
it)
2

+L1 lnL
�
it ln y1it + L2 lnL

�
it ln y2it + �1t ln y1it + �2t ln y2it + �Lt lnL

�
it

+�1t+
1

2
�2t

2 + vit � uit; (49)

where L�it =
Lit
Kit
. As described in the previous subsection, according to

(38) - (43), we estimate several models with di¤erent assumptions regarding the

distribution of the technical ine¢ ciency term.

4.2.3 The cost function approach

The cost function approach assumes that the agents take cost minimization

as their aim; alternatively, the target can also be minimizing other indicators

like pollutant emissions (Kang, 2018). Then input-oriented cost e¢ ciency can

be evaluated using SFA. This approach allows the evaluation of cost e¢ ciency

in reaching an exogenous output target, therefore could provide information

on how well Portuguese electricity �rms optimize their cost while meeting the

electricity demand of the economy. Following Kumbhakar et al. (2015), the cost

minimization problem for producer i under input-oriented technical e¢ ciency

67



speci�cation is

minw0x s.t. y = f(xe��); (50)

F.O.C.:
fj(xe

��)

f1(xe��)
=
wj
w1
; j = 2; � � � ; J; (51)

where x and w are vectors of inputs and their prices, � � 0 is the input-

oriented technical ine¢ ciency that measures the percentage by which all the

inputs are overused in producing output y. The cost function can be therefore

de�ned as

C�(w; y) =
X
j

wjxje
��; (52)

which is the frontier cost function that gives the minimum cost given input

prices w and the observed output level y. On the other hand, the actual cost

can be written as

Ca =
X
j

wjxj = C
�(w; y) exp(�); (53)

and therefore, we have

lnCa = lnC�(w; y) + �: (54)

The relationship implies that log actual cost is increased by �, i.e. all the

inputs are overused by �. The e¢ ciency index of a producer is then

exp(��) = C�

Ca
:

Speci�cally, we assume that the cost function takes a translog form:
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lnCait = lnC�(wit; yit) + vit + �it

= �0 +
JX
j=1

�jdj +
X
j

�j lnwjit +
X
j

�tjt lnwjit + �y ln yit + �tyt ln yit

+
1

2

X
j

X
k

�jk lnwjit lnwkit +
1

2
�yy(ln yit)

2 +
X
j

�jy lnwjit ln yit

+
X
j

�tjt lnwjit + �tyt ln yit + �tt+ �ttt
2 + vit + �it; (55)

vit � N(0; �2v);

where dj represent dummies for the electricity subsectors, vit is the nor-

mally distributed error term and �jk = �kj as required by symmetry. The cost

function is homogeneous of degree one in the input prices, which imposes the

following parameter restrictions:

X
j

�j = 1;
X
j

�jk = 08k;
X
j

�jy = 0;
X
j

�tj = 0: (56)

Taking these restrictions into account, with K and L representing capital

and labor as two inputs, after substitution and manipulation, we normalize the

cost function by wKit as

ln(
Cait
wKit

) = �0 +
JX
j=1

�jdj + �y ln yit + �tyt ln yit + �L ln(
wLit
wKit

) + �tLt ln(
wLit
wKit

) +
1

2
�yy(ln yit)

2

+
1

2
�LL(

wLit
wKit

)2 + �Ly ln(
wLit
wKit

) ln yit + �tt+
1

2
�ttt

2 + vit + �it; (57)

As in other approaches, we make assumptions on the distribution of the

ine¢ ciency term �it, which are similar to the assumptions de�ned by (38) -

(43).

4.2.4 Data

We estimate the empirical models with annual data from 2006 to 2016 for �rms

in the subsectors of electricity generation, which is part of the BPLIM database22

22Website: https://bplim.bportugal.pt/
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of the Bank of Portugal.

For production activities in the sample, we consider the following inputs:

K - Capital stock, measured by tangible �xed capital in euros;

L - Labor input, measured by total hours worked by paid employees.

Based on the variables listed in the BPLim database, we might consider the

following variables:

Output level y is measured by non-�nancial revenue (in euros) in the pro-

duction function approach and the cost function approach. For the distance

function approach, we consider the following outputs:

y1 - Total sales in the internal market (in euros);

y2 - Total sales in the EU market (in euros).

In order to be able to take the natural logarithm, a constant 1 is added to

each observation of y2, so that when the original observation equals zero we

have the natural logarithm being 0.

In the cost function approach, we use the following proxies for input prices:

wK - for the proxy for the price of capital, we use the return of �nancial

investment as the opportunity cost of capital, which is obtained by the ratio of

�nancial income to �nancial investment.

wL - the price of labor is measured by average hourly wage in euros, which

is obtained by the ratio of total payment of wages to the total hours worked by

paid employees.

The actual cost of each �rm is calculated by

Cait = KitwKit + CLit;

where CLit is the total payment of wages.

We consider the following explanatory determinants of technical ine¢ ciency:

Age (LAGE): the natural logarithm of the age of the �rm until 2016; the

impact of �rm age on technical ine¢ ciency is studied by Lai and Kumbhakar

(2018).

Capital deepening (CD): measured by the ratio of capital to labor; too much

capital relative to labor input may cause ine¢ ciency (Shao et al., 2016; Yang et

al., 2018).

Financial income (FIC): measured by the ratio of �nancial income to total

revenue. Previous evidence shows that over-involvement in �nancial activities

can be detrimental to real production (Hou et al., 2020).

Financial investment (FIV): ratio of �nancial investment to total non-current
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assets. This is also a measure for the degree of involvement in �nancial activities

of a �rm.

Operating subsidies (SSD): measured by the ratio of operating subsidies to

total revenue; high subsidies may undermine e¢ ciency. There has been the

evidence that production subsidies can stimulate substantial managerial ine¢ -

ciencies of biogas plants (Eder and Mahlberg, 2018).

Average working hours (AVHR): measured by the natural logarithm of av-

erage hours worked per paid employee; working too much time may increase

ine¢ ciency.

Average wage (AVWG): obtained by taking the natural logarithm of the

ratio of total payment of wages to the total hours worked by paid employees; a

higher wage is expected to improve e¢ ciency.

Di¤erent speci�cations are estimated to evaluate the e¤ects of these factors

upon the mean and variance of technical ine¢ ciency.

Table 12 summarizes the descriptive statistics of the data used in our study.

As the panel is not balanced, the observations actually utilized in each empirical

model may vary. The variables are in their original values although logarithms

are used in the estimation.

Notice that although the mean of wK may seem a bit larger than expected,

it is due to some abnormal observations with extremely large �nancial returns.

If we calculate the ratio of mean �nancial return to the mean of �nancial in-

come to mean �nancial investment in the Portuguese electricity sector, the value

�uctuates around 10% per year.

4.3 Empirical results and discussion

4.3.1 The production function approach

We estimate several models of production function for Portuguese �rms in the

electricity sector. The results are presented in Table 13. Among the models with

ine¢ ciency term depending on the explanatory variables, we choose to present

the results of Model 1 and Model 2 in the table, as other speci�cations produce

similar results. In each model, all the seven explanatory variables appear only

once in either the mean equation or the variance equation; variables related with

similar issues appear in the same equation, e.g. FIC and FIV , AVHR and

AVWG. The models are chosen in the same way for the other two approaches.

Most coe¢ cients in the production function are statistically signi�cant, show-

ing that the translog form is a proper speci�cation. Most coe¢ cients for the
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Table 12: Descriptive statics of the variables used in the Portuguese electricity
sector
Variable Obs. Mean Std. Dev. Min Max
Output variables
y 7; 383 2:74e+ 07 2:70e+ 08 �110765:5 6:48e+ 09
y1 7; 383 2:07e+ 07 2:17e+ 08 0 5:86e+ 09
y2 7; 383 1214844 2:32e+ 07 0 1:15e+ 09
Input variables
K 7; 383 1:97e+ 07 2:11e+ 08 0 5:12e+ 09
L 5; 832 26511:06 301535:9 0 7560803
Cost variable
Ca 1; 542 4:20e+ 08 1:14e+ 10 0 4:36e+ 11
Input price variables
wK 1; 542 27:07281 379:4113 0 12539:5
wL 2; 142 10:47935 12:54542 0 174:8294
Determinants of technical ine¢ ciency
Age 7; 377 13:80371 12:04432 0 101
CD 1; 933 12:20962 3:140485 1:446775 19:88779
FIC 5; 558 :0923781 :2638705 0 1
FIV 6; 152 :1019698 :2748856 �:0959321 1
SSD 5; 558 :0036099 :0454418 0 1
AVHR 2; 129 1667:959 482:6395 1 3757:733
AVWG 2; 142 10:47935 12:54542 0 174:8294
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dummy variables are statistically signi�cant, indicating di¤erences between the

production technologies of electricity subsectors. Nonetheless, in the �rst two

models, there is statistical signi�cance for only a few coe¢ cients related with t,

which implies that there is very little technological progress that improves the

productivity of the electricity sector in the sample period. While technological

progress pushes the production frontier upwards, higher technical e¢ ciency is

also important in the sense that it moves the actual output closer to the fron-

tier. In this case, it is extremely important that �rms reach higher technical

e¢ ciency levels so as to make better use of the current technology.

Regarding the technical ine¢ ciency term, the results also demonstrate sta-

tistical signi�cance for most coe¢ cients in all the estimated models. We can

infer that �rm-level technical ine¢ ciency in the Portuguese electricity sector

is indeed a¤ected by these operational factors. Yet, the signs of the coe¢ -

cients are not all as expected. There are negative signs for the coe¢ cients on

LAGE, which means that �rms of greater age are technically more e¢ cient on

average. This is probably the result of learning-by-doing and re�ned managing

techniques. The coe¢ cients for CD (capital deepening) are negative when it

appears in the mean or variance equation in the �rst two models: higher capital

input relative to labor input has a negative e¤ect on the mean and variance of

technical ine¢ ciency. Such result is di¤erent from that in studies using data

for other sectors (Shao et al., 2016; Hou et al., 2020). This is probably because

of di¤erent patterns of production in di¤erent economic sectors: some sectors

are labor-intensive while others, including the Portuguese electricity sector, are

capital-intensive. The result on the e¤ect of �nancial activities is somehow

counter-intuitive: while the coe¢ cients for FIC are positive, which represents

positive e¤ect on the mean and variance of technical ine¢ ciency; the coe¢ cients

of FIV are negative. In other words, if a �rm has a high ratio of �nancial in-

come relative to its total revenue, it is likely to be technically ine¢ cient, but if it

has a high ratio of �nancial investment relative to its total non-current asset, its

technical e¢ ciency is likely to be low. Further study may be needed for a better

explanation. The coe¢ cient for SSD is positive in Models 1 and 2, implying

that operating subsidy might be detrimental to technical e¢ ciency. The coe¢ -

cients on AVHR and AVWG are all negative; considering levels of statistical

signi�cance, it can be inferred that higher average hourly wage contributes to a

higher mean technical e¢ ciency.

Figure 7 is obtained fromModel 1 and depicts the evolution of mean technical

e¢ ciency in the Portuguese electricity sector and its main subsectors (genera-

73



Table 13: Estimated results for production frontier functions of Portuguese
electricity �rms
Variable Coe¢ cient

Model 1 Model 2 TVIM
Frontier
lnK �:236��(:116) �:976���(:183) :124(:124)
lnL :374��(:176) 1:11���(:219) �:151(:183)
(lnK)2 :044���(:004) :082���(:008) :016���(:005)
(lnL)2 :068���(:010) :077���(:010) :097���(:012)
lnK lnL �:077���(:009) �:129���(:015) �:046���(:011)
t lnK :008�(:004) :002(:005) :020���(:004)
t lnL �:017��(:007) �:012(:007) �:041���(:007)
t :080(:092) :122(:094) �:099(:235)
t2 :001(:004) :001� 1:92(:004) �:009(:016)
dhyd �3:37���(:286) �3:47���(:258) �:723�(:405)
dthm �2:63���(:280) �2:72���(:250) �:472(:394)
drnw �3:50���(:288) �3:57���(:268) �:864��(:397)
dtnd �3:33���(:304) �3:52���(:272) �1:16�(:630)
Intercept 13:4���(1:28) 15:7���(1:42) 17:6���(3:31)
Ine¢ ciency term: mean
LAGE �11:1���(3:01) �1:92���(:336)
CD �1:16���(:112)
FIC 34:4���(8:67)
FIV �22:5���(6:17)
SSD 19:2���(7:11)
AVHR �:561(:356)
AVWG �1:27���(:206)
Intercept 6:03��(2:62) 23:3���(2:91) 9:67���(3:08)
Ine¢ ciency term: variance
CD �:103���(:018)
FIC 2:64���(:306)
FIV �2:02���(:363)
SSD 1:88���(:666)
AVHR �:440���(:097)
AVWG �:392���(:050)
Intercept 8:61���(:751) 1:88���(:160) 2:04���(:130)
Ine¢ ciency term: time variance
t :079��(:038)
t2 :001(:004)
Note: standard errors are in parentheses;
*/**/*** stands for statistical signi�cance at 10%=5%=1% level.
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Figure 7: Annual mean technical e¢ ciency level of the Portuguese electricity
sector and its main subsectors, 2006-2016, obtained from estimation of produc-
tion function

tion from hydropower, thermal, other renewable sources and transmission and

distribution of electricity) from 2006 to 2016. Overall, technical e¢ ciency in the

hydro and thermal subsectors stays closer to the mean of the electricity sector,

while the T&D subsector enjoys a higher mean technical e¢ ciency level. It is

di¢ cult to judge whether technical e¢ ciency has improved through time, as the

curves are far from monotonic; nevertheless, in the Time-Varying Ine¢ ciency

Model, the coe¢ cient on t is positive and statistically signi�cant at 5% level,

which could be evidence of improvement of technical e¢ ciency through time

in the sample period. Meanwhile, technical e¢ ciency in the subsector of other

renewables seems to have improved and that in T&D decreased through the

years.

4.3.2 The distance function approach

The estimated results for the distance function models are presented in Table 14.

Due to the complexity and nonlinearity of the models, the models estimated by

each approach can be slightly di¤erent from those in the other two approaches

for convergence reasons.
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Figure 8: Annual mean technical e¢ ciency level of the Portuguese electricity
sector and its main subsectors, 2006-2016, obtained from estimation of distance
function

Most coe¢ cients in the distance function are statistically signi�cant, mean-

ing that models are very well speci�ed. Capital deepening has a negative e¤ect

on the variance of the ine¢ ciency term; technical ine¢ ciency is also related with

average working hours and average hourly wage. Not surprisingly, the coe¢ -

cient on AVWG is statistically signi�cant and negative in the mean equation,

i.e. higher average hourly wage helps eliminate technical e¢ ciency. Higher aver-

age working hours increases technical ine¢ ciency in both its mean and variance.

There is the possibility of bilateral causality; nevertheless, the result implies that

keeping moderate average working hours may improve technical e¢ ciency. This

�nding helps complete our whole picture. On the other hand, we �nd no evi-

dence that technical e¢ ciency is a¤ected by the share of operating subsidies in

total revenue.

In the Time-Varying Ine¢ ciency Model, both coe¢ cients on t and t2 are sta-

tistically signi�cant, indicating the existence of a time trend in the evolution of

technical ine¢ ciency. The coe¢ cient on t is :096 while that on t2 is �:008, which
means that the improvement in technical e¢ ciency is slowed down through time.

Figure 8, which is obtained from Model 1, shows the evolution of mean

technical e¢ ciency in the Portuguese electricity sector and its main subsectors
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Table 14: Estimated results for distance frontier functions of Portuguese elec-
tricity �rms
Variable Coe¢ cient

Model 1 Model 2 TVIM
Frontier
lnL� :793���(:091) :921���(:078) :794���(:050)
ln y1 :631���(:119) 1:04���(:094) :445���(:072)
ln y2 �:128��(:055) �:206���(:053) �:039(:031)
(lnL�)2 :059���(:007) :047���(:004) :034���(:002)
(ln y1)

2 �:032���(:005) �:051���(:004) �:025���(:003)
ln y1 ln y2 �:006(:005) :003(:004) :004(:003)
(ln y2)

2 :023���(:004) :020���(:003) :002(:002)
lnL� ln y1 :043���(:006) :021���(:006) :023���(:004)
lnL� ln y2 :005(:004) :010���(:004) :005��(:003)
t ln y1 :014���(:005) :011��(:004) :002(:002)
t ln y2 �:020���(:003) �:018���(:003) �:007���(:001)
t lnL� �:001(:005) �:002(:004) �:017���(:002)
t �:170��(:075) �:168��(:072) :334���(:093)
t2 �:0002(:0036) :003(:003) �:037���(:008)
dhyd �:517���(:191) �:691���(:185) �:489��(:245)
dthm �:400��(:193) �:733���(:179) �:642���(:243)
drnw �:692���(:198) �1:00���(:188) �:454�(:249)
dtnd �1:11���(:216) �1:21���(:208) �1:54���(:357)
Intercept �10:1���(:775) �6:57���(1:79) �6:79���(:844)
Ine¢ ciency term: mean
LAGE :288��(:131) :209���(:059)
FIC 1:41��(:638)
FIV �1:29��(:522)
SSD �19:2(14:0)
AVHR :414���(:080)
AVWG �:155���(:049)
Intercept �:718(:449) 2:86(1:78) 3:28���(:631)
Ine¢ ciency term: variance
CD �:274��(:113) �:267���(:058)
FIC �1:29(1:35)
FIV 2:60���(:453)
SSD �17:7(13:9)
AVHR 1:77���(:415)
AVWG :282(:200)
Intercept �11:0���(3:02) 2:20���(:555) �:289��(:127)
Ine¢ ciency term: time variance
t :096���(:017)
t2 �:008���(:002)
Note: standard errors are in parentheses;
*/**/*** stands for statistical signi�cance at 10%=5%=1% level.
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in the sample period. As in the production function approach, mean technical

e¢ ciency in the hydro and thermal subsectors is closer to that in the electricity

sector; mean technical e¢ ciency in the subsector of other renewables and T&D

diverge from the mean of the sector. The greatest di¤erence from the production

function approach is in the level of technical e¢ ciency of the T&D subsector,

which is possibly due to the measure of output: in the distance approach it is

measured by total sales in internal and EU markets. The performance of T&D

�rms may be more sensitive to long distance required by international electricity

transmission. Nevertheless, the general tendency is similar to the result in the

production function approach. Technical e¢ ciency in the subsector of other

renewables appears to have increased along the sample years, while that in the

T&D subsector has decreased.

4.3.3 The cost function approach

Table 15 summarizes the estimated results for the cost function models.

Most coe¢ cients are statistically signi�cant. It is worth noticing the subtle

di¤erence between technical e¢ ciency in production and cost e¢ ciency. Techni-

cal e¢ ciency in production is a measure of a �rm�s ability to reach the potential

output level allowed by the technology using a certain set of inputs. Cost e¢ -

ciency, on the other hand, re�ects a �rm�s ability to optimize its cost in realizing

an output goal. It is therefore quite natural that operational factors have dif-

ferent impacts in terms of e¢ ciency. In the estimated results for cost function

models, generally, CD exerts positive e¤ects on the mean and variance of tech-

nical ine¢ ciency. This implies that �rms with larger capital stock (relative to

labor input) are likely to be a¤ected in their cost e¢ ciency. While this result is

di¤erent to that of the production function approach, it has to be noticed that

cost e¢ ciency is not exactly identical to productive e¢ ciency. There is potential

explanation for this result: it may be due to the input prices considered in the

cost functions (which are absent in the other approaches). According to our

data, from 2006 to 2016, mean hourly wage in the Portuguese electricity sector

grew from 8:27 euros to 10:24 euros; there is also �uctuation in the returns to

investment in our data. Regarding the price of fuel, which is not accounted

by our models for consistency (as the importance of fuel is mainly re�ected in

the thermal subsector), there also exist large �uctuations. Between 2006 and

2016, the annual average Northwest Europe marker price for coal ranges be-

tween 56:79 and 147:67 USD/ton; Heren NBP index for natural gas �uctuates
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Figure 9: Annual mean technical e¢ ciency level of the Portuguese electricity
sector and its main subsectors, 2006-2016, obtained from estimation of cost
function

between 4:69 and 10:79 USD per million Btu23 . Notwithstanding, since �rms in

the Portuguese electricity sector face similar economic environments in the same

year, our result is still meaningful. In both terms of mean and variance, FIC

has positive e¤ects and FIV has negative e¤ects on technical ine¢ ciency, which

is in line with the production function models. From the perspective of cost

e¢ ciency, however, it is di¢ cult to judge the e¤ect of LAGE, and there is little

evidence of impact by SSD, AVHR and AVWG upon technical ine¢ ciency.

In the TVIM, both coe¢ cients on t and t2 are statistically insigni�cant.

Thus, evidence doesn�t support improvement through time in cost e¢ ciency of

the Portuguese electricity sector from 2006 to 2016.

Figure 9 depicts the annual mean cost e¢ ciency in the Portuguese electric-

ity sector and its main subsectors according to Model 1. In some years, the

e¢ ciency level of the T&D subsector is higher, but in general, mean technical

e¢ ciency in other subsectors stays quite close to the mean of the sector. It is

worth highlighting that cost e¢ ciency is also increasing in the subsector of other

renewables, a result that is common to all approaches.

23Source: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-
of-world-energy.html
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Table 15: Estimated results for cost frontier functions of Portuguese electricity
�rms
Variable Coe¢ cient

Model 1 Model 2 TVIM
Frontier
lnW :930���(:128) :876���(:157) 1:08���(:105)
(lnW )2 :032���(:003) :033���(:003) :026���(:002)
ln y �:039(:154) :116(:176) :009(:096)
(ln y)2 :027���(:004) :023���(:005) :021���(:004)
lnW ln y �:046���(:008) �:042���(:010) �:052���(:007)
t lnW :003(:005) :003(:007) �:002(:005)
t ln y �:012�(:007) �:023���(:008) :001(:006)
t :175(:127) :303��(:152) �:015(:175)
t2 �:001(:006) :001(:007) �:001(:012)
dhyd :494(:394) :595�(:324) :886(:692)
dthm :622(:389) :499(:319) 1:15�(:683)
drnw :676�(:394) :502(:332) 1:43��(:703)
dtnd 1:38���(:416) :926��(:399) 2:20��(:927)
Intercept 5:94���(1:62) 5:21���(1:80) 11:0���(1:30)
Ine¢ ciency term: mean
LAGE :566��(:278)
CD :320���(:034)
FIC 2:40���(:579)
FIV �3:59���(:547)
AVHR �:080(:284)
AVWG :034(:112)
Intercept �1:80���(:502) �1:37(1:78) 3:63���(:814)
Ine¢ ciency term: variance
LAGE �1:39��(:606)
CD :395���(:080)
FIC 3:96���(1:04)
FIV �6:96���(1:30)
SSD 11:9(19:1) �13:8(18:6)
AVHR �1:29��(:526)
AVWG :007(:479)
Intercept 10:9���(3:81) �3:94���(1:17) 1:19���(:280)
Ine¢ ciency term: time variance
t �:006(:074)
t2 �:001(:006)
Note: lnW = ln(wL=wK); standard errors are in parentheses;
*/**/*** stands for statistical signi�cance at 10%=5%=1% level.
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4.3.4 General Comments

Generalizing the results of the three approaches, higher capital input relative

to labor leads to higher technical e¢ ciency in terms of production, but lower

e¢ ciency in cost terms. Both production function and cost function models pro-

vide evidence of the �rms�involvement in �nancial activities a¤ecting technical

e¢ ciency. The share of �nancial income in total revenue decreases technical

e¢ ciency, while the ratio of �nancial investment to capital stock increases it.

Evidence from the production function approach indicates that �rms with longer

history tend to enjoy higher technical e¢ ciency and operating subsidies may un-

dermine technical e¢ ciency, but this �nding is not con�rmed by evidence from

other approaches. Average working hours per employee and average hourly

wage a¤ect productive e¢ ciency rather than cost e¢ ciency. To be speci�c,

higher hourly wage and moderate average working hours are likely to improve

technical e¢ ciency.

When it comes to the question of whether there is a trend of improving tech-

nical e¢ ciency through time, the answer is yes in terms of production, although

the improvement may have slowed down; meanwhile, there is no evidence for

improvement in terms of cost e¢ ciency. This is probably due to the �uctuation

in input prices, e.g. average hourly wage.

The liberalization of the Portuguese electricity market was successful in the

sense that productive e¢ ciency has improved. Nonetheless, as various factors

a¤ect technical e¢ ciency, it is not enough to ride the trend. Firms in the

electricity sector should also pay attention to operational issues in order to

improve e¢ ciency. From the �gures representing mean technical e¢ ciency levels

in the electricity subsectors, technical e¢ ciency in other renewables consistently

increases through time. Due to concerns on energy security and environmental

impacts, Portugal made great e¤orts in promoting electricity generation from

renewable sources in the last few decades, leading to a boom in this type of

generation (Netto, 2013). Our �nding implies that �rms in the subsector are

becoming experienced at generating electricity from renewable sources so that

they are making better use of the technology.

In the results obtained by all three approaches, although there exist di¤er-

ences between the subsectors, the mean technical e¢ ciency level of the Por-

tuguese electricity sector ranges around 50% to 60% overall. Such a result

suggests that there is still potential for improving technical e¢ ciency. The �nd-

ings in our research indicate that �rms in the electricity sector ought to increase
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Figure 10: Annual mean output elasticities of capital and labor in the Por-
tuguese electricity sector, 2006-2016, derived from Model 1, the production
function approach

capital input rather than labor input. This is supported by Figure 10, which

shows the annual mean output elasticities of capital and labor calculated ac-

cording to equations (36) and (37). The �gure shows that the output elasticity

of capital increases through time while that of labor decreases, implying that it

is optimal for Portuguese electricity �rms to increase capital input (especially

in the form of equipments instead of real estate) and not labor. Meanwhile,

increasing hourly wage and keeping working hours at a moderate level is also

helpful in improving technical e¢ ciency.

Operating subsidies, at best, do not help improve technical e¢ ciency, and

even undermine e¢ ciency in terms of production. This is in line with the �nding

by Eder and Mahlberg (2018). The reason might be that subsidies undermine

the motivation of improving e¢ ciency. There has been the debate regarding

whether the bene�t of subsidies overwhelms their cost. Although subsidies are

designed to promote the development of renewable energy, removing the subsidy

scheme may imply net present value gains (Johansson and Kriström, 2019). In

addition, there is the hazard of managers of electricity companies improperly

pro�tting from subsidies, as highlighted in a recent case of one of the major
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companies in the Portuguese electricity sector24 . However, we leave the question

of whether subsidies to electricity �rms are still a worthwhile policy endeavour,

since there are other impacts of these subsidies.

24For more information the reader may refer to: https://www.jornaldenegocios.pt/empresas/energia/detalhe/mexia-
e-manso-neto-vao-ser-acusados-de-corrupcao-ativa-no-caso-edp, or:
https://visao.sapo.pt/atualidade/2020-06-02-caso-edp-antonio-mexia-e-suspeito-de-quatro-
crimes-de-corrupcao-ativa-e-um-de-participacao-economica-em-negocio/
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5 Conclusion

In the Stochastic Frontier empirial research that consists of three parts, we

investigate the direction of technological change at country and �rm level, as

well as the change and operational determinants of �rm-level technical e¢ ciency

in the Portuguese electricity sector. While each part makes its own policy

implication according to its empirical �nding, they together form a complete

picture on technological change and technical e¢ ciency in production involving

energy as input and output.

In Section 2 we apply Stochastic Frontier Analysis to data for 16 countries

in order to assess the technological change in production at macro level with

three input factors: capital, labor and energy. As has rarely been applied in

SFA studies, we use bootstrap to obtain con�dence intervals and statistical

signi�cance levels, in order to have more rigorous and convincing results.

Our �ndings indicate that, in the sample countries between 1991 and 2014,

on average, output elasticities of energy and labor are increasing; speci�cally,

the output elasticity of energy grows at a higher rate so that it is catching up

with the output elasticity of labor, which is supported by the statistically sig-

ni�cant bias index between energy and labor. The output elasticity of capital

is decreasing, and has negative values for some observations; yet agents keep

investing in capital, possibly because of limited information, investment pref-

erence, real estate prices or investment externalities. Among the three input

factors, the output elasticity of labor is the highest for developed countries, and

the output elasticity of energy is the highest or very close to the highest for de-

veloping countries. In addition, compared with developed countries, developing

countries are more likely to enjoy higher returns to scale in production.

Nonetheless, we �nd that the average production of all sample countries

demonstrates decreasing returns to scale. Results also show a signi�cant di¤er-

ence between the total factor productivity growth rates between the countries

in the sample. For some countries, the advice on policy making might be to

encourage technological progress, in order to sustain their economic growth.

By calculating the factor bias index, we �nd out that for the general trend

of the 16 countries and for most countries in the sample, technological change is

biased the most towards energy. Di¤erent countries demonstrate di¤erent tech-

nological change bias orders, but technological change commonly favors energy

rather than labor. Such could be evidence that technological change is more

likely to be biased towards the non-renewable input than the renewable.
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The purpose of this section is to analyze directed technological change in

worldwide production activities; if, by any chance, it could provide a clue for

studies in economic growth or other �elds of macroeconomics, it would be sat-

isfying. However, it still leaves some di¢ cult questions to be answered. For

countries with the same bias orders, is there any common pattern? What de-

termines the direction of technological change? Part of these questions can be

answered to some extent by our study of Section 3, while the rest remains to be

explored.

In micro-level production activities involving energy inputs, how does di-

rected technological change take place? The answer to this question has many

implications on policies regarding energy e¢ ciency, energy price and technolog-

ical innovation. While a number of previous studies investigate this issue with

sector data, evidence from �rm level is lacking. The study of Section 3 applies

stochastic frontier analysis to panel data for Portuguese �rms, with respect to

output produced from four input factors: capital, labor, electricity and fuel.

For each of the 32 economic subsectors in our analysis, we estimate a translog

production function with an error term and a technical ine¢ ciency term, which

is a¤ected by three factors: capital deepening, energy consumption structure

and share of �nancial income.

Results demonstrate the common existence of technical ine¢ ciency in Por-

tuguese economic subsectors; in some subsectors, over one third of potential

output is lost due to technical ine¢ ciency. In a considerable number of sub-

sectors, capital deepening and share of �nancial income exert positive marginal

e¤ects on technical ine¢ ciency. Energy consumption structure also has signi�-

cant e¤ects on technical ine¢ ciency in most subsectors; however, from current

evidence, it is di¢ cult to determine the direction of its e¤ect. Roughly, unlike

higher-tech manufacturing subsectors, agricultural and low-tech manufacturing

subsectors are more likely to be a¤ected by the abovementioned factors.

According to our estimation, the average output elasticity of labor is increas-

ing in most subsectors, while that of other inputs is decreasing more often. The

mean level of output elasticity of labor is the highest among the four inputs

in 24 of the 32 subsectors, revealing the importance of labor in production ac-

tivities and in economic growth. In contrast, the overall level of mean output

elasticity of capital is quite low (below 0:1 in most subsectors); negative values

appear in individual observations at a considerable frequency. This phenomenon

implies the agents�limited ability in making optimal investment decisions, possi-
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bly because of the need to maintain operation, or other factors. Di¤erent mean

levels of output elasticity of capital also suggest the possibility of ameliorat-

ing economic structure by inducing investment in certain economic subsectors.

Compared with empirical results on Chinese provinces, where output elasticities

of capital are higher, this shows the di¤erence in the driver for economic growth

in developing and developed countries, in line with previous macro-level studies.

Regarding the direction of technological change, among a number of �ndings

and interpretations, there are three points that we would like to highlight:

1. In most Portuguese economic subsectors, technological change is biased

the most towards labor.

2. Between the two energy forms considered in our study, technological

change is biased more towards fuel rather than electricity.

3. Considering data on energy consumption and price in the same period in

Portugal, market size e¤ect is likely to overwhelm price e¤ect in deciding the

direction of technological change, while there may be other �rm level determi-

nants, which remain to be identi�ed in future studies.

Based on our �ndings regarding technical ine¢ ciency, output elasticities,

TFP growth and direction of technological change, we may advise policy making

in a few aspects:

1. Optimal policies for sustaining economic growth should involve promoting

education and eliminating technical ine¢ ciency, since it is di¢ cult to achieve a

sudden increase in TFP growth.

2. Higher electricity price may not be the best tool to direct technological

change towards electricity. As an alternative, relatively lower electricity price

may help reach this goal through market size e¤ect. Carbon pricing is an option

for this purpose. Meanwhile, policies should pursue the development and adop-

tion of technologies that improve energy e¢ ciency, for example, more accessible

energy audits for �rms.

3. While regulating �nancial activities may help eliminate technical inef-

�ciency, it is necessary to encourage employment in agricultural and low-tech

subsectors.

Our study serves as a good �rm-level supplement to empirical studies re-

garding directed technological change. Firm data allows us to estimate each

economic subsector�s own production function, which distinguishes among sub-

sectors regarding the patterns in production activities. We obtain clues on how

�rms make decisions on investment and adoption of technologies. Our �nd-

ings support the growth theory of directed technological change while providing
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insights for policy making.

Nonetheless, the study leaves some issues unattended. The analysis is per-

formed for 32 economic subsectors in Portugal, and thus does not take full

advantage of the dimension of the database. An analysis with respect to a

single subsector could reveal more details, e.g. �rm-level determinants for the

direction of technological change, the distribution of some parameters or their

evolution with time.

In Section 4 we apply Stochastic Frontier Analysis to annual �rm-level data

in the Portuguese electricity sector. In order to obtain a comprehensive under-

standing on the evolution of technical e¢ ciency in the Portuguese electricity

sector, we estimate frontier models in three di¤erent functional forms: produc-

tion function, distance function and cost function. Speci�cally, we are interested

in two issues: whether technical e¢ ciency depends on operational heterogeneity

and whether it improves through time in the sample period, which covers the

process of liberalization in the Portuguese electricity market.

Regarding the �rst question, we �nd that all the selected factors have sta-

tistically signi�cant impact on the �rms�technical e¢ ciency in at least some of

the empirical models. Among all, higher capital input relative to labor, higher

average hourly wage and lower average working hours are found to be likely to

improve technical e¢ ciency in production. On the second question, the answer

is that technical e¢ ciency in production does improve through time, but such

improvement may have slowed down gradually. Specially, observing the �gures

for annual mean technical e¢ ciency of the subsectors, we discover that technical

e¢ ciency improves in the subsector of renewables except hydro. This signals

success of Portugal�s e¤ort in promoting electricity generation from renewable

sources.

The reform in the electricity sector promoted the general evolution in pro-

ductive e¢ ciency. Notwithstanding, the trend is likely to fade away over time;

it is equally important to implement speci�c policies targeted at improving

technical e¢ ciency. Our �ndings imply that in order to improve technical e¢ -

ciency, policy making or �rm management should aim at promoting investment

in equipment, raising average hourly wage and controlling working time of the

employees. Findings from the production function approach raise the doubt

on whether operating subsidies are desirable from the perspective of technical

e¢ ciency.

Our analysis still leaves room for discussion. What is the mechanism of a
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�rm�s involvement in �nancial activities a¤ecting technical ine¢ ciency? Among

the electricity subsectors, why do some enjoy higher mean technical e¢ ciency

than others? These questions might be worthy of further investigation.

In the coming years a signi�cant energy transition must be accomplished

throughout the world, as current trends are not enough to mitigate climate

change nor prevent potential catastrophic impacts in the coming century. It

is therefore important for all countries to improve their use of energy. I hope

my work contributes to this signi�cant challenge of humanity. Meanwhile, my

dissertation also contributes to the realization of some of the Sustainable De-

velopment Goals proposed by the 2030 Agenda of the UN (2015), i.e., Goal 7,

a¤ordable, reliable, sustainable and modern energy for all; Goal 8, sustained,

inclusive and sustainable economic growth; Goal 9, infrastructure, inclusive and

sustainable industrialization and innovation. After all, I hope my study could

help modern society get better adapted to the challenges brought by the current

limitation in resources, economic development and technologies.
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Appendices

Appendix A

Output elasticities of input factors: Average of the 16 countries

95% bias-corrected con�dence intervals in parentheses, from 1000 bootstrap replications.

Year K L E

1991 :172(�:003=:335) :389(:214=:579) :315(:144=:490)

1992 :146(�:014=:315) :397(:229=:589) :346(:174=:530)

1993 :134(�:008=:328) :405(:249=:595) :353(:156=:529)

1994 :127(�:020=:304) :410(:233=:606) :358(:165=:545)

1995 :116(�:060=:305) :415(:257=:613) :367(:193=:554)

1996 :103(�:057=:279) :422(:256=:610) :376(:181=:551)

1997 :097(�:072=:264) :427(:261=:595) :379(:212=:559)

1998 :091(�:049=:256) :431(:272=:600) :383(:183=:554)

1999 :083(�:080=:248) :433(:277=:622) :393(:228=:572)

2000 :075(�:086=:239) :436(:277=:591) :402(:228=:579)

2001 :070(�:087=:242) :438(:285=:623) :407(:231=:584)

2002 :065(�:091=:237) :441(:262=:601) :413(:237=:588)

2003 :051(�:106=:224) :447(:290=:622) :425(:246=:591)

2004 :037(�:110=:220) :453(:289=:623) :438(:260=:596)

2005 :029(�:126=:205) :457(:303=:625) :446(:261=:614)

2006 :021(�:134=:175) :461(:312=:633) :453(:271=:614)

2007 :014(�:147=:176) :465(:312=:646) :457(:284=:624)

2008 :006(�:148=:169) :470(:318=:646) :462(:285=:637)

2009 :005(�:155=:155) :475(:316=:642) :456(:289=:612)

2010 �:011(�:162=:133) :485(:348=:664) :466(:254=:629)

2011 �:014(�:166=:166) :488(:329=:658) :465(:279=:627)

2012 �:020(�:179=:150) :491(:341=:653) :469(:274=:633)

2013 �:026(�:170=:150) :495(:353=:662) :473(:284=:636)

2014 �:029(�:185=:132) :497(:340=:664) :475(:309=:649)

Annual Average :056(�:041=:189) :447(:326=:574) :416(:293=:526)
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Appendix B

Total Factor Productivity Growth Rate and its components: Average of the 16 countries

95% con�dence intervals in parentheses, from 1000 bootstrap replications.

Year TP TEC SEC TFPGR

1991 :013(:007=:018)

1992 :014(:008=:019) :0054(�:006=:030) �:0001(�:004=:004) :018(:002=:037)

1993 :014(:008=:019) �:0002(�:016=:012) :0002(�:003=:005) :014(�:003=:025)
1994 :014(:008=:019) :0026(�:012=:012) �:0013(�:005=:003) :015(�:001=:023)
1995 :014(:008=:019) �:0079(�:025=:002) �:0007(�:004=:005) :006(�:013=:019)
1996 :014(:008=:019) �:0006(�:015=:010) �:0014(�:004=:002) :012(:001=:023)

1997 :014(:008=:019) :0072(�:003=:022) �:0018(�:006=:001) :020(:002=:035)

1998 :014(:009=:019) �:0117(�:061=:004) �:0015(�:005=:0007) :001(�:059=:017)
1999 :014(:009=:019) �:0046(�:015=:004) �:0007(�:004=:003) :009(�:009=:020)
2000 :014(:008=:019) :0062(�:006=:019) �:0012(�:004=:002) :019(:003=:036)

2001 :014(:010=:019) �:0007(�:012=:008) �:0004(�:003=:003) :013(�:004=:027)
2002 :014(:009=:019) �:0045(�:043=:006) :0002(�:002=:005) :010(�:029=:024)
2003 :015(:009=:019) �:0001(�:018=:016) :0005(�:004=:007) :015(�:005=:031)
2004 :015(:009=:019) :0002(�:016=:011) �:0001(�:005=:008) :015(:002=:030)

2005 :015(:009=:019) :0051(�:008=:023) :0001(�:003=:005) :020(:005=:035)

2006 :015(:010=:020) :0083(:004=:016) �:00004(�:004=:005) :023(:013=:034)

2007 :015(:010=:020) :0094(�:0003=:023) :0002(�:003=:005) :025(:014=:039)

2008 :015(:009=:020) �:0078(�:019=:001) �:0003(�:004=:003) :007(�:008=:022)
2009 :015(:009=:019) �:0174(�:037=� :005) :0019(�:003=:008) �:001(�:022=:017)
2010 :015(:010=:020) :0102(�:0009=:026) �:0001(�:004=:006) :025(:015=:040)

2011 :015(:009=:020) :0096(:0002=:022) :0011(�:002=:003) :025(:015=:038)

2012 :015(:009=:020) �:0025(�:013=:010) �:00007(�:003=:002) :012(�:002=:028)
2013 :014(:009=:020) �:0002(�:009=:015) �:0004(�:003=:002) :014(:004=:034)

2014 :014(:009=:020) �:0044(�:018=:008) �:0001(�:004=:002) :010(�:009=:025)
Annual Average :014(:010=:017) :00006(�:003=:003) �:00026(�:002=:002) :014(:009=:018)
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Appendix C: Results of speci�cation tests for Section 3

The following table presents the LR statics for the speci�cation tests, as well

as whether the null hypothesis is rejected or not. Critical values are according

to Kodde and Palm (1986).

***: Rejection of the null hypothesis at 0:01 level.

**: Rejection of the null hypothesis at 0:05 level.

*: Rejection of the null hypothesis at 0:10 level.

The subscripts "A01" and so on correspond to the estimated result for each

subsector. The number in the parentheses correspond to the following hypothe-

ses:

HXX(1) - H0 : �2U = 0;

HXX(2) - H0 : �t = �tt = �tK = �tL = �tE = �tF = �KL = �KE = �KF =

�LE = �LF = �EF = �KK = �LL = �EE = �FF = 0;

HXX(3) - H0 : �t = �tt = �tK = �tL = �tE = �tF = 0;

HXX(4) - H0 : �tK = �tL = �tE = �tF = 0.
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Results for speci�cation tests - I

Hypothesis LR statistic Hypothesis LR statistic Hypothesis LR statistic

HA01(1) 1070:64��� HC05(1) 119:90��� HC12(1) �6:551e� 07
HA01(2) 2684:73��� HC05(2) 245:57��� HC12(2) 377:55���

HA01(3) 164:75��� HC05(3) 3:72 HC12(3) 11:37�

HA01(4) 19:82��� HC05(4) 3:09 HC12(4) 3:98

HA02(1) 62:69��� HC06(1) 64:24��� HC13(1) 38:75���

HA02(2) 155:32��� HC06(2) 128:33��� HC13(2) 1466:44���

HA02(3) 6:74 HC06(3) 6:88 HC13(3) 175:59���

HA02(4) 3:88 HC06(4) 5:85 HC13(4) 37:88���

HA03(1) 85:46��� HC07(1) 346:65��� HC14(1) 3:53��

HA03(2) 369:07��� HC07(2) 2041:85��� HC14(2) 659:57���

HA03(3) 52:00��� HC07(3) 71:25��� HC14(3) 19:44���

HA03(4) 1:84 HC07(4) 24:36��� HC14(4) 3:48

HB(1) 280:02��� HC08(1) �:00015 HC15(1) 475:09���

HB(2) 377:52��� HC08(2) 4046:96��� HC15(2) 516:67���

HB(3) 33:92��� HC08(3) 167:42��� HC15(3) 34:39���

HB(4) 20:17��� HC08(4) 70:01��� HC15(4) 6:53

HC01(1) 315:77��� HC09(1) �6:737e� 06 HE01(1) 7:11���

HC01(2) 3328:76��� HC09(2) 71:31��� HE01(2) 85:16���

HC01(3) 45:18��� HC09(3) 8:22 HE01(3) 4:42

HC01(4) 21:89��� HC09(4) 3:63 HE01(4) 4:38

HC02(1) 159:21��� HC10(1) �:000088 HE02(1) 28:66���

HC02(2) 2476:41��� HC10(2) 337:20��� HE02(2) 91:28���

HC02(3) 63:06��� HC10(3) 12:55� HE02(3) 18:24���

HC02(4) 15:35��� HC10(4) 7:46 HE02(4) 14:49���

HC03(1) 51:89��� HC11(1) �2:413e� 07 HE03(1) 4:15��

HC03(2) 1426:36��� HC11(2) 587:64��� HE03(2) 380:97���

HC03(3) 97:44��� HC11(3) 18:20��� HE03(3) 9:85

HC03(4) 44:99��� HC11(4) 7:17 HE03(4) 7:07
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Results for speci�cation tests - II

Hypothesis LR statistic Hypothesis LR statistic Hypothesis LR statistic

HF (1) 3924:63��� HH01(1) 1748:28��� HI02(1) 237:35���

HF (2) 5018:50��� HH01(2) 3946:07��� HI02(2) 6693:96���

HF (3) 773:47��� HH01(3) 102:78��� HI02(3) 1324:39���

HF (4) 175:72��� HH01(4) 35:40��� HI02(4) 242:49���

HG01(1) 618:85��� HH02(1) 53:47��� HJ01(1) �:00016
HG01(2) 3538:68��� HH02(2) 103:56��� HJ01(2) 695:50���

HG01(3) 326:60��� HH02(3) 6:29 HJ01(3) 21:93���

HG01(4) 43:06��� HH02(4) 5:85 HJ01(4) 8:77�

HG02(1) 912:75��� HH04(1) 73:75��� HJ03(1) 65:31���

HG02(2) 4660:14��� HH04(2) 274:45��� HJ03(2) 619:47���

HG02(3) 121:59��� HH04(3) 3:35 HJ03(3) 33:24���

HG02(4) 31:48��� HH04(4) 2:81 HJ03(4) 22:53���

HG03(1) 463:51��� HI01(1) 584:31���

HG03(2) 8522:94��� HI01(2) 1747:48���

HG03(3) 224:42��� HI01(3) 182:99���

HG03(4) 38:45��� HI01(4) 10:54��
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Table 8 - Estimated results of production functions for Portuguese economic subsectors 

Subsector A01 A02 A03 B C01 C02 C03 C05 C06 C07 C08 C09 C10 C11 C12 C13 

Coefficients 

Constant 4.949***(.321) 9.023***(1.296) 8.241***(1.092) 7.134***(.953) 3.665***(.254) 3.941***(.261) 5.025***(.285) 2.847***(.889) 5.509*(3.157) 3.409***(.301) 3.874***(.233) 1.840(1.467) 5.509***(.940) 4.555***(.818) 4.80***(.988) 4.241***(.380) 

𝑡 -.102***(.024) -.011(.093) -.039(.080) -.241***(.071) -.062***(.020) -.014(.019) -.142***(.023) -.072(.072) -.228(.153) -.121***(.025) -.131***(.016) -.203*(.117) -.142*(.073) -.068*(.040) -.015(.066) -.175***(.029) 

𝑡2 .010***(.001) .001(.005) .018***(.004) .006(.004) .006*** (.001) .002(.001) .008***(.001) .003(.004) .011(.010) .011***(.002) .009***(.001) .016**(.008) .010**(.005) .006**(.002) .010**(.004) .012***(.002) 

𝑙𝑛𝐾 .145***(.030) -.113(.097) -.031(.107) .042(.078) -.229***(.024) -.158***(.024) -.089***(.028) -.165*(.090) -.926***(.317) -.179***(.030) -.085***(.019) .128(.132) .184**(.085) -.024(.051) -.057(.083) -.035(.031) 

𝑙𝑛𝐿 .289***(.050) .471**(.197) -.152(.168) .029(.157) .664***(.042) -.136***(.039) -.103*(.054) .260*(.138) -.821(.584) .371***(.050) .413***(.037) .346(.260) .070(.175) -.101(.118) -.189(.144) .151**(.065) 

𝑙𝑛𝐸 .093**(.036) -.070(.130) .139*(.083) -.146(.097) .198***(.034) .560***(.035) .341***(.043) .607***(.104) 1.439***(.449) .335***(.041) .140***(.026) .329(.231) -.339**(.145) .263***(.087) .461***(.137) .425***(.055) 

𝑙𝑛𝐹 .188***(.037) -.228(.141) .178*(.099) .396***(.080) .382***(.024) .729***(.029) .640***(.035) .718***(.123) 1.768***(.276) .557***(.029) .502***(.024) .612***(.148) .587***(.109) .623***(.071) .596***(.077) .333***(.042) 

𝑡 ∗ 𝑙𝑛𝐾 .005***(.002) -.0005(.005) .002(.005) -.010**(.005) .005***(.001) .003*(.001) -.007***(.002) -.006(.005) .041**(.017) -.002(.002) -.006***(.001) -.004(.011) -.002(.005) -.001(.003) .008(.005) -.006***(.002) 

𝑡 ∗ 𝑙𝑛𝐿 .0004(.0028) .009(.011) -.003(.009) .011(.009) .006*(.003) .001(.002) .019***(.004) .004(.011) -.012(.028) .016***(.004) .016***(.002) -.008(.017) .006(.014) .014**(.006) -.011(.011) .020***(.005) 

𝑡 ∗ 𝑙𝑛𝐸 -.006***(.002) -.010(.007) -.003(.004) .010* (.005) -.010***(.002) -.007***(.002) -.004(.003) .003(.006) -.028(.024) -.009***(.003) -.002(.002) -.002(.014) -.014(.009) -.011**(.005) -.003(.010) -.008**(.004) 

𝑡 ∗ 𝑙𝑛𝐹 .005**(.002) .001(.007) -.004(.006) .010**(.004) -.0006(.0016) .005**(.002) .002(.002) .006(.006) -.001(.014) .0001(.002) .001(.002) .023*(.012) .015**(.008) -.001(.005) .0003(.006) .006**(.003) 

𝑙𝑛𝐾 ∗ 𝑙𝑛𝐿 -.011***(.004) .010(.015) -.015(.012) .024**(.010) .0007(.0035) -.002(.003) .006(.004) .0007(.013) .234***(.081) -.001(.004) -.011***(.003) -.011(.021) -.077***(.015) -.007(.008) .036***(.013) -.007*(.004) 

𝑙𝑛𝐾 ∗ 𝑙𝑛𝐸 -.005**(.002) .001(.009) .007(.007) -.018**(.007) -.008***(.003) -.026***(.003) .010***(.003) .005(.008) -.219***(.042) .011***(.003) .025***(.002) -.042**(.018) .040***(.010) .006(.006) -.066***(.010) .012***(.004) 

𝑙𝑛𝐾 ∗ 𝑙𝑛𝐹 -.011***(.003) .025**(.010) .035***(.009) -.017***(.006) -.005***(.002) .042***(.003) .002(.003) -.004(.010) -.104***(.034) .007**(.003) -.004*(.002) .027*(.016) .013(.009) -.005(.005) .001(.008) -.0004(.003) 

𝑙𝑛𝐿 ∗ 𝑙𝑛𝐸 -.022***(.004) .032**(.016) .036***(.010) -.049***(.010) -.087***(.005) .006(.005) -.070***(.006) -.069***(.015) -.298***(.084) -.105***(.006) -.034***(.004) .014(.036) -.015(.024) -.050***(.012) -.045**(.020) -.073***(.008) 

𝑙𝑛𝐿 ∗ 𝑙𝑛𝐹 -.043***(.005) -.105***(.015) -.050***(.011) -.059***(.011) -.061***(.004) -.044***(.004) -.062***(.006) -.083***(.020) -.243***(.050) -.035***(.005) -.088***(.004) -.137***(.038) -.079***(.023) -.080***(.013) -.047***(.013) -.044***(.007) 

𝑙𝑛𝐸 ∗ 𝑙𝑛𝐹 -.057***(.003) -.032***(.010) -.074***(.008) .0004(.006) -.014***(.003) -.131***(.004) -.065***(.005) -.030***(.011) .016(.050) -.054***(.004) -.030***(.003) -.017(.031) -.056***(.016) -.008(.011) -.032**(.013) -.056***(.006) 

(𝑙𝑛𝐾)2 .008***(.0008) -.005***(.002) -.008**(.004) .011***(.002) .023***(.001) .010***(.001) .003***(.001) .014***(.003) .055***(.018) .006***(.001) .008***(.001) .006(.005) .010***(.003) .009***(.002) .013***(.003) .006***(.001) 

(𝑙𝑛𝐿)2 .043***(.002) .022***(.007) .046***(.007) .056***(.007) .046***(.003) .043***(.002) .085***(.004) .078***(.012) .156***(.029) .073***(.003) .064***(.002) .082***(.022) .119***(.014) .099***(.005) .064***(.006) .075***(.003) 

(𝑙𝑛𝐸)2 .061***(.002) .016**(.006) .029***(.003) .050***(.005) .067***(.002) .054***(.002) .050***(.003) .033***(.006) .230***(.045) .069***(.003) .015***(.002) .012(.019) .037***(.008) .023***(.006) .066***(.011) .043***(.004) 

(𝑙𝑛𝐹)2 .056***(.002) .074***(.007) .036***(.006) .027***(.003) .034***(.001) .044***(.002) .046***(.002) .026***(.005) .142***(.019) .022***(.002) .051***(.002) .046***(.015) .039***(.007) .030***(.005) .018***(.005) .050***(.003) 

(Firm size dummies omitted.) 

Technical inefficiency equation 

Constant -1.903*** 

(.100) 

-1.714***(.247) -2.329***(.267) -.611***(.134) -3.764***(.341) -.533***(.136) -1.006***(.206) -2.58***(.454) 2.167***(.353) -1.018***(.109)      -1.639***(.195) 

𝐶𝐷 7.8e-06*** 

(2.3e-06) 

-.0007*(.0003) .00007(.00012) -1.56e-06 

(2.81e-06) 

.00005*** 

(7.82e-06) 

.00002*** 

(5.64e-06) 

.00009***(.00002) -.003(.002) -.0001(.0009) -1.24e-06 

(2.37e-06) 

     -.00002(.00004) 

𝐸𝑆 2.002***(.131) 2.617***(.375) 2.975***(.364) -.854**(.339) 1.484***(.346) -4.474***(.300) -4.582***(.570) 2.99*** (.525) -4.51***(.792) -.752***(.185)      -.848**(.339) 

𝐹𝐼 4.457***(.400) 2.336***(.813) 3.447(19.628) 5.491***(1.012) 31.404***(4.522) 21.125***(6.22) 8.714**(3.617) -14.87(16.44) -24.66*(14.8) 11.072***(1.384)      -155.81*(87.48) 

Related statics 

Log 

likelihood 

-24556.381 -2022.1859 -690.89744 -2363.1578 -20946.385 -24650.458 -14388.606 -1974.2583 -286.60584 -11857.388 -18270.291 -461.87897 -1593.28 -3084.9688 -2010.0671 -4886.4818 

LR static 51267.74 3585.93 5898.33 8871.36 139391.13 123652.44 95002.03 13968.20 3258.86 89819.33 161082.97 6508.94 13989.21 30936.10 21534.49 47068.80 

Note: Standard errors in parentheses; */**/*** represent statistical significance at 0.10/0.05/0.01 level. 

 

 

 

 



Table 8 (continued) - Estimated results of production functions for Portuguese economic subsectors 

Subsector C14 C15 E01 E02 E03 F G01 G02 G03 H01 H02 H04 I01 I02 J01 J03 

Coefficients 

Constant -.250(.646) 1.739***(.603) -.777(2.477) 3.591(4.418) -.556(1.275) 6.172***(.172) 7.126***(.250) -.978***(.172) 3.204***(.130) 2.073***(.240) -11.63***(4.12) .367(.741) 3.838***(.275) 5.927***(.149) 3.641***(.632) 3.789***(.403) 

𝑡 -.103**(.048) -.052(.045) .153(.123) -.441*(.241) .062(.091) -.256***(.015) -.205***(.020) -.105***(.014) -.099***(.011) -.059***(.019) .495*(.261) -.013(.067) -.072***(.022) -.260***(.011) -.210***(.050) -.109***(.033) 

𝑡2 .012***(.003) .010***(.003) -.002(.007) .017(.012) .002(.006) .022***(.001) .018***(.001) .008***(.001) .008***(.001) .006***(.001) .003(.013) -.001(.004) .015***(.002) .019***(.001) .012***(.003) .007***(.002) 

𝑙𝑛𝐾 -.001(.060) -.049(.054) .406***(.137) -.166(.303) -.201*(.116) .105***(.014) -.014(.022) .271***(.015) .114***(.012) .303***(.025) -1.049***(.325) .110*(.061) .054**(.021) .028**(.012) -.045(.051) .118***(.035) 

𝑙𝑛𝐿 .667***(.125) .716***(.097) .341(.650) 2.853**(1.129) 1.307***(.257) .077***(.029) .147***(.045) 1.018***(.031) .137***(.024) .763***(.047) 4.215***(.936) .878***(.122) .581***(.050) .014(.026) .407***(.094) .452***(.076) 

𝑙𝑛𝐸 .666***(.098) .014(.080) -.560**(.265) 1.640***(.493) .055(.127) .349***(.021) -.160***(.042) .431***(.022) .533***(.018) .295***(.026) .790**(.342) .782***(.094) -.069(.052) .291***(.025) .348***(.066) .358***(.048) 

𝑙𝑛𝐹 .576***(.077) .674***(.082) 1.665***(.312) -2.287**(.967) .867***(.123) .281***(.023) .353***(.031) .665***(.023) .433***(.016) -.075**(.033) .944**(.368) .458***(.088) .367***(.027) .214***(.015) .415***(.064) .137***(.050) 

𝑡 ∗ 𝑙𝑛𝐾 -.004(.003) -.0001(.003) .0002(.006) -.036**(.014) -.016**(.007) -.002**(.001) -.0007(.001) -.002**(.001) -.003***(.001) -.006***(.002) .009(.014) .005(.004) -.003*(.002) -.0002(.0006) -.002(.003) -.007***(.002) 

𝑡 ∗ 𝑙𝑛𝐿 -.005(.007) -.005(.006) .013(.024) .094**(.041) .011(.012) .013***(.002) .014***(.003) .003(.002) .008***(.002) .005*(.003) -.050*(.030) .006(.009) .007**(.004) .019***(.001) .008(.007) .015***(.004) 

𝑡 ∗ 𝑙𝑛𝐸 .008(.006) -.007(.005) .010(.008) .016(.015) .002(.007) -.012***(.001) -.012***(.003) -.002*(.001) -.001(.001) -.006***(.002) .002(.019) -.004(.006) -.005(.003) -.009***(.002) .003(.005) -.008**(.004) 

𝑡 ∗ 𝑙𝑛𝐹 .005(.005) .011**(.005) -.038*(.023) -.045**(.019) -.001(.007) .006***(.002) .005***(.002) .006***(.002) .001(.001) .007***(.002) -.014(.020) -.008(.006) -.001(.002) .002***(.001) .005(.005) .005(.003) 

𝑙𝑛𝐾 ∗ 𝑙𝑛𝐿 -.009(.009) -.028***(.008) .031(.037) -.009(.079) -.040**(.016) -.007***(.002) -.008**(.003) -.030***(.002) -.010***(.002) -.035***(.004) -.006(.036) -.015*(.009) -.041***(.004) -.008***(.002) -.007(.007) -.021***(.005) 

𝑙𝑛𝐾 ∗ 𝑙𝑛𝐸 -.005(.007) .018***(.006) -.013(.010) -.036(.025) -.030***(.007) -.002(.001) .003(.003) -.0004(.0016) -.008***(.001) .002(.002) .010(.019) -.020***(.006) .005(.003) -.001(.002) -.004(.005) -.001(.004) 

𝑙𝑛𝐾 ∗ 𝑙𝑛𝐹 .010*(.005) .021***(.005) -.035(.027) .061*(.036) .011(.008) -.007***(.002) -.004**(.002) -.009***(.002) .004***(.001) -.016***(.003) .034(.021) .010(.006) .001(.002) .007***(.001) -.010**(.004) .001(.004) 

𝑙𝑛𝐿 ∗ 𝑙𝑛𝐸 -.069***(.014) -.016(.012) -.133***(.048) .195***(.048) .025*(.015) -.026***(.003) -.026***(.006) -.050***(.003) -.062***(.003) .037***(.004) .019(.048) -.091***(.011) -.112***(.006) -.090***(.003) -.058***(.010) -.080***(.007) 

𝑙𝑛𝐿 ∗ 𝑙𝑛𝐹 -.097***(.013) -.165***(.011) -.243***(.078) .333**(.147) -.174***(.013) -.053***(.003) -.055***(.004) -.112***(.003) -.074***(.002) -.193***(.005) -.091(.072) -.036***(.011) -.026***(.005) -.018***(.002) -.127***(.009) -.060***(.007) 

𝑙𝑛𝐸 ∗ 𝑙𝑛𝐹 -.047***(.012) -.028**(.011) .168***(.044) -.231***(.065) -.001(.008) -.059***(.003) -.088***(.004) -.016***(.003) -.013***(.002) -.081***(.003) -.144***(.037) .027***(.007) -.039***(.005) -.041***(.002) .010(.007) -.007(.006) 

(𝑙𝑛𝐾)2 .007***(.002) .003**(.001) -.010*(.006) .012(.016) .039***(.005) .005***(.0004) .009***(.001) .008***(.0005) .004***(.0003) .014***(.001) .029***(.008) .006**(.002) .014***(.001) .003***(.0003) .014***(.002) .008***(.002) 

(𝑙𝑛𝐿)2 .076***(.004) .092***(.006) .195***(.069) -.447***(.109) .044**(.019) .055***(.002) .054***(.002) .061***(.002) .093***(.001) .103***(.003) -.153**(.065) .038***(.007) .085***(.004) .081***(.002) .090***(.006) .075***(.006) 

(𝑙𝑛𝐸)2 .031***(.007) .012*(.006) .021**(.010) -.049***(.014) .012***(.004) .059***(.001) .073***(.004) .023***(.001) .030***(.001) .030***(.002) .050***(.015) .023***(.004) .095***(.004) .066***(.002) .011**(.005) .046***(.003) 

(𝑙𝑛𝐹)2 .051***(.006) .077***(.006) -.014(.026) .064***(.024) .054***(.006) .044***(.002) .080***(.002) .043***(.001) .029***(.001) .130***(.003) .026(.031) -.023***(.004) .022***(.002) .023***(.001) .070***(.004) .038***(.003) 

(Firm size dummies omitted.) 

Technical inefficiency equation 

Constant -3.133**(1.346) .217*(.112) -.674(.577) .541(.487) -1.753***(.615) -1.66***(.037) 1.645***(.101) -2.53***(.097) -3.52***(.229) -2.78***(.080) -.979**(.409) -5.49***(.826) -.315***(.096) -1.74***(.126)  -2.470***(.265) 

𝐶𝐷 -.0001(.0005) .00014**(.00006) -.003(.002) .002(.003) .0001(.0001) 1.88e-06 

(1.84e-06) 

.0002*** 

(.00003) 

.00001*** 

(2.73e-06) 

.00005*** 

(.00001) 

.0002*** 

(.00002) 

-.007***(.003) 2.10e-07 

(4.38e-07) 

.00001*** 

(2.16e-06) 

.0002*** 

(.00003) 

 .003***(.001) 

𝐸𝑆 -3.247(3.528) -6.463***(.977) -1.821*(.965) -5.46**(2.41) -.975(1.189) 3.590***(.065) -48.5***(2.48) 2.969***(.121) 1.243***(.289) 6.466***(.144) 5.174***(.800) 5.795***(.844) -.843***(.129) -.860***(.172)  .950**(.393) 

𝐹𝐼 -311.920(300.417) 1.582(4.273) -.415(16.184) -6.94(42.39) -27.62(24.62) 3.448***(.307) -27.16(46.40) 6.821***(.819) 6.899***(.532) 3.868(4.390) -407.5(552.9) -2.444(2.948) 4.011***(.902) 5.097(6.435)  14.367***(3.833) 

Related statics 

Log likelihood -3676.842 -4090.3423 -239.00118 -43.054255 -1965.4822 -56975.833 -44367.584 -95239.532 -115933.34 -9210.7156 -363.66027 -6462.9175 -9673.6369 -35971.325 -4845.2941 -6199.1981 

LR static 16049.77 18704.65 3189.46 1168.47 5614.01 151473.53 100097.74 198784.55 268514.76 119768.57 1165.15 10140.69 73996.67 234357.95 17377.21 38960.07 

Note: Standard errors in parentheses; */**/*** represent statistical significance at 0.10/0.05/0.01 level. 

 


